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Abstract As a special type of factorization of finite groups, logarithmic sig-
nature (LS) is used as the main component of cryptographic keys for secret
key cryptosystems such as PGM and public key cryptosystems like MST1,
MST2 and MST3. An LS with the shortest length, called a minimal loga-
rithmic signature (MLS), is even desirable for cryptographic applications. The
MLS conjecture states that every finite simple group has an MLS. Recently,
the conjecture has been shown to be true for general linear groups GLn(q),
special linear groups SLn(q), and symplectic groups Spn(q) with q a power
of primes and for orthogonal groups On(q) with q as a power of 2. In this
paper, we present new constructions of minimal logarithmic signatures for the
orthogonal group On(q) and SOn(q) with q as a power of odd primes. Further-
more, we give constructions of MLSs for a type of classical groups — projective
commutator subgroup PΩn(q).

Keywords (Minimal) logarithmic signature · Orthogonal group · Projective
commutator subgroup · Stabilizer · Spreads

Mathematics Subject Classification (2000) MSC 94A60 · MSC 94A60 ·
MSC 11T71 · MSC 14G50 · MSC 20G40 · MSC 20E28 · MSC 20E32 · MSC ·
MSC 20D06 · MSC 05E15 · MSC 51A40

1 Introduction

The security of many public key cryptosystems is based on the hardness as-
sumptions of certain problems over large finite abelian algebraic structures
such as cyclic groups, rings and finite fields. Two well-known hard problems are
integers factorization problem (IFP) and discrete logarithm problem (DLP).
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However, these hardness assumptions would be broken if quantum comput-
ers become practical. For instance, Shor’s quantum algorithms [17] solve IFP
and DLP very efficiently. The security status of currently used cryptosystems,
mainly based on IFP and DLP or their variants, becomes even worse due to
the known great progress on finding possible solutions for building quantum
computers on practical scales.

Therefore, it is imminent to design effective and practical cryptographic
schemes that have the potential for resisting quantum algorithm attacks. Ac-
tually, several attempts using non-abelian algebraic structures were made and
some available cryptographic schemes such as PGM ,MST1,MST2 andMST3

[3,16,14,11,9,24] were developed during the past decades. In particular, as a
natural analogy of the hardness assumption of IFP, the group factorization
problem (GFP)[10,15] and its hardness assumption over certain factorization
basis, referred as logarithmic signature, play a core role in the security argu-
ments for the family of MST cryptosystems.

Security is not the unique goal of designing a cryptosytem. Instead, effi-
ciency is also a major issue. With the purpose for minimizing the parameter
sizes, a natural question comes to mind: How to make the factorization ba-
sis known as logarithmic signature (LS), as short as possible in the family of
MST cryptosystems? A minimal logarithmic signature (MLS) is an LS with
the shortest length. In other word, further shorten an MLS would make it no
longer an LS. New question arises: Does any finite (non-abelian) group has
MLSs?

In fact, some encouraging work has been done in searching the MLSs for
finite groups. According to the pioneering work due to Vasco et al. [18], Holmes
[20] and Lempken et al. [8], we know that, with few exceptions, MLSs exist
for all groups of order ≤ 1010. Most recently, Nikhil Singhi, Nidhi Singhi, and
Magliveras [21,23] made another breakthrough: MLSs exist for the groups
GLn(q), SLn(q), Spn(q) with q as a power of a prime and On(q) with q as
a power of 2. As far as we know, this is the first result not constrained by a
specified boundary on group orders. Besides, Nikhil Singhi and Nidhi Singhi
[23] also pointed out, without any proof, that the MLSs should also exist for
On(q) with q as a power of odd primes.

Therefore, in this paper, our main motivation is to present new construc-
tions of minimal logarithmic signatures for the orthogonal group On(q), the
special orthogonal group SOn(q), the projective special orthogonal group PSOn(q),
the commutator subgroup Ωn(q) and one type of classical groups [5] — projec-
tive commutator subgroup PΩn(q) with q as a power of odd primes. For On(q)
and SOn(q), the proposed MLSs have the similar structure [A,B′, Gw], where
A = 〈a〉, and B′ = {hC | h ∈ B}, C ≤ B, B = 〈b〉, while Gw = P : Q is a
semi-direct product of a p-group P and a direct product Q = GL1(q)×Y (see
Table 1). We employ two canonical homomorphisms η : SOn(q) → PSOn(q)
and θ : Ωn(q) → PΩn(q) for proving the existence of MLSs for PSOn(q) and
PΩn(q), respectively.

The rest of contents are organized as follows: Necessary preliminaries are
presented in Section 2; In Section 3, we utilize the Levi decomposition of
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Table 1 MLSs for On(q) and SOn(q)

B′ = {hC | h ∈ B} with Gw = P : Q with
A = 〈a〉 C ≤ B = 〈b〉,|C| = q − 1 Q = GL1(q) × Y

a b |P | Y

x
q
m

−1

1
for x1 ∈ GL2m(q)





D1 0 0 0
0 1 0 0
0 0 (Dt

1
)−1 0

0 0 0 1



 for D1 ∈ GL2m−2(q) q2m−2 O−

2m−2
(q)

On(q) x
q
m−1

−1

2
for x2 ∈ GL2m(q)

(

D2 0
0 (Dt

2
)−1

)

for D2 ∈ GL2m(q) q2m−2 O+

2m−2
(q)

x
q
m

−1

3
for x3 ∈ GL2m+1(q)

(

D3 0 0
0 (Dt

3
)−1 0

0 0 1

)

for D3 ∈ GL2m(q) q2m−1 O2m−1(q)

x
∗q

m
−1

1
for x∗

1
∈ O−

2m
(q)





D∗

1
0 0 0

0 1 0 0
0 0 D∗t

1
0

0 0 0 1



 for D∗

1
∈ Om−1(q) q2m−2 SO−

2m−2
(q)

