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Abstract Algebraic space–time coding — a powerful technique developed in
the context of multiple-input multiple-output (MIMO) wireless communica-
tions — has profited tremendously from tools from Class Field Theory and,
more concretely, the theory of central simple algebras and their orders. During
the last decade, the study of space–time codes for practical applications, and
more recently for future generation (5G+) wireless systems, has provided a
practical motivation for the consideration of many interesting mathematical
problems. One such problem is the explicit computation of orders of central
simple algebras with small discriminants. In this article, we consider the most
interesting asymmetric MIMO channel setups and, for each treated case, we
provide explicit pairs of fields and a corresponding non-norm element giving
rise to a cyclic division algebra whose natural order has the minimum possible
discriminant.

Keywords Central Simple Algebras · Division Algebras · Discriminant ·
Natural Orders · MIMO · Space–Time Coding.

1 Introduction

The existing contemporary communications systems can be abstractly char-
acterized by the conceptual seven-layer Open Systems Interconnection model.
The lowest (or first) layer, known as the physical layer, aims to describe the

A. Barreal
Department of Mathematics and Systems Analysis, Aalto University, Finland
Tel.: +358-50-5935194
E-mail: amaro.barreal@aalto.fi

C. Corrales Rodrigáñez
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communication process over an actual physical medium. Due to the increas-
ing demand for flexibility, information exchange nowadays often occurs via
antennas at the transmitting and receiving end of a wireless medium, e.g.,
using mobile phones or tablets for data transmission and reception. An elec-
tromagnetic signal transmitted over a wireless channel is however prone to
interference, fading, and environmental effects caused by, e.g., surrounding
buildings, trees, and vehicles, making reliable wireless communications a chal-
lenging technological problem.

With the advances in communications engineering, it was soon noticed that
increasing the number of spatially separated transmit and receive antennas, as
well as adding redundancy by repeatedly transmitting the same information
encoded over multiple time instances1, can dramatically improve the transmis-
sion quality. A code representing both diversity over time and space is thus
called a space–time code. Let us consider a channel with nt and nr antennas at
its transmitting and receiving end, respectively, and assume that transmission
occurs over T consecutive time instances. If nt = nr, the channel is called
symmetric, and otherwise asymmetric, which more precisely typically refers to
the case nr < nt. For the time being, a space–time code X will just be a finite
collection of complex matrices in Mat(nt×T,C). The channel equation in this
multiple-input multiple-output (MIMO) setting is given by

Ynr×T = Hnr×nt
Xnt×T +Nnr×T , (1)

where Y is the received matrix, and X = [xij ]i,j ∈ X is the space–time code
matrix. In the above equation, we adopt the Rayleigh fading channel model,
i.e., the entries of the random channel matrix H = [hij ]i,j are complex vari-
ables with identically distributed real and imaginary parts,

<(hij),=(hij) ∼ N (0, σ2
h),

yielding a Rayleigh distributed envelope

|hij | =
√
<(hij)2 + =(hij)2 ∼ Ray(σh)

with scale parameter σh. We assume further that the channel remains static
during the entire transmission of the codeword matrix X, and then changes
independently of its previous state. The additive noise2 is modeled by the
noise matrix N , whose entries are independent, identically distributed complex
Gaussian random variables with zero mean.

Let us briefly discuss what constitutes a ”good” code. Consider a space–
time code X , and let X,X ′ be code matrices ranging over X . Two basic design
criteria can be derived in order to minimize the probability of error [1].

i) The diversity gain of a code is the asymptotic slope of the error probability
curve with respect to the signal-to-noise ratio (SNR) in a log− log scale,

1 ’Time instances’ are commonly referred to as channel uses.
2 The noise is a combination of thermal noise and noise caused by the signal impulse.
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and relates to the minimum rank rank(X − X ′) over all pairs of distinct
code matrices (X,X ′) ∈ X 2. The minimum rank of X should satisfy

min
X 6=X′

rank(X −X ′) = min{nt, T},

in which case X is called a full-diversity code.
ii) The coding gain measures the difference in SNR required for two different

codes to achieve the same error probability. For a full-diversity code this
is proportional to the determinant

det
(
(X −X ′)(X −X ′)†

)
.

We define the minimum determinant of a code X as the infimum

∆min(X ) := inf
X 6=X′

det
(
(X −X ′)(X −X ′)†

)

as the code size increases, |X | → ∞. If ∆min(X ) > 0, the space–time code is
said to have the nonvanishing determinant property [2]. In other words, a non-
vanishing determinant guarantees that the minimum determinant is bounded
from below by a positive constant even in the limit, and hence the error prob-
ability will not blow up when increasing the code size.

In 2003, the usefulness of central simple algebras to construct space–time
codes meeting both of the above criteria was established in [3]; especially of
(cyclic) division algebras, for which the property of being division immediately
implies full diversity. Thereupon the construction of space–time codes started
to rely on cleverly designed algebraic structures, leading to the construction
of multiple extraordinary codes, such as the celebrated Golden code [4], or
general Perfect codes [5,6]. It was later shown in [2] that in a cyclic division
algebra based code, achieving the nonvanishing determinant property can be
ensured by restricting the entries of the codewords to certain subrings of the
algebra alongside with a smart choice for the base field, and that ensuring
nonvanishing determinants is enough to achieve the optimal trade-off between
diversity and multiplexing.

Further investigation carried out in [7,8] showed that codes constructed
from orders, in particular maximal orders, of cyclic division algebras performed
exceptionally well. The main observation is that the discriminant of the order
is directly related to the offered coding gain, and should be as small as possible
in order to maximize the coding gain.

Maximal orders were then the obvious candidates, as they maximize the
normalised density of the corresponding lattice and hence also maximize the
coding gain. Unfortunately, they are in general very difficult to compute and
may result in highly skewed lattices making the bit labeling a delicate problem
on its own. Therefore, natural orders with a simpler structure have become
a more frequent choice as they provide a good compromise between the two
common extremes: using maximal orders to optimize coding gain, on the one
hand, and restricting to orthogonal lattices to simplify bit labeling, encoding,
and decoding, on the other.
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However, the current explicit constructions are typically limited to the
symmetric case, while the asymmetric case remains largely open. The main
goal of this article is to fill this gap, though our interest is not to analyze the
performance of explicit codes. Instead, we focus on the algebraic setup and
provide lower bounds for the smallest possible discriminants of natural orders
for the considered setups, and give explicit field extensions and corresponding
cyclic division algebras meeting the lower bounds.

