On extremal double circulant self-dual codes of lengths 90-96

T. Aaron Gulliver* and Masaaki Harada ${ }^{\dagger}$

Abstract

A classification of extremal double circulant self-dual codes of lengths up to 88 is known. We give a classification of extremal double circulant self-dual codes of lengths $90,92,94$ and 96 . We also classify double circulant self-dual codes with parameters $[90,45,14]$ and $[96,48,16]$. In addition, we demonstrate that no double circulant self-dual [90, 45, 14] code has an extremal self-dual neighbor, and no double circulant selfdual $[96,45,16]$ code has a self-dual neighbor with minimum weight at least 18 .

1 Introduction

A (binary) $[n, k]$ code C is a k-dimensional vector subspace of \mathbb{F}_{2}^{n}, where \mathbb{F}_{2} denotes the finite field of order 2 . All codes in this note are binary. The parameter n is called the length of C. The weight $\mathrm{wt}(x)$ of a vector $x \in \mathbb{F}_{2}^{n}$ is the number of non-zero components of x. A vector of C is a codeword of C. The minimum non-zero weight of all codewords in C is called the minimum weight of C and an $[n, k]$ code with minimum weight d is called an $[n, k, d]$ code. The weight enumerator $W(C)$ of C is given by $W(C)=\sum_{i=0}^{n} A_{i} y^{i}$ where A_{i} is the number of codewords of weight i in C. Two codes are equivalent if one can be obtained from the other by a permutation of coordinates. The dual code C^{\perp} of a code C of length n is

[^0]defined as $C^{\perp}=\left\{x \in \mathbb{F}_{2}^{n} \mid x \cdot y=0\right.$ for all $\left.y \in C\right\}$, where $x \cdot y$ is the standard inner product. A code C is called self-dual if $C=C^{\perp}$. A self-dual code C is called doubly even and singly even if all codewords have weight $\equiv 0(\bmod 4)$ and if some codeword has weight $\equiv 2(\bmod 4)$, respectively.

It was shown in [15] that the minimum weight d of a doubly even selfdual code of length n is bounded by $d \leq 4[n / 24]+4$. We call a doubly even self-dual code meeting this upper bound extremal. The largest possible minimum weights of (singly even) self-dual codes of lengths up to 72 are given in [3, Table I]. This work was extended to lengths up to 100 in [5, Table VI] (see [6, Table 2] and [13, Table I]). According to [10], in this note, we say that a singly even self-dual code with the largest possible minimum weight given in [3, Table I] and [5, Table VI] is extremal. The largest possible minimum weight among singly even self-dual codes of lengths $90,92,94$ and 96 is $16,16,18$ and 18 , respectively. Currently, it is not known if an extremal self-dual $[90,45,16]$ code exists. There is a self-dual $[90,45,14]$ code [5]. Many extremal self-dual $[92,46,16]$ codes are known (see [4], [7], [14], [17] and [18], and references [5] and [10] in [14]). Currently, it is not known if an extremal self-dual $[94,47,18]$ code exists. There is a self-dual $[94,47,16]$ code [13]. Currently, it is not known if an extremal doubly even self-dual $[96,48,20]$ code, or an extremal singly even self-dual $[96,48,18]$ code, exists. There is a doubly even self-dual $[96,48,16]$ code (see [5]), and a singly even self-dual $[96,48,16]$ code [6].

Let D_{p} and D_{b} be codes with generator matrices of the form

$$
\left(\begin{array}{cc}
I_{n} & R \tag{1}
\end{array}\right)
$$

and

$$
\left(\begin{array}{ccccc}
& 0 & 1 & \cdots & 1 \tag{2}\\
& 1 & & & \\
I_{n+1} & \vdots & & R^{\prime} & \\
& 1 & & &
\end{array}\right)
$$

respectively, where I_{n} is the identity matrix of order n, and R and R^{\prime} are $n \times n$ circulant matrices. An $n \times n$ circulant matrix has the form

$$
\left(\begin{array}{ccccc}
r_{0} & r_{1} & r_{2} & \cdots & r_{n-1} \\
r_{n-1} & r_{0} & r_{1} & \cdots & r_{n-2} \\
\vdots & \vdots & \vdots & & \vdots \\
r_{1} & r_{2} & r_{3} & \cdots & r_{0}
\end{array}\right)
$$

so that each successive row is a cyclic shift of the previous one. The codes D_{p} and D_{b} are called pure double circulant and bordered double circulant, respectively. The two families are called double circulant codes. Many of the best known self-dual codes are double circulant codes (see [5], 8], [9, 10] and [12]). Further, constructions exist that provide double circulant selfdual codes with the largest known minimum weight (see [11] and [16]). The bordered double circulant construction provides self-dual codes only when the length is $\equiv 0(\bmod 4)$. In addition, it is known [8] that there is no bordered double circulant singly even self-dual code of length $n \equiv 0(\bmod 8)$.

