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HAMMING DISTANCES FROM A FUNCTION TO ALL

CODEWORDS OF A GENERALIZED REED-MULLER

CODE OF ORDER ONE

MIRIAM ABDÓN AND ROBERT ROLLAND

Abstract. For any finite field Fq with q elements, we study the
set F(q,m) of functions from Fm

q
into Fq. We introduce a transfor-

mation that allows us to determine a linear system of qm+1 equa-
tions and q

m+1 unknowns, which has for solution the Hamming
distances of a function in F(q,m) to all the affine functions.

1. Introduction

1.1. Generalized Reed-Muller codes of order 1. Let Fq be the
finite field with q elements. For any integer m ≥ 1, we will identify Fqm

with Fm
q as follows: consider a basis {e1, · · · , em} of Fqm over Fq, then

an element u ∈ Fqm will be identified with the vector (u1, · · · , um) ∈ F
m
q

if and only if, u =
∑m

i=1 uiei.
If u = (u1, · · · , um) and v = (v1, · · · , vm), are two elements of Fm

q

we will denote by u.v their product in the field Fqm and by 〈u, v〉 their
scalar product

〈u, v〉 =
m
∑

i=1

uivi.

We denote by F(q,m) = {f : Fm
q → Fq} the set of functions from

Fm
q to Fq. Each function f ∈ F(q,m) can be identified with its image

(

f(u)
)

u∈Fm
q

. We know that these functions are polynomial functions

of m variables. The kernel of the map which associates to any poly-
nomial the corresponding polynomial function is the ideal I generated
by the m polynomials Xq

i − Xi. The reduced polynomials are the
polynomials P (X1, · · · , Xm) such that for each i, the partial degree
degi(P (X1, · · · , Xm)) of P (X1, · · · , Xm) with respect to the variable
Xi is ≤ q − 1. Then for any f ∈ F(q,m) there exists an unique reduced
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polynomial P (X1, · · · , Xm) for which f is the associated polynomial
function. The total degree of P (X1, · · · , Xm) is called the degree of f
and denoted by deg(f).
With these notations, the Generalized Reed-Muller code of order 1

is the set

RM
(1)
(q,m) = {(g(u))u∈Fm

q
| g ∈ F(q,m) and deg(g) ≤ 1}.

If f, g ∈ F(q,m), the Hamming distance between these two functions
is defined by

d(f, g) = card
(

{u ∈ F
m
q | f(u) 6= g(u)}

)

.

1.2. Organization of the article. In this article we study the Ham-
ming distances from a function f ∈ F(q,m) to all the codewords g ∈

RM
(1)
(q,m).

2. An adapted transform

It is known that every codeword g ∈ RM
(1)
(q,m) can be characterized

by a pair (v, t) ∈ Fm
q × Fq in the following sense:

g(u) = 〈u, v〉+ t ∀u ∈ F
m
q .

If f ∈ F(q,m) and g as above, we have that

d(f, g) = card
(

{u ∈ F
m
q | f(u) 6= 〈u, v〉+ t}

)

= qm −Nv,t(f),

where Nv,t(f) = card
(

{u ∈ F
m
q | f(u) = 〈u, v〉+ t}

)

.
Now the problem is to study the integer numbers N(v,t)(f). In order

to do that, we will introduce a transform on the group algebra CFq of
the additive group Fq over the complex field C which is quite similar
to a Fourier Transform.
More precisely, CFq is the algebra of formal linear combinations with

coefficients in C
∑

t∈Fq

αtZ
t

where the operations are defined by
∑

t∈Fq

αtZ
t +

∑

t∈Fq

βtZ
t =

∑

t∈Fq

(αt + βt)Z
t,

λ(
∑

t∈Fq

αtZ
t) =

∑

t∈Fq

(λαt)Z
t,

(
∑

t∈Fq

αtZ
t)(

∑

t∈Fq

βtZ
t) =

∑

t∈Fq

(

∑

r+s=t

(αrβs)

)

Zt.
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Let G(q,m) be the algebra of functions from Fm
q (or from Fqm) into

CFq. It is a vector space of dimension qm+1 over C. Let us define an
order on Fqm ×Fq and define the family (eu,t)(u,t)∈Fqm×Fq

of elements of
G(q,m) where

(1) eu,t(v) =

{

0 if v 6= u
Zt if v = u

This family is a basis of G(q,m) and has qm+1 elements.

