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Abstract1

Let K ⊆ R be a computable subfield of the real numbers (for instance,2

Q). We present an algorithm to decide whether a given parametrization of3

a rational swung surface with coefficients in K(i), can be reparametrized4

over a real (i.e. embedded in R) finite field extension of K. Swung surfaces5

include, in particular, surfaces of revolution.6

keywords: swung surfaces, revolution surfaces, real and complex surfaces,7

rational parametrization, ultraquadrics.8

1 Introduction9

A surface of revolution is a surface globally invariant by rotations around a10

certain line (the axis of revolution). The intersection of the surface with planes11

containing the revolution axis yields the so called profile curves. Revolution12

surfaces are well known since ancient times and very common objects in Dif-13

ferential Geometry and in Computer Aided Geometric Design. Still, they pose14

some interesting and challenging questions. One example is the recent work15

([18]) devoted to computing the offset of revolution surfaces, provided the gen-16

eratrix curve of the surface is implicitly given. Another recent paper deals with17

a new technique for implicitizing rational surfaces of revolution using µ-bases18

[20]. A basic question, such as efficiently determining, given the implicit equa-19

tion of an algebraic surface, whether it is, or not, the equation of a surface of20

revolution, seems unsolved.21

On the other hand, in the Geometric Modeling literature, revolution surfaces22

are often introduced under the assumption that they are generated by a profile23

plane curve (see e.g. [1], [7], [8]) subject to rotation around some axis. Since24

circles are rational curves, if the profile curve is rational, the revolution surface25

obtained by rotating it around a suitable axis will be rational, too. But the26

converse is not necessarily true (see Example 2.3).27

In this paper we will work with swung surfaces, which are a natural exten-28

sion of surfaces of revolution. More precisely, swung surfaces are produced by29

swinging around the z-axis a profile curve in the yz-plane along a trajec-30

tory curve in the xy-plane, see section 2 for more details. Assume that the31
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profile curve is a plane rational curve parametrized by (0, φ1(t), φ2(t)) and the32

trajectory curve is also given by the parametrization (ψ1(s), ψ2(s), 0). Then the33

corresponding swung surface is parametrized by34

P(s, t) = (φ1(t)ψ1(s), φ1(t)ψ2(s), φ2(t)) (‡)

where we assume that the involved rational functions φi, ψj are defined over35

K(i), where K is a computable subfield of the reals. In fact, in the sequel, for36

the purpose of this paper, the equation (‡) above can be taken as the definition37

of rational swung surface S.38

Notice that when the trajectory curve is a circle, say, (ψ1(s) = (s2− 1)/(1 +39

s2), ψ2(s) = 2s/(1+s2), 0), the swung surfaces is the revolution surface obtained40

by rotating the profile curve around the z-axis. In particular, rational swung41

surfaces include all surfaces of revolution generated by rational profile curves,42

as well as many other surfaces, e.g. all quadrics. However we do not know43

whether every rational revolution surface is a swung surface, in the sense of44

having a parametrization of type (‡), cf. Example 2.3 below. Swung surfaces45

are thoroughly used in geometric aided design specially when the profile and46

trajectory curves are Bezier curves, and appear as part of the NURBS packages,47

see ([10]).48

Let us describe the problem we will deal with in this framework. Assume49

we take as input a swung surface (‡) where the parametrization is given with50

coefficients over K(i), where K is a computable subfield of the reals (typically,51

the field Q of rational numbers, or an extension of Q such as Q( n
√
α), with52

α ∈ Q+), and where i is the imaginary unit. That is, we suppose the proposed53

parametrization has coefficients of the kind a+bi, with a, b ∈ K. Yet, the swung54

surface might have a simpler parametrization, one involving real coefficients55

only. Then, our goal is to determine whether there is a change of parameters56

simplifying (in the sense of providing real coefficients) the given parametrization57

and, if so, to compute this parameter change. An obvious necessary condition58

for that is that the surface has “enough” real points. It turns out that in our59

case this is also a sufficient condition (see Theorem 4.2 and Corollary 4.5):60

the only requirement for the existence of a real reparametrization is that the61

surface should be “real”, in the sense of having a two dimensional piece in R3
62

(see Section 3 for precisions on this concept).63

Let us point out that it is not known, in general, whether a real surface,64

provided with a complex parametrization, has as well a real parametrization.65

We refer to the introduction of [17] for details on this problem. Therefore our66

result is a further step for settling down this general question. The fact that67

it is sufficient, in our context, to be real in order to have a real reparametriza-68

tion is due, of course, to the close relation of the swung surfaces with a pair69

of curves and to the well known fact that, for curves, reality and complex ra-70

tionality imply real parametrizability (see [12]). On the other hand, since the71

given parametrization of the swung surface does not univocally determine the72

associated pair of curves, but just the involved products φ1(t)ψ1(s), φ1(t)ψ2(s),73

some weaker conditions on these two curves have to be provided, as described74

in the statement of Theorem 4.2, item 1.75
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The algorithmic simplification of the coefficients of a parametrization (and76

more generally, that of simplifying a parametrization by regarding other fea-77

tures, such as its degree, etc.) is quite involved and has recently deserved quite78

a bit of attention. We refer the reader, for a detailed description of this general79

problem and references, to the Introduction of our recent paper [4]. There we80

have dealt with the case of parametric ruled surfaces, by using an ad hoc analy-81

sis that can not be easily generalized to include other types of surfaces. Yet, it82

can be said that the approach for the new case of rational swung surfaces shares83

with the previous one the need to adapt to the particular context the theory of84

ultraquadrics and hypercircles (cf. [3], [12], [11]), specifically created to handle85

over R the reparametrizing of a given complex parametrization.86

We must briefly comment on an alternative approach to solve the proposed87

simplification problem. In fact, it is easy to observe that, given a parametriza-88

tion (‡) over the complexes, the projection onto the z coordinate provides a89

rational map. Thus, for every value z = z0 we obtain different (perhaps several)90

values t0 of t, such that z0 = φ2(t0) and, then, the fiber over z0 is one (or more)91

rational curve (φ1(t0)ψ1(s), φ1(t0)ψ2(s)). Therefore, following [16] or [17], we92

are yield to discuss the existence of a real parametrization for this pencil of93

curves, by reducing it to the case of conics. Roughly speaking, this approach94

–if it could be carried out– relies on the theoretically well known birationality95

from rational curves and conics, while our approach, on the other hand, directly96

establishes such birational map from the family of curves to the –so called, see97

A– associated Weil variety.98

One subtle point when dealing with reparametrizations is whether the input99

parametrization needs to be proper, that is, invertible. Although this is not a100

problem for curves, since it is well known (Lüroth’s theorem, see, for instance101

[13]) that the existence of an improper rational mapping implies –and it is102

algorithmically easy to find– the existence of a birational parametrization [2],103

this is not the case, in general, for real surfaces (see Example 2.3). In Section 3,104

we address this issue, in order to allow improper parametrizations as potential105

inputs for our simplification goal.106

Thus, we are able to state our main results on the existence and construction107

of real reparametrizations in the case of non-proper parametrizations of swung108

surfaces, by requiring, just, the birationality of the parametrizations for the109

two curves involved in the description of the surface. Starting from any (non-110

proper) parametrization of a swung surface, it is easy, computationally speaking,111

to obtain one of the same surface, but verifying the above requirement (through112

the algorithmic version of Lüroth’s theorem, see [2]).113

Section 4 contains the general statement for reparametrization of swung114

surfaces and its proof, relying on some technical aspects which are detailed in115

an Appendix. Moreover, we include in this Section a simpler reparametrizing116

statement in the particular case of classical surfaces of revolution. We conclude117

the paper (Section 5) with some detailed examples and the precise description118

and discussion of a pair of algorithms, based on our proposed method, as well as119

a table with running times for the performance of the implemented algorithms120

on a collection of surfaces. Computations have been obtained using the well121
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known mathematical software Maple and Sage.122

2 Swung Surfaces123

As stated above, we will deal in this paper with the family of parametric or124

rational swung surfaces, that is, surfaces described parametrically in the form125

(φ1(t)ψ1(s), φ1(t)ψ2(s), φ2(t))126

where φi and ψj are rational functions over K(i), where K is a computable127

subfield of the reals.128

Thus, the intersection of the resulting surface with the planes z = k, i.e.129

perpendicular to the z axis, produces copies of the of the trajectory (ψ) curve130

dilated with the y values φ2(t0) of the profile curve as augmentation factor. No-131

tice that we obtain as many curves as points of intersection of the given plane132

with the profile curve, i.e., as solutions t0 of the equation φ2(t) = k. Alter-133

natively, consider the plane y = λx that contains the z-axis and take any s0134

such that this plane intersects the trajectory curve at u0 = (ψ1(s0), ψ2(s0), 0).135

Then, referred to the canonical basis of y = λx given by u0/||u0|| and e3 =136

(0, 0, 1), the intersection of the surface with the plane is the curve ||u0||φ1(t)u0+137