A classification of extremal double circulant self-dual codes of lengths up to 88 was given in [9], [10] and [12]. In this note, this work is extended to length 96. Our exhaustive search shows that there is no extremal double circulant self-dual $[90,45,16]$ code. We also give a classification of double circulant self-dual $[90,45,14]$ codes. In addition, we demonstrate that every double circulant self-dual $[90,45,14]$ code has no extremal self-dual neighbor. We give a classification of extremal double circulant self-dual codes of length 92. Our exhaustive search shows that there is no double circulant self-dual $[94,47, d]$ code with $d \geq 16$. We give a classification of double circulant self-dual $[96,48, d]$ codes with $d \geq 16$. In addition, we demonstrate that every double circulant self-dual $[96,48,16]$ code has no self-dual neighbor with minimum weight at least 18 .

2 Double circulant self-dual [90, 45, d] codes with $d \in\{14,16\}$

Using an approach similar to that given in [9], 10] and [12], our exhaustive search found all distinct double circulant self-dual $[90,45, d]$ codes with $d \geq$ 14. This was done by considering all 45×45 orthogonal circulant matrices satisfying the condition that the weight of the first row is congruent to 1 $(\bmod 4)$ and the weight is greater than or equal to $d-1$. Since a cyclic shift of the first row of some codes defines an equivalent code, the elimination of cyclic shifts substantially reduces the number of codes which must be checked further for equivalence to complete the classification. It is useful to use the fact that self-dual codes with generator matrices of the form $\left(\begin{array}{ll}I_{45} & R\end{array}\right)$ and $\left(\begin{array}{ll}I_{45} & R^{T}\end{array}\right.$) are equivalent, where R^{T} denotes the transpose of R. MAGMA [1] was employed to determine code equivalence and complete the classification.

Then we have the following results.
Proposition 1. There is no extremal double circulant self-dual code of length 90.

Proposition 2. There are 716 inequivalent double circulant self-dual [90, 45, 14] codes.

The first rows of R in the generator matrices ($\left.\begin{array}{ll}I_{45} & R\end{array}\right)$ of the 716 codes can be obtained from http://www.math.is.tohoku.ac.jp/~mharada/Paper/DCC90.txt. We verified by Magma [1] that each of the 716 codes has an automorphism group of order 90.

We determined the possible weight enumerators of self-dual [90, 45, 14] codes. For a detailed description of how this is accomplished, see [3, Theorem 5]. The possible weight enumerators of self-dual [90,45,14] codes and the shadows are as follows

$$
\begin{aligned}
& 1+(14040+a) y^{14}+(51300+3 a+8 b) y^{16}+(69920-11 a-24 b+512 c) y^{18} \\
& +(2355624-41 a-80 b-4608 c+32768 d) y^{20} \\
& +(30913560+49 a+304 b+13824 c-491520 d-2097152 e) y^{22}+\cdots, \\
& e y+(d-22 e) y^{5}+(-c-20 d+231 e) y^{9}+(b+18 c+190 d-1540 e) y^{13} \\
& +(-8 a-16 b-153 c-1140 d+7315 e) y^{17}+\cdots,
\end{aligned}
$$

respectively, where a, b, c, d, e are integers. It is easy to see that the number of codewords of weights 14,16 in the code and the number of vectors of weights $1,5,9$ in the shadow uniquely determine the weight enumerator. By calculating these numbers, we verified that the 716 codes have 100 distinct weight enumerators. This was done using Magma [1]. The 100 weight enumerators have $c=d=e=0$, where (a, b) are listed in Table 1. For each pair (a, b), the number $N_{(a, b)}$ of codes with the weight enumerator is also listed in Table 1 .

