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7 On extremal double circulant self-dual codes of

lengths 90–96

T. Aaron Gulliver∗ and Masaaki Harada†

Abstract

A classification of extremal double circulant self-dual codes of lengths
up to 88 is known. We give a classification of extremal double circulant
self-dual codes of lengths 90, 92, 94 and 96. We also classify double cir-
culant self-dual codes with parameters [90, 45, 14] and [96, 48, 16]. In
addition, we demonstrate that no double circulant self-dual [90, 45, 14]
code has an extremal self-dual neighbor, and no double circulant self-
dual [96, 45, 16] code has a self-dual neighbor with minimum weight
at least 18.

1 Introduction

A (binary) [n, k] code C is a k-dimensional vector subspace of F
n
2 , where

F2 denotes the finite field of order 2. All codes in this note are binary.
The parameter n is called the length of C. The weight wt(x) of a vector
x ∈ F

n
2 is the number of non-zero components of x. A vector of C is a

codeword of C. The minimum non-zero weight of all codewords in C is
called the minimum weight of C and an [n, k] code with minimum weight
d is called an [n, k, d] code. The weight enumerator W (C) of C is given
by W (C) =

∑n
i=0Aiy

i where Ai is the number of codewords of weight i in
C. Two codes are equivalent if one can be obtained from the other by a
permutation of coordinates. The dual code C⊥ of a code C of length n is
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defined as C⊥ = {x ∈ F
n
2 | x ·y = 0 for all y ∈ C}, where x ·y is the standard

inner product. A code C is called self-dual if C = C⊥. A self-dual code C is
called doubly even and singly even if all codewords have weight ≡ 0 (mod 4)
and if some codeword has weight ≡ 2 (mod 4), respectively.

It was shown in [15] that the minimum weight d of a doubly even self-
dual code of length n is bounded by d ≤ 4[n/24] + 4. We call a doubly
even self-dual code meeting this upper bound extremal. The largest possible
minimum weights of (singly even) self-dual codes of lengths up to 72 are
given in [3, Table I]. This work was extended to lengths up to 100 in [5,
Table VI] (see [6, Table 2] and [13, Table I]). According to [10], in this note,
we say that a singly even self-dual code with the largest possible minimum
weight given in [3, Table I] and [5, Table VI] is extremal. The largest possible
minimum weight among singly even self-dual codes of lengths 90, 92, 94 and
96 is 16, 16, 18 and 18, respectively. Currently, it is not known if an extremal
self-dual [90, 45, 16] code exists. There is a self-dual [90, 45, 14] code [5].
Many extremal self-dual [92, 46, 16] codes are known (see [4], [7], [14], [17]
and [18], and references [5] and [10] in [14]). Currently, it is not known if
an extremal self-dual [94, 47, 18] code exists. There is a self-dual [94, 47, 16]
code [13]. Currently, it is not known if an extremal doubly even self-dual
[96, 48, 20] code, or an extremal singly even self-dual [96, 48, 18] code, exists.
There is a doubly even self-dual [96, 48, 16] code (see [5]), and a singly even
self-dual [96, 48, 16] code [6].

Let Dp and Db be codes with generator matrices of the form

(

In R
)

(1)

and










0 1 · · · 1
1

In+1
... R′

1











, (2)

respectively, where In is the identity matrix of order n, and R and R′ are
n× n circulant matrices. An n× n circulant matrix has the form











r0 r1 r2 · · · rn−1

rn−1 r0 r1 · · · rn−2
...

...
...

...
r1 r2 r3 · · · r0











2



so that each successive row is a cyclic shift of the previous one. The codes
Dp and Db are called pure double circulant and bordered double circulant,
respectively. The two families are called double circulant codes. Many of the
best known self-dual codes are double circulant codes (see [5], [8], [9], [10]
and [12]). Further, constructions exist that provide double circulant self-
dual codes with the largest known minimum weight (see [11] and [16]). The
bordered double circulant construction provides self-dual codes only when the
length is ≡ 0 (mod 4). In addition, it is known [8] that there is no bordered
double circulant singly even self-dual code of length n ≡ 0 (mod 8).

