HAMMING DISTANCES FROM A FUNCTION TO ALL CODEWORDS OF A GENERALIZED REED-MULLER CODE OF ORDER ONE

MIRIAM ABDÓN AND ROBERT ROLLAND

ABSTRACT. For any finite field \mathbb{F}_q with q elements, we study the set $\mathcal{F}_{(q,m)}$ of functions from \mathbb{F}_q^m into \mathbb{F}^q . We introduce a transformation that allows us to determine a linear system of q^{m+1} equations and q^{m+1} unknowns, which has for solution the Hamming distances of a function in $\mathcal{F}_{(q,m)}$ to all the affine functions.

1. INTRODUCTION

1.1. Generalized Reed-Muller codes of order 1. Let \mathbb{F}_q be the finite field with q elements. For any integer $m \geq 1$, we will identify \mathbb{F}_{q^m} with \mathbb{F}_q^m as follows: consider a basis $\{e_1, \dots, e_m\}$ of \mathbb{F}_{q^m} over \mathbb{F}_q , then an element $u \in \mathbb{F}_{q^m}$ will be identified with the vector $(u_1, \dots, u_m) \in \mathbb{F}_q^m$ if and only if, $u = \sum_{i=1}^m u_i e_i$.

If $u = (u_1, \dots, u_m)$ and $v = (v_1, \dots, v_m)$, are two elements of \mathbb{F}_q^m we will denote by u.v their product in the field \mathbb{F}_{q^m} and by $\langle u, v \rangle$ their scalar product

$$\langle u, v \rangle = \sum_{i=1}^m u_i v_i$$

We denote by $\mathcal{F}_{(q,m)} = \{f : \mathbb{F}_q^m \to \mathbb{F}_q\}$ the set of functions from \mathbb{F}_q^m to \mathbb{F}_q . Each function $f \in \mathcal{F}_{(q,m)}$ can be identified with its image $(f(u))_{u \in \mathbb{F}_q^m}$. We know that these functions are polynomial functions of m variables. The kernel of the map which associates to any polynomial the corresponding polynomial function is the ideal I generated by the m polynomials $X_i^q - X_i$. The reduced polynomials are the polynomials $P(X_1, \dots, X_m)$ such that for each i, the partial degree $\deg_i(P(X_1, \dots, X_m))$ of $P(X_1, \dots, X_m)$ with respect to the variable X_i is $\leq q - 1$. Then for any $f \in \mathcal{F}_{(q,m)}$ there exists an unique reduced

Date: September 5, 2018.

²⁰⁰⁰ Mathematics Subject Classification. 11T71, 94B05.

Key words and phrases. Reed-Muller code, Hamming distance, arrangement of hyperplanes.

polynomial $P(X_1, \dots, X_m)$ for which f is the associated polynomial function. The total degree of $P(X_1, \dots, X_m)$ is called the degree of fand denoted by $\deg(f)$.

With these notations, the Generalized Reed-Muller code of order 1 is the set

$$RM_{(q,m)}^{(1)} = \{ (g(u))_{u \in \mathbb{F}_q^m} \mid g \in \mathcal{F}_{(q,m)} \text{ and } \deg(g) \le 1 \}.$$

If $f, g \in \mathcal{F}_{(q,m)}$, the Hamming distance between these two functions is defined by

$$d(f,g) = \operatorname{card}\left(\left\{u \in \mathbb{F}_q^m \mid f(u) \neq g(u)\right\}\right).$$

1.2. Organization of the article. In this article we study the Hamming distances from a function $f \in \mathcal{F}_{(q,m)}$ to all the codewords $g \in$ $RM_{(q,m)}^{(1)}.$