SOn(q) x
∗q

m−1
−1

2
for x∗

2
∈ O+

2m
(q)

(

D∗

2
0

0 D∗t
2

)

for D∗

2
∈ Om(q) q2m−2 SO+

2m−2
(q)

x
∗q

m
−1

3
for x∗

3
∈ O2m+1(q)

(

D∗

3
0 0

0 D∗t
3

0
0 0 1

)

for D∗

3
∈ Om(q) q2m−1 SO2m−1(q)

parabolic subgroups to construct LSs for the parabolic subgroups of On(q)
and SOn(q); In Section 4, analogous to methods in [23], we use the totally
isotropic subspaces to prove the existence of MLSs for O−

2m(q) and SO−

2m(q);
In Section 5, we utilize suitable spread in the P (V ) [2,7,12] to accomplish
the proof for O+

2m(q) and SO+
2m(q); In Section 6, we make further efforts to

present the constructions of MLSs for PSO±

2m(q) and PΩ±

2m(q); In Section 7,
we take account of MLSs for O2m+1(q), SO2m+1(q), PSO2m+1(q), Ω2m+1(q)
and PΩ2m+1(q).

2 Preliminaries

2.1 Classical Spreads and Quadratic Spaces in Finite Fields

Let K be a finite field and V a n-dimensional vector space over K. For v1 ∈ V ,
〈v1〉 denotes the one-dimensional subspace generated by v1. P (V ) denotes the
projective space on V , which is the set of all one-dimensional subspaces of V
[13].

Now, we describe the classical spread [12,7,4,2,23]. An r-partial spread
in V is a set S = {Wi | 1 ≤ i ≤ t} of r-dimensional subspaces Wi such
that Wi ∩ Wj = 〈0〉 for i 6= j. If ∪t

i=1Wi = V , then S is an r-spread in
V . Besides, when S is an r-(partial) spread in P (V ), it partitions P (V ) into
(r − 1)-dimensional subspaces of P (V ).

Suppose that V = Fq2m is a finite field, α is a primitive element of field Fq2m

and W = Fqm is an m-subspace of V . For every x ∈ V , Wx = {wx | w ∈ W},



4 Haibo Hong et al.

the set S = {Wx | x ∈ V } forms a m-spread in V [23]. Meanwhile, we have
the following remark.

Remark 1 [21,23] Let Wi = Wα(qm−1)i = {wα(qm−1)i|w ∈ W}, 0 ≤ i ≤ qm.
Then, the spread S can also be described as S = {Wi|0 ≤ i ≤ qm}.

Let V be an n-dimensional vector space over the finite field K = Fq with
q = pe for some prime p and a positive integer e. Let B = {e1, · · · , en} be
an ordered basis for V . Then a bilinear form over a vector space V is a map
f : V × V → K satisfying:

f(λu+ v, w) = λf(u,w) + f(v, w),

f(u, λv + w) = λf(u, v) + f(u,w).

The radical of f , denoted by rad(f), is V ⊥ = {u ∈ V | f(u, v) = 0, ∀v ∈ V }. f
is called non-singular if rad(f) = 〈0〉.

A map Q : V → K is called a quadratic form if it satisfies:

Q(λu+ v) = λ2Q(u) + λf(u, v) +Q(v),

where f is a symmetric bilinear form.The radical of Q is rad(Q) = {v ∈
rad(f) | Q(v) = 0}. Q is called non-singular if rad(Q) = 〈0〉.

An isometry on a quadratic space (V,Q) is a non-singular linear map g :
V → V such that Q(g(v)) = Q(v) for all v ∈ V . Two quadratic spaces (V,Q)
and (V,Q′) are said to be equivalent, if there is an isometry g : V → V [13,23].
Besides, the group of all isometries of an inner-product space (V, f) is denoted
by Isom(V, f) and that of all isometries of a quadratic space (V,Q) is denoted
by Isom(V, Q). When q is a power of odd primes then we have, Isom(V, f)=
Isom(V, Q) [13,23].

A vector v ∈ V is said to be isotropic if f(v, v) = 0, singular if Q(v) = 0
and non-singular if Q(v) 6= 0. A subspace W of V is called totally isotropic if
f(u, v) = 0 for all u, v ∈ W and totally singular if Q(v) = 0 for all v ∈ W .
Besides, a point 〈v〉 ∈ P (V ) is called a singular point if v is a singular vector,
and 〈v〉 is called an isotropic point in P (V ) if v is an isotropic vector.

2.2 Logarithmic Signatures and Minimal Logarithmic Signatures for Finite
Groups

Definition 1 (Logarithmic Signature) [8] Let G be a finite group, A ⊆ G.
Let α = [A1, · · · , As] be a sequence of ordered subsets Ai of G such that
Ai = [ai1, · · · , airi ] with aij ∈ G (1 ≤ j ≤ ri). Then α is called a logarithmic
signature for G (or A) if each g ∈ G (or A) is uniquely represented as a product

g = a1j1 · · · asjs

with aiji ∈ Ai (1 ≤ i ≤ s).
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The sequences Ai are called the blocks of α, the length of α is defined to be
l(α) =

∑s
i=1 ri. Let |G| =

∏k
j=1 p

aj

j (or |A| =
∏k

j=1 p
aj

j ) be the prime power
decomposition of |G| (or |A|) and α = [A1, A2, . . . , As] be an LS for G (or A).

From [6], we have l(α) ≥
∑k

j=1 ajpj.

Definition 2 (Minimal Logarithmic Signature) [8] A logarithmic signa-

ture α for a finite group G (or A) with l(α) =
∑k

j=1 ajpj is called a minimal
logarithmic signature (MLS) for G (or A).

Lemma 1 [21] Let A,B ≤ G, if A and B satisfy any one of the following two
conditions:

(i) G = A×B is a direct product of A and B, A ∩B = {1}
(ii) G = A : B is a semi-direct product of A and B, A ∩B = {1}.

Then, [A, B] is an LS for G.