A classification of extremal double circulant self-dual codes of lengths up
to 88 was given in [9], [10] and [12]. In this note, this work is extended to
length 96. Our exhaustive search shows that there is no extremal double
circulant self-dual [90, 45, 16] code. We also give a classification of double
circulant self-dual [90, 45, 14] codes. In addition, we demonstrate that every
double circulant self-dual [90, 45, 14] code has no extremal self-dual neighbor.
We give a classification of extremal double circulant self-dual codes of length
92. Our exhaustive search shows that there is no double circulant self-dual
[94, 47, d] code with d ≥ 16. We give a classification of double circulant
self-dual [96, 48, d] codes with d ≥ 16. In addition, we demonstrate that
every double circulant self-dual [96, 48, 16] code has no self-dual neighbor
with minimum weight at least 18.

2 Double circulant self-dual [90, 45, d] codes with

d ∈ {14, 16}

Using an approach similar to that given in [9], [10] and [12], our exhaustive
search found all distinct double circulant self-dual [90, 45, d] codes with d ≥
14. This was done by considering all 45 × 45 orthogonal circulant matrices
satisfying the condition that the weight of the first row is congruent to 1
(mod 4) and the weight is greater than or equal to d− 1. Since a cyclic shift
of the first row of some codes defines an equivalent code, the elimination of
cyclic shifts substantially reduces the number of codes which must be checked
further for equivalence to complete the classification. It is useful to use the
fact that self-dual codes with generator matrices of the form

(

I45 R
)

and
(

I45 RT
)

are equivalent, where RT denotes the transpose ofR. Magma [1]
was employed to determine code equivalence and complete the classification.
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Then we have the following results.

Proposition 1. There is no extremal double circulant self-dual code of length

90.

Proposition 2. There are 716 inequivalent double circulant self-dual [90, 45, 14]
codes.

The first rows of R in the generator matrices
(

I45 R
)

of the 716 codes
can be obtained from http://www.math.is.tohoku.ac.jp/~mharada/Paper/DCC90.txt.
We verified by Magma [1] that each of the 716 codes has an automorphism
group of order 90.

We determined the possible weight enumerators of self-dual [90, 45, 14]
codes. For a detailed description of how this is accomplished, see [3, The-
orem 5]. The possible weight enumerators of self-dual [90, 45, 14] codes and
the shadows are as follows

1 + (14040 + a)y14 + (51300 + 3a+ 8b)y16 + (69920− 11a− 24b+ 512c)y18

+ (2355624− 41a− 80b− 4608c+ 32768d)y20

+ (30913560 + 49a+ 304b+ 13824c− 491520d− 2097152e)y22 + · · · ,

ey + (d− 22e)y5 + (−c− 20d+ 231e)y9 + (b+ 18c+ 190d− 1540e)y13

+ (−8a− 16b− 153c− 1140d+ 7315e)y17 + · · · ,

respectively, where a, b, c, d, e are integers. It is easy to see that the number
of codewords of weights 14, 16 in the code and the number of vectors of
weights 1, 5, 9 in the shadow uniquely determine the weight enumerator. By
calculating these numbers, we verified that the 716 codes have 100 distinct
weight enumerators. This was done using Magma [1]. The 100 weight
enumerators have c = d = e = 0, where (a, b) are listed in Table 1. For each
pair (a, b), the number N(a,b) of codes with the weight enumerator is also
listed in Table 1.

3 Neighbors of double circulant self-dual [90, 45, 14]

codes

Two self-dual codes C and C ′ of length n are said to be neighbors if dim(C ∩
C ′) = n/2 − 1. We give some observations from [2] on self-dual codes con-
structed by neighbors. Let C be a self-dual [n, n/2, d] code. Let M be a

4
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Table 1: Weight enumerators of double circulant self-dual [90, 45, 14] codes

(a, b) N(a,b) (a, b) N(a,b) (a, b) N(a,b)

