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Abstract—In the problem of blind reconstruction of channel
codes, the receiver does not have the knowledge of the channel
code used at the transmitter and the aim is to identify this
unknown channel code corresponding to the given received
sequence. In this paper, we study this blind reconstruction
problem for binary cyclic codes. In the literature, several re-
searchers have proposed blind reconstruction algorithms that
make use of the distribution of the syndromes (remainders) of
the received polynomials with respect to a candidate polynomial
for the generator polynomial of the cyclic code. However, very
limited analysis is available for the syndrome distribution and
its properties. In this paper, we study the syndrome structure
of the received polynomials. Specifically, we prove that the
syndrome distribution of the noise-free sequence can either be
uniform or restricted uniform. We also provide the necessary
and sufficient conditions for it to be of the either type. For
the noise-affected received sequence we prove that, finding the
syndrome distribution is in general computationally intractable.
We also apply these results to analyze the performance of the
existing methods and verify some of the assumptions made in
the literature for blind reconstruction.

I. INTRODUCTION

Channel codes play a vital role in the digital communication

system to make the system robust to the errors introduced

by the channel noise. When the channel code used at the

transmitter is known at the receiver, the received data can

be decoded to obtain the transmitted messages [1]. However

there could be situations when the channel code used at the

transmitter is not known at the receiver. For example, in

military surveillance the channel code used by an adversary

might not be known. In such scenarios, in order to decode

the received data, one needs to first identify this unknown

channel (see Fig. 1). This problem of identifying the channel

corresponding to the given received data is known as blind

reconstruction of channel codes [2]–[4].

This blind reconstruction problem is in general NP-hard [5].

While identifying a particular channel code, it is typically

assumed that the family of the code, such as convolutional

or linear block code, is known. The underlying structure of

this particular family is then used to identify the code. In

the literature, various algorithms have been proposed for blind

reconstruction of convolutional codes [6], [7], turbo codes [8],

[9], linear block codes [5], [10], [11], LDPC codes [12], [13],

and cyclic codes [14]–[19].

Chabot [15], Lee et al. [14], and Yardi et al. [16] have

studied this blind reconstruction problem for cyclic codes
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Fig. 1. A system model for blind reconstruction problem of channel codes.

when the length of the code is assumed to be known at the

receiver. Zhou et al. [18], [19] and Yardi et al. [17] consider

the situation when the length of the cyclic code is not known.

In this paper, we focus on the unknown length scenario. For

the unknown length scenario, a key idea proposed in the

existing methods is summarized next [17]–[19]. The unknown

cyclic code C(n0, g0) is identified by finding its length n0

and the factors of its generator polynomial g0(X). Since the

first received bit might not be the first bit of a received

codeword, for blind reconstruction, one also needs to identify

the location of the codeword boundaries or synchronization of

the received data. The analysis begins by assuming a length

n, synchronization, and a candidate polynomial f(X) for the

factor of the generator polynomial. Note that f(X) is factor of

Xn+1 since for an assumed n, the generator polynomial has to

be a factor of Xn+1 [1]. For the assumed n, synchronization,

and f(X) there are the following two cases.

(a) Both n and synchronization are correct, and f(X) is a

factor of g0(X)
(b) Either n or synchronization is not correct or f(X) is not

a factor of g0(X)

For the chosen n, synchronization, and f(X), the key step in

the existing methods consists of determining which one of the

above two cases holds.

In order to use the optimal likelihood ratio tests for de-

termining whether (a) is true or (b) is true, one needs to

find the probability of the received data when condition

(a) is true and when condition (b) is true [20]. However,

we next explain that finding this probability is, in general,

computationally intractable. When condition (a) is true, let

http://arxiv.org/abs/1710.02703v2
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P[y] be the probability of receiving an n0-bit vector y. This

probability can be computed by conditioning over all possible

transmitted codewords in C(n0, g0) as follows,

P[y] =
∑

v∈C(n0,g0)

P
[

y

∣
∣
∣v is transmitted

]

P
[

v is transmitted
]

.