Lemma 2 [21,23] Let H be a normal subgroup of G, A ⊆ G and η the canon-
ical homomorphism η : G → G/H such that a, b ∈ A, a 6= b imply that
aH 6= bH. Let A′ = η(A), and suppose hat [A1, A2, · · · , Ak] is an LS for A.
Let Bi = η(Ai) ⊆ G/H for 1 ≤ i ≤ k. Then, [B1, B2, · · · , Bk] is an LS for A′.

Now, let V be a finite dimensional vector space over Fq, f be a bilinear
form and Q be a quadratic form. We call L ⊆ P (V ) a Singhi subset [23] if L
is one of the following sets [21,23]:

(i) the set of all isotropic points of P (V ) with respect to the bilinear form f ,
(ii) the set of all non-isotropic points of P (V ) with respect to the bilinear form

f ,
(iii) the set of all singular points of P (V ) with respect to the quadratic form

Q,
(iv) the set of all non-singular points of P (V ) with respect to the quadratic

form Q.

(Note that a Singhi subset L that meets condition (i) will be used in our later
construction.)

Lemma 3 [21,23] Suppose that G|L is a transitive permutation group action
such that G is a subgroup of GL(V ) and L ⊆ P (V ) is a Singhi subset. Let S
be an r-partial spread in V , which partitions L. Let W ∈ S, w ∈ P (W ) and
Gw be the stabilizer of w in G. Suppose there are sets A, B ⊆ G such that

(i) A acts sharply transitive on S with respect to W under the action of G on
the set of all r-dimensional subspaces of V .

(ii) B acts sharply transitive on L ∩ P (W ) with respect to w under the action
of G on P (W ).

Then, [A,B,Gw] is an LS for G.

Lemma 4 [6,21,23] If G is a solvable group, then G has an MLS.
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Lemma 5 [23] Let G be a finite group and x ∈ G be an element of order t.
For s ∈ N, s ≤ t, let S = {xi|0 ≤ i < s} = {1, x1, x2, · · · , xs−1} be a cyclic
set generated by x. Then S has an MLS β = [A1, A2, · · · , Ak] satisfying the
following condition:

For any list [ji, j2, · · · , jk], such that xji ∈ Ai, 1 ≤ i ≤ k,
∑k

i=1 ji < s.

Lemma 6 [23] Let G be a finite group and [A1, · · · , Ar] be an LS for G such
that for each subset Aj, 1 ≤ j ≤ r, an MLS exists. Then G has an MLS.

3 Construction I: LSs for Parabolic Subgroups of On(q) and
SOn(q)

Throughout this paper, we assume that q is a power of odd primes. First, we
construct the LSs for parabolic subgroups in O2m+1(q) and O±

2m(q).

Let W be an isotropic k-space of V = Fq2m , then the stabilizer of W is

the maximal parabolic subgroup Pmax in O±

2m(q) of shape qk(k−1)/2+k(2m−2k) :
(GLk(q)×O±

2m−2k(q)). Specifically, Pmax has the shape















1 0 0 · · · 0
...
. . .

...
...

∗ · · · 1 · · · 0
0 0 0 A 0
0 0 0 C D















the normal p-subgroup R is a group of shape














1 0 0 · · · 0
...
. . .

...
...

∗ · · · 1 · · · 0
0 0 0 Ik 0
0 0 0 C′ I2m−2k















with center of order qk(k−1)/2 and the subset Q of matrices of the shape





Ik 0 0
0 A 0
0 0 D





is a subgroup isomorphic to GLk(q) × O±

2m−2k(q). Moreover, R ∩ Q = {In},
Pmax = R : Q, therefore, Pmax has an LS [R,Q] (see Lemma 1). Also, Pmax

is of shape qk(k−1)/2+k(2m+1−2k) : (GLk(q)×O2m+1−2k(q)) in O2m+1(q).

Similarly, for SO±

2m(q) and SO2m+1(q), P
′
max is of shape qk(k−1)/2+k(2m−2k) :

(GLk(q) × SO±

2m−2k(q)) in SO±

2m(q) and qk(k−1)/2+k(2m+1−2k) : (GLk(q) ×
SO2m+1−2k(q)) in SO2m+1(q).
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4 Construction II: MLSs for O
−
2m(q) and SO

−
2m(q)

Now, we construct MLSs for O−

2m(q) and SO−

2m(q). Here, our fundamental
tools are Lemma 3 and Lemma 6. Choosing suitable quadratic form Q of
minus type, we take advantage of all isotropic points of P (V ) for constructing
the corresponding MLSs.

First, we observe O−

2m(q). Suppose q is a power of odd primes, V = Fq2m is
a 2m-dimensional vector space over Fq , and L is the set of all isotropic points
of P (V ) . For y ∈ V , y denotes yq

m

. Ts : V → V is a linear transformation
defined by Ts(v) = sv for a given s ∈ V and all v ∈ V . Let α be a primitive
element of the field Fq2m and x ∈ GL2m(q) be the matrix corresponding to
the linear transformation Tα [23]. We define a bilinear map f : V × V → Fq

by f(x, y) = trFqm/Fq
(xy + xy) =

∑m−1
i=0 (xy + xy)q

i

and a quadratic form

Q : V → Fq by Q(x) = trFqm/Fq
(xx) =

∑m−1
i=0 (xx)q

i

[21,23]. Then, we observe
that the number of non-zero isotropic points in P (V ) with respect to the
quadratic space (V,Q) are (qm +1)(qm−1 − 1)/(q− 1) and the quadratic form
Q is of minus type [13,23]. Let G be the group of all isometries of (V,Q), then
G ∼= O−

2m(q) and G is a permutation group acting transitively on isotropic
points [13,23].

