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Geometric approach to the MacWilliams

Extension Theorem for codes over modules

Serhii Dyshko ∗

Institut de mathématiques de Toulon, Université de Toulon, France

Abstract

The MacWilliams Extension Theorem states that each linear Ham-

ming isometry of a linear code extends to a monomial map. In this paper

an analogue of the extension theorem for linear codes over a module alpha-

bet is observed. A geometric approach to the extendability of isometries

is described. For a matrix module alphabet we found the minimum length

of a code for which an unextendable Hamming isometry exists. We also

proved an extension theorem for MDS codes over a module alphabet.

1 Introduction

The famous MacWilliams Extension Theorem states that each linear isometry
of a linear code extends to a monomial map. The result was originally proved
in the MacWilliams’ Ph.D. thesis, see [8]. Later, the result was generalized for
codes over modules. A summary is given below.

Let R be a ring with identity and let A be a finite left R-module. Consider
a module An with the Hamming metrics and a code C ⊆ An that is a left R-
submodule. For two R-modules A and B let HomR(A,B) denote the set of R-
module homomorphism from A to B. Call a map f ∈ HomR(A

n, An) monomial,
if there exist a permutation π ∈ Sn and automorphisms g1, . . . , gn ∈ AutR(A),
such that, for any a ∈ An,

f
(

(a1, . . . , an)
)

= (g1(aπ(1)), . . . , gn(aπ(n))) .

Note that a monomial map preserves the Hamming distance. It can be easily
shown, that each isometry f ∈ HomR(A

n, An) is monomial. We say that an
alphabet A has the extension property if for any positive integer n, for any code
C ⊆ An each Hamming isometry f ∈ HomR(C,A

n) extends to a monomial
map.

Classical linear codes correspond to the case when R = Fq and A = R,
where Fq is a finite field. As we mentioned before, the MacWilliams Extension
Theorem states that the alphabet A = R = Fq has the extension property.

Apparently, not every module alphabet satisfies the extension property. Re-
call the definition of a pseudo-injective module. A left R-module A is called
pseudo-injective, if for each left R-submodule B ⊆ A and for each two embed-
dings φ, ψ ∈ HomR(B,A) there exists an automorphism h ∈ AutR(A) such that
ψ = hφ. In other words, A is pseudo-injective if and only if any R-linear iso-
morphism between its submodules extends to an R-linear automorphism of A.
Not all the R-modules are pseudo-injective.
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Figure 1: Extension property.
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Figure 2: Pseudo-injectivity of a module A.

Example 1. Consider a Z-module A = Z2 ⊕ Z4. Let M = 〈(0, 2)〉 and N =
〈(1, 0)〉. Obviously, M ∼= N , with isomorphism ψ : (0, 2) → (1, 0), but there is
no isomorphism φ : A→ A such that φ = ψ onM . So, A is not pseudo-injective.

Recall the socle of A is a submodule soc(A) ⊆ A that is equal to the sum
of all simple submodules of A. A module is called simple (or irreducible) if it
does not contain any other submodules except zero and itself. In [9] the author
proved a general extension theorem for a pseudo-injective module alphabet with
a cyclic socle and showed that these conditions are maximal.

Theorem 1. If A is an alphabet that is pseudo-injective and soc(A) cyclic, then
A has the extension property.

In the case, when A = R, in [2, 6, 9] the authors proved the extension
theorem for Frobenius rings and showed the maximality of the condition.

Theorem 2. Let R be a Frobenius ring. Then the alphabet A = R has the

extension property.

In [1, 2] the extension problem for arbitrary ring and alphabet was partially
translated to the case of matrix rings and matrix modules. There the authors
proved the existence of a general counterexample for codes over a matrix module
alphabet. An explicit construction appeared in [9].

Theorem 3 (see [9]). Let R = Mm(Fq) be a ring of all m×m matrices over a

finite field Fq and let A = Mm×k(Fq) be a left R-module of all m× k matrices

over Fq.

If k ≤ m, then the alphabet A has the extension property.

If k > m, there exist a linear code C ⊂ AK , K =
∏k−1
i=1 (1 + qi), and a map

f ∈ HomR(C,A
K ) that is a Hamming isometry, but there is no monomial map

extending f .