(−12555, 0) 1 (−12555, 90) 1 (−12600, 180) 1
(−12735, 0) 1 (−12780, 0) 1 (−12825, 0) 3
(−12825, 90) 2 (−12870, 0) 5 (−12870, 180) 1
(−12915, 0) 3 (−12915, 180) 1 (−12915, 90) 4
(−12960, 0) 6 (−12960, 90) 9 (−13005, 0) 6
(−13005, 180) 1 (−13005, 90) 10 (−13050, 0) 10
(−13050, 180) 1 (−13050, 270) 1 (−13050, 90) 8
(−13095, 0) 8 (−13095, 180) 4 (−13095, 270) 1
(−13095, 90) 6 (−13140, 0) 17 (−13140, 180) 7
(−13140, 270) 1 (−13140, 90) 13 (−13185, 0) 10
(−13185, 180) 5 (−13185, 270) 1 (−13185, 360) 1
(−13185, 90) 16 (−13230, 0) 6 (−13230, 180) 10
(−13230, 270) 4 (−13230, 90) 27 (−13275, 0) 21
(−13275, 180) 15 (−13275, 270) 1 (−13275, 360) 3
(−13275, 90) 16 (−13320, 0) 11 (−13320, 180) 20
(−13320, 270) 5 (−13320, 450) 1 (−13320, 90) 19
(−13365, 0) 13 (−13365, 180) 19 (−13365, 270) 7
(−13365, 360) 1 (−13365, 90) 13 (−13410, 0) 8
(−13410, 180) 22 (−13410, 270) 6 (−13410, 360) 2
(−13410, 90) 23 (−13455, 0) 11 (−13455, 180) 18
(−13455, 270) 13 (−13455, 360) 1 (−13455, 90) 33
(−13500, 0) 8 (−13500, 180) 17 (−13500, 270) 9
(−13500, 360) 3 (−13500, 90) 23 (−13545, 0) 4
(−13545, 180) 19 (−13545, 270) 8 (−13545, 450) 1
(−13545, 90) 18 (−13590, 0) 3 (−13590, 180) 8
(−13590, 270) 9 (−13590, 360) 2 (−13590, 450) 2
(−13590, 90) 9 (−13635, 0) 2 (−13635, 180) 7
(−13635, 270) 5 (−13635, 360) 2 (−13635, 450) 2
(−13635, 90) 6 (−13680, 180) 9 (−13680, 270) 4
(−13680, 360) 1 (−13680, 90) 2 (−13725, 180) 2
(−13725, 270) 2 (−13725, 360) 2 (−13725, 90) 2
(−13770, 180) 1 (−13770, 270) 2 (−13815, 180) 1
(−13815, 270) 2 (−13815, 360) 1 (−13815, 90) 1
(−13905, 360) 2

5



matrix whose rows are the codewords of weight d in C. Suppose that there
is a vector x ∈ F

n
2 such that

MxT = 1T , (3)

where 1 is the all-one vector. Set C0 = 〈x〉⊥∩C, where 〈x〉 denotes the code
generated by x. Then C0 is a subcode of index 2 in C. If the weight of x
is even, then we have two self-dual neighbors 〈C0, x〉 and 〈C0, x + y〉 of C
for some y ∈ C \ C0, which do not contain any codewords of weight d in C,
where 〈C, x〉 = C ∪ (x+C). When C has a self-dual [n, n/2, d′] neighbor C ′

with d′ ≥ d + 2, (3) has a solution x and we can obtain C ′ in this way. If
rankM < rank(M 1T ), then C has no self-dual [n, n/2, d′] neighbor C ′ with
d′ ≥ d+2. If rankM = t, then we have at most 2×2n/2−t self-dual neighbors
of C. Furthermore, if the subcode generated by the codewords of weight d
in C contains 1, then C has exactly 2× 2n/2−t self-dual neighbors. When C
has a self-dual [n, n/2, d′] neighbor C ′ with d′ ≥ d + 2, (3) has a solution x
and we can obtain C ′ in this way.

We verified by Magma [1] that

(rankM, rank(M 1T )) = (43, 43),

for one of the 716 double circulant self-dual [90, 45, 14] codes and

(rankM, rank(M 1T )) = (45, 45),

for the remaining 715 codes. In addition, using the above method, we ver-
ified by Magma [1] that the self-dual neighbors constructed by the above
argument have minimum weight at most 14. Hence, we have the following
result.

Proposition 3. No double circulant self-dual [90, 45, 14] code has an extremal

self-dual neighbor of length 90.

It is still an open problem whether an extremal self-dual code of length
90 exists.

4 Extremal double circulant self-dual codes

of length 92

Using a method similar to that given in Section 2, our exhaustive search found
all distinct extremal pure and bordered double circulant self-dual codes of
length 92. Then we have the following results.

6



Proposition 4. There is no extremal pure double circulant self-dual code of

length 92.

Remark 5. Alfred Wassermann in a private communication indicated that
there is no extremal pure double circulant self-dual code of length 92, which
provides an independent confirmation of our results.

