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PREDICTING THE ELLIPTIC CURVE CONGRUENTIAL
GENERATOR

LASZLO MERAI

ABSTRACT. Let p be a prime and let E be an elliptic curve defined over
the finite field F, of p elements. For a point G € E(F,) the elliptic
curve congruential generator (with respect to the first coordinate) is a
sequence () defined by the relation z, = z(Wy) = 2(Wn-1 ® G) =
z(nG ® Wy), n = 1,2,..., where @ denotes the group operation in
E and Wy is an initial point. In this paper, we show that if some
consecutive elements of the sequence (z,) are given as integers, then one
can compute in polynomial time an elliptic curve congruential generator
(where the curve possibly defined over the rationals or over a residue
ring) such that the generated sequence is identical to (x) in the revealed
segment. It turns out that in practice, all the secret parameters, and
thus the whole sequence (z,), can be computed from eight consecutive
elements, even if the prime and the elliptic curve are private.

1. INTRODUCTION

For a prime p, denote by I, the field of p elements and always assume that
it is represented by the first p-many non-negative integers {0,1,...,p — 1}.

Let E be an elliptic curve defined over [F,, given by an affine Weierstrass
equation, which for ged(p,6) = 1 takes the form

(1) y? =23 + Az + B,

for some A, B € F,, with non-zero discriminant 44° + 2782 # 0.

The Fj-rational points E(F,) of E form an Abelian group (with respect
to the usual addition denoted by @) with the point at infinity O as the
neutral element. Let z(:) and y(:) be the coordinate functions, then for a
point P € E(F,), P # O with affine components P = (zp,yp) we have
xz(P) =xp and y(P) = yp.

For a given point G € E(F,) and initial point Wy € E(F,) the ellip-
tic curve congruential generator is the sequence (W,,) of points of E(F))
satisfying the recurrence relation

Wpn=G®W,_1=nGeW,y, n=12,...
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We also define the elliptic curve congruential generator with respect to the
first coordinate as the sequence (x,) in [, as

(2) xn =x(Wp) =2(nGeWy), n=12...

The elliptic curve congruential generator has been widely studied, many
positive results have been proven about its randomness, see [IH6L[8L9,1THI4),
16] and see also the survey paper [I5]. In particular, E1 Mahassni and Sh-
parlinski [5] showed that (17,), and so the sequence (z,), is well-distributed.
Hess and Shparlinski [§], and Topuzoglu and Winterhof [16] provided lower
bounds to the linear complexity profile of the sequence (zy,).

However, it is clear, that when the curve E is given, the sequence (W,,)
is predictable from two consecutive points W,,, W, 41. In [7], Gutierrez and
Ibeas showed that when the prime p and G are known, then the sequence
(W,,) is predictable even if just an approximation of W,,, W, 11 are revealed
(even if the curve E is private). These show that the security of the point
sequence (W,,) is not well-established. However these attacks use the as-
sumption that the prime and the curve (resp. the point GG) are given which
assumption is quite optimistic (in the viewpoint of the attacker).

In our cryptographic settings, all the parameters, as the initial point
Wy = (z0,%0), the generator G = (zg,yq), the parameters of the curve
A, B and the prime p are assumed to be secret and just the output of the
generator x1,Ts,... represented as non-negative integers, are used. The
main contribution of this paper is that if some consecutive elements are
revealed, then one can compute in polynomial time (polynomial in log p)
an elliptic curve congruential generator (where the curve possibly defined
over the rational or over a residue ring) such that the generated sequence is
identical to (z,) in the revealed segment. It turns out that in practice, all
the secret parameters, and thus the whole sequence (z,), can be computed
from eight consecutive elements.

The result suggests that for cryptographic applications the elliptic curve
congruential generator should be used with great care.

In Section 2] we summarize some basic facts about elliptic curves. In
Section [l we present the algorithm, and in Section Ml we discuss results of
numerical tests.

2. BACKGROUND

In this section we summarize some basic facts about elliptic curves. First
we recall the definition of the group operation @ of E defined over arbitrary
field k. Then we extend the notion of elliptic curve to the case where it is
defined over a ring.