2. An adapted transform

It is known that every codeword $g \in RM^{(1)}_{(q,m)}$ can be characterized by a pair $(v,t) \in \mathbb{F}_q^m \times \mathbb{F}_q$ in the following sense:

$$g(u) = \langle u, v \rangle + t \qquad \forall u \in \mathbb{F}_q^m.$$

If $f \in \mathcal{F}_{(q,m)}$ and g as above, we have that

$$d(f,g) = \operatorname{card}\left(\left\{u \in \mathbb{F}_q^m \mid f(u) \neq \langle u, v \rangle + t\right\}\right) = q^m - N_{v,t}(f),$$

where $N_{v,t}(f) = \operatorname{card} \left(\{ u \in \mathbb{F}_q^m \mid f(u) = \langle u, v \rangle + t \} \right).$ Now the problem is to study the integer numbers $N_{(v,t)}(f)$. In order to do that, we will introduce a transform on the group algebra \mathbb{CF}_q of the additive group \mathbb{F}_q over the complex field \mathbb{C} which is quite similar to a Fourier Transform.

More precisely, \mathbb{CF}_q is the algebra of formal linear combinations with coefficients in \mathbb{C}

$$\sum_{t\in \mathbb{F}_q} \alpha_t Z^t$$

where the operations are defined by

$$\sum_{t \in \mathbb{F}_q} \alpha_t Z^t + \sum_{t \in \mathbb{F}_q} \beta_t Z^t = \sum_{t \in \mathbb{F}_q} (\alpha_t + \beta_t) Z^t,$$
$$\lambda(\sum_{t \in \mathbb{F}_q} \alpha_t Z^t) = \sum_{t \in \mathbb{F}_q} (\lambda \alpha_t) Z^t,$$
$$(\sum_{t \in \mathbb{F}_q} \alpha_t Z^t)(\sum_{t \in \mathbb{F}_q} \beta_t Z^t) = \sum_{t \in \mathbb{F}_q} \left(\sum_{r+s=t} (\alpha_r \beta_s)\right) Z^t$$

Let $\mathcal{G}_{(q,m)}$ be the algebra of functions from \mathbb{F}_q^m (or from \mathbb{F}_{q^m}) into $\mathbb{C}\mathbb{F}_q$. It is a vector space of dimension q^{m+1} over \mathbb{C} . Let us define an order on $\mathbb{F}_{q^m} \times \mathbb{F}_q$ and define the family $(e_{u,t})_{(u,t) \in \mathbb{F}_{q^m} \times \mathbb{F}_q}$ of elements of $\mathcal{G}_{(q,m)}$ where

(1)
$$e_{u,t}(v) = \begin{cases} 0 & \text{if } v \neq u \\ Z^t & \text{if } v = u \end{cases}$$

This family is a basis of $\mathcal{G}_{(q,m)}$ and has q^{m+1} elements.

Define the operator $T_{(q,m)}$ of the \mathbb{C} -vector space $\mathcal{G}_{(q,m)}$ by

$$T_{(q,m)}(\phi)(v) = \sum_{u \in \mathbb{F}_q^m} \phi(u) Z^{-\langle u, v \rangle}.$$

Remark 2.1. In the case where the function ϕ is given by $\phi(v) = Z^{f(v)}$ for some $f \in \mathcal{F}_{(q,m)}$, then the transform introduced above is the same that the the one introduced by Ashikhmin and Litsyn (see [1]). We recall here some basic properties of this transform, for more details see [2].

Lemma 2.2. The transform of $e_{u,t}$ by $T_{(q,m)}$ is given by

$$\epsilon_{u,t}(v) = T_{(q,m)}(e_{u,t})(v) = \sum_{w \in \mathbb{F}_q^m} e_{u,t}(w) Z^{-\langle w, v \rangle} = Z^{t-\langle u, v \rangle}$$

then

$$\epsilon_{u,t} = \sum_{(v,\tau)\in E_{-u,t}} e_{v,\tau},$$

where $E_{-u,t}$ is the hyperplane of $\mathcal{F}_{(q,m)} \times \mathcal{F}_q$ defined by $E_{-u,t} = \{(v,\tau) \in \mathbb{F}_{a^m} \times \mathbb{F}_q \mid \tau = t - \langle u,v \rangle \}.$

Lemma 2.3. Let
$$\gamma_a \in \mathcal{G}_{(q,m)}$$
 be defined by $\gamma_a(u) = Z^{\langle a, u \rangle}$, then the transform of γ_a is given by

$$T_{(q,m)}(\gamma_a)(v) = \begin{cases} q^m Z^0 & \text{if } v = a \\ q^{m-1} \sum_{t \in \mathbb{F}_q} Z^t & \text{if } v \neq a. \end{cases}$$