Proposition 6. There are 158 inequivalent extremal bordered double circu-

lant self-dual codes of length 92.

We denote the 158 inequivalent extremal bordered double circulant self-
dual codes of length 92 by B92,i (i = 1, 2, . . . , 158). For the codes B92,i

(i = 1, 2, . . . , 158), the first rows r of R′ in (2) are listed in Table 3. In the
table, the rows are written in octal using 0 = (000), 1 = (001), . . . , 6 = (110)
and 7 = (111). We verified by Magma [1] that B92,i has an automorphism
group of order 90 for i = 1, 2, . . . , 158.

The possible weight enumerators of extremal self-dual codes of length 92
are given in [5] as follows

W92,1 =1 + (4β + 4692)y16 + (174800− 8β + 256α)y18

+ (−2048α + 2425488− 52β)y20 + · · · ,

W92,2 =1 + (4β + 4692)y16 + (174800− 8β + 256α)y18

+ (−2048α + 2441872− 52β)y20 + · · · ,

W92,3 =1 + (4β + 4692)y16 + (121296− 8β)y18

+ (3213968− 52β)y20 + · · · ,

where α, β are integers. By calculating the numbers of codewords of weights
16, 18, 20 in the codes, we verified that B92,i has weight enumerator W92,3,
where i and β in W92,3 are listed in Table 2.

5 Double circulant self-dual [94, 47, d] codes with

d ≥ 16

As mentioned in Section 1, it is currently not known if an extremal self-dual
code of length 94 exists. There is a self-dual [94, 47, 16] code [13].

Using a method similar to that given in Section 2, our exhaustive search
found no double circulant self-dual [94, 46, d] code with d ≥ 16. Then we
have the following result.

7



Table 2: Weight enumerators of B92,i (i = 1, 2, . . . , 158)

β i

1527 81, 140
1572 57, 64, 102
1617 52, 55, 77, 106
1662 6, 14, 18, 33, 56, 87, 121, 151
1707 3, 36, 38, 50, 69, 99, 101, 109, 111, 123, 143
1752 5, 21, 40, 49, 63, 116, 125, 127
1797 15, 27, 32, 46, 89, 95, 105, 138, 141, 147, 152, 153, 156
1842 1, 8, 10, 17, 22, 66, 72, 85, 90, 97, 108
1887 13, 26, 39, 41, 44, 48, 58, 62, 74, 84, 91, 103, 110, 112, 113, 119, 130,

136, 139, 154, 155
1932 16, 51, 80, 98, 131, 134
1977 2, 23, 24, 47, 53, 59, 61, 86, 120, 126
2022 28, 31, 37, 60, 67, 79, 82, 88, 92, 114, 117, 118, 128, 137, 144, 146, 150
2067 4, 7, 19, 35, 100, 107, 157, 158
2112 20, 65, 76, 94, 96, 104, 129, 132, 142, 145
2157 11, 34, 45, 68, 70, 133
2202 25, 54, 71, 75, 83, 149
2247 30, 42, 115
2292 12, 29, 43, 93, 122
2337 73, 124, 135
2382 78
2427 148
2607 9

Proposition 7. There is no double circulant self-dual code of length 94 and

minimum weight d ≥ 16.

6 Double circulant self-dual [96, 48, d] codes with

d ≥ 16

As described in Section 1, it is currently not known if an extremal doubly
even self-dual [96, 48, 20] code exists, or if an extremal singly even self-dual
[96, 48, 18] code exists. There is a doubly even self-dual [96, 48, 16] code [5],
and a singly even self-dual [96, 48, 16] code [6].

Using a method similar to that given in Section 2, our exhaustive search
found all distinct pure double circulant self-dual [96, 48, d] codes with d ≥ 16