2.1. The group law on the curve. Let k be a field of characteristic dif-
ferent from 2,3. Let E be an elliptic curve defined over k given by an
affine Weierstrass equation ({) with A, B € k, 443 + 27B% # 0. The group
operation @ in E is defined in the following way.
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Definition 1. The operation @ is defined over E as follows. If P = (zp, yp)
and Q = (zg, yq) are in E(k), then

P@Q:R: ($R7yR)7

where

(i) if Tp 75 rQ, then

Tp=5"—xp— zQ, Yr=s(xp—xRr)—yp, wheres= w;
TQ —Tp
(ii) if zp = zg but yp # yg, then P& Q = O;
(iii) if P =@ and yp # 0, then
322, + A
rp=s>—2xp, Yp= s(rp — rR) —yp, where s = §7~
yp

(iv) if P=Q and yp =0, then P® Q = O.

2.2. Elliptic curves over Z,,. If m is a composite integer with ged(m, 6) =
1, elliptic curve E can be also defined over Z,, via the projective Weierstrass
equation

v’z = a3 + Azz? + B2?

with A, B € Zy,, ged(4A3 4 27B% m) = 1. The Z,,-rational points E(Z,,)
of E with projective coordinates can be represented as a triple (z : y : z)
such that ged(m, z,y,2) = 1 (but not necessarily z = 0 or 1).

As in the field case, group operation can be defined on E (see [1017])
whose formulas correspond to Definition [ if the divisor in (@) or (i) is co-
prime to m.

We remark that for integers mi, mo, ged(my, mg) = 1 we have

E(Zmym,) = E(Zm,) @ E(Zm,)

as groups. Moreover, if E is an elliptic curve over Q defined by (dl) with
integers A, B, then for m with ged(443 + 27B2%,m) = 1, the map E(Q) —
E(Z,,) defined by

(r:y:2)— (xmodm:ymodm:zmodm)

is a group homomorphism (where the representation (x : y : z) is chosen as
x,y,z € Z and ged(x,y,z) = 1).

Finally, for arbitrary integers mq,msy (not necessarily co-primes), the the
map E(Zy,m,) = E(Zy,,) defined by

(x:y:2z)— (x mod my : y mod my : z mod my)

is a group homomorphism.
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3. PREDICTING THE CONGRUENTIAL GENERATOR ON ELLIPTIC CURVE
OVER RINGS

Suppose we are given an initial segment x1,...,zs of a sequence (zy,)
generated by an elliptic curve generator as non-negative integers. We would
like to predict the remainder part of this sequence and specially, to compute
the parameters of the generator, namely, the prime p, the parameters of the
curve A, B and the points G, Wj.

If for two different generators with primes p and ¢, the revealed initial
segments coincide, then the same initial segment is generated by an elliptic
curve generator over Z,.,. Clearly, in this case only the generator over
the ring Z,.q is computable (without assuming the easiness of the integer
factorization problem) and to recover the private parameters further revealed
elements are needed.

On the other hand, if the curve E is defined over Q with non-negative
integers A, B and G, W, € E(Q) are points such that z(iG & W) are all
integers for ¢ = 1,...,s, then there are infinitely many possible primes p
(and generators) exist, namely all large enough primes are suitable.

Thus our aim is to determine the most general elliptic curve generator
(possibly over Q or over a ring Z,,) which generates the same initial segment.

The following theorem shows that if at least seven initial values are re-
vealed, then it can be computed a curve E over Q or over Z,, with p | m
and points G, Wy such that these revealed values are the initial segment of
a sequence generated by an elliptic curve generator with E, G and W,. If
more values are revealed, then a better approximation can be given to the
generator (i.e. to the prime p).

Theorem 1. There is an algorithm such that for given pairwise distinct
non-negative integers x1,...,x7 generated by the elliptic curve congruential
generator ([2) with prime number p > 3, non-singular elliptic curve E =
Eap (A,B € Fp), and points Wy,G € E(F,) with W,, # £G for n =
1,...,6, the algorithm computes a curve Eﬁﬁ over Q or over Ly, withp | m

and a pair (zg, (z/g)) in polynomial time (polynomial in logp) such that if
~3 T~ B2
~ Ty 4+ Azy_1+ B+ . o~
(3) T, =2 n-l 7N ! — (yG) —2(Zp—1+xG)—Tp_o2, n=23,...,
(xn—l - $G)
then ., = x, mod p whenever W, # O.

We summarize the steps of computing in Algorithm [l

Remark 1. The assumption that we are given the initial segment of the
sequence (z,,) is just a technical simplification. If any segment xg,...,Tr1¢6
of length seven are given, substituting Wy by Wj_1 we get a generator whose
initial values are zy,...,Zg16.