Note that the theorem does not say if the given counterexample has minimum
possible code length. In this paper we improve Theorem 3. More precisely, in
the context of matrix modules, we found the minimum code length for which
an example of a code with unextendable isometry exists. It appear that such a
code with minimal code length is similar to the code from Theorem 3, described
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in [9]. In our previous work [3] we found the precise bound for the case m = 1,
which corresponds to linear codes over a vector space alphabet.

Our main idea is to use a geometric approach. In Proposition 1 we describe
an unextendable isometries in terms of nontrivial solution of the isometry equa-
tion (1), which is an equation of indicator functions of modules. In [3] we
observed basic properties of this equation for the case of vector spaces and here,
in Proposition 2 we describe some properties of the equation for matrix modules.

In Theorem 5 we prove that the extension property holds for MDS codes over
a module alphabet, when the dimension of a code does not equal 2. Despite
the general result of Theorem 1, for MDS codes the extension theorem holds for
arbitrary finite R-module alphabet.

2 Extension criterium

Let W be a left R-module isomorphic to C. Let λ ∈ HomR(W,A
n) be a map

such that λ(W ) = C. Present the map λ in the form λ = (λ1, . . . , λn), where
λi ∈ HomR(W,A) is a projection on the ith coordinate, for i ∈ {1, . . . , n}.
Consider the following modules, for i ∈ {1, . . . , n},

Vi = Kerλi ⊆W .

Let f : C → An be a homomorphism of left R-modules. Define µ = fλ ∈
HomR(W,A

n) and denote

Ui = Kerµi ⊆W .

W C

An

λ

µ
f

Figure 3: The maps λ and µ.

Denote the tuples of modules V = (V1, . . . , Vn) and U = (U1, . . . , Un). We
say that V = U if they represent the same multiset of modules. In other words,
V = U if and only if there exists π ∈ Sn such that for each i ∈ {1, . . . , n},
Ui = Vπ(i). Recall the indicator function of a subset Y of a set X is a map
1Y : X → {0, 1}, such that 1Y (x) = 1 if x ∈ Y and 1Y (x) = 0 otherwise.

Proposition 1. The map f ∈ HomR(C,A
n) is a Hamming isometry if and

only if the following equality holds,

n
∑

i=1

1Vi
=

n
∑

i=1

1Ui
. (1)

If f extends to a monomial map, then V = U . If A is pseudo-injective and

V = U , then f extends to a monomial map.
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Proof. Prove the first part. By definition, the map f is a Hamming isometry
if for each a ∈ C, wt(f(a)) = wt(a), or, equivalently, f is an isometry if and
only if for each w ∈ W , wt(λ(w)) = wt(µ(w)). Note that for any w ∈ W ,
n − wt(λ(w)) =

∑n
i=1(1 − wt(λi(w))) =

∑n
i=1 1Kerλi

(w) and the same for the
map µ. Hence eq. (1) holds.

Prove the second part. Consider any two maps σ, τ ∈ HomR(W,A). If there
exists g ∈ AutR(A) such that σ = gτ then Kerσ = Ker τ .

Let Kerσ = Ker τ = N ⊆ W and let A be pseudo-injective. The corre-
sponding homomorphisms defined on the quotient module σ̄, τ̄ :W/N → A are
injective. Using the property of A, there exists h ∈ AutR(A) such that σ̄ = hτ̄ .
It is easy to check that σ = hτ .

Let a pair of tuples of modules (U ,V) be a solution of eq. (1). If U = V
then we call the solution trivial. Proposition 1 gives a relation between trivial
solutions of eq. (1) and extendable isometries.

Remark 1. As it was noted in [2] and [9], the property of pseudo-injectivity is
necessary in the statement. Assuming that the alphabet is not pseudo-injective
means that the extension property fails even if the length of a code is 1.

3 General extension theorem

In this section we show how to use the approach from the previous section to
prove Theorem 1. Recall that a left R-module M is called cyclic if there exists
a generator element x ∈M , such that M = Rx = {rx | r ∈ R}.

Lemma 1. An R-module M is not cyclic if and only if there exist submodules

{0} ⊂ E1, . . . , Er ⊂M such that M =
⋃r
i=1 Ei.