When f(X) = g0(X) and the true code C(n0, g0) used at

the transmitter is known at the receiver, it is shown in [21]

that finding P[y] is, in general, computationally intractable.

Since in our case C(n0, g0) is not known, obtaining P[y] is

even more computationally intractable. Hence in the literature,

researchers have proposed suboptimal tests which make use of

the syndromes of the received polynomials to take a decision

between (a) and (b) [17]–[19]. In [17] and [19], the properties

of the zero syndromes of the received polynomials are used to

distinguish between (a) and (b). Whereas in [18], the marginal

distribution of the coefficients of the syndromes is used for

blind reconstruction.

Understanding the syndrome structure of the received poly-

nomials is thus important to study the problem of blind

reconstruction of binary cyclic codes. However, very lim-

ited analysis is available for the syndrome distribution and

its properties. Due to lack of knowledge of the syndrome

distribution, typically in the literature some assumptions are

made to simplify the analysis [18], [19]. For example, in [18]

it is assumed that when either of the assumed parameter is

incorrect (case (b) mentioned above), every coefficient in the

syndrome of the received polynomial is equally likely to be

zero or one. In [19], the received data is assumed to behave

as a random bitstream for the incorrect parameters. In this

paper, we analyze the properties of the syndrome distribution

and verify these assumptions. These syndrome properties can

also be use to study the theoretical performance of the method

proposed in [17]. The main contributions of this paper are as

follows.

(1) We first characterize the syndrome distribution of the

noise-free polynomials with respect to a candidate poly-

nomial f(X). We prove that when either of the assumed

parameter are incorrect (case (b) mentioned above), the

distribution of the syndrome can be either uniform or

restricted uniform (see (7), (8), and Proposition 1). We

also provide the necessary and sufficient conditions for

the distribution to be restricted uniform (see Theorems 1,

2, and 3).

(2) We study the syndrome distribution of the noise-affected

received polynomials. We prove that when the syndrome

distribution of the noise-free polynomial is uniform, the

distribution of the noise-affected polynomial would also

be uniform (see Theorem 4). We also show that, when

the distribution of the syndrome of the noise-free polyno-

mial is restricted uniform, finding the distribution of the

noise-affected polynomial is in general computationally

intractable.

(3) Finally, using the syndrome analysis mentioned in (1)

and (2) above, we verify the assumptions made in [19]

and [18] and provide a theoretical analysis of the blind

reconstruction method proposed in [17].

Organization: The system model for blind reconstruction of

cyclic codes and some preliminaries are provided in Section II.

We study the syndrome distribution of the noise-free sequence

in Section III. This analysis is then extended to the noise-

affected case in Section IV. In Section V, we provide a the-

oretical analysis of the existing blind reconstruction methods.

Finally, we conclude in Section VI.

Notation: The set of natural numbers is denoted by N and F2

denotes the finite field with two elements 0 and 1. The polyno-

mial ring with coefficients from F2 is denoted by F2[X ]. The

integer ⌊m⌋ denotes the greatest integer less than or equal

to m. We use boldface letters to denote the vectors and lower

case letters for the components of a vector. For example, vector

y =
[
y0 y1 . . . yn−1

]
, where yi for i = 0, 1, . . . , n−1 are

the components of y. The polynomial representation of vector

y, is given by y(X) = y0 + y1X + . . . + yn−1X
n−1. Note

that the polynomials corresponding to vectors are denoted by

boldface letters. For integers l, r, 0 ≤ l < r < n, we define

y(l : r) :=
[
yl yl+1 . . . yr

]
. When l = 0, the vector

y(0 : r) is called as a prefix of y and when r = n − 1, the

vector y(l : n− 1) is called as a suffix of y.