Remark 2. If we increase the number of revealed elements, then the algo-
rithm can be extended which provides a better approximation m to p and
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Algorithm 1 Predicting the EC-LCG

Input: non-negative integers x1,...,x7 generated by an elliptic curve con-
gruential generator (2)

Output: (:f, (yz),g,é,m) such that p | m, and if Z,, (n = 2,3,...) gener-

ated by @), then z,, = x,, mod p whenever W,, # O.
1: define the vectors ¢y, co, €3, ¢4 as the columns of the matrix C' in (@) and

u as ()

2: m < det(cy, o, C3,Cq,1).

3: if m =0 then

4: write A1c1 + AoCy + A3c3 + A\gcq = pua with Aq,..., )\4,,& €Z,u>0

5 m (AF = dop)/ ged(A, )

6: ifm=20 the/nv X

7. %<—A—u1,(y2)<—(%) +R A A B

8: end if

9: end if

10: if m # 0 then

11: while ci, co, c3, ¢4 are linearly dependent modulo m do

12: write A\jc1+Aeca+Azc3+Agcs =0 mod m with (Mg, A2, Az, Ag) #
(0,0,0,0),

13: m <— gcd(m, )\1,)\2,)\4,)\5)

14: end while
15: write Aic1 + Aoco + Azcs + Ascq = pu mod m with u >0
16: if ged(m, p) > 0 then

17: m < m/ ged(m, p)

18: end if

19: write A\jc1 + Aocy + A3c3 + Ascqs = u mod m

20: if A2 £ Ay mod m then

21: m <+ ged(m, A2 — \a)

22: end if - _

23: T <+ A\; mod m, (y2) < A3 + % mod m, A < A3 mod m,
24: B+ % mod m

25: end if

26: return (:E, @/2), Z, é, m)

hence a better approximation to (z,,), see Section [l In practice, 8 elements
contain enough information to learn the exact value of p.

Proof of Theorem [ Let us assume, that the integers x1,...,x7 generated
by an elliptic curve congruential generator (2)) are given.
By (@), we can write

Ti—1 :x(WZ@(_G))v €T :$(W2)7 Li41 :$(WZ®G)7 Z.:27"'767



6 LASZLO MERAI

where —G is the (additive) inverse of G: —G = (zg, —yg). By the addition
law, by the assumption that W; # +£G (i = 1,...,6) and by () we have

Yit+y 2 Yi — Y ?
(4) xi—1+$i+1:<27> —$i—$G+< - > — T — ZqG

Ty — TG Ti— T
2 2
yr +y
—9 Ji I 9,
(xi — xG)2 (xz + xG)
3 2
z? + Ax; + B + )
Sk s Y _o(wi+ag), i=2,...,6
(A

in [F,. Thus

(ri—26) 2 (Tic1+mip) = 2(@3+Axi4+B+y2)—2(zi+zg)(zi—xg)? mod p,

i=2,...,6
ie.,
(5)
(222422 (251 +xig1))ra+ (20 — (zim1 +2ip1)) 25+ 22, A+ 2B+ 292 — 223,
= (zi_1 +xip1)z? modp, i=2...,6.
Put
(6)
222 + 2x9(z1 + 23) 2m9 — (v1+x3) 212 2 2 —2
273 + 2x3(z2 + 74) 273 — (o2 +a4) 273 2 2 2
C=1 223+ 2v4(x3 +25) 274 — (z3+75) 214 2 2 -2 | € Q6
202 + 2x5(z4 + 16) 275 — (T4 +x6) 275 2 2 —2
222 + 2x6(z5 + 77) 276 — (T5+27) 2m6 2 2 —2
and
(w1 + z3)23
(2 + x4)23
(7) u=| (z3+ax5)2? | € Q°.
(w4 + x6)22
(z5 + x7) 22

Write C' = (cy,...,¢q) with cy,...,cg € Z5. Then we have

Lemma 1. Having the same assumption as in Theorem [d, the columns cq,
c2, €3, ¢4 are linearly independent over IF,.
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Assuming Lemma [I] the matrix C' has rank 4 over F,, and by (f) the
congruence

(8) C-e=u modp
has the solution e = (z¢, a;%;, A, B, y?;, a:‘?;)T

The algorithm looks for an integer m such that the congruence (&) has a
solution e = (e1,...,eg)T modulo m with the additional restriction e? = es
mod m. During the algorithm we will always have p | m. If m takes a finite
value, then we can suppose that ged(m, 6) = 1, since p > 3. Moreover, a = b
mod m for m = 0, means that a = b as rationals.