8



Table 3: First rows of R′ in (2) for B92,i (i = 1, 2, . . . , 158)

i r i r i r
1 045722771307000 2 046354263735000 3 054130272607000
4 102155447541000 5 104521145473000 6 110545607071000
7 111222513531000 8 115060555603000 9 126644436177000
10 130023052373000 11 130115321127000 12 141232724213000
13 165172671757000 14 206201322771000 15 207022470467000
16 221254213777000 17 233413676413000 18 236265461527000
19 243271301677000 20 246165167155000 21 263645737137000
22 265543417117000 23 271737137037000 24 304151364577000
25 306307103017000 26 330141216433000 27 341136314537000
28 367621175177000 29 406233754353000 30 407777023131000
31 436453744513000 32 442536745265000 33 453136757327000
34 506762231273000 35 522423127177000 36 533555410563000
37 536456502533000 38 545721744703000 39 552732211353000
40 577604234513000 41 605303705657000 42 616171605527000
43 616352763673000 44 645661771573000 45 652610723547000
46 041045754474740 47 041074234673640 48 043135457542240
49 043250274476540 50 043574372741740 51 043603253362640
52 044104457046640 53 044226336701740 54 044671546702540
55 044736177354640 56 046241222776640 57 047663617660740
58 050576621023740 59 050751623626240 60 052354251553140
61 053047243053740 62 053452447124740 63 054716632374740
64 055727742734140 65 057165135375140 66 060736704331140
67 061065253646540 68 063057644302740 69 063731763152340
70 065235232367740 71 066764121737540 72 072237363775740
73 101742440560540 74 103257370547740 75 104571361141740
76 105644361251740 77 107752466111140 78 112175633752540
79 112453746103640 80 113343466667340 81 114740315712340
82 115256766234740 83 115303767255340 84 115331337561640
85 116226336753640 86 116277617462540 87 123320123173340
88 123663146657540 89 123763453707140 90 127654632533640
91 127737665370740 92 131553671516340 93 132721322740340
94 134537632035740 95 136446677675740 96 140352750117540
97 141147475510340 98 142376737627740 99 145756370077140
100 146514734137740 101 146542652434540 102 147307747376740
103 151056130545740 104 153556753442340 105 153743314476340
106 154356132761740 107 155237453760340 108 162603763561740
109 162755377664740 110 163131275323740 111 203315731776440
112 204336305345340 113 205721743736640 114 206127347363740
115 216236374745540 116 216712337262740 117 216776346322340
118 223601644714740 119 225103675656740 120 225756665264340
121 227266265646740 122 227656146713640 123 231235753751440
124 233466766660640 125 233475224764740 126 235161677207340
127 236612727317440 128 236657266701540 129 244353765463340
130 246531765347240 131 257573767412740 132 261574375164340
133 265576361776640 134 272764241653740 135 275373174710140
136 277333517335540 137 277444625674540 138 277464773666340
139 277757446333340 140 306156645077740 141 306533337306340
142 310773753761740 143 313675510752340 144 317071170770740
145 324761561777740 146 357234774374740 147 463637676050640
148 512662622756740 149 516703753357740 150 535715465737340
151 537761713627540 152 547776766153140 153 626053773755740
154 656707543160740 155 043557136776166 156 047172572571772
157 051150777762736 158 066775577156766
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and all distinct bordered double circulant doubly even self-dual [96, 48, d]
codes with d ≥ 16. Then we have the following result.

Proposition 8. There is no extremal double circulant doubly even self-dual

code of length 96. There is no extremal double circulant singly even self-dual

code of length 96.

Remark 9. Alfred Wassermann in a private communication indicated that
there is no double circulant self-dual code of length 96 and minimum weight
d ≥ 18, which provides an independent confirmation of our results.

Proposition 10. There are 49 inequivalent pure double circulant singly even

self-dual [96, 48, 16] codes. There are 4565 inequivalent pure double circulant

doubly even self-dual [96, 48, 16] codes. There are 1532 inequivalent bordered

double circulant doubly even self-dual [96, 48, 16] codes.

Table 4: First rows of R in (1) for C96,i (i = 1, 2, . . . , 49)