φ2(t)e3 which is the profile curve distorted horizontally by the scalar ||u0|| =138 √
(ψ1(s0))2 + (ψ2(s0))2. Thus, if we imagine the profile curve as being joined139

to the z-axis with a horizontal elastic arm, the surface can be produced me-140

chanically as the contour obtained by stretching φ horizontally with factor141 √
(ψ1(s))2 + (ψ2(s))2 as the yz plane rotates or swings around the z-axis.142

Since these surfaces are initially described with, perhaps, complex coeffi-143

cients, we will consider the geometric object defined by the parametrization in144

C3 and, thus, we will denote the surface as SC. It is important to remark here145

that the relation between the complex and real parts of this surface will play146

an important role in what follows. Yet, we want to discard, for the rest of this147

paper, the case of parametrizations (φ1(t)ψ1(s), φ1(t)ψ2(s), φ2(t)) that do not148

produce a true surface in C3, i.e. such that the Jacobian of the parametrization149

has, generically, rank smaller than 2. This excludes precisely the following cases:150

• when both φ1, φ2 are constant (since, then, φ does not describe a true151

curve)152

• when both ψ1, ψ2 are constant (since, then, ψ does not describe a true153

curve)154

• when φ1 is identically zero (since, then, SC is just a line, the z-axis).155

• when φ2 is constant and ψ2, ψ1 are proportional (since then SC is just a156

line {c1x = y, z = c2} or {c1y = x, z = c2} , with c1, c2 some constants)157

Leaving apart these degenerate cases, this family of surfaces includes, in par-158

ticular, surfaces of revolution – when the trajectory curve, is the unit circle–159
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with rational profile curve, but it extends also to other surfaces that are not160

of revolution, as all quadrics (after a suitably parametrization) as well as other161

kinds of surfaces, as shown in the following examples.162

Example 2.1. Consider a cone with apex at (x0, y0, z0) and a directrix curve163

parametrized by (φ1(t), φ2(t), φ3(t)), so that the cone is the union of straight164

lines passing through the apex and a point at the directrix. After a suitable165

translation we may assume that the apex is the origin of coordinates. Then the166

cone is parametrized as167

s (φ1(t), φ2(t), φ3(t))168

Now, considering as new parameter T = s φ3(t), we can reparametrize the cone169

as170 (
T
φ1(t)

φ3(t)
, T
φ2(t)

φ3(t)
, T

)
171

yielding a parametrization of the kind (φ1(t)ψ1(s), φ1(t)ψ2(s), φ2(t)). Cones172

are, then, swung surfaces and our contribution in this paper applies to these173

surfaces, too, after performing a translation of the apex to the origin.174

Figure 1: A swung surface: −y2 + x4 + z2y2 = 0

Example 2.2. Let175

P :=
(
2ts/(t2 + 1), 2ts2/(t2 + 1), (t2 − 1)/(t2 + 1

)
)176

According to our definition this is a parametric swung surface, with profile curve177

the circle (0, 2t/(t2+1), (t2−1)/(t2+1)) and trajectory curve the parabola (s, s2).178

Its implicit equation is −y2 + x4 + z2y2 = 0. See Figure 1.179

For another example of this kind, take180

Q := (2ts/(t2 + 1), 2ts2/(t2 + 1), t3)181
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Again, this is a rational swung surface with profile curve the cubic (2t/(t2 +182

1), t3), swinging along the parabola (s, s2) as trajectory curve. See Figure 2.183

As pointed out previously, surfaces of revolution generated by a rational184

curve (0, φ1(t), φ2(t)) are included in the family of parametric swung surfaces.185

However, there are surfaces of revolution which are rational, although generated186

by non-rational curves, as the following example shows. We do not know yet if187

they are parametric swung surfaces.188

Figure 2: Another swung surface: x6z2 − 8y3z + 6x4zy + x6

Example 2.3. Let us consider the offset of an ellipsoid of revolution. See189

Figure 3. As explained below, it is known to be rational, but it is also (cf. [18])190

the revolution surface generated by the offset curve (which is non-rational) of191

an ellipse (cf. [5]). Therefore it is a rational and classical surface of revolution,192

which is parametrizable over the reals, yet its intersection with the x = 0 plane193

(the generatrix curve) is not rationally parametrizable.194

Indeed, consider the ellipse195

y2

4
+ z2 = 1196

which can be parametrized as197

y =
4t

t2 + 1
z =

t2 − 1

t2 + 1
198

We rotate it around the z-axis, so that we get the ellipsoid SC (as a surface in199

C3)200

x2

4
+
y2

4
+ z2 = 1201
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Figure 3: A rational revolution surface, not generated by a rational curve. Left:
offset of the ellipse (profile curve of genus 1); Right: half offset of the ellipsoid
(rational revolution surface).

which can be parametrized, using the φ, ψ scheme, as in the introduction, by202

x =
4t

t2 + 1

s2 − 1

s2 + 1
y =

4t

t2 + 1

2s

s2 + 1
z =

t2 − 1

t2 + 1
203

or, alternatively (notice that the previous parametrization is not proper), as204

x =
4t

t2 + s2 + 1
y =

4s

t2 + s2 + 1
z =

t2 + s2 − 1

t2 + s2 + 1
205

For our purposes of constructing the offset of the ellipsoid, an even more suitable206

parametrization, although one defined over C, is207

x = −2
8 t− 16 + s2t2 − 16 s2

s (t2 + 8 t− 32)
208

y =
2 i
(
−8 t+ 16 + s2t2 − 16 s2

)
s (t2 + 8 t− 32)

209

z =
(t− 8) t

t2 + 8 t− 32
.210

211

Indeed, a mechanical calculation shows that, with this parametrization, the212

norm of the normal vector to SC at a point (x(t, s), y(t, s), z(t, s)) is a rational213

fraction in t and s. Therefore it can be used in a straightforward way to construct214

the parametric equations of the offset S ′C at distance 1 of the ellipsoid, which215

in this way results a rational surface (details on how to compute a rational216

parametrization of the offset of the ellipsoid can be found in [19], Theorem217

5; alternatively, one may check [9]). Namely, we get the following, birational218
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parametrization with complex coefficients of the offset S ′C:219

x = −1/2

(
5 t2 − 8 t+ 32

) (
8 t− 16 + s2t2 − 16 s2

)
s (t2 + 8 t− 32) (t2 − 4 t+ 16)

220

y = −i/10

(
−8 t+ 16 + s2t2 − 16 s2

) (
−25 t2 + 40 t− 160

)
s (t2 + 8 t− 32) (t2 − 4 t+ 16)

221

z = 2
t (t+ 4) (t− 2) (t− 8)

(t2 + 8 t− 32) (t2 − 4 t+ 16)
.222

223

Notice that this parametrization is not of the form (‡) of swung surfaces.224

Also, apparently, the property (known by construction) of S ′C being real is hid-225

den behind this birational parametrization. However, implicitization of the226

above parametrization gives as implicit equation of S ′C:227

−240 y2z2x2+66 y2z4x2+30 y4z2x2+30 y2z2x4+450 z2y2−120 y4z2−210 y2z4−228

30 y4x2−30 y2x4−120 z2x4−210 z4x2 +450 z2x2 +18x2y2 +40 y2z6 +10 y6z2 +229

33 y4z4+4 y6x2+6 y4x4+4 y2x6+33 z4x4+40 z6x2+10 z2x6−207 z4−324 z2+230

9x4 + 9 y4 + 8 z6 − 10 y6 − 10x6 + 16 z8 + y8 + x8 = 0,231

which of course is real. Moreover, we know that S ′C is “real” in the sense that232

has many real points (see Section 3 for details on this concept), since (1, 0, 0) is233

a real regular point in this surface.234

Let us see how we can recover a real parametrization. For that purpose we235

use the construction of the Weil variety (cf. [3]). In the complex parametriza-236

tion, we substitute t = t0 + it1, s = s0 + is1 and normalize the resulting237

expressions so that they have real denominators. The Weil variety is then de-238

fined as the zero set of the imaginary parts of this normal expression, minus239

the zero set of the denominator (see [3] for further details on this technique for240

reparametrizing these surfaces over the reals). In our example the Weil variety241

W is the tubular surface in the hyperplane t1 = 0, described by242

(t20 − 16)s20 + (t20 − 16)s21 − 8(t0 − 2) = 0,243

and we get an R-birational map from it to the offset S ′C.244

Now, by [16], Theorem 3, all tubular surfaces are real parametrizable and,245

therefore, by composing such parametrization with the mentioned birational246

map we get a parametrization of S ′C over the reals. We claim that this real247

parametrization cannot be birational. Indeed, if it were, by the R-birational248

map, our Weil variety W would have a birational parametrization. But following249