Since the congruence (&) has solutions, det(cy,ce,c3,¢4,u) = 0 mod p.
First, assume that det(cq, co, €3, ¢4, u) # 0 and put m = det(cq, c2, €3, Cq, 11).
If ¢1, co, c3, ¢4 are linearly dependent modulo m, say, Ajcy + Asacs + Agcs +
Ascqy =0 mod m with (A1, A2, A3, \g) # (0,0,0,0), then we have p | ged(Aq,
A2, A3, A1). Replacing m to ged(m, A1, A2, Ay, A5) we reduced m with main-
taining the property p | m. Iterating this step, we can assume that c;, ca,
c3, ¢4 are linearly independent modulo m.

By the vanishing of the determinant, ci, c2, c3, ¢4, u are linearly de-
pendent modulo m: Ajcy + Aecy + Azcs + Ascy = pu mod m. By the
independence of c¢q,co,c3,¢4, 4 Z 0 mod m and if p is minimal and posi-
tive, the coefficients A1, A2, A3, A4, p are unique. If ged(m, u) > 1, replacing
m to m/ ged(m, p) we can assume p = 1, i.e. Adjcq+ Ag2ca + Ages + ey =
mod m with unique A1, Ao, A3, A4. Finally, all solutions of the congruence

(9) C-e=u modm
can be expressed as
(10) €1 :)\1, €9 :)\2, €3 :)\3, €4+65—€6 :)\4.

If A2 # Ay mod m, we have to replace m to ged(m, A2 — Ag).
Next, consider the case when det(cq, ca,c3,cq4,u) = 0 (over Q). Now, the
equation
C-e=u

has solutions over Q. By Lemma [l c1,c9,c3,c4 are linearly independent
over [F, and thus over Q. As before

(11) Arer + Agca + Azez + M\geq = pu,  ged(A, A, A3, A, ) =1, >0

with unique integers A1, A2, A3, s, . Moreover, every integer solution (N,
by N5, N, 1) of () has the form v+ (A1, A2, A3, Mg, ) with some v € Z. Since
(z,2% A, B+ y? — 23,1) is a solution modulo p we have for ged(p,u) = 1,
that (A1/p)? = Ao/p mod p. Put m = (A3 — Aap)/ged(A2, i) so p | m. If
m # 0, write the solutions of (9) in the same form as (I0).
In both cases, if m # 0 write
57 3+ A+ A3 ~ ~ A — A3

o = M, (yzG):)\l 5 , A=), B:f over Zn,.
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—

Clearly, if G = (T, yq) with a yg € Zn[¢]/(¢? — (yé)), @52 = (yé), then
Ge E; 5 over Zm[C]/(¢* = (yZ)). Moreover, the vector

e = (zG. 76", A, B, (y3),76°)" € Z§,
is a solution of @). If J1 € Zy[¢]/(£2 — 23 — Az, — B) is an element such
that Wy = (21,%1) is on the curve E 5 5, then writing Wy = W @ (—=G), the
sequence (T,) generated by the elliptic curve congruence generator (with
Wo, G) satisfies [B]) so z1,T9, ... are in Z,, and thus z; = z; (i =1,2,...,7)
as integers.

Finally, if m = 0, write

_— @5:<ﬁ>3+g+m Ald MM

‘TG ) M
7 ¢ [ 2 2u? [ 2 22

over Q. Then G = (Zg,y0) € E; 5 over Q < (yN2)> and the integer se-

quence x1...,x7 is generated by G. The set of possible primes p are those
ones which p{ p and p > max{x; : i =1,...,7}. O

Finally, it is remain to prove Lemma [

Proof of Lemmal[dl. Clearly, it is enough to show that the vectors

x% + xo(x1 + x3) 1+ T3 ) 1
x?)) + x3(xy + x4) T9 + Tq xs 1
vy = xi+$4($3+m5) Vo= x3+x5 |[»V3=| 24 |»Va=] 1
x% + x5(xq4 + x6) T4+ T Ts 1
x% + x6(x5 + 27) Trs + T7 Tg 1

are linearly independent over F,,.
Suppose to the contrary that there are ai,...,oq € Fp, (aq,...,a4) #
(0,...,0) such that

a1V] + agve + agvy + agvy =0
i.e.,
(12) al(x?—ka:,-(a:i_l+a:z-+1))+a2(xi_1+a:,-+1)+a3xi+a4 = O, 1= 2, v ,6.
Substituting @) to (I2)) we have
3 2
9 x; + Az; + B+ y&
ay | 7 + 2x; —(x; +x
1< ' Z( (i — zc)? (e + 26)
3 2
20 <a:Z + Az; + B2+ e
(zi — xq)