Proof. Assume that there exists such a covering M =
⋃r
i=1Ei of M by sub-

modules and let M be cyclic. For a generator x ∈M there exists i ∈ {1, . . . , r}
such that x ∈ Ei and thus M = Rx ⊆ Ei ⊂M that leads to a contradiction.

If M is not cyclic, then for any x ∈ M \ {0}, {0} ⊂ Rx ⊂ M and therefore
M =

⋃

x∈M\{0} Rx.

Lemma 2. For each non-cyclic module M there exists a nontrivial solution of

eq. (1) with at least one module equals M . A solution of the equation

s
∑

i=1

ai1Vi
=

t
∑

i=1

bi1Ui
,

with only cyclic modules is trivial, where all the coefficients are in C.

Proof. Prove the first part. Let M =
⋃r
i=1 Ei be a nontrivial covering of M by

submodules. Denote MI =
⋂

i∈I Ei, where I ⊆ {1, . . . , r} and define M∅ = M .
Use the inclusion-exclusion formula,

∑

|I| is even

1MI
=

∑

|I| is odd

1MI
,

where the summation is over all subsets I ⊆ {1, . . . , r}. It is easy to see that the
resulting equation is nontrivial, for example, the module M appears only from
the left side. The number of terms on each side is the same and equals 2r−1.
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Prove the second part. Assume that there exists a nontrivial solution of
the equation. Without loss of generality, we can assume that the equation is
simplified by eliminating equal terms and making a reindexing. Hence, ai, bj 6= 0
for i ∈ {1, . . . , s}, j ∈ {1, . . . , t} and all Vi, Ui are different. Since the solution is
nontrivial, s, t > 0. Among the modules choose the maximal with respect to the
inclusion, suppose it is V1. Then V1 =

⋃t
i=1(V1∩Ui), where {0} ⊂ V1∩Ui ⊂ V1,

i ∈ {1, . . . , t}. From Lemma 1, the module V1 is therefore non-cyclic, which
contradicts to our assumption.

Characters and Fourier transform. Denote by Â = HomZ(A,C
∗) the set

of characters of A. The set Â has a natural structure of a right R-module.
Let A,W be two left R-modules. For a map σ ∈ HomR(W,A) define a map
σ̂ : Â → Ŵ , χ 7→ χσ. Note that σ̂ ∈ HomR(ÂR, ŴR). It is known that ∧ is an
exact contravariant functor on the category of left(right) R-modules, see [9].

Let M be a left R-module. The Fourier transform of a map f :M → C is a
map F(f) : M̂ → C, defined as

F(f)(χ) =
∑

m∈M

f(m)χ(m) .

It can be easily proved that for a submodule V ⊆ M , F(1V ) = |V |1V ⊥ , where
an orthogonal module is defined as V ⊥ = {χ ∈ M̂ | ∀v ∈ V, χ(v) = 1} ⊆ M̂ .
Note that the Fourier transform is invertible, V ⊥⊥ ∼= V and for any V, U ⊆W ,
(V ∩ U)⊥ = V ⊥ + U⊥.

For any σ ∈ HomR(W,A), Kerσ = {w ∈ W | σ(w) = 0} = {w ∈ W | ∀χ ∈
Â, χ(σ(w)) = 1} = (Im σ̂)⊥, and thus (Kerσ)⊥ = Im σ̂.

Theorem 4. If Â is a cyclic right R-module and A is pseudo-injective, then A
has the extension property.

Proof. Let C ⊂ An be a code and let f ∈ HomR(C,A
n) be an isometry. By

Proposition 1, f is extendable if and only if the solution (U ,V) of eq. (1) is
trivial. Due to the properties of the Fourier transform, eq. (1) is equivalent to
the following equality of functions defined on Ŵ ,

n
∑

i=1

|Vi|1V ⊥

i

=
n
∑

i=1

|Ui|1U⊥

i

(2)

and the solution of eq. (1) is trivial if and only if the corresponding orthogonal
solution is trivial. The statement of the theorem is a direct consequence of
Lemma 2 and the fact that the modules V ⊥

i = Im λ̂i, U
⊥
i = Im µ̂i, i ∈ {1, . . . , n},

are all cyclic, since so is Â.