II. SYSTEM MODEL AND PRELIMINARIES

A linear block code of length n is denoted by C(n) and the

cyclic code of length n and the generator polynomial g(X)
is denoted by C(n, g). Let k be the dimension of C(n, g). It

is known that k = n − deg(g), where deg(g) is the degree

of g(X) [1]. When k = 0 or k = n, the code C(n, g) is

said to be a trivial cyclic code. Any codeword polynomial

v(X) can be written as v(X) = u(X)g(X) where u(X) is

a message polynomial. The set of polynomials in F2[X ] of

degrees strictly less than n is denoted by Pn, i.e.,

Pn =
{

f(X) ∈ F2[X ]
∣
∣
∣deg(f(X)) ≤ n− 1

}

. (1)

Using to this notation, v(X) ∈ Pn and u(X) ∈ Pk.

Suppose the cyclic code C(n0, g0) of dimension k0 is used

at the transmitter. Each transmitted codeword is independent

and identically distributed (i.i.d.) according to the uniform

distribution over the set of codewords of C(n0, g0). We

assume that the noise is introduced by a binary symmetric

channel (BSC) of crossover probability p < 1/2. The received

bitstream is denoted by y0, y1, . . . , yN−1. We now define the

synchronization s0 of this bitstream as follows.

Definition 1. The synchronization s0 of the received bitstream

y0, y1, . . . , yN−1 is defined as the smallest integer such that

the vector
[
ys0 . . . ys0+n0−1

]
of length n0 is the noise-

affected version of the transmitted codeword of the cyclic code

C(n0, g0) used at the transmitter. Note that 0 ≤ s0 < n0. �

Let n ∈ N be an assumed length of the code. For an assumed

synchronization s, 0 ≤ s < n ignore y0, y1, . . . , ys−1 from

the received bitstream and divide the remaining bitstream into

vectors of length n. Thus the first n-bit vector is given by

y1(n, s) =
[
ys . . . ys+n−1

]
. Similarly the jth n-bit vector

is given by yj(n, s) =
[
ys+(j−1)n . . . ys+jn−1

]
. Suppose

we have received M = ⌊(N − s)/n⌋ vectors of length n. For

the sake of simplicity we will drop parameters n and s from
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yj(n, s). Thus y1,y2, . . . ,yM is the sequence of n-bit vectors

for an assumed synchronization s. Note that, the polynomial

corresponding to yj is given by yj(X), for j = 1, 2, . . . ,M .

We assume that cyclic code C(n0, g0) used at the transmitter

is non-degenerate, where a degenerate code is defined as

follows.

Definition 2. Let G be a generator matrix of a linear block

code C(n). Then C(n) is said to be degenerate if G can be

written as,

G =
[

G′ G′ · · · G′
︸ ︷︷ ︸

l times

]

, (2)

where l ∈ N, l > 1 and G′ is a generator matrix of some other

linear block code C′(n′) of length n′ = n/l [22, Ch. 8]. The

code C′(n′) is said to be a component code of C(n). For a

cyclic code, its component code is also cyclic [17]. �

For blind reconstruction of a degenerate cyclic code, it is

sufficient to identify its non-degenerate component (see [17]

for details). Hence without loss of generality we consider the

situation when the cyclic code used at the transmitter is not

degenerate.

A. Preliminaries

In this section, we consider some preliminaries that will be

required throughout the paper.

Definition 3. The order of a polynomial f(X) over F2(X) is

defined as the least positive integer l such that f(X) divides

X l + 1 [23, Sec. 3.1]. �

We next recall a definition of a linear recurring sequence

and its period.

Definition 4. For a positive integer l, a sequence of bits

v0, v1, · · · is said to be a linear recurring sequence of lth

order if they follow a relation

vr+l =

l−1∑

i=0

hivr+i, for r = 0, 1, . . . (3)

where hi ∈ F2 for i = 0, 1, . . . , l − 1. It is known that any

linear recurring sequence is ultimately periodic and its period

is defined as a positive integer n such that vr+n = vr, for

r = 0, 1, . . . [23, Sec. 6.1]. �

The minimal polynomial associated with a linear recurring

sequence is defined next.