3 Neighbors of double circulant self-dual [90, 45, 14] codes

Two self-dual codes C and C^{\prime} of length n are said to be neighbors if $\operatorname{dim}(C \cap$ $\left.C^{\prime}\right)=n / 2-1$. We give some observations from [2] on self-dual codes constructed by neighbors. Let C be a self-dual $[n, n / 2, d]$ code. Let M be a

Table 1: Weight enumerators of double circulant self-dual $[90,45,14]$ codes

(a, b)	$N_{(a, b)}$	(a, b)	$N_{(a, b)}$	(a, b)	$N_{(a, b)}$
$(-12555,0)$	1	$(-12555,90)$	1	$(-12600,180)$	1
$(-12735,0)$	1	$(-12780,0)$	1	$(-12825,0)$	3
$(-12825,90)$	2	$(-12870,0)$	5	$(-12870,180)$	1
$(-12915,0)$	3	$(-12915,180)$	1	$(-12915,90)$	4
$(-12960,0)$	6	$(-12960,90)$	9	$(-13005,0)$	6
$(-13005,180)$	1	$(-13005,90)$	10	$(-13050,0)$	10
$(-13050,180)$	1	$(-13050,270)$	1	$(-13050,90)$	8
$(-13095,0)$	8	$(-13095,180)$	4	$(-13095,270)$	1
$(-13095,90)$	6	$(-13140,0)$	17	$(-13140,180)$	7
$(-13140,270)$	1	$(-13140,90)$	13	$(-13185,0)$	10
$(-13185,180)$	5	$(-13185,270)$	1	$(-13185,360)$	1
$(-13185,90)$	16	$(-13230,0)$	6	$(-13230,180)$	10
$(-13230,270)$	4	$(-13230,90)$	27	$(-13275,0)$	21
$(-13275,180)$	15	$(-13275,270)$	1	$(-13275,360)$	3
$(-13275,90)$	16	$(-13320,0)$	11	$(-13320,180)$	20
$(-13320,270)$	5	$(-13320,450)$	1	$(-13320,90)$	19
$(-13365,0)$	13	$(-13365,180)$	19	$(-13365,270)$	7
$(-13365,360)$	1	$(-13365,90)$	13	$(-13410,0)$	8
$(-13410,180)$	22	$(-13410,270)$	6	$(-13410,360)$	2
$(-13410,90)$	23	$(-13455,0)$	11	$(-13455,180)$	18
$(-13455,270)$	13	$(-13455,360)$	1	$(-13455,90)$	33
$(-13500,0)$	8	$(-13500,180)$	17	$(-13500,270)$	9
$(-13500,360)$	3	$(-13500,90)$	23	$(-13545,0)$	4
$(-13545,180)$	19	$(-13545,270)$	8	$(-13545,450)$	1
$(-13545,90)$	18	$(-13590,0)$	3	$(-13590,180)$	8
$(-13590,270)$	9	$(-13590,360)$	2	$(-13590,450)$	2
$(-13590,90)$	9	$(-13635,0)$	2	$(-13635,180)$	7
$(-13635,270)$	5	$(-13635,360)$	2	$(-13635,450)$	2
$(-13635,90)$	6	$(-13680,180)$	9	$(-13680,270)$	4
$(-13680,360)$	1	$(-13680,90)$	2	$(-13725,180)$	2
$(-13725,270)$	2	$(-13725,360)$	2	$(-13725,90)$	2
$(-13770,180)$	1	$(-13770,270)$	2	$(-13815,180)$	1
$(-13815,270)$	2	$(-13815,360)$	1	$(-13815,90)$	1
$(-13905,360)$	2				

matrix whose rows are the codewords of weight d in C. Suppose that there is a vector $x \in \mathbb{F}_{2}^{n}$ such that