Now, we roughly explain the main idea for constructing the MLSs. As
described above, since the number of non-zero isotropic points in P (V ) with
respect to the quadratic space (V,Q) are (qm+1)(qm−1−1)/(q−1), therefore,
we need to construct a cyclic group A of order qm +1, which must be sharply
transitive on a partial spread S and a cyclic set B of cardinality (qm−1 −
1)/(q − 1), which must be sharply transitive on the projective subspace of
P (V ). Then, we take advantage of the Lemma 3, Lemma 5 and Lemma 6 for
proving the existence of MLSs for O−

2m(q).

First, we define two special cyclic subgroups of O−

2m(q). Let a1 = xqm−1
1 ∈

GL2m(q) be the matrix corresponding to the linear transformation Tαqm−1 . Let
W ′

1 = {e1, e2, · · · , em−1} is an (m − 1)-dimensional totally isotropic subspace
of V , D1 ∈ GL(W ′

1) be a generator of the Singer cyclic subgroup of GL(W ′
1)

[19] . Then b1 ∈ GL2m(q) can be well defined as follows:

b1=









D1 0 0 0
0 1 0 0
0 0 (Dt

1)
−1 0

0 0 0 1









Meanwhile, we get that a1, b1 ∈ G [1,23]. Let A1 = 〈a1〉, B1 = 〈b1〉 be the
cyclic subgroups of G generated by a1 and b1, respectively. Then, A1 is of
order qm + 1 and B1 is of order qm−1 − 1.

Let C1 = 〈b
qm−1

−1

q−1

1 〉 be the subgroup of order q−1 of B1 and B′
1 = {gC1|g ∈

B1} be the left coset of C1 in B1. Thus, |B
′
1| =

qm−1
q−1 . Furthermore, A1 and

B′
1 are chosen so that A1 ∩ B′

1 = {1} and both are cyclic sets. Then, from
Lemma 5, it follows that A1 and B′

1 have MLSs.
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Now, let S′
1 = {W ′

i | 0 ≤ i ≤ qm} be the classical spread as described in
Remark 1. W ′

i are (m − 1)-dimensional totally isotropic subspaces of V for
0 ≤ i ≤ qm. Clearly, the partial spread S′

1 partitions the set of all isotropic
points of P (V ).

Also, we observe that the group A1 is sharply transitive on S′
1 with respect

to W ′
1. Also, it is clear that B1 is isomorphic to the Singer cyclic subgroup of

GLm−1(q) and B′
1 is sharply transitive on P (W ′

1) with respect to 〈e1〉, where
e1 ∈ W ′

1.
Now, we consider G∗ = SO−

2m(q). Being similar to the case of O−

2m(q), let

a∗1 = x∗qm−1
1 ∈ SO−

2m(q) be the matrix corresponding to the linear transfor-
mation Tαqm−1 . Let W ′

1 = {e1, e2, · · · , em−1} is an (m− 1)-dimensional totally
isotropic subspace of V . Let D∗

1 ∈ Om−1(q) ≤ GL(W ′
1), b∗1 ∈ SO−

2m(q) is
presented well defined as follows:

b∗1=









D∗
1 0 0 0
0 1 0 0
0 0 D∗t

1 0
0 0 0 1









thus, A∗
1 = 〈a∗1〉, and B∗

1 = 〈b∗1〉 are the cyclic subgroups of SO
−

2m(q) generated
by a∗1 and b∗1 with order qm + 1 and qm−1 − 1, respectively.

Let C∗
1 = 〈b

∗
qm−1

−1

q−1

1 〉 be the subgroup of order q − 1 of B∗
1 and B′∗

1 =

{gC∗
1 |g ∈ B∗

1} be the left coset of C∗
1 in B∗

1 . Thus, |B
′∗
1 | = qm−1

q−1 . Furthermore,

the cyclic sets A∗
1 and B′∗

1 are chosen so that A∗
1 ∩ B′∗

1 = {1}. Consequently,
from Lemma 5, it follows that A∗

1 and B′∗
1 have MLSs.

Also, let S′
1 = {W ′

i | 0 ≤ i ≤ qm} be the classical spread as described
in Remark 1. W ′

i are (m − 1)-dimensional totally isotropic subspaces of V
for 0 ≤ i ≤ qm. It’s clear that the partial spread S′

1 partitions the set of all
isotropic points of P (V ).

We observe that the group A∗
1 is sharply transitive on S′

1 with respect to
W ′

1. Also, B
∗
1 is isomorphic to the Singer cyclic subgroup of GLm−1(q) and B′∗

1

is sharply transitive on P (W ′
1) with respect to 〈e1〉, where e1 ∈ W ′

1. Hence, we
have the following lemma from the fact above.

Lemma 7 Let A1, B
′
1 ⊆ O−

2m(q) (resp. A∗
1, B

′∗
1 ⊆ SO−

2m(q)), S′
1 be the partial

spread, W ′
1 be the subspace of V and w1 = 〈e1〉. Then,

(i) A1 (resp. A∗
1) is a sharply transitive set on S′

1 with respect to W ′
1.

(ii) B′
1 (resp. B′∗

1 ) is a sharply transitive set on P (W ′
1) with respect to w1.

Theorem 1 Let q be a power of odd primes. Then, the orthogonal group
O−

2m(q) has an MLS.

Proof In case, when m = 1, G = O−

2 (q)
∼= Dq+1 which is a dihedral group of

order 2(q+1). From Lemma 4, O−

2 (q) has an MLS. When m > 1, let A = A1,
B = B′

1, w1 = 〈e1〉, L be the set of all isotropic points of P (V ). Then, from
Lemma 3 and Lemma 7, [A1, B

′
1, Gw] is an LS for G. The stabilizer Gw is
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a semi-direct product of a p-group of order q2m−2 and GL1(q) × O−

2m−2(q).
Now from Lemma 4, p-groups and GL1(q) have MLSs. Furthermore, by the
induction hypothesis, we assume that O−

2m−2(q) has an MLS. Thus, Gw has
an MLS. Also, from Lemma 5, A1 and B′

1 have MLSs. Hence, using Lemma
6, G has an MLS.