Definition 5. Suppose d is the least positive integer such that

the linear recurring sequence v0, v1, · · · satisfies the relation

given in (3). Then the polynomial h(X) := hd−1X
d−1 +

hd−2X
d−2 + . . . + h0 is called as the minimal polynomial

associated with this sequence [23, Sec. 6.4]. �

It is known that any linear recurring sequence has a unique

minimal polynomial and the order of the minimal polynomial

is equal to the least period of this sequence [23, Sec. 6.4].

We next define a vector of degenerate pattern.

0 1 2 3 4 5 6 7

1

(a) Degenerate

0 1 2 3 4 5 6 7

0.125

(b) Uniform

0 1 2 3 4 5 6 7

0.25

(c) Restricted uniform

Fig. 2. An illustration of the three types of distributions defined in (6), (7),
and (8) for a random variable X with the support set X = {0, 1, . . . , 7}.

Definition 6. An n-bit vector v is said to be of degenerate

pattern if it can be written as

v =
[

w w · · · w
︸ ︷︷ ︸

l times

]

, (4)

where l ∈ N and w itself is a vector of length n′ = n/l such

that w is not a vector of degenerate pattern [24]. �

It is known that the sequence of bits given by [w w · · · ]
in (4) is a linear recurring sequence with least period n′ [23].

We now define the minimal generating polynomial associated

with this sequence as follows.

Definition 7. Let h(X) be the minimal polynomial of the

linear recurring sequence [w w · · · ] with least period n′.

Then the minimal generating polynomial m(X) associated

with [w w · · · ] is defined as

m(X) :=
Xn′

+ 1

h′(X)
, (5)

where h′(X) = Xdeg(h)h(X−1). It is known that the polyno-

mial w(X) corresponding to w is a multiple of m(X) [25,

Sec. 7.4]. Note that h(X) is the generator polynomial of the

dual code of C(n′,m). �

We next provide a definition of the outer direct sum of two

linear block codes.

Definition 8. The outer direct sum C1(n1)+C2(n2) of codes

C1(n1) and C2(n2) is defined as a linear block code formed

by concatenating all possible codewords of C1(n1) with all

possible codewords of C2(n2), i.e.,

C1(n1) + C2(n2) :=

{
[
v w

]
∣
∣
∣
∣
v ∈ C1(n1),w ∈ C2(n2)

}

.

�

We now define three types of distributions for a discrete

random variable X with a finite support set X such that the

cardinality of |X| of set X is equal to 2L for some integer L ≥
1. An example situation for these three types of distributions

is shown in Fig. 2.

(1) Degenerate distribution (see Fig. 2(a))

Random variable X is said to follow the degenerate

distribution if it takes a particular value x0 ∈ X with

probability one, i.e.,

P[X = x] =

{
1 if x = x0 for some x0 ∈ X,
0 otherwise.

(6)
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(2) Uniform distribution (see Fig. 2(b))

When random variable X follows the uniform distribution

on its support set X,

P[X = x] =

{
1/|X| if x ∈ X,
0 otherwise.

(7)

(3) Restricted uniform distribution (see Fig. 2(c))

Consider a strict subset X0 of X such that |X0| = 2l for

some integer l, where 1 ≤ l < L. Random variable X is

said to follow the restricted uniform distribution on X if

it follows the uniform distribution on set X0, i.e.,

P[X = x] =

{
1/|X0| if x ∈ X0,
0 otherwise.

(8)

III. SYNDROME DISTRIBUTION OF THE NOISE-FREE

SEQUENCE

Recall that for an assumed length n and synchroniza-

tion s, the received sequence of polynomials is given by

y1(X),y2(X), . . . ,yM (X) (see Section II). Suppose f(X) is

factor of Xn + 1. For blind reconstruction, we need to study

the distribution of yj(X) mod f(X), for j = 1, 2, . . . ,M .

Suppose the jth received polynomial yj(X) is given by,

yj(X) = wj(X) + ej(X), (9)

where wj(X) is the noise-free polynomial and ej(X) the error

polynomial. In this section, we study the distribution of the

syndrome of the noise-free polynomial, i.e., the distribution

of wj(X) mod f(X), where 1 ≤ j ≤ M . The distribution of

yj(X) mod f(X) will be studied in the next section.