Define the operator T(q,m) of the C-vector space G(q,m) by

T(q,m)(φ)(v) =
∑

u∈Fm
q

φ(u)Z−〈u,v〉.

Remark 2.1. In the case where the function φ is given by φ(v) = Zf(v)

for some f ∈ F(q,m), then the transform introduced above is the same
that the the one introduced by Ashikhmin and Litsyn (see [1]). We
recall here some basic properties of this transform, for more details see
[2].

Lemma 2.2. The transform of eu,t by T(q,m) is given by

ǫu,t(v) = T(q,m)(eu,t)(v) =
∑

w∈Fm
q

eu,t(w)Z
−〈w,v〉 = Zt−〈u,v〉,

then
ǫu,t =

∑

(v,τ)∈E−u,t

ev,τ ,

where E−u,t is the hyperplane of F(q,m) ×Fq defined by

E−u,t = {(v, τ) ∈ Fqm × Fq | τ = t− < u, v >}.

Lemma 2.3. Let γa ∈ G(q,m) be defined by γa(u) = Z〈a,u〉, then the
transform of γa is given by

T(q,m)(γa)(v) =

{

qmZ0 if v = a

qm−1
∑

t∈Fq
Zt if v 6= a.

Proof. We have successively

T(q,m)(γa)(v) =
∑

u∈Fm
q

γa(u)Z
−〈u,v〉

=
∑

u∈Fm
q

Z〈a,u〉Z−〈u,v〉

=
∑

u∈Fm
q

Z〈a−v,u〉.
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If v = a we have that T(q,m)(γa)(v) = qmZ0 and then, when v 6= a,
for each t ∈ Fq, the equation 〈a − v, u〉 = t defines a hyperplane and
consequently has qm−1 solutions. �

Let φ be an element of G(q,m), we denote by ψ = T(q,m)(φ) its trans-
form, and by θ = T(q,m)(ψ) its double transform.

Theorem 2.4. With the previous notations we have

θ(w) = qm−1
∑

t∈Fq

(Z0 − Zt)φ(−w) +



qm−1
∑

t∈Fq

Zt



ψ(0).

Proof. We have that

θ(w) =
∑

v∈Fm
q





∑

u∈Fm
q

φ(u)Z−〈u,v〉



Z−〈v,w〉

=
∑

v∈Fm
q

∑

u∈Fm
q

φ(u)Z−〈u+w,v〉

=
∑

u∈Fm
q

φ(u)
∑

v∈Fm
q

Z−〈u+w,v〉

From Lemma 2.3 we obtain

θ(w) = qmφ(−w) +



qm−1
∑

t∈Fq

Zt





∑

u∈Fm
q \{−w}

φ(u).

The Lemma follows from the equality above and from the fact that:
∑

u∈Fm
q \{−w}

φ(u) =
∑

u∈Fm
q

φ(u)− φ(−w) = ψ(0)− φ(−w).

�

We want to characterize the kernel of T(q,m), in order to do that, we
need the following lemma:

Lemma 2.5. A function φ ∈ G(q,m) verifies

φ(w) ·



q −
∑

t∈Fq

Zt



 = 0

for each w ∈ F
m
q if, and only if,

φ(w) = λ(w)
∑

t∈Fq

Zt,
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where λ is a function from Fm
q into C.