$$
\begin{equation*}
M x^{T}=\mathbf{1}^{T} \tag{3}
\end{equation*}
$$

where $\mathbf{1}$ is the all-one vector. Set $C_{0}=\langle x\rangle^{\perp} \cap C$, where $\langle x\rangle$ denotes the code generated by x. Then C_{0} is a subcode of index 2 in C. If the weight of x is even, then we have two self-dual neighbors $\left\langle C_{0}, x\right\rangle$ and $\left\langle C_{0}, x+y\right\rangle$ of C for some $y \in C \backslash C_{0}$, which do not contain any codewords of weight d in C, where $\langle C, x\rangle=C \cup(x+C)$. When C has a self-dual $\left[n, n / 2, d^{\prime}\right]$ neighbor C^{\prime} with $d^{\prime} \geq d+2$, (3) has a solution x and we can obtain C^{\prime} in this way. If $\operatorname{rank} M<\operatorname{rank}\left(M \mathbf{1}^{T}\right)$, then C has no self-dual $\left[n, n / 2, d^{\prime}\right]$ neighbor C^{\prime} with $d^{\prime} \geq d+2$. If $\operatorname{rank} M=t$, then we have at most $2 \times 2^{n / 2-t}$ self-dual neighbors of C. Furthermore, if the subcode generated by the codewords of weight d in C contains 1, then C has exactly $2 \times 2^{n / 2-t}$ self-dual neighbors. When C has a self-dual $\left[n, n / 2, d^{\prime}\right]$ neighbor C^{\prime} with $d^{\prime} \geq d+2$, (3) has a solution x and we can obtain C^{\prime} in this way.

We verified by Magma [1] that

$$
\left(\operatorname{rank} M, \operatorname{rank}\left(M \mathbf{1}^{T}\right)\right)=(43,43),
$$

for one of the 716 double circulant self-dual $[90,45,14]$ codes and

$$
\left(\operatorname{rank} M, \operatorname{rank}\left(M \mathbf{1}^{T}\right)\right)=(45,45)
$$

for the remaining 715 codes. In addition, using the above method, we verified by Magma [1] that the self-dual neighbors constructed by the above argument have minimum weight at most 14 . Hence, we have the following result.

Proposition 3. No double circulant self-dual [90, 45, 14] code has an extremal self-dual neighbor of length 90.

It is still an open problem whether an extremal self-dual code of length 90 exists.

4 Extremal double circulant self-dual codes of length 92

Using a method similar to that given in Section2, our exhaustive search found all distinct extremal pure and bordered double circulant self-dual codes of length 92 . Then we have the following results.

Proposition 4. There is no extremal pure double circulant self-dual code of length 92.

Remark 5. Alfred Wassermann in a private communication indicated that there is no extremal pure double circulant self-dual code of length 92, which provides an independent confirmation of our results.

Proposition 6. There are 158 inequivalent extremal bordered double circulant self-dual codes of length 92.

We denote the 158 inequivalent extremal bordered double circulant selfdual codes of length 92 by $B_{92, i}(i=1,2, \ldots, 158)$. For the codes $B_{92, i}$ ($i=1,2, \ldots, 158$), the first rows r of R^{\prime} in (22) are listed in Table 3) In the table, the rows are written in octal using $0=(000), 1=(001), \ldots, 6=(110)$ and $7=(111)$. We verified by MAGMA [1] that $B_{92, i}$ has an automorphism group of order 90 for $i=1,2, \ldots, 158$.

The possible weight enumerators of extremal self-dual codes of length 92 are given in [5] as follows

$$
\begin{aligned}
W_{92,1}= & 1+(4 \beta+4692) y^{16}+(174800-8 \beta+256 \alpha) y^{18} \\
& +(-2048 \alpha+2425488-52 \beta) y^{20}+\cdots, \\
W_{92,2}= & 1+(4 \beta+4692) y^{16}+(174800-8 \beta+256 \alpha) y^{18} \\
& +(-2048 \alpha+2441872-52 \beta) y^{20}+\cdots, \\
W_{92,3}= & 1+(4 \beta+4692) y^{16}+(121296-8 \beta) y^{18} \\
& +(3213968-52 \beta) y^{20}+\cdots,
\end{aligned}
$$

where α, β are integers. By calculating the numbers of codewords of weights $16,18,20$ in the codes, we verified that $B_{92, i}$ has weight enumerator $W_{92,3}$, where i and β in $W_{92,3}$ are listed in Table 2,

5 Double circulant self-dual [94, 47, d] codes with $d \geq 16$

As mentioned in Section 1, it is currently not known if an extremal self-dual code of length 94 exists. There is a self-dual [94, 47, 16] code [13].

Using a method similar to that given in Section 2, our exhaustive search found no double circulant self-dual $[94,46, d]$ code with $d \geq 16$. Then we have the following result.