This article is structured as follows. In Section 2 we will shortly introduce
MIMO space–time coding and the construction of space–time codes using rep-
resentations of orders in central simple algebras. Section 3 contains the main
results of this article. We will consider the most interesting asymmetric MIMO
channel setups and fix F = Q or F = Q(i) as the base field to guarantee the
nonvanishing determinant property3. For each considered setup (F, nt, nr), we
will find an explicit field extension F ⊂ L ⊂ E and an explicit L-central cyclic
division algebra over E, such that the norm of the discriminant of its natural
order is minimal. This will translate into the largest possible determinant (see
(5) and [8,9] for the proof) and thus provide us with the maximal coding gain
one can achieve by using a natural order.

2 Space–time codes from orders in central simple algebras

From now on, and for the sake of simplicity, we set the number nt of transmit
antennas equal to the number T of time slots used for transmission and shortly
denote n := nt = T . Thus, the considered codewords will be square matrices.

2.1 Space–time lattice codes

Very simplistically defined, a space–time code is a finite set of complex matri-
ces. However, in order to avoid accumulation points at the receiver, in practical
implementations it is convenient to impose an additional discrete structure on
the code, such as a lattice structure. We define a space–time code to be a finite
subset of a lattice

Λ =

{
k∑

i=1

ziBi | zi ∈ Z

}
⊂ Mat(n,C),

where {B1, . . . , Bk} ⊂ Mat(n,C) is a lattice basis. We recall that a lattice in
Mat(n,C) is full if rank(Λ) := k = 2n2. We call a space–time lattice code
symmetric, if its underlying lattice is full, and asymmetric4 otherwise.

3 From a mathematical point of view, any imaginary quadratic number field would give
a nonvanishing determinant, but the choice Q(i) matches with the quadrature amplitude
modulation (QAM) commonly used in engineering.

4 This definition relates to the fact that a symmetric code carries the maximum amount
of information (i.e., dimensions) that can be transmitted over a symmetric channel without
causing accumulation points at the receiving end. In an asymmetric channel, a symmetric
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Due to linearity, given a lattice Λ ⊂ Mat(n,C) and X,X ′ ∈ Λ,

∆min(Λ) := inf
X 6=X′

det
(
(X −X ′)(X −X ′)†

)
= inf
X∈Λ\{0}

|det(X)|2.

This implies that any lattice Λ satisfying the nonvanishing determinant prop-
erty can be scaled so that ∆min(Λ) achieves any wanted nonzero value. Con-
sequently, a meaningful comparison of different lattices requires some kind of
normalization. To this end, consider the Gram matrix of Λ,

GΛ :=
[
<
(

Tr
(
BiB

†
j

))]
1≤i,j≤k

,

where Tr denotes the matrix trace. The volume ν(Λ) of Λ is related to the
Gram matrix as ν(Λ)2 = det(GΛ).

i) The normalized minimum determinant [8] of Λ is the minimum determi-
nant of Λ after scaling it to have a unit size fundamental parallelotope,
that is,

δ(Λ) =
∆min(Λ)

ν(Λ)
n
k
.

ii) The normalized density [8] of Λ is

µ(Λ) =
∆min(Λ)

k
n

ν(Λ)
. (2)

We get the immediate relation δ(Λ) = µ(Λ)
n
k , from which it follows that

in order to maximize the coding gain it suffices to maximize the density of the
lattice. Maximizing the density, for its part, translates into a certain discrim-
inant minimization problem [8,9], as we shall see in Section 2.3 (cf. (5)). This
observation is crucial and will be the main motivation underlying Section 3.

2.2 Central simple algebras and orders

We recall that a finite dimensional algebra over a number field L is an L-
central simple algebra, if its center is precisely L and it has no nontrivial
ideals. An algebra is said to be division if all of its nonzero elements have
a multiplicative inverse. By [3, Prop. 1], as long as the underlying algebraic
structure of a space–time code is a division algebra, the full-diversity property
of the code will be guaranteed. It turns out that if L is an algebraic number
field, then every L-central simple algebra is a cyclic algebra [10, Thm. 32.20].

code will result in accumulation points, and hence asymmetric codes, i.e., non-full lattices
are called for. See [9] for more details.
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Let E/L be a cyclic extension of number fields of degree n with respective
rings of integers OE and OL, and cyclic Galois group Gal(E/L) = 〈σ〉. We fix
a nonzero element γ ∈ L× and consider the right E-vector space

C := (E/L, σ, γ) =

n−1⊕

i=0

uiE,

with left multiplication defined by xu = uσ(x) for all x ∈ E, and un = γ. The
triple C is referred to as a cyclic algebra of index n.

The obvious choice of lattices in C will be its orders. We recall that if R ⊂ L
is a Dedekind ring, an R-order in C is a subring O ⊂ C which shares the same
identity as C, is a finitely generated R-module, and generates C as a linear
space over L. Furthermore, an order is maximal if it not properly contained
in any other R-order of C. Of special interest in this article is the OL-module

Onat :=

n−1⊕

i=0

uiOE ,

which we refer to as the natural order of C.
Throughout the paper, we will denote the relative field norm map of the

extension E/L by NmE/L and the absolute norm map by NmE = NmE/Q. The
restriction of this map to orders may be specified in the notation as NmOE/OL

and NmOE
= NmOE/Z.

If the element γ fails to be an algebraic integer, then Onat will not be closed
under multiplication. Furthermore, a necessary and sufficient condition for an
index-n cyclic algebra (E/L, σ, γ) to be division is that

γn/p /∈ NmE/L(E×) (3)

for all primes p | n. This is a simple extension of a well-known result due to
A. Albert, for more details and a proof see [8, Prop. 3.6]. In what follows we
will refer to such a non-zero element γ ∈ OL as a non-norm element for E/L.

Remark 1 We recall that given a Dedekind ring R ⊂ L and an R-order O with
basis {x1, . . . , x2n} over R, the R-discriminant of O is the ideal

disc(O/R) =
(

det
(

trC/L(xixj)
n2

i,j=1

))
,

where tr(·) denotes the reduced trace, which will be defined in (4).
While the ring of algebraic integers is the unique maximal order in an

algebraic number field, an L-central simple division algebra may contain sev-
eral maximal orders. They all share the same discriminant [10, Thm. 25.3],
known as the discriminant dC of the algebra C. Given two OL-orders Γ1, Γ2,
it is clear that if Γ1 ⊆ Γ2, then disc(Γ2/OL) | disc(Γ1/OL). Consequently,
dC |disc(Γ/OL) for every OL-order Γ in C, and the ideal norm NmOL

(dC) is
the smallest possible among all OL-orders of C.
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2.3 Algebraic space–time codes from representations of orders

Let C = (E/L, σ, γ) be a cyclic division algebra of index n. We fix compat-
ible embeddings of L and E into C, and identify L and E with their im-
ages under these embeddings. The E-linear transformation of C given by left
multiplication by an element c ∈ C results in an L-algebra homomorphism
ρ : C → Mat(n,E), to which we refer to as the maximal representation. An
element c = c0 + uc1 + · · · + un−1cn−1 ∈ C can be identified via ρ with the
matrix

ρ(c) =




c0 γσ(cn−1) γσ2(cn−2) . . . γσn−1(c1)
c1 σ(c0) γσ2(cn−1) . . . γσn−1(c2)
...