[17], it is easy to deduce that the tubular surface W can not be birationally250

parametrizable over the reals since its projectivization and desingularization has251

more that one connected component (an invariant for the real rational function252

field of the surface, cf. [6]).253

As a consequence, it follows that the offset S ′C cannot be birationally parame-254

trized over the complexes as a swung surface. In fact, were it possible, then, we255

could apply the Remark 4.3, stating that, under the assumption of S ′C having256

a birational complex parametrization as swung surface, the reality of S ′C would257
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imply the existence of a birational real parametrization for it, which is not258

possible as we just pointed out. We remark here that we do not know if there259

is a complex, non-proper parametrization of S ′C as swung surface.260

On the other hand, we know that, alternatively, S ′C can be constructed by261

considering first the offset of the ellipse (1/4)y2 + z2 = 1 above, which is:262

−324 z2 + 9 y4 + 450 z2y2 − 207 z4 − 10 y6 − 120 y4z2 − 210 y2z4 + 8 z6 + y8 +263

10 y6z2 + 33 y4z4 + 40 y2z6 + 16 z8 = 0,264

and then rotating it around the z-axis. However, this curve has genus one (see265

[5]), so that it is not rational, although its revolution around the z-axis produces266

the offset S ′C, which, as we have seen, is rational.267

In conclusion, S ′C is a real rational surface of revolution with no rational268

profile curve for any possible revolution axis, and we do not know whether it269

can be presented as a parametrized swung surface (although we know that this270

parametrization can never be proper).271

Remark 2.4. More precisely, we have the following: a rational surface of rev-272

olution SC, with the z-axis as the revolution axis, has a sectional curve, at the273

plane x = 0, which is rational if and only if it admits a parametrization274

(λ1(u, v), λ2(u, v), λ3(u, v))275

where λ1(u, v)2 + λ2(u, v)2 is the square of a rational function. Indeed, assume276

that SC is the surface of revolution generated by rotating the planar curve277

(0, φ1(u), φ2(u)) around the z-axis. Then SC has a rational parametrization as278 (
φ1(u)

v2 − 1

1 + v2
, φ1(u)

2v

1 + v2
, φ2(u)

)
279

and we have (φ1(u)(v2−1)/(1+v2))2+(φ1(u)2v/(1+v2))2 = φ1(u)2. Conversely,280

assume that we have a parametrization281

(λ1(u, v), λ2(u, v), λ3(u, v))282

with λ1(u, v)2 + λ2(u, v)2 the square of a rational function and λ3 not constant283

(otherwise SC is the plane z = λ3). Then, consider a rational curve (u(t), v(t))284

such that λ3(u(t), v(t)) takes, when t ∈ C, infinitely many values (a property285

that holds for almost every choice of (u(t), v(t))). Now, for almost every t0, the286

point287 (
0,
√
λ1(u(t0), v(t0))2 + λ2(u(t0), v(t0))2, λ3(u(t0), v(t0))

)
288

lies in SC, since so does the point289

(λ1(u(t0), v(t0)), λ2(u(t0), v(t0)), λ3(u(t0), v(t0)))290

and SC contains every circle in a xy-parallel plane with center at (0, 0, λ3(u(t0),291

v(t0))) and passing through (λ1(u(t0), v(t0)), λ2(u(t0), v(t0)), λ3(u(t0), v(t0))).292
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Now, it is immediate to conclude that the intersection of SC with the plane293

x = 0 can be parametrized by294 (
0,
√
λ1(u(t), v(t))2 + λ2(u(t), v(t))2, λ3(u(t), v(t))

)
295

which is rational by our hypothesis on λ1(u, v)2 + λ2(u, v)2.296

In particular it follows that the offset S ′C of the previous example, can not297

have a parametrization (λ1(u, v), λ2(u, v), λ3(u, v)), where λ1(u, v)2 + λ2(u, v)2298

is the square of a rational function.299

3 Reparametrizing: some basic issues300

The starting point for our approach, our input, is a rational parametrization of301

a true surface over the complexes of the form,302

(φ1(t)ψ1(s), φ1(t)ψ2(s), φ2(t))303

with complex coefficients. We can imagine, from the context where the parame-304

trization has risen or from the way it has been obtained, that this parametrizes305

a swung surface over R3. But, strictly speaking, our only mathematical data is306

the given parametrization. Since it has complex coefficients, all we can assert307

is that it parametrizes a surface SC in C3.308

In this Section we will deal with two basic issues that we have already men-309

tioned in the Introduction: a) the precise meaning of the word “real” when310

applied to a complex surface, since it will be a basic requirement for our results311

and, b) the proper versus improper character of the given parametrization.312

We recall that a parametrization is called proper or birational if the map from313

parameters to points in the surface is generically one-to-one, i.e. it is possible314

to invert the parametrization and to obtain the parameters in terms of rational315

functions on the surface. Otherwise, that is, in the many-to-one case, we say316

that the parametrization is improper or unirational. For (real or complex) curves317

it is well known (Lüroth’s theorem, see, for instance [13]) that the existence of318

an improper rational mapping implies –and it is algorithmically easy to find–319

the existence of a birational parametrization [2]. Castelnuovo theorem states320

that any complex unirational surface is also rational. But this is not true for real321

surfaces. In fact, Example 2.3 provides a real surface (although not properly322

parametrizable as swung surface over the complexes) that has a real unirational323

parametrization, but can not have a real birational parametrization.324

We start we the following easy observation that will be used later:325

Remark 3.1. Assume that a given plane curve parametrization (p1(t), p2(t))326

is proper over C. Then, for every scalars λ, µ ∈ C \ {0}, the parametrization327

(λ p1(t), µ p2(t)) is also proper. Indeed, as field extensions, we have C(λ p1(t),328

µ p2(t)) = C(p1(t), p2(t)) = C(t). Obviously, the result works for curves in any329

dimension.330
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Now observe that, given a swung surface parametrization331

(φ1(t)ψ1(s), φ1(t)ψ2(s), φ2(t))332

we may consider diverse candidates for our trajectory and profile curves, namely333

adjusting constants: (λφ1(t), φ2(t)) and ((1/λ)ψ1(s), (1/λ)ψ2(s)), for each non-334

zero, complex, value of λ. However, as a consequence of the previous observa-335

tion, if for choice of λ the curves are proper, so they are for any other choice.336

Bearing this in mind we can state the following337

Lemma 3.2. Assume that the parametrization of the surface338

(φ1(t)ψ1(s), φ1(t)ψ2(s), φ2(t))339

is proper. Then the parametrizations of the curves φ(t) = (φ1(t), φ2(t)) and340

ψ(s) = (ψ1(s), ψ2(s)) are also proper.341

Proof. Indeed, suppose that t = T1(x, y, z), s = T2(x, y, z) is the inverse of the342

parametrization of the surface, i.e.,343

t = T1(φ1(t)ψ1(s), φ1(t)ψ2(s), φ2(t))344

s = T2(φ1(t)ψ1(s), φ1(t)ψ2(s), φ2(t))345
346

in C(t, s). Take any s0 such that ψ1(s0), ψ2(s0) and T1(yψ1(s0), yψ2(s0), z) are347

well defined. We claim that348

T̃1(y, z) := T1(yψ1(s0), yψ2(s0), z)349

is the inverse of the parametrization (φ1(t), φ2(t)). Indeed, note that350

T̃1(φ1(t), φ2(t)) = T1(φ1(t)ψ1(s0), φ1(t)ψ2(s0), φ2(t)) = t351

by the equations above, which shows that C(φ1(t), φ2(t)) = C(t), that is, that352

the curve (φ1(t), φ2(t)) is birational. A similar (symmetric) argument shows353

that for a fixed t0, the function354

T̃2(x, y) := T2(xφ1(t0), yφ1(t0), φ2(t0))355

is the inverse of the parametrization (ψ1(s), ψ2(s)) so that this curve is birational356

too.357

Remark 3.3. Notice that the converse is false, that is, if both parametrizations358

(φ1(t), φ2(t)) and (ψ1(s), ψ2(s)) are birational, then it is not true, in general,359

that the parametrization360

(φ1(t)ψ1(s), φ1(t)ψ2(s), φ2(t))361

of the swung surface is also birational. For instance, in the Example 2.3 above,362

both the ellipse (4t/(t2 + 1), (t2 − 1)/(t2 + 1)) and the circle ((s2 − 1)/(s2 +363
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1), 2s/(s2 + 1)) parametrizations are birational, but the parametrization of the364

ellipsoid of revolution365 (
s2 − 1

s2 + 1

4t

t2 + 1
,

2s

s2 + 1

4t

t2 + 1
,
t2 − 1

t2 + 1

)
366

is not, since it is not injective; all points of the ellipsoid being covered twice by367

the parametrization mapping because we are rotating the whole ellipse around368

the z-axis rather than only half of it.369

In the formulation of our main result (see Theorem 4.2) we have just re-370

quired the strictly weaker assumption that the involved φ and ψ curves are371

given by a proper parametrization (over the complexes). We recall that, given372

any parametrization of a swung surface, it is algorithmically easy to obtain373

another one, describing the same surface, verifying this condition. See [2].374

On the other technical issue –the notion of real surface– we can start by375

recalling that the concept of (algebraic) surface over C3 is simple and well es-376

tablished in algebraic geometry. It is just the solution set (over the complexes)377

of a non-constant polynomial in three variables, with complex coefficients: its378

implicit equation F (x, y, z) = 0. At every point, the surface is either locally379

diffeomorphic to an open ball of C2 (if we are at a regular point) or close, in380

the euclidean topology, to a regular point. This is the reason we say that a381

complex surface has (complex) dimension 2 (even considering that a ball in C2
382

is a 4-dimensional real object).383

Given an algebraic surface SC in C3, its real points S = SC ∩ R3 might384

yield a two dimensional subset of R3, but it could also be just some geometric385

object of smaller (real) dimension or even empty. This is clearly the case if386

its implicit equation involves non-real coefficients (such as the complex plane387

x+y+iz = 0, describing just a real line in R3). Having a real implicit equation388