We first consider the case when either n 6= ln0 or s 6=
s0, where l ∈ N . The case when n = ln0 and s = s0
will be studied towards the end of this section. Consider a

noise-free sequence of codewords of the true code C(n0, g0)
as shown in Fig. 3(a). Example situations when this sequence

is divided into vectors of length n such that n < n0, s 6=
s0 and n > n0, s 6= s0 are illustrated in Figures 3(b) and

(c) respectively. In Fig. 3(a), v1,v2, . . . ,v4 ∈ C(n0, g0). In

Fig. 3(b), w1,w2, . . . ,w5 are vectors of length n < n0 and

in Fig. 3(c), w1 and w2 are vectors of length n > n0. In this

section, we use the alphabets v and w to denote the vectors

of lengths n0 and n respectively.

From Fig. 3(b) and (c), it can be seen that when either

n 6= ln0 or s 6= s0, a vector wj of length n is either of the

following two types.

1) Vector wj is formed by the consecutive n bits of some

codeword in code C(n0, g0). For example, vectors w1

and w4 in Fig. 3(b) are formed by the consecutive n bits

of codewords v1 and v3 of C(n0, g0) respectively.

2) Vector wj is formed by the concatenation of the suffix,

a sequence of q codewords, and the prefix of a codeword

in the true code, where q ∈ Z, q ≥ 0. For example, w1

in Fig. 3(c) is formed by the concatenation of the suffix

of v1 of length d1, v2, and the prefix of v3 of length d2,

where 0 ≤ d1, d2 < n0 such that n = d1 + n0 + d2. The

vector w2 in Fig. 3(b) is formed by the concatenation

of the suffix of v2 of length d′1 and the prefix of v3 of

length d′2, such that n = d′1 + d′2.

v1 v2 v3 v4

n0 n0 n0 n0

s = s0

(a) n = n0, s = s0

n d′1 d′2 n n n

w1 w2 w3 w4 w5

s 6= s0

(b) n < n0, s 6= s0

d1 n0 d2 n

w1 w2

s 6= s0

(c) n > n0, n 6= ln0, and s 6= s0

Fig. 3. A binary cyclic code C(n0, g0) is used at the transmitter and
v1,v2, . . . ,v4 ∈ C(n0, g0). Figures (a), (b), and (c) correspond to the
situations when n = n0, s = s0, n < n0, s 6= s0, and n > n0, s 6= s0
respectively.

We denote the vector wj of the second type by w′
j to

distinguish between the n bits vectors of the two types

mentioned above. For the simplicity of notation, we will ignore

suffix j from wj and w′
j . Using this notation, w is an n-bit

vector formed by the consecutive n bits of a codeword in

C(n0, g0). Since C(n0, g0) is a cyclic code, it is sufficient to

consider the case when w is formed by the initial n bits of a

codeword in C(n0, g0), i.e., w is given by,

w = v(0 : n− 1), (10)

where v ∈ C(n0, g0). Let W(n) be the linear subspace

obtained by puncturing the last n0 − n bits of codewords of

code C(n0, g0). It follows that w ∈ W(n).

As explained in the previous paragraph, w′ is an n-bit vector

formed by the concatenation of the suffix of length d1, a

sequence of q codewords, and the prefix of length d2, where

d1, d2, q ∈ N, such that n = d1 + qn0 + d2, i.e., w′ is given

by,

w′ =
[

v1(n0 − d1 : n0 − 1) v2 · · · vq+1 vq+2(0 : d2 − 1)
]

(11)

where v1,v2, . . . ,vq+2 ∈ C(n0, g0). Let C1(d1) and C2(d2)
be the linear block codes obtained by considering the set

of suffixes and prefixes of lengths d1 and d2 of codewords

in C(n0, g0) respectively. Let W′(n) be the linear subspace

obtained by concatenating all possible suffixes of length d1, q
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codewords, and prefixes of length d2, i.e.,

W′(n) := C1(d1) + C(n0, g0) + · · · + C(n0, g0)
︸ ︷︷ ︸

q times

+C2(d2).