...
...

...
cn−1 σ(cn−2) σ2(cn−3) · · · σn−1(c0)


 . (4)

The determinant nrC/L(c) := det(ρ(c)) and trace trC/L(c) := Tr(ρ(c)) define
the reduced norm and reduced trace of c ∈ C, respectively. We may shortly
denote nr = nrC/L and tr = trC/L, when there is no danger of confusion.

Next, given an order O in C, we may use the maximal representation to
define an injective map ρ : O ↪→ Mat(n,E) ⊂ Mat(n,C). If the center L of
the algebra is quadratic imaginary and O admits an OL basis, then ρ(O) is a
lattice, and any finite subset X of ρ(O) will be a space–time lattice code, in
the literature often referred to as algebraic space–time code.

Remark 2 Due to the algebra being division, the above matrices will be in-
vertible, and hence any algebraic space–time code constructed in this way will
have full diversity. Moreover, if c ∈ O\{0}, we have nr(c) ∈ OL\ {0} [10,
Thm. 10.1], guaranteeing nonvanishing determinants for L = Q or quadratic
imaginary.

We now relate the minimum determinant of a code to the density of the
underlying lattice ρ(O), which is the main motivation for choosing orders with
small discriminant. If the center L of the cyclic algebra is quadratic imaginary
and the considered order O admits an OL-basis, the volume ν(ρ(O)) of the
lattice relates to the discriminant of the order as [8]

ν(ρ(O)) = c(L, n) |disc(O/OL)| , (5)

where c(L, n) is a constant which depends on the center and [E : L]. Thus,
for fixed minimum determinant, the density of the code (cf. (2)) – and conse-
quently the coding gain – is maximized by minimizing the discriminant of the
order.

Example 1 Let E/L be a quadratic real extension of number fields with Galois
group Gal(E/L) = 〈σ〉. Let L be of class number 1 and OL, OE = OL[ω] the
respective rings of integers. We choose γ ∈ OL\{0} such that γ /∈ NmE/L(E×),
and define the cyclic division algebra

C = (E/L, σ, γ) = E ⊕ uE,
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where u2 = γ. We consider the natural order Onat of C and construct an
algebraic space–time code as a finite subset

X ⊂
{[
x1 + x2ω γ(x3 + x4σ(ω))
x3 + x4ω x1 + x2σ(ω)

] ∣∣∣∣ xi ∈ OL
}

= ρ(Onat).

The choice of fields (E,L) = (Q(i,
√

5),Q(i)) and element γ = i gives rise
to the Golden algebra and to the well-known Golden code [5].

The above example relates to the symmetric scenario, i.e., it has an under-
lying lattice that is full. Full lattices can be efficiently decoded when nr = nt,
and the same lattice codes can also be employed when nr > nt. There is no
simple optimal decoding method for symmetric codes, however, when nr < nt

5.
Building upon symmetric codes, we now briefly introduce block diagonal

asymmetric space–time codes [9], better suited for the asymmetric scenario.
Let F ⊂ L ⊂ E be a tower of field extensions with extension degrees [E :
L] = nr, [L : F ] = n, and [E : F ] = nt = nrn, and with Galois groups
Gal(E/F ) = 〈τ〉 and Gal(E/L) = 〈σ〉 = 〈τn〉. We fix a non-norm element
γ ∈ OL \ {0}, and consider the cyclic division algebra

C = (E/L, σ, γ) =

nr−1⊕

i=0

uiE.

Given any order O in C, we identify each element c ∈ O with its maximal
representation ρ(c) and construct the following infinite block-diagonal lattice
achieving the nonvanishing determinant property, provided that the base field
F is either Q or quadratic imaginary [9]:

L(O) =








ρ(c) 0 · · · 0
0 τ (ρ(c)) 0
...

. . .
...

0 · · · 0 τn−1 (ρ(c))


 ∈ Mat(nt,C)

∣∣∣∣∣∣∣∣∣
c ∈ O




.

Remark 3 The code rate [9] of a space–time code carved out from L(O) in
(complex) symbols per channel use is

R =

{
nn2r/nnr = nr if F is quadratic imaginary,

nn2r/2nnr = nr/2 if F = Q.

We point out that nr is the maximum code rate that allows for avoiding
accumulation points at the receiving end with nr receive antennas.

In summary, in order to construct an algebraic space–time code, we first
choose a central simple algebra over a suitable base field and then look for a
dense lattice in it. This amounts to selecting an adequate order in the algebra.
As motivated earlier, we will opt for natural orders as a compromise between
simplicity and maximal coding gain.

5 Having too few receive antennas will cause the lattice to collapse resulting in accu-
mulation points, since the received signal now has dimension 2nrnt < 2n2

t . Hence, partial
brute-force decoding of high complexity has to be carried out.
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3 Natural orders with minimal discriminant

As an illustration of the general algebraic setup, consider the tower of ex-
tensions depicted in Figure 1. In order to get the nonvanishing determinant 1

C = (E/L, σ, γ) =
nr−1⊕
i=0

uiE

E

nr

L

nr

F = Q(
√
d)

n

Fig. 1 Tower of Field Extensions.

property, we fix the base field F ∈ {Q,Q(i)}, as well as the extension degrees
n = [L : F ] and nr = [E : L]. With these parameters fixed, our goal is to find
an explicit field extension E/L with Gal(E/L) = 〈σ〉 and a non-norm element
γ ∈ OL \ {0} such that E/F is a cyclic extension, (E/L, σ, γ) is a cyclic divi-
sion algebra, and the absolute value |NmOF

(disc(Onat/OF ))| is the minimum
possible among all cyclic division algebras satisfying the fixed conditions. Our
constructions rely on some key properties of cyclic division algebras and their
orders that we will next present as lemmata.

Lemma 1 [8, Lem. 5.4] and [9, Prop. 5.3] Let (E/L, σ, γ) be a cyclic division
algebra of index nr and γ ∈ OL \ {0} a non-norm element. We have

disc(Onat/OL) = disc(E/L)nr · γnr(nr−1),

with disc(E/L) the OL-discriminant of OE. Hence, if F ⊂ L, then by the
discriminant tower formula

disc(Onat/OF ) = NmL/F (disc(Onat/OL)) · disc(L/F )n
2
r

= disc(E/F )nr ·Nm
nr(nr−1)
L/F (γ).