(i.e. being real-defined) is a necessary condition to avoid this phenomena and389

try to guarantee a two dimensional real part of a complex surface. But it is not390

sufficient. Think, for instance, of the surfaces defined by x2 + y2 + z2 + 1 = 0391

or by x2 + y2 + z2 = 0. In the first case, the solution set over R3 is just empty.392

In the second case, just the origin of coordinates, while, over the complex affine393

space C3, both cases yield true surfaces (according to our definition above),394

in fact rational. Therefore, neither the solution set of x2 + y2 + z2 + 1 = 0395

nor of x2 + y2 + z2 = 0 are parametrizable with real coefficients, since if such396

parametrization would exist, it would yield –for real values of the parameters–397

many real points in the surface. Since we are interested in learning when there is398

a reparametrization with real coefficients of a given complex parametric surface,399

it is natural that we rule out –at least– such cases.400

Thus, given a complex algebraic surface SC in C3, we would like to name it as401

real if every (complex) polynomial vanishing over the set S = SC∩R3 must also402

vanishes over SC. That is, if, in this sense, the real part of SC is algebraically in-403

distinguishable from the whole complex surface. More technically, this condition404

is expressed by saying that the closure of S = SC ∩R3 in the Zariski topology is405

equal to SC, SC = S ∩ R3. Clearly, none of the surfaces SC = x2+y2+z2+1 = 0406
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or SC = x2 + y2 + z2 = 0 are real, since, in the first instance, 1 is a polynomial407

vanishing over SC ∩ R3, but not on SC and, in the second, x = 0 is an equa-408

tion holding over the real part, but not over the complex surface. For another409

example, let us consider a complex surface implicitly defined by a non-real poly-410

nomial, such as the plane x + y + iz = 0. It has many real points, but they411

verify simultaneously the two equations {x+ y + iz = 0, x+ y− iz = 0} and,412

thus, the real part of this surface verifies the system {x+y = 0, z = 0}, which,413

obviously, does not apply to the whole complex plane. We conclude that this414

plane is not real.415

Although here we are attempting to reduce technicalities to a minimum,416

the study of geometric objects defined as real solutions of polynomial equations417

belongs to the field of real algebraic geometry and we would like to point out at418

least some references for further details on this subject, such as the foundational419

book [6], or the paper [15], which addresses the so-called complexification of a420

real algebraic set. With this terminology, we will say that a (complex) surface SC421

is real if it coincides with the complexification of its real part. For a real surface422

it is easy to prove that its real part is truly a surface, an object of real dimension423

two, in the sense of having points (in fact most of them) at which the surface is424

locally diffeomorphic to an open ball of R2. However, contrary to what happens425

in C3, this does not mean, in general, over R3, that such points are dense, in426

the euclidean topology, over the real part of the surface. For example, consider427

the (absolutely) irreducible real surface SC given by x2(1 − x) + y2 + z2 = 0.428

Then, it happens that S is a 2-dimensional piece plus the origin, as an isolated429

(also in the Euclidean topology) real point.430

Yet, with some simple algebraic considerations one can show that, for an irre-431

ducible complex surface, it is equivalent to be real and to have a two-dimensional432

real part (i.e. what one would expect to be “really” a real surface). From a433

computational point of view, there is an easy criterion to detect whether an ir-434

reducible complex surface (such as those given by a rational parametrization) is435

real. It is enough to detect the existence of a regular point which lies in R3. (A436

point is regular if it is not a zero simultaneously of the equation of the surface437

and the derivatives of this equation with respect to the three variables x, y, z).438

See Proposition 1 in [16] or the basic reference on the topic, [6]. This is the test439

we have performed in Example 2.3 to conclude the reality of the offset surface.440

If a surface SC is parametrizable with real rational functions, say, f1(t, s),441

f2(t, s), f3(t, s) in R(t, s), then it is real. In fact if a polynomial G(x, y, z) van-442

ishes over S = SC∩R3, it vanishes over all points (f1(t0, s0), f2(t0, s0), f3(t0, s0)),443

with t0, s0 ∈ R. ThenG(f1(t, s), f2(t, s), f3(t, s)) must be identically zero, hence,444

G(x, y, z) vanishes over all SC. As pointed out in the Introduction, it is unknown,445

in general, whether a complex parametrizable surface SC which is real, is also446

parametrizable by real rational functions. Our main result shows, that this is447

true in the particular case of parametrized swung surfaces.448

For curves the situation is completely understood. As above, a (complex)449

curve is called real if every polynomial vanishing over all its real points must also450

vanish over the complex points of the curve, or, equivalently (in the irreducible451

case) the curve has infinitely many real points, or, equivalently, the subset of452
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real points is one dimensional, or it contains a real regular point, etc. Contrary453

to the case of surfaces, it is well known that a complex parametrizable curve454

has a real parametrization if and only if it is real, and we know how to find such455

a parametrization, [12]. This is the basis for the proof of our main result.456

4 Reparametrizing swung surfaces457

This section is devoted to present the main reparametrization result for swung458

surfaces. The problem of reparametrizing SC with rational functions having459

only real coefficients will be reduced, in essence, to the case of reparametrizing460

the involved curves φ and ψ. Then, for these curves, we will apply the real461

version of Lüroth theorem, using hypercircles, as in [12, 13]:462

Theorem 4.1 ([12]). Let C be a rational curve (over the complexes) given by a463

proper parametrization φ(t) with complex coefficients. There are equivalent:464

1. C is R-parametrizable.465

2. There exists a change of parameter s → t = ξ(s) = as+b
cs+d , with a, b, c, d ∈466

C, and ad− bc 6= 0, such that φ(ξ(s)) has real coefficients.467

3. C is a real curve.468

Moreover, there is an algorithm that taking as input the given parametrization469

φ determines if these equivalent conditions hold and, if so, computes the change470

of variables t = ξ(s).471

However, some complications arise. Consider, for instance, the surface SC :=472

{yz + x2 = 0}, parametrized by P(s, t) = (its, ts2, t). Then we may think of P473

as a swung surface as in (‡) with φ(t) = (it, t), ψ(s) = (s,−is2), so that neither474

φ nor ψ describes a real curve. However, we may also consider P as described475

by φ′(t) = (t, t), ψ′(s) = (is, s2) and, then, both curves are real (the latter is476

the parabola y + x2 = 0) and, thus, P(s, t) will be reparametrizable over the477

reals. Luckily, this example shows the general way to proceed. Next statement478

is the main result in the article.479

Theorem 4.2. Let SC be a rational complex surface, other than a plane, pa-480

rametrized by P(s, t). Let (φ1(t), φ2(t)) ∈ C(t)2 and (ψ1(s), ψ2(s)) ∈ C(s)2 be481

any proper parametrization of curves such that482

P(s, t) = (φ1(t)ψ1(s), φ1(t)ψ2(s), φ2(t)) ∈ C(s, t)3.483

Then, the following statements are equivalent:484

1. There exists λ ∈ C \ {0} such that the curves defined by the parametriza-485

tions φλ = (λφ1(t), φ2(t)) and ψλ = ( 1
λψ1(s), 1

λψ2(s)) are R-parameteri-486

zable.487
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2. There exists a change of variables:488

ξ : C2 → C2

(u, v) 7→
(
a1u+b1
c1u+d1

, a2v+b2c2v+d2

)
489

where aibi − cidi 6= 0, i = 1, 2, such that P(ξ(u, v)) ∈ R(u, v)3.490

3. SC is R-parametrizable.491

4. SC is a real surface.492

The proof 4.2 requires some technical results related to the the construction493

of the parametric variety of Weil associated to the given parametrization of the494

swung surface. The detailed proof of the technical results has been included in495

an Appendix.496

Proof. 1. → 2. If there is a λ such that the curves (λφ1(t), φ2(t)) and ( 1
λψ1(s),497

1
λψ2(s)) are R-parametrizable, then, using the real Lüroth theorem [13] there498

exists a change of parameters u → s(u) = a1u+b1
c1u+d1

, v → t(v) = a2v+b2
c2v+d2

, with499

aibi − cidi 6= 0, i = 1, 2, such that (λφ1(t(v)), φ2(t(v))), ( 1
λψ1(s(u)), 1

λψ2(s(u)))500

are real parametrizations, so we take ξ(u, v) = (s(u), t(v)) and501

P(s(u), t(v)) =

(
λφ1(t(v))