Table 2: Weight enumerators of $B_{92, i}(i=1,2, \ldots, 158)$

β	i
1527	81,140
1572	$57,64,102$
1617	$52,55,77,106$
1662	$6,14,18,33,56,87,121,151$
1707	$3,36,38,50,69,99,101,109,111,123,143$
1752	$5,21,40,49,63,116,125,127$
1797	$15,27,32,46,89,95,105,138,141,147,152,153,156$
1842	$1,8,10,17,22,66,72,85,90,97,108$
1887	$13,26,39,41,44,48,58,62,74,84,91,103,110,112,113,119,130$,
	$136,139,154,155$
1932	$16,51,80,98,131,134$
1977	$2,23,24,47,53,59,61,86,120,126$
2022	$28,31,37,60,67,79,82,88,92,114,117,118,128,137,144,146,150$
2067	$4,7,19,35,100,107,157,158$
2112	$20,65,76,94,96,104,129,132,142,145$
2157	$11,34,45,68,70,133$
2202	$25,54,71,75,83,149$
2247	$30,42,115$
2292	$12,29,43,93,122$
2337	$73,124,135$
2382	78
2427	148
2607	9

Proposition 7. There is no double circulant self-dual code of length 94 and minimum weight $d \geq 16$.

6 Double circulant self-dual [96,48, $d]$ codes with $d \geq 16$

As described in Section 1 it is currently not known if an extremal doubly even self-dual $[96,48,20]$ code exists, or if an extremal singly even self-dual $[96,48,18]$ code exists. There is a doubly even self-dual $[96,48,16]$ code [5], and a singly even self-dual $[96,48,16]$ code [6].

Using a method similar to that given in Section 2, our exhaustive search found all distinct pure double circulant self-dual $[96,48, d]$ codes with $d \geq 16$

Table 3: First rows of R^{\prime} in (2) for $B_{92, i}(i=1,2, \ldots, 158)$

2	r	i	r	i	r
1	045722771307000	2	046354263735000	3	054130272607000
4	102155447541000	5	104521145473000	6	110545607071000
7	111222513531000	8	115060555603000	9	126644436177000
10	130023052373000	11	130115321127000	12	141232724213000
13	165172671757000	14	206201322771000	15	207022470467000
16	221254213777000	17	233413676413000	18	236265461527000
19	243271301677000	20	246165167155000	21	263645737137000
22	265543417117000	23	271737137037000	24	304151364577000
25	306307103017000	26	330141216433000	27	341136314537000
28	367621175177000	29	406233754353000	30	407777023131000
31	436453744513000	32	442536745265000	33	453136757327000
34	506762231273000	35	522423127177000	36	533555410563000
37	536456502533000	38	545721744703000	39	552732211353000
40	577604234513000	41	605303705657000	42	616171605527000
43	616352763673000	44	645661771573000	45	652610723547000
46	041045754474740	47	041074234673640	48	043135457542240
49	043250274476540	50	043574372741740	51	043603253362640
52	044104457046640	53	044226336701740	54	044671546702540
55	044736177354640	56	046241222776640	57	047663617660740
58	050576621023740	59	050751623626240	60	052354251553140
61	053047243053740	62	053452447124740	63	054716632374740
64	055727742734140	65	057165135375140	66	060736704331140
67	061065253646540	68	063057644302740	69	063731763152340
70	065235232367740	71	066764121737540	72	072237363775740
73	101742440560540	74	103257370547740	75	104571361141740
76	105644361251740	77	107752466111140	78	112175633752540
79	112453746103640	80	113343466667340	81	114740315712340
82	115256766234740	83	115303767255340	84	115331337561640
85	116226336753640	86	116277617462540	87	123320123173340
88	123663146657540	89	123763453707140	90	127654632533640
91	127737665370740	92	131553671516340	93	132721322740340
94	134537632035740	95	136446677675740	96	140352750117540
97	141147475510340	98	142376737627740	99	145756370077140
100	146514734137740	101	146542652434540	102	147307747376740
103	151056130545740	104	153556753442340	105	153743314476340
106	154356132761740	107	155237453760340	108	162603763561740
109	162755377664740	110	163131275323740	111	203315731776440
112	204336305345340	113	205721743736640	114	206127347363740
115	216236374745540	116	216712337262740	117	216776346322340
118	223601644714740	119	225103675656740	120	225756665264340
121	227266265646740	122	227656146713640	123	231235753751440
124	233466766660640	125	233475224764740	126	235161677207340
127	236612727317440	128	236657266701540	129	244353765463340
130	246531765347240	131	257573767412740	132	261574375164340
133	265576361776640	134	272764241653740	135	275373174710140
136	277333517335540	137	277444625674540	138	277464773666340
139	277757446333340	140	306156645077740	141	306533337306340
142	310773753761740	143	313675510752340	144	317071170770740
145	324761561777740	146	357234774374740	147	463637676050640
148	512662622756740	149	516703753357740	150	535715465737340
151	537761713627540	152	547776766153140	153	626053773755740
154	656707543160740	155	043557136776166	156	047172572571772
157	051150777762736	158	066775577156766		