Theorem 2 Let q be a power of odd primes. Then, the special orthogonal
group SO−

2m(q) has an MLS.

Proof In case, when m = 1, G∗ = SO−

2 (q) is a solvable group of order q + 1.
Lemma 4 implies that SO−

2 (q) has an MLS. When m > 1, let A = A∗
1, B =

B∗′1, w1 = 〈e1〉, L be the set of all isotropic points of P (V ). Thus, from Lemma
3 and Lemma 7, [A∗

1, B
′∗
1 , G∗

w] is an LS for SO−

2m(q). The stabilizer G∗
w is a

semi-direct product of a p-group of order q2m−2 and GL1(q) × SO−

2m−2(q).
Now, from Lemma 4, p-groups and GL1(q) have MLSs. Furthermore, by the
induction hypothesis, we assume that SO−

2m−2(q) has an MLS. Thus, G∗
w has

an MLS. Also, from Lemma 5, A∗
1 and B′∗

1 have MLSs. Hence, using Lemma
6, SO−

2m(q) has an MLS.

5 Construction III: MLSs for O
+
2m(q) and SO

+
2m(q)

Similarly, we construct MLSs for O+
2m(q) and SO+

2m(q). Also, L is the set of
all isotropic points of P (V ).

We at first consider O+
2m(q). Let V = Fq2m , α a primitive element of field

Fq2m and q be a power of odd primes. The corresponding bilinear map and
quadratic form are described as f(x, y) = f(x1+x2β, y1+y2β) = trFqm/Fq

(x1y2+

x2y1) =
∑m−1

i=0 (x1y2 + x2y1)
qi and Q(x) = Q(x1 + x2β) = trFqm/Fq

(x1x2) =
∑m−1

i=0 (x1x2)
qi , respectively, where β = αqm−1 [23]. We observe that the num-

ber of non-zero isotropic points in P (V ) with respect to the quadratic space
(V,Q) are (qm−1)(qm−1+1)/(q−1) and the quadratic form Q is of plus type
[13,23]. Let G be the group of all isometries of (V,Q), then, G ∼= O+

2m(q) and
G is a permutation group acting transitively on isotropic points [13,23].

Similarly, we must have to construct a cyclic group A of order qm−1 +
1 which is sharply transitive on a partial spread S and a cyclic set B of
cardinality (qm−1)/(q−1) which is sharply transitive on P (W ), the projective
subspace of P (V ). Furthermore, we also need to use the Lemma 3, Lemma 5
and Lemma 6 to prove the existence of MLSs.

First, we define two special cyclic subgroups of O+
2m(q). Let a2 = xqm−1

−1
2 ∈

GL2m(q) be the matrix corresponding to the linear transformation Tαqm−1
−1 ,

where x2=





x 0 0
0 1 0
0 0 1



, x ∈ GL2m−2(q) . Let W2 = {e1, e2, · · · , em} be an m-

dimensional totally isotropic subspace of V , D2 ∈ GL(W2) be a generator
of the Singer cyclic subgroup of GL(W2). Then, b2 ∈ GL2m(q) is defined as
follows: [1,23]
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b2=

(

D2 0
0 (Dt

2)
−1

)

Meanwhile, we have that a2, b2 ∈ G [1,23]. Let A2 = 〈a2〉 and B2 = 〈b2〉
be the cyclic subgroups of G generated by a2 and b2, respectively. Then, A2

is of order qm−1 + 1 and B2 is of order qm − 1.

Let C2 = 〈b
qm−1

q−1

2 〉 be the subgroup of order q− 1 of B2 and B′
2 = {gC2|g ∈

B2} be the left coset of C2 in B2. Thus, |B
′
2| =

qm−1
q−1 . Furthermore, the cyclic

setsA2 and B′
2 are chosen so that A2 ∩ B′

2 = {1}. Then from Lemma 5, it
follows that A2 and B′

2 have MLSs.
Now, let S2 = {Wi | 0 ≤ i ≤ qm} be the classical spread as described in

Remark 1. Wi are m-dimensional totally isotropic subspaces of V for 0 ≤ i ≤
qm. Then, the partial spread S2 clearly partitions the set of all isotropic points
of P (V ).

Also, we observe that the group A2 is sharply transitive on S2 with respect
to W2. Also, it is clear that B

′
2 is sharply transitive on P (W2) with respect to

〈e1〉, where e1 ∈ W2.
Now, we take account for G∗ = SO+

2m(q). Being similar to O+
2m(q), a∗2 =

x∗qm−1
−1

2 ∈ SO+
2m(q) is also the matrix corresponding to the linear transforma-

tion Tαqm−1
−1 , where x∗

2=





x∗ 0 0
0 1 0
0 0 1



, x∗ ∈ SO+
2m−2(q). LetW2 = {e1, e2, · · · , em}

be an m-dimensional totally isotropic subspace of V and D∗
2 ∈ GL(W2) be a

generator of the Singer cyclic subgroup of GL(W2). Then b∗2 ∈ SO+
2m(q) is

defined as follows: [23]

b∗2=

(

D∗
2 0
0 D∗t

2

)

Hence, A2 = 〈a2〉 and B2 = 〈b2〉 are the cyclic subgroups of G with order
qm−1 + 1 and qm − 1, respectively.

Let C∗
2 = 〈b

∗
qm−1

q−1

2 〉 be the subgroup of order q−1 ofB∗
2 and B

′
∗
2 = {gC∗

2 |g ∈

B∗
2} be the left coset of C∗

2 in B∗
2 . Thus, |B

′∗
2 | = qm−1

q−1 . Furthermore, the cyclic

setsA∗
2 and B′∗

2 are chosen so that A∗
2 ∩ B′∗

2 = {1}. Then from Lemma 5, it
follows that A∗

2 and B′∗
2 have MLSs.