Proof. We have successively

$$T_{(q,m)}(\gamma_a)(v) = \sum_{u \in \mathbb{F}_q^m} \gamma_a(u) Z^{-\langle u, v \rangle}$$
$$= \sum_{u \in \mathbb{F}_q^m} Z^{\langle a, u \rangle} Z^{-\langle u, v \rangle}$$
$$= \sum_{u \in \mathbb{F}_q^m} Z^{\langle a - v, u \rangle}.$$

If v = a we have that $T_{(q,m)}(\gamma_a)(v) = q^m Z^0$ and then, when $v \neq a$, for each $t \in \mathbb{F}_q$, the equation $\langle a - v, u \rangle = t$ defines a hyperplane and consequently has q^{m-1} solutions.

Let ϕ be an element of $\mathcal{G}_{(q,m)}$, we denote by $\psi = T_{(q,m)}(\phi)$ its transform, and by $\theta = T_{(q,m)}(\psi)$ its double transform.

Theorem 2.4. With the previous notations we have

$$\theta(w) = q^{m-1} \sum_{t \in \mathbb{F}_q} (Z^0 - Z^t) \phi(-w) + \left(q^{m-1} \sum_{t \in \mathbb{F}_q} Z^t \right) \psi(0).$$

Proof. We have that

$$\theta(w) = \sum_{v \in \mathbb{F}_q^m} \left(\sum_{u \in \mathbb{F}_q^m} \phi(u) Z^{-\langle u, v \rangle} \right) Z^{-\langle v, w \rangle}$$
$$= \sum_{v \in \mathbb{F}_q^m} \sum_{u \in \mathbb{F}_q^m} \phi(u) Z^{-\langle u+w, v \rangle}$$
$$= \sum_{u \in \mathbb{F}_q^m} \phi(u) \sum_{v \in \mathbb{F}_q^m} Z^{-\langle u+w, v \rangle}$$

From Lemma 2.3 we obtain

$$\theta(w) = q^m \phi(-w) + \left(q^{m-1} \sum_{t \in \mathbb{F}_q} Z^t\right) \sum_{u \in \mathbb{F}_q^m \setminus \{-w\}} \phi(u).$$

The Lemma follows from the equality above and from the fact that:

$$\sum_{u \in \mathbb{F}_q^m \setminus \{-w\}} \phi(u) = \sum_{u \in \mathbb{F}_q^m} \phi(u) - \phi(-w) = \psi(0) - \phi(-w).$$

We want to characterize the kernel of $T_{(q,m)}$, in order to do that, we need the following lemma:

Lemma 2.5. A function $\phi \in \mathcal{G}_{(q,m)}$ verifies

$$\phi(w) \cdot \left(q - \sum_{t \in \mathbb{F}_q} Z^t\right) = 0$$

for each $w \in \mathbb{F}_q^m$ if, and only if,

$$\phi(w) = \lambda(w) \sum_{t \in \mathbb{F}_q} Z^t,$$

where λ is a function from \mathbb{F}_q^m into \mathbb{C} .

Proof. Let ϕ be given by $\phi(w) = \sum_{t \in \mathbb{F}_q} C_t(\phi)(w) Z^t$, then we have

$$\phi(w) \cdot \left(q - \sum_{t \in \mathbb{F}_q} Z^t\right) = q\phi(w) - \left(\sum_{t \in \mathbb{F}_q} C_t(\phi)(w)\right) \left(\sum_{t \in \mathbb{F}_q} Z^t\right).$$

If this product is equal to zero, then

$$\phi(w) = (1/q) \left(\sum_{t \in \mathbb{F}_q} C_t(\phi)(w) \right) \left(\sum_{t \in \mathbb{F}_q} Z^t \right).$$

On the other hand a direct computation of

$$\left(\lambda(w)\sum_{t\in\mathbb{F}_q}Z^t\right).\left(q-\sum_{t\in\mathbb{F}_q}Z^t\right)$$

shows the converse.