and all distinct bordered double circulant doubly even self-dual $[96,48, d]$ codes with $d \geq 16$. Then we have the following result.

Proposition 8. There is no extremal double circulant doubly even self-dual code of length 96. There is no extremal double circulant singly even self-dual code of length 96.

Remark 9. Alfred Wassermann in a private communication indicated that there is no double circulant self-dual code of length 96 and minimum weight $d \geq 18$, which provides an independent confirmation of our results.

Proposition 10. There are 49 inequivalent pure double circulant singly even self-dual $[96,48,16]$ codes. There are 4565 inequivalent pure double circulant doubly even self-dual $[96,48,16]$ codes. There are 1532 inequivalent bordered double circulant doubly even self-dual $[96,48,16]$ codes.

Table 4: First rows of R in (1) for $C_{96, i}(i=1,2, \ldots, 49)$

i	r	(a, b, c, d)	i	r	(a, b, c, d)
1	5532465545470000	$(9798,0,0,0)$	2	1011116717627400	$(10050,0,0,0)$
3	2117213667133520	$(10164,0,0,0)$	4	5160450553527400	$(10416,0,0,0)$
5	0411642402747400	$(10422,0,0,0)$	6	1110737636054400	$(10434,0,0,0)$
7	2730315332407400	$(10566,0,0,0)$	8	4127775466731720	$(10566,0,0,0)$
9	5247741422235400	$(10740,0,0,0)$	10	1104701417751460	$(10854,0,0,0)$
11	1334257665167760	$(10980,0,0,0)$	12	1551523722207400	$(11154,0,0,0)$
13	1072513135756620	$(11364,0,0,0)$	14	5302720447547400	$(11508,0,0,0)$
15	1115027566566720	$(11820,0,0,0)$	16	1176414666173320	$(12108,0,0,0)$
17	1252510325477400	$(12180,0,0,0)$	18	0707334570645560	$(9618,-48,0,0)$
19	0536450432504760	$(10326,-48,0,0)$	20	2727311567536720	$(10326,-48,0,0)$
21	4260735067342400	$(10422,-48,0,0)$	22	5720417224633400	$(10434,-48,0,0)$
23	0465637224357620	$(10566,-48,0,0)$	24	0447671345066400	$(11124,-48,0,0)$
25	0644667174474660	$(11844,-48,0,0)$	26	1667375134475360	$(11994,-48,0,0)$
27	1233543431133400	$(10458,-96,0,0)$	28	5772526161347400	$(10806,-96,0,0)$
29	4072735065262400	$(11190,-96,0,0)$	30	1077057777245360	$(11634,-96,0,0)$
31	1473646640067400	$(11670,-96,0,0)$	32	7242336777667400	$(11748,-96,0,0)$
33	0411474700534400	$(11796,-96,0,0)$	34	7005761177137400	$(11940,-96,0,0)$
35	0420777500236160	$(11940,-96,0,0)$	36	0407113175431520	$(11952,-96,0,0)$
37	0603237114035560	$(12390,-96,0,0)$	38	2577350620527260	$(12852,-96,0,0)$
39	0670641356075760	$(10818,-144,0,0)$	40	1462237456233660	$(11616,-144,0,0)$
41	5176656144756400	$(12090,-144,0,0)$	42	0463117521602660	$(12132,-144,0,0)$
43	0411766016336120	$(12198,-144,0,0)$	44	1237215132353660	$(12384,-144,0,0)$
45	2271227740255400	$(12690,-144,0,0)$	46	2114462227575400	$(13050,-144,0,0)$
47	1176617376233720	$(13218,-144,0,0)$	48	0477501403733400	$(12282,-192,0,0)$
49	5764337750370000	$(14124,-288,0,0)$			

We denote the 49 inequivalent pure double circulant singly even self-dual $[96,48,16]$ codes by $C_{96, i}(i=1,2, \ldots, 49)$. For these codes, the first rows r
of R in (1) are listed in Table 4. In the table, the rows are written in octal using $0=(000), 1=(001), \ldots, 6=(110)$ and $7=(111)$.