Now, let S2 = {Wi | 0 ≤ i ≤ qm} the classical spread as described in
Remark 1. Wi are m-dimensional totally isotropic subspaces of V for 0 ≤ i ≤
qm. Thus,, the partial spread S2 clearly partitions the set of all isotropic points
of P (V ).

Consequently, we observe that the group A∗
2 is sharply transitive on S2

with respect to W2. Also, it is clear that B′∗
2 is sharply transitive on P (W2)

with respect to 〈e1〉, where e1 ∈ W2. Hence, we have the following lemma.

Lemma 8 Let A2, B′
2 ⊆ O+

2m(q) (resp. A∗
2, B′∗

2 ⊆ SO+
2m(q) ), S2 be the

partial spread, W2 be the subspace of V , and w2 = 〈e1〉. Then,

(i) A2 (resp. A∗
2) is a sharply transitive set on S2 with respect to W2.
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(ii) B′
2 (resp. B′∗

2 ) is a sharply transitive set on P (W2) with respect to w2.

Theorem 3 Let q be a power of odd primes. Then, the orthogonal group
O+

2m(q) has an MLS.

Proof Let G = O+
2m(q). In case,when m = 1, O+

2 (q) is of order 2(q− 1). Then,
by using Lemma 4, O+

2 (q) has an MLS. When m > 1, let A = A2, B = B′
2,

w2 = 〈e1〉, L be the set of all isotropic points of P (V ). Hence, from Lemma
5 and Lemma 8, [A2, B

′
2, Gw2

] is an LS for G. Besides, the stabilizer Gw2
is

a semi-direct product of a p-group of order q2m−2 and GL1(q) × O+
2m−2(q).

Now from Lemma 4, p-groups and GL1(q) have MLSs. Furthermore, by the
induction hypothesis, we assume that O+

2m−2(q) has an MLS, therefore,O+
2m(q)

also has an MLS. Thus, Gw2
has an MLS. Also, from Lemma 5, the cyclic sets

A2 and B′
2 have MLSs. Therefore, using Lemma 6, G has an MLS.

Theorem 4 Let q be a power of odd primes. Then, special orthogonal group
SO+

2m(q) has an MLS.

Proof In case, when n = 1, G∗ = SO+
2 (q) is a solvable group of order q − 1.

Then by using Lemma 4, SO+
2 (q) has an MLS. When m > 1, let A = A∗

2, B =
B′∗

2 , w2 = 〈e1〉, L be the set of all isotropic points of P (V ). Hence, from Lemma
5 and Lemma 8, [A∗

2, B
′∗
2 , G∗

w2
] is an LS for G. Besides, the stabilizer G∗

w2
is

a semi-direct product of a p-group of order q2m−2 and GL1(q) × SO+
2m−2(q).

Now from Lemma 4, p-groups and GL1(q) have MLSs. Furthermore, by the
induction hypothesis, we assume that SO+

2m−2(q) has an MLS, therefore, G∗
w2

has an MLS. Also, from Lemma 5, the cyclic sets A∗
2 and B′∗

2 have MLSs.
Finally,, using Lemma 6, SO+

2m(q) has an MLS.

6 Construction IV: MLSs for PSO
±
2m(q) and PΩ

±
2m(q)

In this section, we consider the MLSs for PSO±

2m(q) and PΩ±

2m(q). Being
different from O±

2m(q) and SO±

2m(q), our technique is based on some canonical
homomorphisms.

Theorem 5 Let q be a power of odd primes. Then, PSO±

2m(q) has an MLS.

Proof (1)In case, when G∗ = SO−

2m(q) and G′ = PSO−

2m(q), let A = A∗
1,

B = B′∗
1 , w1 = 〈e1〉, L be the set of all isotropic points of P (V ) as described as

Section 3. Suppose η1 : SO−

2m(q) → PSO−

2m(q) ∼= SO−

2m(q)/Z(SO−

2m(q) is the
canonical homomorphism onto PSO−

2m(q), and let A∗
1 = η(A∗

1), B
′∗
1 = η(B′∗

1 )
and G∗

w1
= η(G∗

w1
), then [A∗

1, B
′∗
1 , G∗

w1
] is the corresponding LS for PSO−

2m(q)

from Lemma 2. Also from Section 3, the stabilizer G∗
w1

is a semi-direct product

of a p-group of order q2m−2 and GL1(q)×PSO−

2m−2(q). Thus, using the same

induction as used in Theorem 2, we get that PSO−

2m(q) has an MLS.
(2)In case, when G∗ = SO+

2m(q) and G′ = PSO+
2m(q), let A = A∗

2, B =
B′∗

2 , w2 = 〈e1〉, L be the set of all isotropic points of P (V ) as described as
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Section 4. Suppose η2 : SO+
2m(q) → PSO+

2m(q) ∼= SO+
2m(q)/Z(SO+

2m(q) is the
canonical homomorphism onto PSO+

2m(q), and let A∗
2 = η(A∗

2), B
′∗
2 = η(B′∗

2 )
and G∗

w2
= η(G∗

w2
), then [A∗

2, B
′∗
2 , G∗

w2
] is the corresponding LS for PSO+

2m(q)

from Lemma 2. Hence, the stabilizer G∗
w2

is a semi-direct product of a p-group

of order q2m−2 and GL1(q)×PSO+
2m−2(q). Thus, using the same induction as

used in Theorem 2, we get that PSO+
2m(q) has an MLS.

Theorem 6 Let q be a power of odd primes. Then, PΩ±

2m(q) has an MLS.