(12)

From (11), it can be seen that w′ ∈ W′(n). Note that,

since every codeword in C(n0, g0) is chosen according to the

uniform distribution, any w ∈ W(n) and w′ ∈ W′(n) occur

with the uniform distribution over the set of codewords in

W(n) and W′(n) respectively.

For a factor f(X) of Xn+1, suppose r(X) = w(X) mod
f(X) and r′(X) = w′(X) mod f(X). From Fig. 3, in order

to study the syndrome distribution of the noise-free sequence,

we need to study the distributions r(X) and r′(X). In the

following proposition, we first prove that the distributions of

r(X) and r′(X) can either be uniform or restricted uniform.

Proposition 1. For a cyclic code C(n0, g0), let W(n) and

W′(n) be the linear subspaces as defined in the previous

paragraph, where n is not a multiple of n0. For a factor

f(X) of Xn + 1, suppose r(X) = w(X) mod f(X) and

r′(X) = w′(X) mod f(X), where w(X) ∈ W(n) and

w′(X) ∈ W′(n). Then the random variables corresponding

to r(X) and r′(X) can either follow the uniform distribution

or the restricted uniform distribution. (see (7), (8), Fig. 2).

Proof: The proof is given in Appendix B.

Note that Proposition 1 is true irrespective of whether f(X)
is a factor of g0(X) or not. This proposition says that the

distribution of r(X) and r′(X) can be either be uniform or

restricted uniform, but it does not specify when the distribution

will be of either of the type. In the next two sections we will

answer this question.

A. Analyzing the distribution of r(X)

In this section, we characterize the distribution of r(X) =
w(X) mod f(X), when w(X) is formed by the n consecutive

bits of a codeword in C(n0, g0). Due to the cyclic nature of the

code, it is sufficient to consider the case when w(X) is formed

by the initial n bits of a codeword in C(n0, g0). Depending on

the chosen n and the degree of f(X) we have the following

cases.

(a) n ≤ k0, where recall that k0 is the dimension of C(n0, k0)
When n ≤ k0, a vector w formed the initial n bits of a

codeword in C(n0, g0) can take all possible 2n values

in Fn
2 since, for a cyclic code any set of k0 consecutive

coordinate locations form an information set [26]. From

our system assumption, any codeword in C(n0, g0) is

chosen i.i.d. according to the uniform distribution. Hence

w(X) will take all possible values in Pn with equal

probability and the random variable corresponding to

r(X) will follow the uniform distribution.

(b) deg(f) > k0
The syndrome r(X) = w(X) mod f(X) can take 2deg(f)

possible values in Pdeg(f). Whereas, w(X) can take

at most 2k0 possible values. When deg(f) > k0, the

number of possible syndromes are more than the number

of possible w(X). This implies that the random variable

corresponding to r(X) cannot follow the uniform distri-

bution and from Proposition 1, r(X) follows the restricted

uniform distribution.

(c) k0 < n < n0 and deg(f) ≤ k0
In this case, the distribution of r(X) can either be uniform

or restricted uniform. We characterize the conditions under

which the restricted uniform distribution is possible in the

following theorem.

Theorem 1. Consider a non-degenerate cyclic code C(n0, g0)
of length n0, dimension k0, and generator polynomial g0(X).
Let g⊥0 (X) be the generator polynomial of the dual code of

C(n0, g0). For an integer n and v(X) ∈ C(n0, g0), suppose

w(X) = v(X) mod Xn such that k0 < n < n0. Suppose

f(X) is a factor of Xn + 1 such that deg(f) ≤ k0 and

r(X) = w(X) mod f(X). Then the necessary condition for

the random variable corresponding to r(X) to follow the

restricted uniform distribution is that g⊥0 (X) should have a

factor of order strictly less than n0.

Conversely, when g⊥0 (X) has a factor m⊥(X) of order n′

such that 1 ≤ n′ < n0, syndrome r(X) follows the restricted

uniform distribution if the chosen n and f(X) satisfy the

following conditions.