The possible weight enumerators of singly even self-dual $[96,48, d]$ codes with $d \geq 16$ and their shadows (see [3] for the definition) are

$$
\begin{aligned}
& 1+(-5814+a) y^{16}+(97280+64 b) y^{18}+(1694208-16 a-384 b+4096 c) y^{20} \\
& +(18969600+192 b-49152 c-262144 d) y^{22} \\
& +(184315200+120 a+3328 b+237568 c+4718592 d) y^{24}+\cdots, \\
& d y^{4}+(c-22 d) y^{8}+(-b-20 c+231 d) y^{12}+(a+18 b+190 c-1540 d) y^{16} \\
& +(3231744-16 a-153 b-1140 c+7315 d) y^{20} \\
& +(369664000+120 a+816 b+4845 c-26334 d) y^{24}+\cdots,
\end{aligned}
$$

respectively, where a, b, c, d are integers. It is easy to see that the number of codewords of weight 16 in the code and the numbers of vectors of weights $4,8,12$ in the shadow uniquely determine the weight enumerator. By calculating these numbers, we determined the weight enumerators of the codes $C_{96, i}$. This was done using Magma [1]. We display in Table $4(a, b, c, d)$ for the weight enumerators of the codes $C_{96, i}$. We verified by Magma [1] that each of the 49 codes has an automorphism group of order 96 .

We denote the 4565 inequivalent pure double circulant doubly even selfdual $[96,48,16]$ codes by $P_{96, i}(i=1,2, \ldots, 4565)$. The first rows r of R in (1) can be obtained fromhttp://www.math.is.tohoku.ac.jp/~mharada/Paper/DCCp96.txt. By the Gleason theorem (see [15]), the possible weight enumerators of doubly even self-dual $[96,48, d]$ codes with $d \geq 16$ are

$$
\begin{aligned}
& 1+a y^{16}+(3217056-16 a) y^{20}+(369844880+120 a) y^{24} \\
& +(18642839520-560 a) y^{28}+(422069980215+1820 a) y^{32}+\cdots
\end{aligned}
$$

where a is an integer with $0 \leq a \leq 201066$. By calculating the number of codewords of weight 16, we verified that the 4565 codes have 614 distinct weight enumerators. The numbers a in the weight enumerators are listed in Table 5. We verified by Magma [1] that 4530, 34 and 1 of the 4565 codes have automorphism groups of orders 96, 192 and 89280, respectively. For the unique code with an automorphism group of order 89280, the first row r of R in (1) is
(010001101111001001011111101110100100101111110000).

Table 5: Weight enumerators of pure double circulant doubly even self-dual [96, 48, 16] codes

We denote the 1532 inequivalent bordered double circulant doubly even self-dual $[96,48,16]$ codes by $B_{96, i}(i=1,2, \ldots, 1532)$. The first rows r of R^{\prime} in (2) can be obtained from http://www.math.is.tohoku.ac.jp/~mharada/Paper/DCCb96.txt. By calculating the numbers of codewords of weight 16 , we verified that the 1532 codes have 25 distinct weight enumerators. For each a, the number N_{a} of codes with the weight enumerator is listed in Table 6. We verified by MAGMA [1] that the 1532 codes have automorphism groups of order 94.