Proof. Let φ be given by φ(w) =
∑

t∈Fq
Ct(φ)(w)Z

t, then we have

φ(w) ·



q −
∑

t∈Fq

Zt



 = qφ(w)−





∑

t∈Fq

Ct(φ)(w)









∑

t∈Fq

Zt



 .

If this product is equal to zero, then

φ(w) = (1/q)





∑

t∈Fq

Ct(φ)(w)









∑

t∈Fq

Zt



 .

On the other hand a direct computation of


λ(w)
∑

t∈Fq

Zt



 .



q −
∑

t∈Fq

Zt





shows the converse. �

Now we can determine the kernel of T(q,m).

Theorem 2.6. The kernel of Tq,m is the subspace of the functions φ
such that for each w ∈ Fm

q

φ(w) = λ(w)
∑

t∈Fq

Zt

where λ is any function from Fm
q into C verifying

∑

u∈Fm
q

λ(u) = 0.

The dimension of the kernel is qm − 1.

Proof. Note that if the transform of φ is the zero function, then using
the Proposition 2.4 we get

φ(w) ·



q −
∑

t∈Fq

Zt



 = 0,

and by Lemma 2.5

φ(w) = λ(w)
∑

t∈Fq

Zt.

Hence, for each t ∈ Fq we must have

Ct(φ)(w) = λ(w).
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If we denote by ψ the transform of φ we know that

Ct(ψ)(w) =
∑

u∈Fm
q

C〈u,w〉+t(φ)(u)

=
∑

u∈Fm
q

λ(u)

The result follows. Let us remark that the functions λ such that
∑

u∈Fm
q

λ(u) = 0,

defines an hyperplane of the space of functions from Fm
q into C and

then, the dimension of the kernel is qm − 1. �

Proposition 2.7. The functions

δa =
∑

t∈Fq

(e0,t − ea,t)

with a ∈ Fm
q \ {0} are a basis of the kernel Ker(T(q,m)), where

eu,t(v) =

{

Zt if v = u

0 otherwise

The functions ea,t with

(a 6= 0 and t 6= 0) or (a = 0)

is a basis of a complement of Ker(Tq,m).

Proof. For any a ∈ Fm
q \ {0} the following holds:

δa(v) = λ(v)
∑

t∈Fq

Zt,

with λ(0) = 1, λ(a) = −1 and λ(v) = 0 for the other values of v, then
by Theorem 2.6 δa is in the kernel of T(q,m). As the ea,t are linearly
independent, the δa are linearly independent. We conclude that the δa
constitute a basis of Ker(T(q,m)).
Let I be the set

I = {(v, t) | (v 6= 0 and t 6= 0) or (v = 0)}

and φ the function

φ =
∑

(v,t)∈I

λv,tev,t.
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The following holds:

T(q,m)(φ)(v) =
∑

{t|(v,t)∈I}

λv,tZ
t.

If v 6= 0 then

T(q,m)(φ)(v) =
∑

t∈F∗

q

λv,tZ
t.

Then T(q,m)(φ)(v) cannot be a multiple of
∑

t∈Fq
Zt unless all the λv,t

are zero for v 6= 0 and in this case the coefficient of
∑

t∈Fq
Zt is 0. Now

if v = 0 then
T(q,m)(φ)(0) =

∑

t∈Fq

λ0,tZ
t.

Then T(q,m)(φ)(0) cannot be a multiple of
∑

t∈Fq
Zt unless all the λ0,t

have the same value λ0 and in this case the coefficient of
∑

t∈Fq
Zt

is λ0. Hence, if T(q,m)(φ)(v) can be written λ(v)
∑

t∈Fq
Zt, we have

∑

v∈Fm
q
λ(v) = λ0. Then, if φ ∈ Ker(T(q,m)), for any (v, t) ∈ I we have

λv,t = 0. We conclude that the qm+1 − (qm − 1) linearly independent
vectors (ev,t)(v,t)∈I constitute a basis of a complement of Ker(T(q,m)).