1) n = bn′ for some b ∈ N.

2) f(X) is a factor of m(X)(1 + Xn′

+ X2n′

+ . . . +
X(b−1)n′

), where m(X) is the minimal generating poly-

nomial of the linear recurring sequence whose minimal

polynomial is m⊥(X) such that deg(m⊥) > k0−deg(f)
(see Definition 7).

Proof: The proof is given in Appendix C.

We next provide an example of a cyclic code that satisfies

the claim of this theorem.

Example 1. Consider a non-degenerate cyclic code C(15, g0)
with generator polynomial g0(X) = (X4+X3+1)(X4+X3+
X2 +X + 1)(X + 1) and dimension k0 = 6. The generator

polynomial of the dual code of C(15, g0) is g⊥0 (X) = (X2 +
X+1)(X4+X3+1). Note that the factor m⊥(X) = X2+X+
1 of g⊥0 (X) has the order n′ = 3, which is strictly less than

n0 = 15. The minimal generating polynomial corresponding

to m⊥(X) = X2 +X + 1 is m(X) = X + 1.

For n = 9 and f(X) = X6 + X3 + 1, by considering

all possible codewords in C(15, g0) it can be checked that

the random variable corresponding to r(X) = w(X) mod
f(X) follows the restricted uniform distribution1. Note that

the chosen n and f(X) satisfy the conditions of the theorem

as n = 3n′, i.e., b = 3 and f(X) = X6 +X3 + 1 is a factor

of m(X)(1 +Xn′

+X2n′

+ . . .+X(b−1)n′

) = (X + 1)(1 +
X3 +X6) such that deg(m⊥) > k0 − deg(f). �

B. Analyzing the distribution of r′(X)

In this section, we study the distribution of r′(X) =
w′(X) mod f(X), where w′ ∈ W′(n) (see (11) and (12)).

We first consider the case when n < n0 and r(X) follows

1For this n and f , the probability of zero syndrome is 0.0625. For the
uniform distribution, the probability of zero syndrome would be 1/2deg(f) =
1/26 = 0.015625.
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the uniform distribution. In the following proposition, we will

prove that when r(X) follows the uniform distribution, r′(X)
also follows the uniform distribution.

Theorem 2. Suppose assumed length n is strictly less than

the true length n0 of the code. Let r(X) = w(X) mod f(X)
and r′(X) = w′(X) mod f(X), where w and w′ are defined

in (10) and (11) respectively. Then the random variable

corresponding to r′(X) follows the uniform distribution if the

random variable corresponding to r(X) follows the uniform

distribution.

Proof: The proof is given in Appendix D.

We next consider the case when either n > n0 or r(X)
follows the restricted uniform distribution. From Proposition 1,

we know that r′(X) will follow the uniform distribution or

restricted uniform distribution. We now provide the conditions

under which r′(X) will follow the uniform and the restricted

uniform distributions. From (11), w′ is given by,

w′ =
[

v1(n0 − d1 : n0 − 1) v2 · · · vq+1 vq+2(0 : d2 − 1)
]

=
[

c1 v2 · · · vq+1 c2

]

,

(13)

where vi ∈ C(n0, g0) for i = 1, 2, . . . , q + 2, c1 := v1(n0 −
d1 : n0 − 1), and c2 := vq+2(0 : d2 − 1). From (13), r′(X) is

given by,

r′(X) = w′(X) mod f(X)

=
[

c1(X) +Xd1v2(X) + . . .+Xd1+(q−1)n0vq+1(X)

+Xd1+qn0c2(X)
]

mod f(X)

= t1(X) + t2(X) + . . .+ tq+2(X),
(14)

where t1(X) = c1(X) mod f(X), ti(X) =
Xd1+(i−2)n0vi(X) mod f(X), and tq+2(X) =
Xd1+qn0c2(X) mod f(X), for i = 2, 3, . . . , q + 1. The

distribution of t1(X) and tq+2(X) can be studied using

Section III-A, since c1(X) and c2(X) are formed by the

consecutive d1 and d2 bits of a codeword in C(n0, g0). We

now study the distribution of ti(X), for i = 2, 3, . . . , q + 1.