Now we can determine the kernel of $T_{(q,m)}$.

Theorem 2.6. The kernel of $T_{q,m}$ is the subspace of the functions ϕ such that for each $w \in \mathbb{F}_q^m$

$$\phi(w) = \lambda(w) \sum_{t \in \mathbb{F}_q} Z^t$$

where λ is any function from \mathbb{F}_q^m into \mathbb{C} verifying

$$\sum_{u\in\mathbb{F}_q^m}\lambda(u)=0.$$

The dimension of the kernel is $q^m - 1$.

Proof. Note that if the transform of ϕ is the zero function, then using the Proposition 2.4 we get

$$\phi(w) \cdot \left(q - \sum_{t \in \mathbb{F}_q} Z^t\right) = 0,$$

and by Lemma 2.5

$$\phi(w) = \lambda(w) \sum_{t \in \mathbb{F}_q} Z^t.$$

Hence, for each $t \in \mathbb{F}_q$ we must have

$$C_t(\phi)(w) = \lambda(w).$$

5

If we denote by ψ the transform of ϕ we know that

$$C_t(\psi)(w) = \sum_{u \in \mathbb{F}_q^m} C_{\langle u, w \rangle + t}(\phi)(u)$$
$$= \sum_{u \in \mathbb{F}_q^m} \lambda(u)$$

The result follows. Let us remark that the functions λ such that

$$\sum_{u \in \mathbb{F}_q^m} \lambda(u) = 0$$

defines an hyperplane of the space of functions from \mathbb{F}_q^m into \mathbb{C} and then, the dimension of the kernel is $q^m - 1$.

Proposition 2.7. The functions

$$\delta_a = \sum_{t \in \mathbb{F}_q} (e_{0,t} - e_{a,t})$$

with $a \in \mathbb{F}_q^m \setminus \{0\}$ are a basis of the kernel $\operatorname{Ker}(T_{(q,m)})$, where

$$e_{u,t}(v) = \begin{cases} Z^t & \text{if } v = u \\ 0 & \text{otherwise} \end{cases}$$

The functions $e_{a,t}$ with

$$(a \neq 0 \text{ and } t \neq 0) \text{ or } (a = 0)$$

is a basis of a complement of $\text{Ker}(T_{q,m})$.

Proof. For any $a \in \mathbb{F}_q^m \setminus \{0\}$ the following holds:

$$\delta_a(v) = \lambda(v) \sum_{t \in \mathbb{F}_q} Z^t,$$

with $\lambda(0) = 1$, $\lambda(a) = -1$ and $\lambda(v) = 0$ for the other values of v, then by Theorem 2.6 δ_a is in the kernel of $T_{(q,m)}$. As the $e_{a,t}$ are linearly independent, the δ_a are linearly independent. We conclude that the δ_a constitute a basis of Ker $(T_{(q,m)})$.

Let I be the set

$$I = \{ (v, t) \mid (v \neq 0 \text{ and } t \neq 0) \text{ or } (v = 0) \}$$

and ϕ the function

$$\phi = \sum_{(v,t)\in I} \lambda_{v,t} e_{v,t}.$$

The following holds:

$$T_{(q,m)}(\phi)(v) = \sum_{\{t \mid (v,t) \in I\}} \lambda_{v,t} Z^t.$$

If $v \neq 0$ then

$$T_{(q,m)}(\phi)(v) = \sum_{t \in \mathbb{F}_q^*} \lambda_{v,t} Z^t.$$

Then $T_{(q,m)}(\phi)(v)$ cannot be a multiple of $\sum_{t\in\mathbb{F}_q} Z^t$ unless all the $\lambda_{v,t}$ are zero for $v \neq 0$ and in this case the coefficient of $\sum_{t\in\mathbb{F}_q} Z^t$ is 0. Now if v = 0 then