i r (a, b, c, d) i r (a, b, c, d)
1 5532465545470000 (9798, 0, 0, 0) 2 1011116717627400 (10050, 0, 0, 0)
3 2117213667133520 (10164, 0, 0, 0) 4 5160450553527400 (10416, 0, 0, 0)
5 0411642402747400 (10422, 0, 0, 0) 6 1110737636054400 (10434, 0, 0, 0)
7 2730315332407400 (10566, 0, 0, 0) 8 4127775466731720 (10566, 0, 0, 0)
9 5247741422235400 (10740, 0, 0, 0) 10 1104701417751460 (10854, 0, 0, 0)
11 1334257665167760 (10980, 0, 0, 0) 12 1551523722207400 (11154, 0, 0, 0)
13 1072513135756620 (11364, 0, 0, 0) 14 5302720447547400 (11508, 0, 0, 0)
15 1115027566566720 (11820, 0, 0, 0) 16 1176414666173320 (12108, 0, 0, 0)
17 1252510325477400 (12180, 0, 0, 0) 18 0707334570645560 (9618,−48, 0, 0)
19 0536450432504760 (10326,−48, 0, 0) 20 2727311567536720 (10326,−48, 0, 0)
21 4260735067342400 (10422,−48, 0, 0) 22 5720417224633400 (10434,−48, 0, 0)
23 0465637224357620 (10566,−48, 0, 0) 24 0447671345066400 (11124,−48, 0, 0)
25 0644667174474660 (11844,−48, 0, 0) 26 1667375134475360 (11994,−48, 0, 0)
27 1233543431133400 (10458,−96, 0, 0) 28 5772526161347400 (10806,−96, 0, 0)
29 4072735065262400 (11190,−96, 0, 0) 30 1077057777245360 (11634,−96, 0, 0)
31 1473646640067400 (11670,−96, 0, 0) 32 7242336777667400 (11748,−96, 0, 0)
33 0411474700534400 (11796,−96, 0, 0) 34 7005761177137400 (11940,−96, 0, 0)
35 0420777500236160 (11940,−96, 0, 0) 36 0407113175431520 (11952,−96, 0, 0)
37 0603237114035560 (12390,−96, 0, 0) 38 2577350620527260 (12852,−96, 0, 0)
39 0670641356075760 (10818,−144, 0, 0) 40 1462237456233660 (11616,−144, 0, 0)
41 5176656144756400 (12090,−144, 0, 0) 42 0463117521602660 (12132,−144, 0, 0)
43 0411766016336120 (12198,−144, 0, 0) 44 1237215132353660 (12384,−144, 0, 0)
45 2271227740255400 (12690,−144, 0, 0) 46 2114462227575400 (13050,−144, 0, 0)
47 1176617376233720 (13218,−144, 0, 0) 48 0477501403733400 (12282,−192, 0, 0)
49 5764337750370000 (14124,−288, 0, 0)

We denote the 49 inequivalent pure double circulant singly even self-dual
[96, 48, 16] codes by C96,i (i = 1, 2, . . . , 49). For these codes, the first rows r
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of R in (1) are listed in Table 4. In the table, the rows are written in octal
using 0 = (000), 1 = (001), . . . , 6 = (110) and 7 = (111).

The possible weight enumerators of singly even self-dual [96, 48, d] codes
with d ≥ 16 and their shadows (see [3] for the definition) are

1 + (−5814 + a)y16 + (97280 + 64b)y18 + (1694208− 16a− 384b+ 4096c)y20

+ (18969600 + 192b− 49152c− 262144d)y22

+ (184315200 + 120a+ 3328b+ 237568c+ 4718592d)y24 + · · · ,

dy4 + (c− 22d)y8 + (−b− 20c+ 231d)y12 + (a+ 18b+ 190c− 1540d)y16

+ (3231744− 16a− 153b− 1140c+ 7315d)y20

+ (369664000 + 120a+ 816b+ 4845c− 26334d)y24 + · · · ,

respectively, where a, b, c, d are integers. It is easy to see that the number
of codewords of weight 16 in the code and the numbers of vectors of weights
4, 8, 12 in the shadow uniquely determine the weight enumerator. By cal-
culating these numbers, we determined the weight enumerators of the codes
C96,i. This was done using Magma [1]. We display in Table 4 (a, b, c, d) for
the weight enumerators of the codes C96,i. We verified by Magma [1] that
each of the 49 codes has an automorphism group of order 96.