�

Corollary 2.8. The vectors ǫv,t = T(q,m)(ev,t) with (v, t) ∈ I are lin-
early independent. They constitute a basis of the image T(q,m)(G(q,m)).

3. Application to the Hamming distances from a function
to all codewords of a Generalized Reed-Muller code

of order 1

3.1. System of equations satisfied by the distances of a func-

tion to all codewords. Coming back to our problem, if f ∈ F(q,m)

let us associate to it the function F ∈ G(q,m) defined by

F (u) = Zf(u).

The transform T(q,m)(F ) is given by

(2)
T(q,m)(F )(v) =

∑

u∈Fm
q
Zf(u)−〈u,v〉

=
∑

t∈Fq
Nv,t(f)Z

t,

where Nv,t(f) = ♯{u ∈ Fm
q | f(u)− 〈u, v〉 = t} as defined before.

Lemma 3.1. Pour any v ∈ Fm
q the following formula holds:

∑

t∈Fq

Nv,t(f) = qm.
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Proof. It is a direct consequence of the equalities (2). Indeed the total
sum of coefficients in the first expression is qm and in the second one
it is

∑

tNv,t. �

As one can see, the numbers Nv,t(f) are exactly the coefficients of
T(q,m)(F ) where F is associated to f as above.
For each w ∈ Fqm we consider the linear form Lw defined over Fqm×Fq

by

Lw(v, t) = −〈w, v〉+ t,

and for each w ∈ Fqm and each τ ∈ Fq we consider the hyperplane Ew,τ

of Fqm × Fq defined by

Ew,τ = {(v, t) ∈ Fqm × Fq | Lw(v, t) = τ}.

Theorem 3.2. Let f ∈ F(q,m), then Nv,t(f) are solutions of the fol-
lowing linear system with qm+1 equations on qm+1 variables where the
equation numbered (w, τ) is:

(w, τ)
∑

(v,t)∈Ew,τ

xv,t =

{

q2m−1 − qm−1 if f(−w) 6= τ
q2m−1 − qm−1 + qm if f(−w) = τ

Proof. Computing T 2
(q,m)(F ), where F = Zf and by using the result of

Theorem 2.4, we obtain

T 2
(q,m)(F )(w) = qm−1(q −

∑

t∈Fq

Zt)F (−w) + qm−1
∑

t∈Fq

Zt
∑

u∈Fqm

F (u).

Denoting K(Z) =
∑

t∈Fq
Zt and observing that

K(Z)
∑

t∈Fq

αtZ
t = (

∑

t∈Fq

αt)K(Z),

we obtain

T 2
(q,m)(F )(w) = qmZf(−w) +K(Z)(q2m−1 − qm−1)

= (q2m−1 − qm−1 + qm)Zf(−w)

+ (q2m−1 − qm−1)
∑

t6=f(−w)

Zt.

On the other hand, if we compute T 2
(q,m)(F ) using that

T(q,m)(F )(v) =
∑

t∈Fqm

Nv,tZ
t,
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we obtain

T 2
(q,m)(F )(w) =

∑

τ∈Fq





∑

(v,t)∈Ew,τ

Nv,t



Zτ .

The theorem follows by comparing the two expressions obtained for
T 2
(q,m)(F ). �

Remark 3.3. The system presented in Theorem 3.2 has the following
structure: it is constituted by qm blocks Bw of q equations. The block
Bw contains the q equations numbered (w, τ) where w is fixed and τ
takes the q possible values in Fq. Each equation of a block involves
qm variables, namely the variables indexed by the points (v, t) of the
hyperplane Ew,τ of Fqm ×Fq. The q hyperplanes Ew,τ (w fixed, τ ∈ Fq)
are parallel, then each variable xv,t is in one and only one equation of
each block Bw.