—(wz’+xc)> +asri+a4=0 1=2,...,6.
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Clearing the denominator we get

a1 (22(z; — 26)? + 225 (22 + Az + B + v — (2i + 26) (2 — 26)?))
+ 20 (23 + Az + B+ yg — (2 + 2¢) (2 — 36)?)
+ azzi(z; — 26)* + as(zi —26)* =0
for i = 2,...,6, which means that the polynomial F'(X) € F,[X]
F(X)=
a1 (X2(X —26)* +2X (XP + AX + B+yg — (X +26)(X — 26)?))
+2as (X3 + AX 4+ B+ y&(X + 26)(X — 26)?) + as X (X — 2¢)?
oy (X — zg)?

has at least five zeros: z;, i = 2,...6.
Write F'(X) into the following form

(13) F(X) = (X + f4(X)) + a3 (X® + f3(X)) + (2007 + aa) X?
+ (g(20% + 24) — 2042) X + a(—22% + 2B + 2y%) + au2?,

where f3, f1 € Fp[X] with deg f3 < 3 and deg f1 < 4.
Since deg F' < 4, we must have that F'(X) is the zero polynomial. In this
case we have

(14) a; =0, a3=0, 2ar+ay=0.
Then the coefficients of X and 1 in (I3]) are
a3z +A) =0, (2wl — B—yg) =0.
By (@) and (aq,...,a4) # (0,...,0) we also have ag, ay # 0, thus

312 +A=0, 22} —B—y%&=0,

whence using (Il) we get
2y = x(324 + A) — (v + Azg + B — y3) — (25, — B —y¢) =0,
thus
yag =0, 3:172G—|-A:0.

Since G = (z¢,yq) € E(Fp), we get that z¢ is a multiple root of the right
hand side of (), which contradict that the discriminant of the curve is
non-zero. (]

4. NUMERICAL TESTS

I have implemented the algorithm of Theorem [Ilin SAGE. The algorithm
have been tested for 1000 random examples of generators with 500-bit primes
p. For seven revealed sequence elements, the algorithm computed the exact
values of the parameters (p, A, B, G, Wy) in 95,2% of the cases. In the
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remainder cases, the algorithm provided a composite integer m and param-
eters A, B, G, Wy such that p | mand A=A, B=B,G=G, Wy =W,
mod p.

If the number of revealed sequence elements increases, then the algorithm
can be modified to become more effective. Namely, if there are eight revealed
sequence elements, then applying the algorithm for the first and the last
seven elements, two approximation (mi, Ay, B1,G1) and (mag, A, Ba, G2)
are provided. Putting m = ged(mq, ma, Ay — Ay, By — Bo, 2(G1) — 2(G2)),
m is a better approximation of p. Modifying the SAGE program in this way,
the algorithm was successful in 100% of the cases.

5. FINAL REMARKS, OPEN QUESTIONS

In this paper we showed that the sequence z,, = z(nGEWy) (n = 1,2,...)
is highly predictable if at least seven consecutive elements are revealed. A
natural question is whether one can reduce the number of revealed elements.

In the literature, the distribution and the linear complexity profile of the
general sequence f(nG & Wy) with f € F,(E) have been also studied (where
F,(E) is the function field of E(FF,)), see [1H4,8O/1T-14]. The predictability
of these sequences could be handle for individual functions f, but it is not
clear whether there is a universal algorithm for all function f (or at least all
function f with small degree).

An other possible question connected to the result is how much infor-
mation about x(nG @ Wj) we really need to recover all the private pa-
rameters. Gutierrez and Ibeas [7] showed that when the prime p and G
are known, then the sequence (W),,) is predictable even if just an approx-
imation of W,,, W, 41 are revealed. However, the problem is still open in
the case when the prime is unknown. One can also consider this prob-
lem over arbitrary (not prime) finite fields. Namely, if the curve is defined
over a finite field Fps with degree s > 1, then one can define an integer
sequence as (z1(nG @ Wy),...,z,(nG @& Wy)) n=1,2,... where r <s and
x1(P),...,xs(P) are the coordinates of z(P) with respect to a fixed basis
of F,s over IF,,. Is it possible to recover the whole sequence from an initial
segment, at least when the degree s is fixed? Clearly, the most interesting
case when p = 2 and the generator builds a binary sequence.
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