Proof (1)In case, when qm ≡ −1 mod 4, from [13],we have that PSO±

2m(q) =
PΩ±

2m(q). Therefore, being similar to the case in PSO±

2m(q), [A∗
1, B

′∗
1 , G∗

w1
] is

the corresponding LS for PΩ−

2m(q) and [A∗
2, B

′∗
2 , G∗

w2
] is the corresponding LS

for PΩ+
2m(q). Meanwhile, as described in Theorm 5, PΩ−

2m(q) and PΩ+
2m(q)

both have MLSs.
(2)In case, when qm ≡ 1 mod 4, we must consider the reflection in G∗ =

SOn(q). For the isotropic 1-space w = 〈e1〉, the reflection rw : V → V is

defined by rw(v) = v−2 f(v,w)
f(w,w)w for each v ∈ V . Also, the linear transformation

rw is an element of G∗
w. ForG

′ = Ω−

2m(q) (resp. Ω+
2m(q)), each element of G′

w is
a product of an even number of reflections and G′

w is a semi-direct product of
a p-group of order q2m−2 and GL1(q)×Ω−

2m−2(q) (resp. GL1(q)×Ω+
2m−2(q)).

Besides, an element x in SO±

2m(q) is in Ω±

2m(q) if and only if the rank of
I2m + x is even. From the construction of A∗

1 (resp. A∗
2) and B′∗

1 (resp. B′∗
2 )

in Section 3 and Section 4, we get that the ranks of I2m + x∗
1 (resp. I2m + x∗

2)
and I2m + b∗1 (resp. I2m + b∗2 ) are both even, Thus, A∗

1 (resp. A∗
2) ≤ G′, B′∗

1

(resp. B′∗
2 ) ⊆ G′. As described in Theorem 3 and Theorem 4, we have Ω−

2m(q)
(resp. Ω+

2m(q)) has an MLS.
Furthermore,, let θ1 : Ω−

2m(q) → PΩ−

2m(q) and θ2 : Ω+
2m(q) → PΩ+

2m(q)
be the canonical homomorphisms onto PΩ−

2m(q) and PΩ+
2m(q), respectively.

Therefore, [θ1(A
∗
1), θ1(B

′∗
1 ), θ1(G

∗
w1

)] is the corresponding LS for PΩ−

2m(q)

and [θ2(A
∗
2), θ2(B

′∗
2 ), θ2(G

∗
w2

)] is the corresponding LS for PΩ+
2m(q) . Also,

for PΩ−

2m(q), the stabilizer θ1(G
∗
w1

) is a semi-direct product of a p-group of

order q2m−2 and GL1(q)×PΩ−

2m−2(q); for PΩ+
2m(q). the stabilizer θ2(G

∗
w2

) is

a semi-direct product of a p-group of order q2m−2 and GL1(q) × PΩ+
2m−2(q).

Thus, using the same induction as used in Theorem 2 and Theorem 4, we get
that PΩ−

2m(q) and PΩ+
2m(q) both have MLSs.

7 Construction V: MLSs for O2m+1(q), SO2m+1(q), PSO2m+1(q)
and PΩ2m+1(q)

In this section, we first construct MLSs for O2m+1(q) and SO2m+1(q). Then
we consider the MLSs for PSO2m+1(q) and PΩ2m+1(q). Here, L is also the
set of all isotropic points of P (V ).

Let V = Fq2m+1 and q be a power of odd primes. The corresponding non-

singular alternating bilinear map is f(x, y) = trF
q2m+1/Fq

(axy) =
∑2m+1

i=1 (axy)q
i

,
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where a ∈ F ∗

q2m+1 and a + a = 0 [23]. Also, G = O2m+1(q) is the isometry

group of the inner product space (V, f) and G is a permutation group act-
ing transitively on isotropic points [13,23]. Then we observe that the number
of non-zero isotropic points in P (V ) with respect to the inner product space
(V, f) are (qm − 1)(qm + 1)/(q − 1) [13,23].

Similarly, we construct a cyclic group A of order qm + 1, which is sharply
transitive on a partial spread S and a cyclic set B of cardinality qm−1/(q−1),
which is sharply transitive on P (W ), the projective subspace of P (V ). Then
we use the Lemma 3, Lemma 5 and Lemma 6 to prove the existence of MLSs.

Let a3 = xqm−1
3 ∈ GL2m+1(q) be the matrix corresponding to the lin-

ear transformation Tαqm−1 , where x3=

(

x 0
0 1

)

, x ∈ GL2m(q). Let W3 =

{e1, e2, · · · , em} be an m-dimensional totally isotropic subspace of V , D3 ∈
GL(W3) be a generator of the Singer cyclic subgroup of GL(W3). Then b3 ∈
GL2m+1(q) defined as follows: [23]

b3=





D3 0 0
0 (Dt

3)
−1 0

0 0 1





From [1,23], we have that a3, b3 ∈ G. Let A3 = 〈a3〉, B3 = 〈b3〉 be cyclic
subgroups of G. Thus, |A3| = qm + 1 and |B3| = qm − 1.

Let C3 = 〈b
qm−1

q−1

3 〉 be the subgroup of order q−1 of B3, B
′
3 = {gC3|g ∈ B3}

the left coset of C3 in B3. Therefore, |B
′
3| =

qm−1
q−1 . Furthermore, the cyclic

sets A3 and B′
3 are chosen so that A3 ∩ B′

3 = {1}. Hence, from Lemma 5, it
follows that A3 and B′

3 have MLSs.
Now, let S3 = {Wi | 0 ≤ i ≤ qm} be the classical spread as described in

Remark 1, Wi be m-dimensional totally isotropic subspaces of V for 0 ≤ i ≤
qm. Therefore, the partial spread S3 partitions the set of all isotropic points
of P (V ).