(6)

Lemma 2 [11, Thm. 2.4.26] Let L be a number field and (p1, p2) a pair of
norm-wise smallest prime ideals in OL. If we do not allow ramification on
infinite primes, then the smallest possible discriminant of all central division
algebras over L of index nr is

(p1p2)nr(nr−1). (7)
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We have arrived at the following optimization problem: in order to minimize
the discriminant disc(Onat/OF ) of a natural order of an index-nr L-central
division algebra over a fixed base field F ⊂ L, we must jointly minimize the
relative discriminant of the extension E/F and the relative norm of the non-
norm element γ.

Our findings are summarized in the following table and will be proved, row
by row, in the subsequent five theorems. Here, α is a root of the polynomial
X2+X−i and β denotes a root of the polynomial X3−(1+i)X2+5iX−(1+4i).

F n nr nt rate NmOF
(disc(Onat/OF )) L E γ

Q 1 2 2 1 22 · 32 Q Q(i
√

3) 2

Q 2 2 4 1 24 · 56 Q(
√

5) Q(ζ5) -4
Q(i) 2 2 4 2 24 · 173 Q(i, α) Q(i,

√
α) 1 + i

Q(i) 2 3 6 3 318 · 1312 Q(i, i
√

3) Q(i, i
√

3, β) 1+i
√

3
2

Q(i) 3 2 6 2 26 · 312 · 138 Q(i, β) Q(i, i
√

3, β) 1 + i

Table 1 Main results summarized.

Remark 4 It is often preferred that |γ| = 1 for balanced transmission power.
However, there are good ‘remedy’ techniques for the case when |γ| > 1, see
e.g., [6,12].

3.1 General Strategy

We briefly elaborate on the three-step strategy that we will follow to prove
each of the theorems. Let F , n and nr be fixed.

Step 1. We start by finding an explicit cyclic extension E/L of degree nr,
F ⊂ L, such that [L : F ] = n and E/F is cyclic with |NmOF

(disc(E/F ))|
smallest possible. In the cases where F = Q, our extension E/F will either
be quadratic or quartic cyclic, and we simply use well-known formulas for
computing disc(E/Q). For F = Q(i) we resort to the following results from
Class Field Theory (all the details can be found in [13]).

Let F ⊂ E be an abelian extension of number fields. For each prime p of
F that is unramified in E there is a unique element Frobp ∈ Gal(E/F ) that
induces the Frobenius automorphism x 7→ x]kp on the residue field extensions
kp ⊂ kq for the primes q in E extending p. The order of Frobp in Gal(E/F )
equals the residue class degree [kq : kp], and the subgroup 〈Frobp〉 of Gal(E/F )
is the decomposition group of p. The Artin map for E/F is the homomorphism

ψE/F : IF (disc(E/F )) −→ Gal(E/F )

p 7−→ Frobp

on the group IF (disc(E/F )) of fractional OF - ideals generated by the prime
ideals p of F that do not divide the discriminant disc(E/F ). These are unram-
ified in E. For an ideal a in IF (disc(E/F )) we call ψE/F (a) the Artin symbol
of a in Gal(E/F ).
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The Artin Reciprocity Law states that if F ⊂ E is an abelian extension,
then there exists a nonzero ideal m0OL such that the kernel of the Artin
map ψE/L contains all principal OL-ideals xOF with x totally positive and
x ≡ 1 (mod m0). We define a modulus of L to be a formal product m = m0m∞,
where m0 is a nonzero OE-ideal and m∞ is a subset of the real primes of L.
We write x ≡ 1 (mod ×m) if ordp(x− 1) ≥ ordp(m0) at the primes p dividing
the finite part m0 and x is positive at the real primes in the infinite part m∞.
In the language of moduli, Artin’s Reciprocity Law asserts that there exists a
modulus m such that the kernel of the Artin map contains the ray group Rm

of principal OL-ideals xOL generated by elements x ≡ 1 (mod ×m). The set
of these admissible moduli for L/E consists of the multiples of some minimal
modulus fE/L, the conductor of L/E. The primes occurring in fE/L are the
primes of L, both finite and infinite, that ramify in E.

If m = m0m∞ is an admissible modulus for L/E, and Im denotes the group
of fractional OL-ideals generated by the primes p coprime to m0, then the
Artin map induces a surjective homomorphism

ψE/L : Clm = Im/Rm −→ Gal(E/L),

[p] 7−→ Frobp,
(8)

where Clm is the ray class group, and ker(ψE/F ) = Am/Rm with

Am = NmE/F (ImOF
) ·Rm. (9)

The existence theorem from Class Field Theory states that for every mod-
ulus m of F , there exists an extension F ⊂ Hm for which the map in (8) is an
isomorphism. Inside some fixed algebraic closure of F , the ray class field Hm

is uniquely determined as the maximal abelian extension of F in which all the
primes in the ray group Rm split completely. Conversely, if F ⊂ E is abelian
then E ⊂ Hm whenever m is an admissible modulus for F ⊂ E. For E = Hm,
we have Am = Rm in (9) and an Artin isomorphism

Clm ' Gal(Hm/F ). (10)

For all m, the ray group Rm is contained in the subgroup Pm ⊂ Im of
principal ideals in Im, with Im/Pm = ClF , the class group of F . There is a
natural exact sequence

O×F −→ (OF /m)× −→ Clm −→ ClF −→ 0, (11)

and the residue class in Clm of x ∈ OL coprime to m0 in the finite group
(OF /m)× = (OF /m)××∏p|m∞〈−1〉 consists of its ordinary residue class mod-

ulo m0 and the signs of its images under the real primes p | m∞.
Finally, we compute the discriminant disc(E/F ) using Hasse’s conductor-

discriminant formula

disc(E/F ) =
∏

χ:Im/Am→C×
f(χ)0, (12)

where χ ranges over the characters of the finite group Im/Am ' Gal(E/F )
and f(χ)0 denotes the finite part of the conductor f(χ) of the ideal group Aχ
modulo m satisfying Aχ/Am = kerχ.
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Step 2. Unfortunately, having |NmOF
(disc(E/F ))| smallest possible is not

sufficient for |NmOF
(disc(Onat/OF ))| to be smallest possible as well. Using

(6) and (7) we can derive a positive lower bound on the size of a non-norm
element γ ∈ OL as

∣∣NmOL
(γnr−1)

∣∣ ≥
∣∣NmOL

(p1p2)nr−1
∣∣

|NmOL
(disc(E/L))| =: λE,L ∈ N, (13)

where (p1, p2) is a pair of norm-wise smallest prime ideals in OL. If disc(E/L)
is minimal and λE,L > 1, as will be the case in Theorems 1 and 2 below, we
need to balance the size of disc(E/F ) and γ in order to achieve minimality of
|NmOF

(disc(Onat/OF ))|.
In the last three theorems, we will then proceed as follows. Given two cyclic

algebras (E/L, σ, γ) and (E′/L′, σ′, γ′) of index nr, where 〈σ〉 = Gal(E/L),
〈σ′〉 = Gal(E′/L′) and such that Q(i) ⊂ L,L′, we have by (6), since norms in
Q(i) are positive,

NmZ[i](disc(Onat/Z[i])) ≤ NmZ[i](disc(O′nat/Z[i]))

⇔
DE/L(γ) ≤ DE′/L′(γ

′),

(14)

with
DE/L(γ) := NmZ[i](disc(E/Q(i))) ·NmOL

(γ)nr−1. (15)

Our strategy will be to fix a non-norm element γ ∈ OL of smallest possible
norm, compute DE/L(γ) and, along the lines of Step 1, compare DE/L(γ)
with DE′/L′(γ

′), where E′/L′ runs over all degree-nr cyclic field extensions
such that Q(i) ⊂ L′ and γ′ ∈ OL is a non-norm element for E′/L′ of smallest
possible norm.