1

λ
ψ1(s(u)), λφ1(t(v))

1

λ
ψ2(s(u)), φ2(t(v))

)
∈ R(u, v)3502

is real.503

It is clear that 2.→3. and 3.→4., so we are left with proving that if the surface504

is real, then, for a suitable λ 6= 0, (λφ1(t), φ2(t)) and ( 1
λψ1(s), 1

λψ2(s)) define505

R-parametrizable curves.506

In this direction, we will consider the specific parametric variety of Weil V507

(see the Appendix) associated to the parametrization P(t, s). By definition,508

this variety is obtained as follows. First, in the parametrization of SC, per-509

form the substitution s := s0 + is1 and t := t0 + it1, where s0, s1, t0, t1 are510

new variables. Then, after some normalization, we get P(s0 + is1, t0 + it1) =511

(P1(s̄, t̄),P2(s̄, t̄),P3(s̄, t̄)), where512

P1(s̄, t̄) =
[A0(t̄) + iA1(t̄)]

A(t̄)

[C0(s̄) + iC1(s̄)]

C(s̄)

P2(s̄, t̄) =
[A0(t̄) + iA1(t̄)]

A(t̄)

[D0(s̄) + iD1(s̄)]

D(s̄)

P3(s̄, t̄) =
[B0(t̄) + iB1(t̄)]

B(t̄)

513

with Ai(t̄), Bi(t̄), A(t̄), B(t̄) ∈ R[t̄], Ci(s̄), Di(s̄), C(t̄), D(t̄) ∈ R[s̄], s̄ =514

(s0, s1) and t̄ = (t0, t1). Notice that the A’s and B’s arise from the substi-515

tution in φ1 and φ2 and likewise the C’s and D’s come from the substitution in516

ψ1 and ψ2.517

Second, we take the Zariski closure V of the open set given by:518
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A0(t)C1(s) +A1(t)C0(s) = 0

A0(t)D1(s) +A1(t)D0(s) = 0

B1(t) = 0

A(t) 6= 0, B(t) 6= 0, C(s) 6= 0, D(s) 6= 0

where the first three equations correspond to the vanishing of the imaginary519

parts of the numerators of P1, P2 and P3. Notice that V does not depend520

on the precise choice of φ and ψ (by adjusting constants), but only on their521

product.522

We have naturally the map:523

P∗ : V → SC
(s0, s1, t0, t1) 7→ (P1,P2,P3) = P(s0 + is1, t0 + is1)

524

From the definition of V , it is clear that P∗ carries real points of V to real525

points of SC. Now, since SC is real, Theorem A.2 assures the existence of a real526

2-dimensional component U of V such that P∗ : U → SC is dominant.527

Then, consider the matrix528

M =

 A0(t0, t1) A1(t0, t1)
−C0(s0, s1) C1(s0, s1)
−D0(s0, s1) D1(s0, s1)

529

Notice that no row of M can be identically zero in U , since P∗ is dominant530

and SC is not a plane. For any point p = (a0, a1, b0, b1) in the nonempty open531

subset of U such that (A0, A1)(p) 6= (0, 0) we have that rank(M) = 1. Thus,532

if A1 ≡ 0 in U , it follows that, M ·
(
0
1

)
=

0
0
0

 in U . If A1 6≡ 0 in U , then533

(A0/A1)(t0, t1) = (−C0/C1)(s0, s1) = (−D0/D1)(s0, s1) is a real rational func-534

tion in U . By Theorem A.4, U is a Cartesian product of two irreducible curves,535

so, by Lemma A.5, (A0/A1)(t0, t1) = (−C0/C1)(s0, s1) = (−D0/D1)(s0, s1) =536

r ∈ R and M ·
(

1
−r
)

=
0

0
0

 in U .537

In any case, there is a vector (r1, r0) ∈ R2, (r1, r0) 6= (0, 0), such that538

M ·
(
r1
r0

)
=

0
0
0

 in U .539

Let λ = r0 + ir1. We are going to prove that the curves defined by φλ =540

(λφ1(t), φ2(t)) and ψλ = ( 1
λψ1(s), 1

λψ2(s)) are R-parametrizable. Indeed,541

(r0 + ir1)
A0(t) + iA1(t)

A(t)
=
r0A0(t)− r1A1(t) + i(r1A0(t) + r0A1(t))

A(t)
542

543 (
r0 − ir1
r20 + r21

)
C0(s) + iC1(s)

C(s)
=
r0C0(s) + r1C1(s) + i(r0C1(s)− r1C0(s))

(r20 + r21)C(s)
544

545 (
r0 − ir1
r20 + r21

)
D0(s) + iD1(s)

C(s)
=
r0D0(s) + r1D1(s) + i(r0D1(s)− r1D0(s))

(r20 + r21)D(s)
546
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If p = (a0, a1, b0, b1) ∈ U then, (r1A0 + r0A1)(a0, a1) = 0, B1(a0, a1) = 0,547

A(a0, a1) 6= 0, B(a0, a1) 6= 0 and (r0C1−r1C0)(b0, b1) = 0, (r0D1−r1D0)(b0, b1)548

= 0, C(b0, b1) 6= 0, D(b0, b1) 6= 0. Hence U = U1 × U2, where U1 is contained549

in the parametric variety of Weil of φλ and U2 is contained in the parametric550

variety of Weil of ψλ.551

Since U is real, U1, U2 are real curves. It follows from the theory of hyper-552

circles [11, 13, 3] that φλ and ψλ are real curves and, hence, real parametrizable553

curves.554

Remark 4.3. If the given swung parametrization P is proper (see Section 3)555

and if some of the equivalent conditions of Theorem 4.2 hold, then the real556

parametrization P(ξ(s, t)) described in item 2. is also proper.557

Remark 4.4. In the hypotheses of the theorem we have explicitly discarded558

the case of planes. We can easily check whether the given parametrization559

P(s, t) of a surface corresponds to a plane by considering four generic points560

P(si, ti), i = 1 . . . 4, and verifying, by computing a determinant, if they are561

coplanar. On the other hand, if SC is a plane, it is clear that we can parametrize562

it over the reals if and only if it is real. However, items 1 and 2 in the statement563

above need not hold, see Example 5.4.564

Corollary 4.5. Let SC be a rational revolution surface, parametrized by565

P(s, t) = (φ1(t)
s2 − 1

s2 + 1
, φ1(t)

2s

s2 + 1
, φ2(t)) ∈ C(s, t)3,566

where (φ1(t), φ2(t)) is a proper parametrization of a curve. The following state-567

ments are equivalent:568

1. The curve defined by φ(t) = (φ1(t), φ2(t)) is R-parametrizable (equiva-569

lently, it is real).570

2. There exists a change of parameters with complex coefficients ξ : C −→ C,571

where ξ(t) =
at+ b

ct+ d
and ad− bc 6= 0, such that P(s, ξ(t)) ∈ R(s, t)3.572

3. SC is R-parametrizable (but, perhaps, not necessarily with a proper param-573

etrization)574

4. SC is a real surface.575

Proof. The only nontrivial implication is 4. → 1. Notice that, in this case, the576

parametrization determines uniquely the curve φ and ψ = ( s
2−1
s2+1 ,

2s
s2+1 ). Assume577

first that SC is not a plane. By Theorem 4.2, from 4. it follows that there is a578

λ ∈ C∗ with φλ and ψλ, R-parametrizable. Now, observe that for any λ ∈ C∗,579

ψλ parametrizes the circle x2 + y2 = 1/λ2, that is real if and only if λ is real.580

And φλ, with λ ∈ R∗, is R-parametrizable if and only if φ is R-parametrizable.581

On the other hand, suppose that SC is a real plane defined by the real582

equation ax + by + cz = d. Then φ1(t)(a s
2−1
s2+1 + b 2s

s2+1 ) = d − c φ2(t). Now583
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(a s
2−1
s2+1 + b 2s

s2+1 ) must be a constant. Otherwise, since the second term of the584

equality above does not involve the s variable, it will imply that d − c φ2(t)585

is zero and, then, φ1(t) must be zero (but then SC is not a surface). Now, if586

(a s
2−1
s2+1 + b 2s

s2+1 ) is a constant, it must be a = b = 0. Thus d − cφ2(t) is zero.587

But c can not be zero (since then a = b = c = 0, and do not have a plane).588

Therefore φ2(t) = d/c ∈ R and, since the parametrization φ is proper, it can be589

reparametrized to (t, d/c).590

5 The algorithm and examples591

In this section we present how to derive an algorithm to check whether a swung592

parametrization defines a real surface S and, if it is the case, to compute a real593

parametrization of S.594

Since we already have algorithms to reparametrize real curves ([12]) given by595

complex parametrizations, we base the algorithm on the characterization (1) of596