We observe that the group A3 is sharply transitive on S3 with respect
to W3. Also, B

′
3 is sharply transitive on P (W3) with respect to 〈e1〉, where

e1 ∈ W3.
In case, when G∗ = SO2m+1(q), let a

∗
3 = x∗qm−1

3 ∈ SO2m+1(q) be the ma-

trix corresponding to the linear transformation Tαqm−1 , where x∗
3=

(

x∗ 0
0 1

)

,

x∗ ∈ SO±

2m(q). LetW3 = {e1, e2, · · · , em} be anm-dimensional totally isotropic
subspace of V and D∗

3 ∈ Om(q) ≤ GL(W3). Then, b
∗
3 ∈ SO2m+1(q) is defined

as follows: [23]

b3=





D∗
3 0 0
0 D∗t

3 0
0 0 1





From [1,23], we have that a∗3, b
∗
3 ∈ G. Let A∗

3 = 〈a∗3〉, B
∗
3 = 〈b∗3〉 be cyclic

subgroups of G. Then, |A∗
3| = qm + 1 and |B∗

3 | = qm − 1.
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Let C∗
3 = 〈b

∗
qm−1

q−1

3 〉 be the subgroup of order q−1 ofB∗
3 and B

′
∗
3 = {gC∗

3 |g ∈

B∗
3} be the left coset of C∗

3 in B∗
3 . Thus, |B

′∗
3 | = qm−1

q−1 . Furthermore, the cyclic

sets A∗
3 and B′∗

3 are chosen so that A∗
3 ∩ B′∗

3 = {1}. Then from Lemma 5, it
follows that A∗

3 and B′∗
3 have MLSs.

Now, let S3 = {Wi | 0 ≤ i ≤ qm} be the classical spread as described in
Remark 1, Wi be m-dimensional totally isotropic subspaces of V for 0 ≤ i ≤
qm. Then, the partial spread S3 partitions the set of all isotropic points of
P (V ).

Moreover, we observe that the group A∗
3 is sharply transitive on S3 with

respect to W3. Also, B
′∗
3 is sharply transitive on P (W3) with respect to 〈e1〉,

where e1 ∈ W3. Hence, we have the following lemma.

Lemma 9 Let A3, B
′
3 ⊆ O2m+1(q) (resp. A∗

3, B
′∗
3 ⊆ SO2m+1(q)), S3 be the

partial spread, W3 be the subspace of V , and w = 〈e1〉. Then,

(i) A3 (resp. A∗
3) is a sharply transitive set on S3 with respect to W3.

(ii) B′
3 (resp. B′∗

3 ) is a sharply transitive set on P (W3) with respect to w3.

Theorem 7 Let q be a power of odd primes. Then, the orthogonal group
O2m+1(q) has an MLS.

Proof Let G = O2m+1(q), A = A3, B = B′
3, w = 〈e1〉. When m = 0, O1(q) ∼=

C2. Lemma 4 implies that O1(q) has an MLS. When m ≥ 1, from Lemma 5
and Lemma 9, [A3, B

′
3, Gw] is an LS for G. Hence, the stabilizer Gw is a semi-

direct product of a p-group of order q2m−1 and GL1(q)×O2m−1(q). Now from
Lemma 4, p-groups and GL1(q) have MLSs. Furthermore, by the induction
hypothesis, we assume that O2m−1(q) has an MLS, therefore, O2m+1(q) also
has an MLS. Thus, Gw has an MLS. Also, from Lemma 5, the cyclic sets A3

and B′
3 have MLSs. Therefore, using Lemma 6, G has an MLS.

Theorem 8 Let q be a power of odd primes. Then, SO2m+1(q) has an MLS.

Proof Let G∗ = SO2m+1(q), A = A∗
3, B = B′∗

3 , w = 〈e1〉. In case, when
m = 0, SO1(q) ∼= C2. Lemma 4 implies that SO1(q) has an MLS. In case,
when m ≥ 1, from Lemma 5 and Lemma 9, [A∗

3, B
′∗
3 , Gw] is an LS for G. Then

the stabilizer G∗
w is a semi-direct product of a p-group of order q2m−1 and

GL1(q)× SO2m−1(q). Now from Lemma 4, p-groups and GL1(q) have MLSs.
Furthermore, by the induction hypothesis, we assume that SO2m−1(q) has an
MLS, therefore, G∗

w has an MLS. Also, from Lemma 5, the cyclic sets A∗
3 and

B′∗
3 have MLSs. Therefore, using Lemma 6, SO2m+1(q) has an MLS.

Theorem 9 Let q be a power of odd primes. Then, PSO2m+1(q) has an MLS.

Proof In case, when G∗ = SO2m+1(q) and G′∗ = PSO2m+1(q), let A = A∗
3,

B = B′∗
3 , w = 〈e1〉, L be the set of all isotropic points of P (V ) as described

above. Suppose η3 : SO2m+1(q) → PSO2m+1(q) ∼= SO2m+1(q)/Z(SO2m+1(q))

is the canonical homomorphism onto PSO2m+1(q), and let A
∗

3 = η(A∗
3),

B
∗

3 = η(B∗
3 ) and Gw = η(Gw), then [A

∗

3, B
∗

3, Gw] is the corresponding LS



Minimal Logarithmic Signatures for one type of Classical Groups 15

for PSO2m+1(q) from Lemma 2. Also from Section 3, the stabilizer Gw is a
semi-direct product of a p-group of order q2m−1 and GL1(q) × PSO2m−1(q).
Thus, using the same induction as used in Theorem 2, we get that PSO2m+1(q)
has an MLS.

Theorem 10 Let q be a power of odd primes. Then, PΩ2m+1(q) has an MLS.

Proof In case, when n = 2m + 1, from [13], we observe that Ω2m−1(q) ∼=
Sp2m−2(q). Also from [23], we have that Sp2m−2(q) has an MLS. Using the
induction, we get that Ω2m+1(q) has an MLS. Then, we utilize the canonical
homomorphism θ3 : Ω2m+1(q) → PΩ2m+1(q) for proving that PΩ2m+1(q) has
LS . Consequently, using the same induction as used in Section 5, we get that
PΩ2m+1(q) has an MLS. Here, we omit the corresponding proof.

Conclusion

We utilize partial spreads of totally isotropic subspaces, stabilizers of isotopic
1-subspaces and linear transformations in corresponding vector spaces to con-
struct MLSs for On(q), SOn(q), POn(q), PSOn(q), Ωn(q) and PΩn(q) with q
as a power of odd primes. Meanwhile, our methods can be used to construct
MLSs for other finite simple groups.
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