Step 3. If disc(E/L) is smallest possible and λE,L < 1, as will be the case in
Theorems 3, 4 and 5, the optimal situation would be to be able to choose a
non-norm element γ which is a unit, γ ∈ O×L . Hasse’s Norm Theorem will help
us decide whether such an element exists and, if it does, how to find it. We use
the following strategy from the theory of local fields to compute NmK/k(K×)
when K/k is an extension of non-Archimedean local fields (all the details can
be found in [14, Chp. 7]).

Let k be a field, complete under a discrete valuation vk. Let Ak be its
valuation ring with maximal ideal mk, generated by a local uniformizing pa-
rameter πk with vk(πk) = 1, and k = Ak/mk the residue field, where |k| = qk
is a power of a rational prime p. Denote by Uk = Ak − mk the multiplicative
group of invertible elements A×k of Ak, and set U ik = 1 + mik, i ≥ 1. Then,
Uk = Sk × U1

k , where Sk is a complete set of representatives of k, and

k× = 〈πk〉Uk = Sk × 〈πk〉 × U1
k .

As k
×

is cyclic of order qk−1, we may take Sk = {0}∪
{
ζiqk−1 | 1 ≤ i ≤ qk − 1

}
,

where ζn denotes a primitive n-th root of unity in k.
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Let K be finite separable extension of k, AK the integral closure of Ak in
K, and let vK , mK , πK , K, qK and U iK be defined as above. As usual, we
denote the ramification index and residue degree of mK in K/k by eK/k and

fK/k, respectively. We have eK/k · fK/k = [K : k] and πk = π
eK/k

K × u with u

a unit, so that NmK/k(πK) = π
fK/k

k .
The group NmK/k(UK) is a subgroup of Uk with [Uk : NmK/k(UK)] =

eK/k, and NmK/k(U1
K) ⊂ U1

k with [U1
k : NmK/k(U1

K)] a power of p. Conse-
quently, if the extension is unramified, i.e. eK/k = 1, then NmK/k(UK) = Uk
and every unit is a norm.

Suppose hereinafter that K/k is a totally tamely ramified extension, thus
fK/k = 1, (p, eK/k) = 1, K = k, qK = qk and the local conductor, i.e., the

smallest integer f such that Ufk ⊂ NmK/k(K×), is 1 ([15, Aside 1.9]). Then

NmK/k(ζqK−1) = ζ
[K:k]
qk−1 and NmK/k(U1

K) = U1
k . Consequently,

NmK/k(K×) = 〈NmK/k(πK), ζ
[K:k]
qk−1 〉U

1
k .

Since πK is not a unit, we conclude that in the totally tamely ramified case,

Uk ∩NmK/k(K×) = 〈ζ [K:k]
qk−1 〉U

1
k . (16)

With the above information at hand, we go back to the extension E/L
found in Step 1 with λE,L < 1. In order to produce a suitable unit γ ∈ O×L
which is not a local norm at some prime ramifying in the extension, we compute

the ramified primes as well as 〈ζ [K:k]
qk−1 〉U1

k in the corresponding local extension
K/k. Considering OL as a subset of Ak and using Hensel’s lemma, we look for

a unit in O×L such that its image in k lies outside 〈ζ [K:k]
qk−1 〉. Unfortunately, if

O×L ⊂ 〈ζ
[K:k]
qk−1 〉U1

k , as will be the case in Theorems 3 and 5, a non-norm unit for
E/L will not exist. In those cases the sizes of disc(E/F ) and γ in (6) must be
balanced using (15) in order to achieve minimality of |NmOF

(disc(Onat/OF ))|.

3.2 Main Results

We are now ready to state and prove the main results of this article.

Theorem 1 Let Q ⊂ E = Q(
√
d), d ∈ Z square-free, and Gal(E/L) = 〈σ〉.

Any cyclic division algebra (E/Q, σ, γ) of index 2 satisfies |disc(Onat/Z)| ≥ 36,
and equality is achieved for E = Q(i

√
3), γ = 2.

Proof : The proof follows the strategy described above.

Step 1. The smallest possible quadratic discriminant over Q is disc(E/Q) = 3,

corresponding to the field E = Q(i
√

3) = Q(ω), ω a primitive cubic root of
unity. Let Gal(E/Q) = 〈σ〉.
Step 2. A pair of smallest primes in Z is (2, 3), so that λE,Q = 6

3 > 1 (cf. (13)).
Thus, any non-norm element γ ∈ Z satisfies |γ| ≥ 2.
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To ensure that we can choose γ = 2, we first show that the equation
x2 + 3y2 = 2 has no solution in Q. Consequently, 2 6∈ NmE/Q(E×) and

(Q(i
√

3)/Q, σ, 2) is a division algebra with disc(Onat/Z) = 36.

Suppose that
(
a
b

)2
+ 3

(
c
d

)2
= 2, with a, b, c, d ∈ Z and such that (a, b) =

(c, d) = 1. Then,
(ad)2 + 3(bc)2 = 2(bd)2. (17)

It is easy to deduce from (17) that 3s, s ≥ 0, is the largest power of 3 dividing
b if and only if it is the largest power of 3 dividing d. If (3, bd) = 1, then
equation (17) has no solution in Z, as 2 is not a square mod 3. Set b = 3sb′

and d = 3sd′, with (3, b′d′) = 1, s ≥ 1. Substituting into (17) yields

(ad′)2 + 3(b′c)2 = 2.3s(b′d′)2,

which is absurd, since (3, ad′) = 1.
Next, we use (6) to see that for E′ = Q(

√
d) with d 6= 1,−3 a square-

free integer and Gal(E′/Q) = 〈σ′〉, the cyclic division algebra (E′/Q, σ′, γ′)
satisfies |disc(O′nat/Z)| > 36 for any choice of non-norm element γ ∈ Z.

i) If d ≡ 2, 3 (mod 4), then |disc(E′/Q)| = 4|d| ≥ 8, and (6) guarantees that
for any γ′ ∈ Z, |disc(O′nat/Z)| ≥ 82γ′2 ≥ 64.

ii) If d ≡ 1 (mod 4) and |d| ≥ 7, then |disc(E′/Q)| = |d| and (6) implies
|disc(O′nat/Z)| ≥ 72γ′2 ≥ 49.

iii) For d = 5, we have disc(E′/Q) = 5 and λE′,Q = 6
5 = 2 (cf. (13)). Using

(6) we conclude that for any non-norm element γ′ ∈ Z, disc(O′nat/Z) ≥
52 · 22 > 36.

ut
Theorem 2 Let Q ⊂ L ⊂ E with [E : Q] = 4, [E : L] = 2 and Gal(E/L) =
〈σ〉. If (E/L, σ, γ) is a cyclic division algebra, then NmZ(disc(Onat/Z)) ≥
24 · 56. Equality is achieved for L = Q(

√
5), E = Q(ζ5) and γ = −4, with ζ5 a

primitive 5th root of unity.