Remark 2. Theorem 4 is an analogue of Theorem 1, where instead of the
cyclic socle condition we use the cyclic character module condition. Prove that
these two conditions are equivalent. In [9] it was proven that soc(A) is cyclic if
and only if A can be embedded into RR̂. This means there exists an injective
homomorphism of left R-modules φ : A→R R̂. Since ∧ is an exact functor, the

last is equivalent to the fact that the map φ̂ :
ˆ̂
RR ∼= RR → ÂR is a projective

homomorphism of right R-modules that is a characterization of cyclicity of ÂR.
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4 Extension theorem for matrix alphabets

An R-module A is called semisimple (or completely reducible) if A is a direct
sum of simple submodules.

Lemma 3. If a left R-module A is semisimple, then A is pseudo-injective.

Proof. Let N,M ⊆ A be two submodules and let ψ : N → M be an isomor-
phism. Since A is semisimple, there exist N ′,M ′ ⊆ A such that A = N ⊕N ′ =
M ⊕M ′. Since N ∼=M , there is an isomorphism φ : N ′ →M ′. Then ψ extends
to the automorphism ψ × φ : A = N ⊕N ′ →M ⊕M ′ = A.

It is proved in [7, p. 656] that each module M over the ring R = Mm(Fq) is
semisimple and is isomorphic to Mm×k(Fq) for some k. Call k the dimension of
M and denote dimM = k. We need the following lemmas to prove an extension
theorem for R-linear codes over M .

Lemma 4. The following equalities hold,

t−1
∑

i=0

(−1)iq(
i

2)
(

t

i

)

q

= (−1)t−1q(
t

2) ,

t
∑

i=0

q(
i

2)
(

t

i

)

q

=

t−1
∏

i=0

(1 + qi) .

Proof. Use a well-known Cauchy binomial theorem,

t−1
∏

i=0

(1 + xqi) =
t

∑

i=0

q(
i

2)
(

t

i

)

q

xi .

To get the equalities in the statement, put x = −1 and x = 1.

Lemma 5. Let R be a matrix module over Fq, let M be a t-dimensional R-
module and let X be a p-dimensional submodule of M . For each i ∈ {p, . . . , t}
we have,

|{V ⊆M | X ⊆ V, dimV = i}| =

(

t− p

i− p

)

q

Proof. It is a well known fact that for any k ∈ {0, . . . , t} there are
(

t
k

)

q
submod-

ules of M of dimension i. The number of such submodules, that contain X is
equal to the number of submodules of dimension i−dimX inM/X that contain
{0}, which is always the case. In other words, |{V ⊆M | X ⊆ V, dimV = i}| =

|{V ⊆M/X | dimV = i− p}| =
(

dimM/X
i−p

)

q
=

(

t−p
i−p

)

q
.

The next proposition is an improvement of Theorem 3. Note that the code
length K in Theorem 3 depends on k (the alphabet parameter) whereas in the
following proposition the code length N depends on m (the ring parameter)
and N is not greater than K. In our proof this improvement is easily obtained
from the author’s construction in [9], however it does not appear in the original
statement of the author.
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Proposition 2. Let R = Mm(Fq) and let A = Mm×k(Fq) be a left R-module.

If k ≤ m, then the alphabet A has the extension property.

If k > m, there exist a linear code C ⊂ AN , N =
∏m
i=1(1 + qi), and a

map f ∈ HomR(C,A
N ) that is a Hamming isometry, but there is no monomial

transformation extending f .
For any n < N , each Hamming isometry f ∈ HomR(C,A

n) is extendable.

Proof. For any k, since A is semisimple, by Lemma 3, A is pseudo-injective. If
k ≤ m, the right R-module Â is cyclic, since dim Â = dimA = k ≤ m. From
Theorem 4, A has the extension property.

To construct a code of the length N we do the following. Let C′ be the
code over the alphabet B = Mm×m+1(Fq) and let f ∈ HomR(C

′, BN ) be the
unextendable isometry from Theorem 3. Choosing this alphabet, we have K =
N . Since k > m, in A there exists a submodule isomorphic to B, so C′ can be
considered as a code in AN and f ∈ HomR(C

′, AN ). Due to the construction of
the author in [9], the code C′ has all zero column and f(C′) does not. Therefore
f is unextendable.