Theorem 4.2. Given two curve parametrizations φ(t) = (φ1(t), φ2(t)) and ψ(s) =597

(ψ1(s), ψ2(s)), the only problem left is computing, if it exists, a λ ∈ C∗ such598

that φλ = (λψ1, ψ2) and ψλ = ( 1
λψ1,

1
λψ2) are real curves. One possible naive599

approach could be implicitizing one of the curves, by considering λ a parameter,600

and then adjusting the possible values of λ that make such implicit equation real.601

But that procedure would not guarantee (unless we use some Cylindric Algebraic602

Decomposition techniques, see [6]) that the curve is real (only that it is real-603

defined) and, anyway, we would like to avoid the implicitization computation,604

preferring to work directly with the given parametric input.605

Our approach relies on the following key observation. Let φ(t) = (φ1(t),606

φ2(t)) be a complex parametrization and t0, t1 new variables. Write φ2(t0 +607

it1) = B0(t0,t1)+iB1(t0,t1)
B(t0,t1)

. If there is a λ such that φλ parametrizes a real608

curve, then the corresponding hypercircle Z1 of φλ is a real circle or line and its609

implicit equation is a factor of B1(t0, t1) in R[t0, t1]. This provides an algorithm610

to reparametrize P over the reals.611

Algorithm 5.1.612

• Input: A complex swung parametrization P of a surface SC, different613

from a plane, such that there exists η(t) = (η1(t), η2(t)) ∈ C(t)2 and614

µ(s) = (µ1(s), µ2(s)) ∈ C(s)2 parametrizations of curves such that615

P(t, s) = (η1(t)µ1(s), η1(t)µ2(s), η2(t)) ∈ C(t, s)3.616

Output: A real parametrization P ′(t, s) of SC or “The surface is not617

real”618

1. Compute a pair η(t), µ(s) from P, verifying the input structure.619

2. Reparametrize η(t) and µ(s) to proper parametrizations φ(t) and ψ(s)620

of the same curves.621
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3. Write φ2(t0 + it1) = B0(t0,t1)+iB1(t0,t1)
B(t0,t1)

622

4. Compute the factors of degree 1 and/or of degree 2 (that correspond to623

circles) of B1(t0, t1) in R[t0, t1].624

5. For each factor f from step 4. do625

(a) Compute a real parametrization (v0(t), v1(t)) of the line or circle626

defined by f .627

(b) Let v(t) = v0(t) + iv1(t)628

(c) If there exists a λf ∈ C∗ such that (λf φ1(v(t)), φ2(v(t))) is real629

then:630

i. Apply the real reparametrization algorithm for curves to ψλf
=631

(1/λfψ1, 1/λfψ2).632

ii. If ψλf
is real and u(s) is an invertible linear fraction such that633

ψλf
(u(s)) is real then return (u(s), v(t)).634

6. If no factor f works then return “The surface is not real”.635

We remark that the computations in steps 1 and 5 (c) are straightforward.636

For instance, λf can be taken as the inverse of the leading coefficient of the637

numerator of φ1(v(t)) when this fraction is written with monic denominator.638

Step 2 can be carried out by standard techniques ([2]).639

The main difficulty in this approach is step 4, in which we have to factor a640

bivariate polynomial in R[t0, t1]. We present an alternative that needs only to641

manipulate the complex roots of a univariate polynomial.642

If φλ = (λφ1, φ2), λ ∈ C∗ parametrizes a real curve Cλ, then the complex643

conjugate parametrization φλ = (λφ1, φ2) is also a proper parametrization of644

Cλ. Hence, there is a linear fraction v′ ∈ C(t) such that φ2(v′(t)) = φ2(t),645

λφ1(v′(t)) = λφ1(t). For all but finitely many values t0 of t, we have that646

λ/λ = φ1(v′(t0))/φ1(t0).647

The idea to compute the possible values of λ/λ is the following. First,648

we choose a t0 ∈ C. Compute φ2(t0) = a0. The possible values of u′(t0)649

are the solutions bj in C of the univariate equation φ2(x) = a0. This will650

give a set At0 = {b1, . . . , bd}. Now, the possible values of λ/λ are St0 =651

{φ1(b1)/φ1(a0), . . . , φ1(bd)/φ1(a0)}. Note that λ/λ always has norm 1 so we652

can take in St0 only those values of norm 1. On the other hand, from λ/λ we653

can recover λ up to a real constant and thus, we get a finite set of candidates to654

a λ verifying item 1. in Theorem 4.2. This description alone already provides655

an algorithm. For every candidate λ, we apply the reparametrization algorithm656

for φλ and ψλ.657

In practice, except for rare cases, St0 is either empty (and SC is not real) or658

it is already the complete set of valid λ/λ. Moreover, it is, typically, a singleton.659

If r ∈ St0 , r = r0 + ir1 ∈ C then r20 + r21 = 1 and λ/λ = r0 + ir1. If r = 1 a660

solution is λ = 1. If r 6= 1 a solution is λ = r1 + i(1− r0) ∈ C∗.661

There are only two possible kinds of t0 values where this procedure to com-662

pute λ does not work. First, when φ(t0) is not defined (because the denominator663
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vanishes). The other case is if φ2(t0) = φ2(∞). But these are 2d cases that can664

be discarded easily.665

Once the possible λ′s are computed, we only have to check, for each λ, if φλ666

and ψλ are real and, if so, to compute a real reparametrization.667

We can use this discussion to derive an algorithm that either checks that φλ668

is never a real curve or returns the values λ such that φλ is real. We must point669

out that this approach will not work if φ is a horizontal or vertical line. But670

these are corner cases that can be easily solved by direct means.671

The description of this alternative algorithm (without emphasizing corner672

cases) could be:673

Algorithm 5.2.674

• Input: A complex swung parametrization P of a surface SC, different675

from a plane, such that there exists η(t) = (η1(t), η2(t)) ∈ C(t)2 and676

µ(s) = (µ1(s), µ2(s)) ∈ C(s)2 parametrizations of curves such that677

P(s, t) = (η1(t)µ1(s), η1(t)µ2(s), η2(t)) ∈ C(t, s)3.678

Output: A real parametrization P ′(t, s) of SC or “The surface is not679

real”680

1. Compute a pair η(t), µ(s) from P, verifying the input structure.681

2. Reparametrize η(t) and µ(s) to proper parametrizations φ(t) and ψ(s)682

of the same curves.683

3. Compute the complex conjugates φ1, φ2 of φ.684

4. Compute a∞ = φ2(∞) ∈ C ∪ {∞}685

5. S ← C686

6. while S = C do687

(a) a← random(C)688

(b) b← φ2(a)689

(c) If b 6=∞ and b 6= a∞ then690

i. T ← {t ∈ C | φ2(t) = b}691

ii. S ← S ∩ {s = φ1(t)/φ1(a) | t ∈ T, |s| = 1}692

7. If S = ∅ then return “φλ is never real”693

8. Λ← ∅694

9. For each r = r0 + ir1 ∈ S do695

(a) If r = 1 then λ← 1 else λ← r1 + i(1− r0).696

(b) Λ = Λ ∪ {λ}697
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10. for each λ in Λ do698

(a) Compute (if possible) u, v such that φλ(v), ψλ(s) are real.699

11. No pair (u, v) is found then return “φλ is never real” else return “pairs700

(u(s), v(t)) found”.701

This alternative algorithm has some advantages over the first one. Along702

the paper, including the algorithms, it is assumed that we are working in a703

field K(i) were computations are exact (infinite precision). However, the case704

that the input is given by a floating point approximation is also interesting. In705

this context, if we apply Algorithm 5.1, we should be dealing with an approxi-706

mate factorization of B1(t0, t1) over the reals. On the other hand, Algorithm 5.2707

would have to compute all complex roots of some univariate polynomials, a more708

common problem. We have made experiments with the math software Sage us-709

ing both algorithms for inputs in Q(i) and with floating point arithmetic. The710

running times are described in Table 1. Case 1 is Algorithm 5.1 in Q(i) and ex-711

act computations. Case 2 is Algorithm 5.2 also in Q(i) and exact computations.712

Finally, Case 3 is Algorithm 5.2 using floating point arithmetic. The tests are713

performed as following. First, we construct two random rational parametriza-714

tions φr = (φ1(t), φ2(t)) and ψr = (ψ1(s), ψ2(s)), of degree d and coefficients715

over Q. The tested degrees for φ and ψ have been d = 1, 2, 5, 10, 25. Then we716

compute random linear fractions u(s), v(t) with coefficients in Q(i). Finally, the717

input is P = (φ1(v(t))ψ1(u(s)), φ1(v(t))ψ2(u(s)), φ2(v(t))). We have prepared718

three tables considering a bound for the size of the integers in φ and ψ, with719

bounds 28, 216 and 232 respectively. In all cases, the coefficients of u and v are720

bounded by 100, so we know before hand that in all cases there are solutions721

with small height. Note that these figures are not the bound of the input P,722

since we have to perform a composition and a multiplication. For instance, the723

bigger case is degree 25 and initial coefficients bounded by 232, yielding the final724

size of the coefficients of the input P around 21700.725

By looking into the tables we observe that Algorithm 5.2 behaves similarly726

to Algorithm 5.1 for reasonable degrees. But, for very big degrees or very big727

coefficients, Algorithm 5.2 performs better.728

On the other hand, we notice that using floating point arithmetic is much729

faster. What we get as output in this case is a couple of linear fractions730

(u(s), v(t)) such that, for (s, t) real parameters, P(u(s), v(t)) has a very small731

imaginary part (i.e. as if it were real, in practice). In the floating point case,732

as the degree grows, the numerical error increases to the point that, for degree733