Proof : The fields L and E can be uniquely expressed as L = Q(
√
D) and

E = Q
(√

A(D +B
√
D)

)
, with A,B,C,D ∈ Z such that A is square-free

and odd, D = B2 + C2 is square-free, B,C > 0 and (A,D) = 1 ([16], [17]).

Step 1.

i) If D ≡ 0 (mod 2), then disc(E/Q) = 28 · A2 ·D3 ≥ 211. The lower bound
is attained for D = 2, B = C = 1, and |A| = 1. Using (6) we deduce that
|disc(Onat/Z)| ≥ 222 > 24 · 56 for any choice of γ ∈ OL.

ii) If D ≡ B ≡ 1 (mod 2), then disc(E/Q) = 26 · A2 · D3 ≥ 26 · 53. This
expression attains its minimum value for D = 5 and |A| = B = 1. Hence,
|disc(Onat/Z)| ≥ 212 · 56 > 24 · 56 for any choice of γ ∈ OL.

iii) If D ≡ 1 (mod 2), B ≡ 0 (mod 2) and A + B ≡ 3 (mod 4), we have
disc(E/Q) = 24 · A2 · D3 ≥ 24 · 53. The minimum value is attained for
D = 5, B = 2, and A = 1, so that |disc(Onat/Z)| ≥ 28 · 56 > 24 · 56 for any
choice of γ ∈ OL.
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iv) Finally, if D ≡ 1 (mod 2), B ≡ 0 (mod 2), A + B ≡ 1 (mod 4) and A ≡
±C (mod 4), we have disc(E/Q) = A2 · D3 ≥ 53. The minimum of this
expression is attained for D = 5, B = 2 and A = −1, corresponding to the
fields E = Q(ζ5) and L = Q(ζ5 + ζ−15 ) = Q(

√
5).

The last case provides us with a field extension E/L = Q(ζ5)/Q(
√

5) with
disc(E/L) = 5 and disc(E/Q) = 53. If we show |disc(Onat/Z)| = 24 · 56 for
γ = −4 a non-norm element, the theorem will be proved.

Step 2. The two smallest prime ideals in OL are p2 = 2OL and p5, a factor of
5OL = p5p

′
5, of respective norms 4 and 5. Hence, λE,L = 4, and any suitable

non-norm element for E/L will satisfy |NmOL
(γ)| ≥ 4 (cf. (13)). We show

that −4 6∈ NmE/L(E×). Since the norm is multiplicative and 4 = NmE/L(2), it
suffices to show that −1 /∈ NmE/L(E×). Suppose that x ∈ L with NmE/L(x) =
−1. Then NmE/Q(x) = 1, and we can write x = ζv with ζ a root of unity and
v ∈ L× [14, Prop. 6.7]. Consequently, −1 = NmE/L(ζ) · NmE/L(v) = v2. But
−1 is not a square in L. ut

In the remaining cases, our base field will be F = Q(i). For each rational
prime p, we write pZ[i] = p2p, ppp

′
p or pp = (p) for the cases where p is ramified,

split or inert in Z[i], respectively.

Theorem 3 Let Q(i) ⊂ L ⊂ E, with [E : Q(i)] = 4 and [E : L] = 2.
Let Gal(E/L) = 〈σ〉. Any cyclic division algebra (E/L, σ, γ) under these as-
sumptions satisfies NmZ[i](disc(Onat/Z[i])) ≥ 24 ·176, with quality attained for
L = Q(i, α), E = Q(i,

√
α) and γ = 1+ i, with α a root of f(X) = X2 +X− i.

Proof :
Step 1. We start by finding the smallest possible discriminant over Q(i)
for cyclic extensions of degree 4. Let E any be any such extension. By the
existence theorem of Class Field Theory, we know that E is contained in the
ray class field Hm, where m is an admissible modulus for the extension E/Q(i).
The smallest ray class field will have conductor f = fE/Q(i), which, since Q(i)
is a complex field, will be an ideal of Z[i].

The restriction of the Artin map (8) to If gives us a canonical isomorphism
Gal(Hf/Q(i)) ' If/Pf = Cf (cf. (10)), which implies [Hf : Q(i)] = |Cf|. Fur-
thermore, since the class group CQ(i) is trivial and Z[i]× = 〈i〉, by (11) we
have the exact sequence

0→ 〈i〉 → (Z[i]/f)× → Cf → 0.

Thus, Cf ' (Z[i]/f)×/Im〈i〉. The ray class field of conductor 2 is trivial, which
is not our case, so f does not divide 2. The map 〈i〉 → (Z[i]/f)× is injective, so
that [Hf : Q(i)] = 1

4 |(Z[i]/f)×|. Consequently,

4 = [E : Q(i)] | [Hf : Q(i)]⇒ 16 |
∣∣(Z[i]/f)×

∣∣ = Nm(f) and Nm(f) ≥ 17.

Fortunately we can find ideals of norm 17 with the required properties. We
fix f = 1 + 4i (or f = 1 − 4i), so that the ray class field of conductor f is pre-
cisely Hf = Q(i, 4

√
1 + 4i). Since f is a prime ideal, all non-trivial characters of
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Gal(Hf/Q(i)) have conductor f, so that by the conductor-discriminant formula
(12), disc(Hf/Q(i)) = f3. The absolute discriminant is disc(Hf/Q) = 173 · 44.