Let k > m. Let n′ be the minimum value of the code length for which
there exists and unextendable isometry f ∈ HomR(C,A

n′

). By Proposition 1,
there exists a non-trivial solution of eq. (1). Hence, the minimum length n of a
nontrivial solution of eq. (1) is not greater than n′. Consider a solution of the
length n which have the minimum value max{dimVi, dimUi | i ∈ {1, . . . , n}},
and denote this value by r. From Lemma 2, r > m. Without loss of generality,
let dimV1 = r.

Introduce a new notation. Denote Ij = {i | dimVi < r − j}, Jj = {i |
dimUi < r − j} and

Σj =
∑

dimV=r−j

1V ,

for j ∈ {0, . . . , r}, where the summation is over all the submodules in V1 of the
given dimension. Calculate the restriction of eq. (1) on the module V1,

aΣ0 =
∑

i∈J0

1Ui∩V1
−

∑

i∈I0

1Vi∩V1
,

where by a ≥ 1 we denote the number of modules V1 in the left part of eq. (1).
This is a nontrivial solution of the length n and the maximum dimension r.
Evidently, since the length n is the minimal, Ui ∩ V1 ⊂ V1 for all i ∈ J0 and
Vi ∩ V1 ⊂ V1 for all i ∈ I0, so, without loss of generality, let Ui, Vi ⊆ V1, for
i ∈ {1, . . . , n}.

Say that on the t-step, 0 ≤ t < r, we have proved that eq. (1) is of the form,

a

t
∑

i=0

(−1)iq(
i

2)Σi =
∑

i∈Jt

1Ui
−

∑

i∈It

1Vi
.

For t = 0 this is true. Let X ⊂ V1 be of dimension r − t − 1. Restrict the
equation on X ,

a

t
∑

i=0

(−1)iq(
i

2)
∑

dimV=r−i

1V ∩X =
∑

i∈Jt

1Ui∩X −
∑

i∈It

1Vi∩X .

7



The dimension of X is smaller than r, so the restricted solution is trivial.
Calculate the number of 1X terms from the left and from the right. Denote
b = |{i ∈ Jt | X = Ui}| and c = |{i ∈ It | X = Vi}|. Note that either b = 0 or
c = 0. Using Lemma 5 and Lemma 4,

a

t
∑

i=0

(−1)iq(
i

2)
(

t+ 1

i

)

q

= a(−1)tq(
t+1

2 )
(

t+ 1

i

)

q

= b− c ,

and therefore c = 0 if t is even and b = 0 if t is odd.
All the submodules of V1 of dimension r − t− 1 are presented from the left

or from the right side of eq. (1), depending on the parity of t, with the same
multiplicity. Considering this fact, we rewrite eq. (1) in the form,

a
t+1
∑

i=0

(−1)iq(
i

2)Σi =
∑

i∈Jt+1

1Ui
−

∑

i∈It+1

1Vi
.

On the output of t = r − 1 step we get,

a

r
∑

i=0

(−1)iq(
i

2)Σi =
∑

i∈Jr

1Ui
−

∑

i∈Ir

1Vi
≡ 0 .

The length of the equation is 1
2a

∑r
i=0 q

(i2)
(

r
i

)

q
. Since the equation has the

minimal length, a = 1 and r = m + 1. From Lemma 4, n = 1
2

∏m
i=0(1 + qi) =

∏m
i=1(1 + qi) = N . Therefore n′ ≥ n = N .

5 Extension theorem for MDS codes

There is a famous Singleton bound, that states that for a code C ⊆ An, |C| ≤
|A|n−d+1, where d is the minimum distance of C. When a code C attains the
bound, it is called an MDS code. The value k = n− d+1 is called a dimension
C and the code is said to be an (n, k)A MDS code.

An alternative definition is the following. A code C ⊆ An is MDS if and only
if a restriction of C on any k columns is isomorphic to Ak. In other words, any
k columns of C can be taken as an information set of the code. We interpret
this definition in terms of modules V = (V1, . . . , Vn).