25, our implementation sometimes fail. Each case has been executed ten times734

and we display, in the corresponding entry of the table, both the best and worst735

obtained time in seconds.736
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size 28 deg. 1 deg. 3 deg. 5 deg. 10 deg. 25

Case 1 0.25-0.42 0.49-0.52 0.64-0.78 1.22-1.36 5.45-14.15
Case 2 0.52-0.55 0.65-0.69 0.77-1.01 1.11-1.19 2.88-3.12
Case 3 <0.01 <0.01 0.013-0.015 0.02-0.03 0.15-0.19

size 216 deg. 1 deg. 3 deg. 5 deg. 10 deg. 25

Case 1 0.72-0.78 0.88-0.91 1.06-1.34 2.01-2.18 41.78-52.7
Case 2 0.39-0.41 0.51-0.66 0.64-0.68 1.06-1.11 3.71-3.94
Case 3 <0.01 0.01 0.013-0.015 0.02-0.03 0.14-0.15

size 232 deg. 1 deg. 3 deg. 5 deg. 10 deg. 25

Case 1 0.96-0.99 0.72 - 1.16 1.43-1.47 3.31-3.59 >60
Case 2 0.53-0.56 0.75-0.79 0.91-0.97 1.51-1.56 6.02-6.71
Case 3 <0.01 <0.01 0.013-0.015 0.03 0.14-0.16

Table 1: Running time of the algorithms

5.1 Examples737

Example 5.3. Let SC be the classical revolution surface given by the parame-738

trization739 (
3− t2

4− 2t

s2 − 1

s2 + 1
,

3− t2

4− 2t

2s

s2 + 1
,
−it2 + 4it− 3i

2t− 4

)
740

If we take the φ-curve parametrized by ( 3−t2
4−2t ,

−it2+4it−3i
2t−4 ) and perform the741

method in [12], we obtain that we have to parametrize the circle x2 + y2 −742

4x + 3 = 0 (and, thus, the given curve is real), yielding the associated unit743

ξ(t) = (t+ 3i)/(t+ i). If we apply this unit to the original parametrization we744

get the following real parametrization of SC:745 (
t2 + 3

t2 + 1

s2 − 1

s2 + 1
,
t2 + 3

t2 + 1

2s

s2 + 1
,

2t

t2 + 1

)
746

Example 5.4. We now show that Theorem 4.2 does not work for planes. Con-747

sider the plane given by the parametrization748

P = ((it+ 1)s, (it+ 1)s, t)749

Of course, this is the plane {x = y}, but if one computes the parametric variety750

of Weil as in the proof of 4.2, one gets V = U = {t1 = 0, t0s0 + s1 = 0}, so U751

does not have the shape announced in Theorem A.4. This happens because SC752

is a plane, so items (1) and (2) of Theorem 4.2 do not apply. There is no λ ∈ C∗753

such that (λ(it+1), t), (1/λs, 1/λs) are real curves. Still, U is R-parametrizable754

by t0 = v, t1 = 0, s0 = u, s1 = −uv, so P(u, v − iuv) = (u2v + v, u2v + v, u) ∈755

R(u, v)3.756
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Example 5.5. Consider now the surface xz − y4 given by the parametrization757

P(s, t) = (its4, its,−it3)758

The parametrization is not proper, but (t,−it3), (is4, is) are both proper. If759

we perform our method we get in V three valid components in the sense of760

Theorem A.1:761

U1 = {t0 = 0, s1 = 0}, λ1 = i762

763

U2 = {t0 −
√

3t1 = 0, s0 −
√

3/3s1 = 0}, λ2 =

√
3− i

2
764

765

U3 = {t0 +
√

3t1 = 0, s0 +
√

3/3s1 = 0}, λ3 =
−
√

3− i

2
766

Each Ui is a plane, parametrizable as767

U1 : (0, t, s, 0)768

769

U2 : (
√

3t, t,
√

3/3s, s)770

771

U3 : (−
√

3t, t,−
√

3/3s, s)772

Thus, we get three different reparametrizations of the original surface:773

P1 =
(
−ts4,−ts,−t3

)
774

775

P2 =

(
32

9
ts4,− 4√

3
ts, 8t3

)
776

777

P3 =

(
32

9
ts4,

4√
3
ts, 8t3

)
778

Example 5.6. Similarly, if we start with the parametrization779

(its8, its,−it7)780

and perform the algorithm, we find that there are seven valid components U . If781

we take φ = (t,−it7), ψ = (is8, is), one of the components of U is associated782

to the value λ = i and the change of variables is (u(s) = s, v(t) = it).783

However, for the rest of components, we have that the other six values of λ784

are the complex roots of x6 − 5ix5 − 11x4 + 13ix3 + 9x2 − 3ix − 1. Each of785

these λ′s corresponds to the change of variables786

u(s) = (G(λ) + I)s, v(t) = (F (λ) + I)t787

where788

F (λ) = (2144λ11 + 6096λ9 + 18187λ7 − 5532λ5 + 52746λ3 − 29068λ)/2059,789

790

G = (564λ11 + 1788λ9 + 5687λ7 + 404λ5 + 18462λ3 − 10520λ)/14413791
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Example 5.7. This is an example of floating point computation. Let792

P = (((−0.235869421766 +0.00479979499514i) t2s2 +(−1.06313828776 −0.166407418793

395i) t2s +(−0.2298109337 −0.194094699602i) ts2 +(−0.549385710585 −0.417008231794

694i) t2 +(−0.877430457459 −1.05483464219i) ts +(1.66137786935 + 0.43565373369795

3i) s2 +(−0.174582398271 −0.861933962222i) t +(7.11424400952 +3.28051289442i)796

s +3.0177826152 +4.01338551785i) / (t2s2 +(1.86773892267 +0.815610295477i) t2s797

+(0.246950616172 +0.659953272957i) ts2 +(−0.629990211803 +0.819708831258i)t2798

+(−0.0770254061546 +1.43403588007i) ts +(−0.637235543476 −0.0986590151152i)799

s2 +(−0.696545997048 −0.213336501249i) t +(−1.10972231899 −0.704005152506i)800

s +0.482323820976 −0.46019338875i), ((0.043748011838 +0.000454800948882i) t2s2801

+(−0.0131269921629 +0.0392333791882i) t2s +(0.0414912865933 +0.037287262802i)802

ts2 +(−0.142191088123 +0.00237065960661i) t2 +(−0.0456137529341 +0.0264953515803

089i) ts +(−0.305468984051 −0.0902226718149i) s2 +(−0.138098376489 −0.11750813804

9573i) t +(0.169985946752 −0.248640737912i) s +1.00050177551 +0.266290220991i)/805

(t2s2 +(1.86773892267 +0.815610295477i) t2s +(0.246950616172 +0.659953272957i)806

ts2 +(−0.629990211803 +0.819708831258i) t2 +(−0.0770254061546 +1.43403588007i)807

ts +(−0.637235543476 −0.0986590151152i) s2 +(−0.696545997048 −0.21333650124808

9i) t +(−1.10972231899 −0.704005152506i) s +0.482323820976 −0.46019338875i),809

((−2.01273043888 +0.00917837700067i) t2 +(−2.39821706934 −1.65257355305i) t+810

3.18517172695 +0.210190888739i)/(t2 +(0.246950616172 +0.659953272957i) t −0.6811

37235543476 −0.0986590151152i))812

This is an approximate parametrization of a real surface. If we perform813

Algorithm 5.2, we get, as λ,814

λ = −0.999993922197720 + 0.00348648356104579i, u = ((121.322126428429815

−103.745283053666i)t − 103.745283053666 + 88.1900509458403i)/(t − i), v =816

((75.1892967277426−78.1929832049560i)s−78.1929832049560+80.4349108110817

022i)/(s− i).818

With this unit, we get, for instance:819

P(u, v)(0, 2) = (−0.247210104423103 +3.75195846613607× 10−11i, 0.04165699820

32380774 +5.64823188220487× 10−12i, −2.00183575113046 +3.0997981959046821

7× 10−12i)822

which is “practically” real.823
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A The parametric variety of Weil885