We choose L = Q(i,
√

1 + 4i) and E = Hf, and prove that this choice
yields the smallest possible discriminant of a cyclic extension of degree 4 over
Q(i). To that end, let m be any ideal of Z[i] of norm different from 17 for
which 16 | |(Z[i]/m)×|, and let E′ ⊂ Hm be a subfield with E′/Q(i) cyclic of
degree 4. Assume that disc(E′/Q) ≤ 173 · 44. Since E′ has conductor m, by
the minimality of m the quartic characters of Gal(E′/Q(i)) have conductor m.
The quadratic character could have smaller conductor, but it cannot be smaller
than 3, since Q(i) admits no ray class field of conductor m with Nm(m) < 9.
Using the conductor-discriminant formula and as norms in Q(i) are positive,
we have

9 ·Nm(m2) ≤ Nm(disc(E′/Q(i))),

⇒ 9 ·Nm(m)2 · 44 ≤ disc(E′/Q) < 173 · 44,
⇒ Nm(m) < 23, 36 . . . ,

(18)

and so |(Z[i]/m)∗| < 23. Since 16 | |(Z[i]/m)×|, we have |(Z[i]/m)×| = 16. But
then necessarily Nm(m) = 17, a contradiction to our assumption.

Step 2. Let OL = Z[i, α], with α a root of f(X) = X2 + X − i. A pair of
norm-wise smallest primes in OL is (p2, p5), of respective norms 2 and 5. Con-

sequently, λE,L = 202

176 < 1 (cf. (13)), so that NmZ[i](disc(Onat/Z[i]) will achieve
the smallest possible value among all central division algebras satisfying the
given conditions for a unit non-norm element γ ∈ O×L . Unfortunately, as we
will show next, there is no suitable unit in this case, forcing us to consider
other non-norm elements.

Step 3. By the Hasse Norm Theorem, to show that an element in L× is not
a norm, it suffices to show that it is not a local norm at some prime of E.
We need to produce a unit γ ∈ O×L with γ /∈ NmE/L(E×), and since in an
unramified local extension all units are norms, we consider the local extension
corresponding to the ramifying prime f = (1 + 4i)Z[i]. It is not difficult to
verify that fOL = p2L, pLOE = p2E and NmL(pL) = NmE(pE) = 17.

Let k = LpL
and K = EpE

be the completions of E and L with respect
to the discrete valuations associated to the primes pL of L and pE of E. Then
K/k is a totally and tamely ramified cyclic local extension of degree 2, with

K = k = F17. Using (16), Uk ∩ NmK/k(K×) = 〈ζ216 〉U (1)
L and, by Hensel’s

lemma, an element in O×L will be a non-norm element for E/L if and only if
its image in F17 is not a square in F×17.

Since NmL/Q(x) = NmQ(i)/Q(NmL/Q(i)(x)) and the norm of every unit in

Z[i] is 1, we have NmL/Q(O×L ) = {12}. Consequently, the norm of the image

in F17 of every element in O×L is a square. Over finite fields, this is the case
if and only it such an image is itself a square, which for its part implies that
every element in O×L maps to 〈ζ216 〉 and, hence, is in the image of the map
NmE/L. We conclude that there exists no unit which is a non-norm element
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for E/L, forcing us to use(15) to balance the sizes of disc(E/Q(i)) and γ in
(6) in order to achieve minimality of Nm(disc(Onat/Z[i])).

Since the norm of an element x ∈ OL is the product of the norms of the
prime ideals dividing x, it is easy to verify that the smallest possible norm
in OL is 4. We set γ = 1 + i ∈ OL with NmL(1 + i) = 4, which yields
DE/L(γ) = 173× 22. In order to study the possible values of DE′/L′(γ

′), let m
be any ideal of Z[i] of norm different from 17, for which 16 | |(Z[i]/m)×|, and
let E′ be a subfield of the ray class field Hm, with E′/Q(i) cyclic of degree 4.

The smallest possible norms for m are given by

4 = Nm(p17p2), 49 = Nm(p7), 64 = Nm(p)6,

68 = Nm(p17p
2
2), 128 = Nm(1 + i)7, . . .

Using (18), we see that 9 · Nm(m)2 ≤ Nm(disc(E′/Q(i))), so that we only
need to consider the cases for which 9 · Nm(m)2 ≤ 173 × 22 ⇒ Nm(m) ≤
46, 728..., i.e., only the case m = (1 + 4i)(1 + i).

We compute Nm(disc(E′/F )). The smallest quadratic discriminant for an
extension in which both (1+ i) and a prime of norm 17 ramify is (4+ i)(1+ i)2,
corresponding to the extension L′ = Q(

√
4 + i). Thus, E′ = Q( 4

√
4 + i), with

disc(E′/Q(i)) = (4+i)3(1+i)4 and Nm(disc(E′/Q(i)) = 173 ·24. Consequently,
for all γ′ ∈ OL′ , DE′/L′(γ

′) ≥ 173×24 > 173×22 = DE/L(γ). By (14), we are
done.

ut

Theorem 4 Let Q(i) ⊂ L ⊂ E with [E : Q(i)] = 6 and [E : L] = 3. Any
cyclic division algebra (E/L, σ, γ) satisfies Nm(disc(Onat/Z[i])) ≥ 318 · 1312.

The lower bound is achieved for L = Q(ζ12), E = L(β) and γ = 1+i
√
3

2 ∈ O×L ,
where ζ12 is a primitive 12th root of unity and β a root of f(X) = X3 − (1 +
i)X2 + 5iX − (1 + 4i).

Proof :

Step 1. We start by finding the smallest possible discriminant over Z[i] for
cyclic extensions of degree 6. We denote by L2, L3 and E = L2L3 cyclic
extensions of degree 2 and 3 over F = Q(i) and their compositum, respectively.
Using (11), (12) and arguments similar to those used in Theorem 3, we deduce
that the smallest possible cubic discriminant is p213 = (2− 3i)2, corresponding
to the extension Q(i, β)/Q(i) [18, Table p. 883, row 32], where β is a root of
the polynomial f(X) = X3 − (1 + i)X2 + 5iX + (−1− 4i).

Since we want to minimize disc(L2L3/Q(i)), the use of (11), (12) requires
that we consider separately the cases where m is and is not relatively prime
to p13, and check which case yields a smaller value for this discriminant.

i) (m, p13) = 1. The smallest possible discriminant corresponds to the exten-
sion L2 = Q(i)(

√
−3) = Q(ζ12) of Q(i), with disc(L2L3/Q(i)) = 33p413, of

norm Nm(disc(L2L3/Q(i))) = 134 · 36.
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ii) (m, p13) 6= 1. If disc(L′2/Q(i)) = p13 × a for some ideal a 6= (1), the best
possibility is p13p

2
2, corresponding to the extension L′2 = Q(i)(

√
3− 2i) of

Q(i) with discriminant ideal p13×p22. This choice yields6 disc(L′2L3/Q(i)) =
p513 × p62, with Nm(disc(L′2L3/Q(i))) = 135 · 26 > 134 · 36.