Lemma 6. Let C be an (n, k)A MDS code. For each subset I ⊆ {1, . . . , n} of

size k,
∑

i∈I V
⊥
i = ŴR. Moreover, |V ⊥

i | = |A| for all i ∈ {1, . . . , n}.

Proof. Let I ⊆ {1, . . . , n} be a subset with k elements. Let C′ be a code
obtained from C by keeping only coordinates from I. The map λ′ = (λi)i∈I ,
λ′ :W → Ak is a parametrization of C′. Since C is MDS, λ′ is injective, which
implies

⋂

i∈I Vi = {0}. Calculating the orthogonal, we get
∑

i∈I V
⊥
i = ŴR.

We know that all the modules W,C,C′ are isomorphic to Ak. Thus there
is an isomorphism of right R-modules Ŵ ∼= Âk. Also, |V ⊥

i | ≤ |A| = |ÂR| and
for any i, j ∈ {1, . . . , n}, |V ⊥

i + V ⊥
j | = |V ⊥

i ||V ⊥
j |/|V ⊥

i ∩ V ⊥
j |. Combining all the

facts, we get |V ⊥
i | = |A|.

The next lemma shows that the condition of pseudo-injectivity in Proposi-
tion 1 can be omitted if a code is MDS.
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Lemma 7. Let C be an (n, k)A MDS code and let f ∈ HomR(C,A
n). If V = U ,

then f extends to a monomial map.

Proof. The proof is almost identical to the second part of the proof of Propo-
sition 1. Let σ, τ ∈ HomR(W,A) be two maps that parametrize a column in C
and a column in f(C) correspondingly. Since C is an MDS code, from Lemma 6,
Imσ = A, because |Imσ| = |(Kerσ)⊥| = |A|.

Let Kerσ = Ker τ = N ⊆ W . This implies Im τ = Imσ = A. Consider the
canonical isomorphisms σ̄, τ̄ : W/N → A. The map h ∈ AutR(A), defined as
h = τ̄ σ̄−1, satisfies the equality hσ = τ .

Theorem 5. Let R be a ring with identity and let A be a finite left R-module.

Let C be an (n, k)A MDS code, k 6= 2. Each Hamming isometry f ∈ HomR(C,A
n)

extends to a monomial map.

Proof. Assume that there exists an unextendable isometry f ∈ HomR(C,A
n).

From Proposition 1 and Lemma 7, there exists a nontrivial solution of eq. (1),
or equivalently, there exists a nontrivial solution of the orthogonal equation (2).
It is clear that f(C) is also an MDS code.

The proof is obvious for the case k = 1, so let k ≥ 3. This means,
from Lemma 6, for any different i, j, k ∈ {1, . . . , n}, V ⊥

i ∩ (V ⊥
j + V ⊥

k ) = {0}.

Without loss of generality, assume that U⊥
1 is covered nontrivially by modules

V ⊥
1 , . . . , V ⊥

t , t > 1, i.e. U⊥
1 =

⋃t
i=1 V

⊥
i , {0} ⊂ V ⊥

i ⊂ U⊥
1 , for i ∈ {1, . . . , t} and

no module is contained in another.
Take a nonzero element a ∈ U⊥

1 ∩ V ⊥
1 and a nonzero element b ∈ U⊥

1 ∩ V ⊥
2 .

Obviously, since V ⊥
1 ∩ V ⊥

2 = {0}, a+ b 6∈ V ⊥
1 ∪ V ⊥

2 . But a+ b ∈ U⊥
1 and hence

t > 2. There exists an index i, let it be 3, such that a + b ∈ U⊥
1 ∩ V ⊥

3 . Then
a+ b ∈ (V ⊥

1 + V ⊥
2 ) ∩ V ⊥

3 6= {0}, which gives a contradiction.

The case of MDS codes of dimension 2 is observed in [4], where R is a finite
field and the alphabet A is a vector space. Note that the statement is true for
all abelian groups as Z-modules. In [5] the author proved that there exists only
(n, 1)G and (n, n)G MDS codes over a nonabelian group G. It is not difficult to
show that an analogue of the extension property holds for these two families of
trivial codes.

References
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