We denote the 4565 inequivalent pure double circulant doubly even self-
dual [96, 48, 16] codes by P96,i (i = 1, 2, . . . , 4565). The first rows r of R in (1)
can be obtained from http://www.math.is.tohoku.ac.jp/~mharada/Paper/DCCp96.txt.
By the Gleason theorem (see [15]), the possible weight enumerators of doubly
even self-dual [96, 48, d] codes with d ≥ 16 are

1 + ay16 + (3217056− 16a)y20 + (369844880 + 120a)y24

+ (18642839520− 560a)y28 + (422069980215 + 1820a)y32 + · · · ,

where a is an integer with 0 ≤ a ≤ 201066. By calculating the number of
codewords of weight 16, we verified that the 4565 codes have 614 distinct
weight enumerators. The numbers a in the weight enumerators are listed in
Table 5. We verified by Magma [1] that 4530, 34 and 1 of the 4565 codes
have automorphism groups of orders 96, 192 and 89280, respectively. For the
unique code with an automorphism group of order 89280, the first row r of
R in (1) is

(010001101111001001011111101110100100101111110000).
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Table 5: Weight enumerators of pure double circulant doubly even self-dual
[96, 48, 16] codes

a
5808, 6222, 6444, 6732, 6780, 6816, 6828, 6876, 6906, 6924, 6942, 6972, 6990, 7002, 7008, 7068, 7092,
7098, 7104, 7116, 7152, 7182, 7236, 7278, 7290, 7296, 7308, 7332, 7338, 7374, 7380, 7392, 7398, 7404,
7422, 7440, 7446, 7452, 7470, 7476, 7482, 7488, 7500, 7518, 7524, 7548, 7578, 7584, 7596, 7614, 7620,
7626, 7632, 7638, 7644, 7662, 7668, 7680, 7692, 7710, 7716, 7722, 7728, 7734, 7740, 7758, 7764, 7770,
7776, 7782, 7788, 7806, 7812, 7818, 7824, 7830, 7836, 7854, 7860, 7866, 7872, 7884, 7902, 7914, 7920,
7926, 7932, 7950, 7956, 7968, 7980, 7998, 8004, 8010, 8016, 8022, 8028, 8046, 8052, 8058, 8064, 8076,
8094, 8100, 8106, 8112, 8118, 8124, 8142, 8154, 8160, 8166, 8172, 8190, 8196, 8202, 8208, 8214, 8220,
8238, 8244, 8250, 8256, 8262, 8268, 8286, 8298, 8304, 8316, 8334, 8340, 8346, 8352, 8358, 8364, 8382,
8388, 8394, 8400, 8412, 8430, 8436, 8442, 8448, 8454, 8460, 8478, 8484, 8490, 8496, 8502, 8508, 8526,
8532, 8538, 8544, 8550, 8556, 8574, 8580, 8586, 8592, 8598, 8604, 8622, 8628, 8634, 8640, 8646, 8652,
8670, 8676, 8682, 8688, 8694, 8700, 8718, 8724, 8730, 8736, 8742, 8748, 8766, 8772, 8778, 8784, 8790,
8796, 8814, 8820, 8826, 8832, 8844, 8862, 8868, 8874, 8880, 8886, 8892, 8910, 8916, 8922, 8928, 8934,
8940, 8958, 8964, 8970, 8976, 8982, 8988, 9006, 9012, 9018, 9024, 9030, 9036, 9054, 9060, 9066, 9072,
9078, 9084, 9102, 9108, 9114, 9120, 9126, 9132, 9150, 9156, 9162, 9168, 9174, 9180, 9198, 9204, 9210,
9216, 9222, 9228, 9246, 9252, 9258, 9264, 9270, 9276, 9294, 9300, 9306, 9312, 9318, 9324, 9342, 9348,
9354, 9360, 9366, 9372, 9390, 9396, 9402, 9408, 9414, 9420, 9438, 9444, 9450, 9456, 9462, 9468, 9486,
9492, 9498, 9504, 9510, 9516, 9534, 9540, 9546, 9552, 9558, 9564, 9582, 9588, 9594, 9600, 9606, 9612,
9630, 9636, 9642, 9648, 9654, 9660, 9678, 9684, 9690, 9696, 9702, 9708, 9726, 9732, 9738, 9744, 9750,
9756, 9774, 9780, 9786, 9792, 9798, 9804, 9822, 9828, 9834, 9840, 9846, 9852, 9870, 9876, 9882, 9888,
9894, 9900, 9918, 9924, 9930, 9936, 9942, 9948, 9966, 9972, 9978, 9984, 9990, 9996, 10014, 10020,
10026, 10032, 10038, 10044, 10062, 10068, 10074, 10080, 10086, 10092, 10110, 10116, 10122, 10128,
10134, 10140, 10158, 10164, 10170, 10176, 10182, 10188, 10206, 10212, 10218, 10224, 10230, 10236,
10254, 10260, 10266, 10272, 10278, 10284, 10302, 10314, 10320, 10326, 10332, 10350, 10356, 10362,
10368, 10374, 10380, 10398, 10404, 10410, 10416, 10422, 10428, 10446, 10452, 10458, 10464, 10470,
10476, 10494, 10500, 10506, 10512, 10518, 10524, 10542, 10548, 10560, 10566, 10572, 10590, 10596,
10602, 10608, 10614, 10620, 10638, 10644, 10650, 10656, 10662, 10668, 10686, 10692, 10698, 10704,
10710, 10716, 10734, 10740, 10746, 10752, 10758, 10764, 10782, 10788, 10794, 10800, 10806, 10812,
10830, 10836, 10842, 10848, 10860, 10878, 10884, 10890, 10896, 10902, 10908, 10926, 10932, 10938,
10944, 10950, 10956, 10974, 10980, 10986, 10992, 10998, 11004, 11022, 11034, 11040, 11046, 11052,
11070, 11076, 11082, 11088, 11094, 11100, 11118, 11124, 11130, 11136, 11142, 11148, 11166, 11178,
11184, 11190, 11196, 11214, 11220, 11226, 11232, 11238, 11244, 11262, 11268, 11280, 11286, 11292,
11310, 11322, 11328, 11334, 11340, 11358, 11364, 11370, 11376, 11388, 11406, 11412, 11424, 11430,
11436, 11454, 11466, 11472, 11484, 11502, 11508, 11514, 11520, 11532, 11550, 11562, 11568, 11580,
11598, 11610, 11616, 11622, 11646, 11652, 11658, 11664, 11694, 11700, 11706, 11712, 11724, 11754,
11760, 11766, 11772, 11790, 11802, 11808, 11820, 11838, 11844, 11856, 11868, 11886, 11892, 11898,
11904, 11934, 11940, 11946, 11952, 11964, 11982, 11994, 12000, 12030, 12048, 12060, 12096, 12108,
12126, 12144, 12156, 12174, 12192, 12204, 12222, 12228, 12240, 12270, 12288, 12336, 12342, 12348,
12366, 12378, 12414, 12432, 12444, 12462, 12516, 12588, 12606, 12624, 12630, 12654, 12666, 12672,
12702, 12720, 12768, 12798, 12894, 12912, 12942, 12990, 13020, 13086, 13098, 13200, 13278, 13308,
13536, 13566, 13596, 13662, 13854, 14142, 14250, 14460, 14718
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We denote the 1532 inequivalent bordered double circulant doubly even
self-dual [96, 48, 16] codes by B96,i (i = 1, 2, . . . , 1532). The first rows r of R′