$$T_{(q,m)}(\phi)(0) = \sum_{t \in \mathbb{F}_q} \lambda_{0,t} Z^t.$$

Then $T_{(q,m)}(\phi)(0)$ cannot be a multiple of $\sum_{t\in\mathbb{F}_q} Z^t$ unless all the $\lambda_{0,t}$ have the same value λ_0 and in this case the coefficient of $\sum_{t\in\mathbb{F}_q} Z^t$ is λ_0 . Hence, if $T_{(q,m)}(\phi)(v)$ can be written $\lambda(v)\sum_{t\in\mathbb{F}_q} Z^t$, we have $\sum_{v\in\mathbb{F}_q^m}\lambda(v) = \lambda_0$. Then, if $\phi \in \operatorname{Ker}(T_{(q,m)})$, for any $(v,t) \in I$ we have $\lambda_{v,t} = 0$. We conclude that the $q^{m+1} - (q^m - 1)$ linearly independent vectors $(e_{v,t})_{(v,t)\in I}$ constitute a basis of a complement of $\operatorname{Ker}(T_{(q,m)})$.

Corollary 2.8. The vectors $\epsilon_{v,t} = T_{(q,m)}(e_{v,t})$ with $(v,t) \in I$ are linearly independent. They constitute a basis of the image $T_{(q,m)}(\mathcal{G}_{(q,m)})$.

3. Application to the Hamming distances from a function to all codewords of a Generalized Reed-Muller code of order 1

3.1. System of equations satisfied by the distances of a function to all codewords. Coming back to our problem, if $f \in \mathcal{F}_{(q,m)}$ let us associate to it the function $F \in \mathcal{G}_{(q,m)}$ defined by

$$F(u) = Z^{f(u)}.$$

The transform $T_{(q,m)}(F)$ is given by

(2)
$$T_{(q,m)}(F)(v) = \sum_{u \in \mathbb{F}_q^m} Z^{f(u) - \langle u, v \rangle}$$
$$= \sum_{t \in \mathbb{F}_q} N_{v,t}(f) Z^t,$$

where $N_{v,t}(f) = \sharp \{ u \in \mathbb{F}_q^m \mid f(u) - \langle u, v \rangle = t \}$ as defined before. Lemma 3.1. Pour any $v \in \mathbb{F}_q^m$ the following formula holds:

$$\sum_{t \in \mathbb{F}_q} N_{v,t}(f) = q^m.$$

Proof. It is a direct consequence of the equalities (2). Indeed the total sum of coefficients in the first expression is q^m and in the second one it is $\sum_t N_{v,t}$.

As one can see, the numbers $N_{v,t}(f)$ are exactly the coefficients of $T_{(q,m)}(F)$ where F is associated to f as above.

For each $w \in \mathbb{F}_{q^m}$ we consider the linear form L_w defined over $\mathbb{F}_{q^m} \times \mathbb{F}_q$ by

$$L_w(v,t) = -\langle w, v \rangle + t,$$

and for each $w \in \mathbb{F}_{q^m}$ and each $\tau \in \mathbb{F}_q$ we consider the hyperplane $E_{w,\tau}$ of $\mathbb{F}_{q^m} \times \mathbb{F}_q$ defined by

$$E_{w,\tau} = \{(v,t) \in \mathbb{F}_{q^m} \times \mathbb{F}_q \mid L_w(v,t) = \tau\}.$$

Theorem 3.2. Let $f \in \mathcal{F}_{(q,m)}$, then $N_{v,t}(f)$ are solutions of the following linear system with q^{m+1} equations on q^{m+1} variables where the equation numbered (w, τ) is:

$$(w,\tau) \qquad \sum_{(v,t)\in E_{w,\tau}} x_{v,t} = \begin{cases} q^{2m-1} - q^{m-1} & \text{if} \quad f(-w) \neq \tau \\ q^{2m-1} - q^{m-1} + q^m & \text{if} \quad f(-w) = \tau \end{cases}$$

Proof. Computing $T^2_{(q,m)}(F)$, where $F = Z^f$ and by using the result of Theorem 2.4, we obtain

$$T^{2}_{(q,m)}(F)(w) = q^{m-1}(q - \sum_{t \in \mathbb{F}_{q}} Z^{t})F(-w) + q^{m-1}\sum_{t \in \mathbb{F}_{q}} Z^{t}\sum_{u \in \mathbb{F}_{q^{m}}} F(u).$$