Table 6: Weight enumerators of bordered double circulant doubly even selfdual $[96,48,16]$ codes

a	N_{a}								
6204	1	6768	2	7050	5	7332	8	7614	17
7896	30	8178	72	8460	82	8742	116	9024	141
9306	157	9588	197	9870	141	10152	160	10434	130
10716	92	10998	74	11280	32	11562	31	11844	20
12126	12	12408	4	12690	5	12972	1	13254	2

7 Neighbors of double circulant self-dual [96, 48, 16] codes

Let C be a double circulant self-dual $[96,48,16]$ code. Let M be a matrix whose rows are the codewords of weight 16 in C. We verified by Magma [1] that

$$
\left(\operatorname{rank} M, \operatorname{rank}\left(M \mathbf{1}^{T}\right)\right)=(47,48),
$$

for $C=C_{96, i}(i=1,2, \ldots, 49)$ and

$$
\left(\operatorname{rank} M, \operatorname{rank}\left(M \mathbf{1}^{T}\right)\right)=(48,49)
$$

for $C=P_{96, i}(i=1,2, \ldots, 4565)$ and $C=B_{96, i}(i=1,2, \ldots, 1532)$. By the method given in Section 3, we have the following results.

Proposition 11. No double circulant self-dual $[96,48,16]$ code has a selfdual $[96,48, d]$ neighbor with $d \geq 18$.

It is still an open problem whether an extremal doubly even self-dual code or an extremal singly even self-dual code of length 96 exists.

Acknowledgment. The authors would like to thank Alfred Wassermann for his useful private communication. This work was supported by JSPS KAKENHI Grant Number 15H03633.

References

[1] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24 (1997), 235-265.
[2] N. Chigira, M. Harada and M. Kitazume, Extremal self-dual codes of length 64 through neighbors and covering radii, Des. Codes Cryptogr. 42 (2007), 93-101.
[3] J.H. Conway and N.J.A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory 36 (1990), 13191333.
[4] R. Dontcheva, R. Russeva and N. Ziapkov, On the binary extremal codes of length 92, Proc. Intern. Workshop Optimal Codes and Related Topics, Sunny Beach, Bulgaria, 2001, pp. 53-58.
[5] S.T. Dougherty, T.A. Gulliver and M. Harada, Extremal binary self-dual codes, IEEE Trans. Inform. Theory 43 (1997), 2036-2047.
[6] P. Gaborit and A. Otmani, Experimental constructions of self-dual codes, Finite Fields Appl. 9 (2003), 372-394.
[7] P. Gaborit, V. Pless, P. Solé and O. Atkin, Type II codes over \mathbb{F}_{4}, Finite Fields Appl. 8 (2002), 171-183.
[8] T.A. Gulliver and M. Harada, Weight enumerators of double circulant codes and new extremal self-dual codes, Des. Codes and Cryptogr. 11 (1997), 141-150.
[9] T.A. Gulliver and M. Harada, Classification of extremal double circulant self-dual codes of lengths 64 to 72, Des. Codes and Cryptogr. 13 (1998), 257-269.
[10] T.A. Gulliver and M. Harada, Classification of extremal double circulant self-dual codes of lengths 74-88, Discrete Math. 306 (2006), 2064-2072.
[11] T.A. Gulliver and N. Senkevitch, On a class of self-dual codes derived from quadratic residues, IEEE Trans. Inform. Theory 45 (1999), 701702.
[12] M. Harada, T.A. Gulliver and H. Kaneta, Classification of extremal double-circulant self-dual codes of length up to 62, Discrete Math. 188 (1998), 127-136.
[13] M. Harada, M. Kiermaier, A. Wassermann and R. Yorgova, New binary singly even self-dual codes, IEEE Trans. Inform. Theory 56 (2010), 1612-1617.
[14] M. Harada and T. Nishimura, An extremal singly even self-dual code of length 88, Adv. Math. Commun. 1 (2007), 261-267.
[15] C.L. Mallows and N.J.A. Sloane, An upper bound for self-dual codes, Inform. Control 22 (1973), 188-200.
[16] E.H. Moore, Double circulant codes and related structures, Ph.D. dissertation, Dartmouth College, Hanover, NH, (1976).
[17] R. Yorgova, Binary self-dual extremal codes of length 92, Proc. IEEE Intern. Symp. Inform. Theory, Seattle, WA, 2006, pp. 1292-1295.
[18] R. Yorgova and A. Wassermann, Binary self-dual codes with automorphisms of order 23, Des. Codes Cryptogr. 48 (2008), 155-164.

[^0]: *Department of Electrical and Computer Engineering, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC, Canada V8W 2Y2. email: agullive@ece.uvic.ca
 ${ }^{\dagger}$ Research Center for Pure and Applied Mathematics, Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan. email: mharada@m.tohoku.ac.jp.