in (2) can be obtained from http://www.math.is.tohoku.ac.jp/~mharada/Paper/DCCb96.txt.
By calculating the numbers of codewords of weight 16, we verified that the
1532 codes have 25 distinct weight enumerators. For each a, the number
Na of codes with the weight enumerator is listed in Table 6. We verified by
Magma [1] that the 1532 codes have automorphism groups of order 94.

Table 6: Weight enumerators of bordered double circulant doubly even self-
dual [96, 48, 16] codes

a Na a Na a Na a Na a Na

6204 1 6768 2 7050 5 7332 8 7614 17
7896 30 8178 72 8460 82 8742 116 9024 141
9306 157 9588 197 9870 141 10152 160 10434 130
10716 92 10998 74 11280 32 11562 31 11844 20
12126 12 12408 4 12690 5 12972 1 13254 2

7 Neighbors of double circulant self-dual [96, 48, 16]

codes

Let C be a double circulant self-dual [96, 48, 16] code. Let M be a matrix
whose rows are the codewords of weight 16 in C. We verified by Magma [1]
that

(rankM, rank(M 1T )) = (47, 48),

for C = C96,i (i = 1, 2, . . . , 49) and

(rankM, rank(M 1T )) = (48, 49),

for C = P96,i (i = 1, 2, . . . , 4565) and C = B96,i (i = 1, 2, . . . , 1532). By the
method given in Section 3, we have the following results.

Proposition 11. No double circulant self-dual [96, 48, 16] code has a self-

dual [96, 48, d] neighbor with d ≥ 18.
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It is still an open problem whether an extremal doubly even self-dual code
or an extremal singly even self-dual code of length 96 exists.
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