Denoting $K(Z) = \sum_{t \in \mathbb{F}_q} Z^t$ and observing that

$$K(Z)\sum_{t\in\mathbb{F}_q}\alpha_t Z^t = (\sum_{t\in\mathbb{F}_q}\alpha_t)K(Z),$$

we obtain

$$\begin{split} T^2_{(q,m)}(F)(w) &= q^m Z^{f(-w)} + K(Z)(q^{2m-1} - q^{m-1}) \\ &= (q^{2m-1} - q^{m-1} + q^m) Z^{f(-w)} \\ &+ (q^{2m-1} - q^{m-1}) \sum_{t \neq f(-w)} Z^t. \end{split}$$

On the other hand, if we compute $T^2_{(q,m)}(F)$ using that

$$T_{(q,m)}(F)(v) = \sum_{t \in \mathbb{F}_{q^m}} N_{v,t} Z^t,$$

we obtain

$$T^2_{(q,m)}(F)(w) = \sum_{\tau \in \mathbb{F}_q} \left(\sum_{(v,t) \in E_{w,\tau}} N_{v,t} \right) Z^{\tau}.$$

The theorem follows by comparing the two expressions obtained for $T^2_{(q,m)}(F)$.

Remark 3.3. The system presented in Theorem 3.2 has the following structure: it is constituted by q^m blocks \mathcal{B}_w of q equations. The block \mathcal{B}_w contains the q equations numbered (w, τ) where w is fixed and τ takes the q possible values in \mathbb{F}_q . Each equation of a block involves q^m variables, namely the variables indexed by the points (v, t) of the hyperplane $E_{w,\tau}$ of $\mathbb{F}_{q^m} \times \mathbb{F}_q$. The q hyperplanes $E_{w,\tau}$ (w fixed, $\tau \in \mathbb{F}_q$) are parallel, then each variable $x_{v,t}$ is in one and only one equation of each block \mathcal{B}_w .

Let us consider the basis defined in section 2 by (1). Remark that the matrix of the system (3.2) is the matrix $\mathcal{T}_{(q,m)}$ of $T_{(q,m)}$ with respect to the considered basis. Namely by construction (see the proof of Theorem 3.2), the system can be written

$$\mathcal{T}_{(q,m)}X = B,$$

where X is the column

$$X = \left(\begin{array}{c} \vdots \\ x_{v,t} \\ \vdots \end{array}\right),$$

and B the column

$$B = \left(\begin{array}{c} \vdots \\ b_{w,\tau} \\ \vdots \end{array}\right),$$

where

$$b_{w,\tau} = \begin{cases} q^{2m-1} - q^{m-1} & \text{if } f(-w) \neq \tau \\ q^{2m-1} - q^{m-1} + q^m & \text{if } f(-w) = \tau \end{cases}$$

The system has a solution because we know that the values $N_{v,t}(f)$ constitute a solution. But, as the linear map $T_{(q,m)}$ has a kernel, the system has not a unique solution. However, if we add some "normalization" conditions we obtain the desired solution.

Theorem 3.4. The numbers $N_{v,t}(f)$ are the unique solution of the system that appears on the Theorem 3.2 if we join the following q^m equations

$$\sum_{t \in \mathbb{F}_q} x_{v,t} = q^m. \quad \forall v \in \mathbb{F}_{q^m}.$$

Proof. We know that any other solution is obtained from the previous solution $(N_{v,t})_{v,t}$ by adding an element in the kernel of the transformation, that is any other solution has the form $(N_{v,t} + \lambda(v))_{v,t}$ with $\sum_{v} \lambda(v) = 0$. For any v fix, we have that $\sum_{t \in \mathbb{F}_q} N_{v,t} = q^m$ and the result follows from it.