The parametric Weil construction and the theory of hypercircles and ultra-886

quadrics, are tools developed in [11], [3]. Here we will consider the specific887

parametric variety of Weil V associated to the parametrization P(t, s) defined888

in the proof of Theorem 4.2 and the map889

P∗ : V → SC
(t0, t1, s0, s1) 7→ P(t0 + it1, s0 + is1)

890

Recall that, by construction, P∗ carries real points of V to real points of SC.891

The importance of this variety V is that it encodes the fact that SC is real-892

defined or real parametrizable.893

Theorem A.1. Let V be the parametric variety of Weil associated to P. If SC is894

a real-defined surface then there is (at least) one surface U that is an irreducible895

component of V such that P∗ : U → SC is a dominant map. Moreover, if τ(u, v)896

is a real parametrization of U , then P∗(τ(u, v)) is a real parametrization of SC.897

Proof. This is a direct consequence of Theorem 10 in [3].898

Note that, in the theorem, the surface U needs not be real-defined. By [3],899

Corollary 13, if SC is real-defined we know that there exists a real-defined surface900

W such that P∗ : W → SC is dominant, but W needs not to be irreducible.901
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In our particular case we want to explore with more detail the surfaces Ui,902

those components of V such that the map P∗ : Ui → SC is dominant. Specially,903

we would like to understand the projections of such components into the (t0, t1)904

and (s0, s1) planes.905

Theorem A.2. If SC is a real surface, then there is a real irreducible surface906

U , a component of V , such that the map P∗ : U → SC is dominant and P∗907

takes real points of U to real points of SC.908

Proof. By [3], P∗ : V → SC is generically (over an nonempty open subset of909

SC) finite to one. So, if Ui is a component of V of dimension different from 2,910

then P∗ : Ui → SC is not dominant. Let U ′ be the union of all the components911

W of V such that the map P∗ : W → SC is not dominant. In particular, U ′912

contains all components of V that are not surfaces. Then P∗(U ′) is contained913

in a 1-dimensional subset of SC. Let {U1, . . . , Uk} be the remaining components914

of V . Each Ui is a surface and P∗ : Ui → SC is dominant. By Theorem A.1915

there is at least one such surface Ui.916

Consider now the set S ′C = P∗(V ) − P∗(U ′) ⊆ SC. This is a subset of SC917

that contains a non-empty open Zariski subset of SC (Shafarevich, Chapter 1,918

§5, Theorem 6). It follows that the set of real points of S ′C is Zariski-dense in919

SC.920

Let p = (p1, p2, p3) be a real point of S ′C. Since p ∈ P∗(V ), then p = P(a, b),921

for some a = a0 + ia1, b = b0 + ib1, a0, a1, b0, b1 ∈ R. Now922

A0(a0, a1) + iA1(a0, a1)

A(a0, a1)
· C0(b0, b1) + iC1(b0, b1)

C(b0, b1)
= φ1(a)ψ1(a) = p1 ∈ R,923

so924

A(a0, a1) 6= 0, C(b0, b1) 6= 0925

and926

A0(a0, a1)C1(b0, b1) +A1(a0, a1)C0(b0, b1) = 0.927

Analogously,928

D(b0, b1) 6= 0, B(a0, a1) 6= 0929

and930

A0(a0, a1)D1(b0, b1) +A1(a0, a1)D0(b0, b1) = 0.931

Thus, (a0, a1, b0, b1) ∈ V ∩ R4. Moreover, (a0, a1, b0, b1) /∈ U ′, by our choice of932

p; and (a0, a1, b0, b1) ∈ U1 ∪ . . . ∪ Uk. Therefore, we have proved that any real933

point of S ′C comes from at least one real point in (a0, a1, b0, b1) ∈ U1 ∪ . . . ∪Uk.934

If no Ui were real, then the set of real points Ui,R of each Ui would be contained935

in a 1-dimensional subset Ri of Ui. Then, the set of real points of S ′C would be936

contained in P∗(R1) ∪ . . . ∪ P∗(Rk), which is included in a dimension 1 subset937

of S ′C, contradicting the fact that this set is Zariski dense in SC.938

So, there is at least one component Ui that is real. The fact that any real939

point of Ui maps to a real point of SC follows from the definition of V and940

P∗.941
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With this result and bearing in mind the special shape of non planar swung942

surfaces, we can analyze the structure of the surfaces Ui in this case: they turn943

to be either planes, cylinders or tori. First, we need the following technical944

lemma:945

Lemma A.3. Consider the polynomial f = C0D1 − C1D0 ∈ R[s0, s1]. If f is946

identically zero, then SC is a real plane.947

Proof. Since ψ(t) = (ψ1, ψ2) is a proper parametrization of a curve, both com-948

ponents cannot be constants. Assume, without loss of generality, that ψ2 is not949

constant, so D0 and D1 are not zero. Now, suppose that C0D1 − C1D0 = 0.950

Then C0/D0 = C1/D1 = k(s0, s1). But, then, C0 + iC1 = k · (D0 + iD1) and951

ψ1(s0 + is1) =
C0 + iC1

C
=
D0 + iD1

D
· k ·D
C

= ψ2(s0 + is1) · k ·D
C

952

So, k·DC = ψ1(s0 +is1)/ψ2(s0 +is1) is both an i-analytic rational function (i.e.,953

the expansion in terms of real and imaginary parts of the complex function954

ψ1(s)/ψ2(s), after decomposing the variable s in real and imaginary terms,955

cf. [14]) and a real rational function. By the well known Cauchy-Riemann956

conditions for analiticity (cf. [14]), kD/C must be, then, a real constant r.957

Thus, ψ1 = rψ2 and SC is the real plane {ry − x = 0} in C3.958

Theorem A.4. Let SC be a real swung surface, different from a plane, given959

by the parametrization P. Let U be any irreducible surface in V such that960

P∗ : U → SC is dominant. Then, there are irreducible curves Z1, Z2 ⊆ C2 such961

that U = Z1 × Z2. Moreover, U is real if and only if both Z1, Z2 are real.962

Proof. Consider the two projections π1 : C4 → C2, π2 : C4 → C2, so that963

π1(t0, t1, s0, s1) = (t0, t1) and π2(t0, t1, s0, s1) = (s0, s1). Let Zi be the Zariski964

closure of πi(U), i = 1, 2. Clearly, Z1, Z2 are irreducible varieties of C2. If965

dim(Zi) were 0, then P∗(U) would not be dense in SC, contradicting the hy-966

pothesis. If U = Z1×Z2, then it is clear that U is real if and only if Z1 and Z2967

are real. Since always U ⊆ Z1 × Z2 and both varieties are irreducible, to prove968

the theorem, it suffices to show that they have the same dimension, i.e. that969

dim(Zi) ≤ 1, i = 1, 2.970

Since SC is not a plane, φ2(t) is not a constant, so, by [14], B1(t0, t1) is not971

a constant and Z1 ⊆ {B1(t0, t1) = 0} has dimension at most 1.972

Now, since ψ = (ψ1, ψ2) is a curve, one of the components is not a constant.973

Assume, without loss of generality, that ψ1 is not constant. Then, neither C0974

nor C1 are constants.975

Now, we distinguish three cases. First, if A0 ≡ 0 in U , then A1 6≡ 0 in U ,976

because P∗(U) is dense in SC. Since A0C1 + A1C0 ≡ 0 in U , it must happen977

that C0 ≡ 0 in U , yielding Z2 ⊆ {C0 = 0} and, thus, dim(Z2) ≤ 1.978

Analogously, if A1 ≡ 0 in U , then A0 6≡ 0 in U and C1 ≡ 0 in U . Hence979

Z2 ⊆ {C1 = 0} and dim(Z2) ≤ 1.980

Finally, assume that neither A0 nor A1 are zero in U , then981

A0A1(C0D1 − C1D0) = A0D1(A1C0 +A0C1)−A0C1(A1D0 +A0D1)982
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is zero in U . It follows that C0D1−C1D0 ≡ 0 in U and Z2 ⊆ {C0D1−C1D0 =983

0}. Since SC is not a plane, C0D1 − C1D0 is not identically zero (in C2) by984

Lemma A.3 and, thus, dim(Z2) ≤ 1.985

Finally, we show another technical result:986

Lemma A.5. Let U ⊆ Cn+m be a real irreducible variety such that U = U1×U2987

is the Cartesian product of two irreducible varieties U1 ⊆ Cn, U2 ⊆ Cm. Let988

F (x, y) ∈ R(U) be a real rational function (i.e. F (p) ∈ R, for any real point989

where F is defined) such that it has two different representations F (x, y) =990

G(x) = H(y). Then F is a real constant function equal to some c ∈ R.991

Proof. Let px0
∈ U1 be a point such that G(px0

) = c is defined. The fiber992

{px0} × U2 ⊆ U is isomorphic to U2 and, for any p = (px0 , py) ∈ {px0} × U2,993

we have that F (p) = H(py) = G(px0) = c. Hence H is constant in U2 and994

c = H(y) = F (x, y) is constant in U . Since both F and U are real, c ∈ R.995
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