Let us consider the basis defined in section 2 by (1). Remark that the
matrix of the system (3.2) is the matrix T(q,m) of T(q,m) with respect to
the considered basis. Namely by construction (see the proof of Theorem
3.2), the system can be written

T(q,m)X = B,

where X is the column

X =







...
xv,t
...






,

and B the column

B =







...
bw,τ

...






,

where

bw,τ =

{

q2m−1 − qm−1 if f(−w) 6= τ
q2m−1 − qm−1 + qm if f(−w) = τ

.

The system has a solution because we know that the values Nv,t(f) con-
stitute a solution. But, as the linear map T(q,m) has a kernel, the system
has not a unique solution. However, if we add some “normalization”
conditions we obtain the desired solution.
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Theorem 3.4. The numbers Nv,t(f) are the unique solution of the
system that appears on the Theorem 3.2 if we join the following qm

equations
∑

t∈Fq

xv,t = qm. ∀v ∈ Fqm .

Proof. We know that any other solution is obtained from the previous
solution (Nv,t)v,t by adding an element in the kernel of the transfor-

mation, that is any other solution has the form
(

Nv,t + λ(v)
)

v,t
with

∑

v λ(v) = 0. For any v fix, we have that
∑

t∈Fq
Nv,t = qm and the

result follows from it. �

3.2. Transformation into a Cramer linear system.

Theorem 3.5. The system (S) constructed in the following way:

(1) suppress from the system (3.2) the qm−1 lines numbered (w, 0)
with w 6= 0,

(2) replace these equations by the qm−1 equations
∑

t∈Fq
xw,t = qm,

where w 6= 0,

is a Cramer linear system and has
(

Nv,t(f)
)

v,t
for unique solution.

Proof. Let T(q,m) the matrix of the original system. The columns are
the vectors T(q,m)(ev,t) = ǫv,t decomposed on the basis (ev,t)(v,t)∈Fq×Fq

.
Let us consider the columns (v, t) for which one of the two following

conditions holds:

(1) v = 0;
(2) v 6= 0 and t 6= 0.

Denote by I these indexes. We know by Lemma 2.8 that these qm+1 −
(qm − 1) columns are linearly independent.
Denote by a(w,τ),(v,t) the coefficient of T(q,m) which is at the line in-

dexed by (w, τ) and the column indexed by (v, t). This coefficient is
the component of δv,t on ew,τ , namely by Lemma 2.2:

a(w,τ),(v,t) =

{

1 if (w, τ) ∈ E−v,t

0 if (w, τ) /∈ E−v,t
.

But as the relation (w, τ) ∈ E−v,t is equivalent to (v, t) ∈ Ew,τ we have

a(w,τ),(v,t) = a(v,t),(−w,τ).

Then the elements of line ((w, τ) are the elements of the column (−w, τ)
By Proposition 2.7 the qm+1 − (qm − 1) lines indexed by (w, τ) where
w 6= 0 and t 6= 0, or w = 0, are linearly independent.
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Remark that the original system has a vector space of dimension
qm− 1 of solutions (xv,t)(v,t)∈Fm

q ×Fq
. Adding all equations of the system

gives the following equality:
∑

v,t

xv,t = q2m.

Then if we suppose that the qm − 1 conditions
∑

t∈Fq

xv,t = qm,

where v 6= 0, are satisfied, the last condition
∑

t∈Fq

x0,t = qm

is also satisfied. Now, using Theorem 3.4, we conclude that (S) is a
Cramer linear System. �

Remark 3.6. From the definition it follows that

Nv,t = card
(

{w ∈ Fqm | (v, t) ∈ Ew,f(−w)}
)

.

So, it would be interesting to consider the arrangement of hyperplanes
A(f), consisting of the qm hyperplanes Ew,f(−w) and to relate the geo-
metric and combinatorial properties of A(f) to the properties of the
distance between f and the affine functions. A very simple example
is the following: if the arrangement A(f) is centered, then there is a
(v, t) such that Nv,t = qm and consequently the function f is affine.
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