3.2. Transformation into a Cramer linear system.

Theorem 3.5. The system (S) constructed in the following way:

- (1) suppress from the system (3.2) the $q^m 1$ lines numbered (w, 0)with $w \neq 0$,
- (2) replace these equations by the $q^m 1$ equations $\sum_{t \in \mathbb{F}_q} x_{w,t} = q^m$, where $w \neq 0$,
- is a Cramer linear system and has $(N_{v,t}(f))_{v,t}$ for unique solution.

Proof. Let $\mathcal{T}_{(q,m)}$ the matrix of the original system. The columns are the vectors $T_{(q,m)}(e_{v,t}) = \epsilon_{v,t}$ decomposed on the basis $(e_{v,t})_{(v,t) \in \mathbb{F}_q \times \mathbb{F}_q}$.

Let us consider the columns (v, t) for which one of the two following conditions holds:

(1)
$$v = 0;$$

(2) $v \neq 0$ and $t \neq 0.$

Denote by I these indexes. We know by Lemma 2.8 that these $q^{m+1} - (q^m - 1)$ columns are linearly independent.

Denote by $a_{(w,\tau),(v,t)}$ the coefficient of $\mathcal{T}_{(q,m)}$ which is at the line indexed by (w,τ) and the column indexed by (v,t). This coefficient is the component of $\delta_{v,t}$ on $e_{w,\tau}$, namely by Lemma 2.2:

$$a_{(w,\tau),(v,t)} = \begin{cases} 1 & \text{if } (w,\tau) \in E_{-v,t} \\ 0 & \text{if } (w,\tau) \notin E_{-v,t} \end{cases}$$

But as the relation $(w, \tau) \in E_{-v,t}$ is equivalent to $(v, t) \in E_{w,\tau}$ we have

$$a_{(w,\tau),(v,t)} = a_{(v,t),(-w,\tau)}.$$

Then the elements of line $((w, \tau))$ are the elements of the column $(-w, \tau)$ By Proposition 2.7 the $q^{m+1} - (q^m - 1)$ lines indexed by (w, τ) where $w \neq 0$ and $t \neq 0$, or w = 0, are linearly independent. Remark that the original system has a vector space of dimension $q^m - 1$ of solutions $(x_{v,t})_{(v,t) \in \mathbb{F}_q^m \times \mathbb{F}_q}$. Adding all equations of the system gives the following equality:

$$\sum_{v,t} x_{v,t} = q^{2m}.$$

Then if we suppose that the $q^m - 1$ conditions

$$\sum_{t \in \mathbb{F}_q} x_{v,t} = q^m,$$

where $v \neq 0$, are satisfied, the last condition

$$\sum_{t \in \mathbb{F}_q} x_{0,t} = q^m$$

is also satisfied. Now, using Theorem 3.4, we conclude that (S) is a Cramer linear System.

Remark 3.6. From the definition it follows that

$$N_{v,t} = \operatorname{card}\left(\left\{w \in \mathbb{F}_{q^m} \mid (v,t) \in E_{w,f(-w)}\right\}\right).$$

So, it would be interesting to consider the arrangement of hyperplanes $\mathcal{A}(f)$, consisting of the q^m hyperplanes $E_{w,f(-w)}$ and to relate the geometric and combinatorial properties of $\mathcal{A}(f)$ to the properties of the distance between f and the affine functions. A very simple example is the following: if the arrangement $\mathcal{A}(f)$ is centered, then there is a (v,t) such that $N_{v,t} = q^m$ and consequently the function f is affine.

References

- Alexei Ashikhmin and Simon Litsyn. Fast decoding of non-binary first order reed-muller codes. AAECC, 7:299–308, 1996.
- [2] Robert Rolland. Fonction maximalement non linéaires sur un corps fini. Technical Report 25, Institut de Mathématiques de Luminy, 2000.

IME, UNIV. FEDERAL FLUMINENSE, RUA MARIO SANTOS BRAGA S/N, CEP 24.020-140, NITEROI, BRAZIL

E-mail address: miriam@mat.uff.br

UNIVERSITÉ D'AIX-MARSEILLE, INSTITUT DE MATHÉMATIQUES DE MARSEILLE, CASE 907, F13288 MARSEILLE CEDEX 9, FRANCE

E-mail address: robert.rolland@acrypta.fr