We conclude that the smallest possible discriminant over Z[i] for cyclic
extensions of degree 6 is 36 · 134, achieved in the extension E = L2L3. The

involved rings of integers are O2 = Z
[
i, i+

√
3

2

]
and O3 = Z[i, β]. The discrim-

inants of the extensions involved are summarized in Table 2 below.

disc(·/Q(i)) NmZ[i] disc(·/L2) NmO2
disc(·/L3) NmO3

E p33p
4
13 36 · 134 q213q

′2
13 134 s3 36

L3 p213 132

L2 p3 32

Table 2 Relative discriminants of the field extensions involved.

Step 2. A pair of smallest primes inO2 is (q2, q3) of norms 4 and 9, respectively,
where q2 is any prime above 2, and q3 is any prime above 3. Consequently,

λE,L = 4292

134 < 1 (cf. (13)), and NmZ[i](disc(Onat/Z[i]) will achieve its smallest

possible value for a unit non-norm element γ ∈ O×2 , γ /∈ NmE/L2
(E×).

Step 3. To simplify notation, we set, L2 = L, and O2 = OL. We prove that

the unit γ = 1+i
√
3

2 ∈ O×L satisfies γ /∈ NmE/L(E×).
The prime q13 ramifies in the extension E/L. Let t13 be a prime of E

extending q13, and k = Lq13 , K = Et13 be the completions of L and E with
respect to the corresponding valuations, with |k| = |K| = 13.

The local extensionK/k is a totally and tamely ramified extension of degree

3. Since the image of the unit γ = 1+i
√
3

2 in the residue field F13 is 4, which

has multiplicative order 6, we deduce that γ 6∈ 〈 ζ312〉U (1)
L . By (16) and Hasse’s

Norm Theorem, the theorem follows. ut

Theorem 5 Let Q(i) ⊂ L ⊂ E with [E : Q(i)] = 6 and [E : L] = 2, and let
(E/L, σ, γ) be a cyclic division algebra. Then, Nm(disc(Onat/Z[i])) ≥ 26 · 312 ·
138 with equality for γ = 1 + i and E = LL2, where L2 = Q(i, i

√
3) = Q(ζ12)

and L = Q(i, β) with β a root of the polynomial f(X) = X3 − (1 + i)X2 +
5iX − (1 + 4i).

Proof :
Step 1, 2. Let E and L be as in the statement of the theorem. By Theo-
rem 4, the same choice of field E ensures the minimality of the discriminant
disc(E/Q(i)) = 36 · 134 among all possible discriminants of cyclic sextic ex-
tensions over Q(i).

6 The factor p513 comes from the fact that E/L3 is tamely ramified and, thus, has as
discriminant the prime q13 lying above 13 in L3.
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Let L = Q(i, β). A pair of smallest primes in OL is (s2, s13), of norms

23 and 13, respectively. Consequently, λE,L = 2313
33 < 1 (cf. (13)), and the

norm NmZ[i](disc(Onat/Z[i]) will attain its smallest possible value for a unit

non-norm element γ ∈ O×L .

Step 3. We encounter here the same situation as in Theorem 3. On the one
hand, since NmL/Q(x) = NmQ(i)/Q(NmL/Q(i)(x)) and the norm of every unit

in Z[i] is 1, every element in O×L maps to a square in the residue field. On
the other hand, [E : L] = 2, and (16) tells us that O×L ∩NmE/L(E×) consists

of those elements in O×L which map to squares in the residue field of any
ramifying prime. Consequently, every element in O×L is in the image of the
map NmE/L, and there exists no non-norm unit element for E/L. We thus
need to balance the sizes of disc(E/Q(i)) and γ in (6) to achieve minimality
of Nm(disc(Onat/Z[i])). We observe that this argument holds for any choice
of E and L, as long as Q(i) ⊂ L and [E : L] = 2.

We fix γ = 1 + i of norm 23, corresponding to the smallest possible norm
in OL. Substituting into (15), we get DE/L(γ) = 36 · 134 · 23. We conclude the
proof by showing that DE/L(γ) ≤ DE′/L′(γ

′) for any other choice of E′, L′

and γ′ under the given assumptions.

Any possible E′ 6= E is of the form E′ = L′2L with L′2 6= L2 or E′ = L′2L
′

with L′ 6= L (L′2 could be equal to L2) and [L′ : Q(i)] = 3. In the first case,
by the minimality arguments in the choice of L2 and γ, for all choices of L′2
and γ′ ∈ OL \ O×L ,

36 · 134 · 23 ≤ Nm(disc(L′2L/Q(i))) ·Nm(γ),

and so DE/L(γ) ≤ DL′2L/L
(γ′).

Suppose next that E′ = L′2L
′ with L′ 6= L and [L′ : Q(i)] = 3. As we saw

in Step 1 of the proof of Theorem 4, the conductor of a cubic extension L′ 6= L
of Q(i) is ideal m ∈ Z[i] of norm greater than 13 and such that |(Z[i]/m)×|
is a multiple of 12. By the conductor-discriminant formula, the corresponding
extension L′ will have discriminant m2, and by the minimality in the choice of
L2, Nm(disc(L2L

′/Q(i)) = 36 Nm(m)4 ≤ disc(L2L
′
3/Q(i)) for any quadratic

extension L′2 of Q(i). Consequently,

36 Nm(m)4 · 2 ≤ disc(L′3L2/Q(i)) ·Nm(γ′) = DE′/L′(γ
′)

for all choices of γ′ ∈ O′L \ O×L . Now,

36 Nm(m)4 · 2 ≥ 36 · 134 · 23 ⇔ Nm(m) ≥ 13
√

2 > 13.

We conclude that DE/L(γ) ≤ DE′/L′(γ
′) for all possible choices of E′, L′ and

γ′, and the theorem follows. ut
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4 Conclusions

In this article we have introduced the reader to a technique used in multiple-
input multiple-output wireless communications known as space–time coding.
Within this framework, we have recalled several design criteria which have been
derived in order to ensure a good performance of codes constructed from repre-
sentations of orders in central simple algebras. In particular, we have explained
why it is crucial to choose orders with small discriminants as the underlying
algebraic structure in order to maximize the coding gain. While maximal or-
ders achieve the minimal discriminant and hence the maximal coding gain
among algebraic space–time codes, we have motivated why in practice it may
sometimes be favorable to use the so-called natural orders instead. However,
one should bare in mind that orthogonal lattices have yet additional benefits
such as simple bit labeling and somewhat simpler encoding and decoding, so
there is a natural tradeoff between simplicity and coding gain.

For the base fields F = Q or F imaginary quadratic (corresponding to the
most typical signaling alphabets), and pairs of extension degrees (nt, nr) in an
asymmetric channel setup, we have computed an explicit number field exten-
sion (E/L) and a non-norm element γ ∈ OL\{0} giving rise to a cyclic division
algebra whose natural order Onat achieves the minimum discriminant among
all cyclic division algebras with the same degree and base field assumptions.
This way we have produced explicit space–time codes attaining the optimal
coding gain among codes arising from natural orders.
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