First note that when v(X) mod f(X) follows the uniform

distribution, Xdv(X) mod f(X) also follows the uniform

distribution for any positive integer d. Similarly, when

v(X) mod f(X) follows the restricted uniform distribution,

Xdv(X) mod f(X) also follows the restricted uniform

distribution. Hence it is sufficient to study the distribution of

v(X) mod f(X).

• When f(X) is a factor of g0(X), v(X) mod f(X) is

zero with probability one, since v(X) = u(X)g0(X) for

some u(X) ∈ Pk0 . Thus v(X) mod f(X) follows the

degenerate distribution.

• When f(X) is not a factor of g0(X) and deg(f) ≤ k0,

from Theorem 3.2 of [16], v(X) mod f(X) follows the

uniform distribution.

• When f(X) is not a factor of g0(X) and deg(f) > k0,

v(X) mod f(X) follows the restricted uniform distribu-

tion since the number of possible values that r(X) can

take are more than the number of possible values v(X)
can take, as explained in Section III-A.

We now study the distribution of r′(X) in the following

theorem.

Theorem 3. Let r′(X) be as defined in (14). Then r′(X)
follows the uniform distribution when every ti(X), for i =
1, 2, . . . , q + 2 follows the uniform distribution, otherwise it

follows the restricted uniform distribution.

Proof: The proof is given in Appendix E.

Theorems 1, 2, and 3 completely characterize the distri-

bution of syndromes of the noise-free sequence when either

n 6= ln0 or s 6= s0. We next consider the case when n = ln0

and s = s0.

C. The case when n = ln0 and s = s0

When n = ln0 and s = s0, every noise-free n-bit vector

wj is formed by the concatenation of l codewords of the true

code C(n0, g0), i.e., any wj for 1 ≤ j ≤ M is given by,

wj =
[
v1 v2 . . . vl

]
, (15)

where vi ∈ C(n0, g0) for i = 1, 2, . . . , l. Depending on

whether f(X) is a factor of g0(X) or not and the degree

of f(X), we have the following cases.

(a) When f(X) is a factor of g0(X), from (15) wj(X) mod
f(X) is always zero since every vi(X), for i = 1, 2, . . . , l
is a multiple of g0(X). This implies that wj(X) mod
f(X) follows the degenerate distribution.

(b) When f(X) is not a factor of g0(X) and deg(f) ≤ k0,

from Theorem 3.2 of [16], vi(X) mod f(X) follows the

uniform distribution, for i = 1, 2, . . . , l. From Theorem 3

this implies that wj(X) mod f(X) also follows the uni-

form distribution.

(c) When f(X) is not a factor of g0(X) and deg(f) > k0, as

explained in the previous section, each vi(X) mod f(X)
follows the restricted uniform distribution and from The-

orem 3, wj(X) mod f(X) follows the restricted uniform

distribution.

D. Summary of the distribution of wj(X) mod f(X)

In this section, we summarize the results for the distribution

of wj(X) mod f(X). Depending upon the chosen n, s, and

f(X), we have the following cases.

• When n = ln0 for some l ∈ N, s = s0, and f(X) is fac-

tor of g0(X), wj(X) mod f(X) follows the degenerate

distribution (see Section III-C (a)).

• When either n 6= ln0 or s 6= s0 or f(X) is not a factor

of g0(X), the distribution of wj(X) mod f(X) is either

uniform or restricted uniform. Theorems 1, 2, and 3 and

Section III-C (b), (c) provide the conditions when the

distribution is uniform or restricted uniform.

IV. SYNDROME DISTRIBUTION OF THE NOISE-AFFECTED

RECEIVED SEQUENCE

In the previous section, we studied the distribution of

wj(X) mod f(X), where 1 ≤ j ≤ M . In this section,
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we study the distribution of yj(X) mod f(X), where recall

that yj(X) is the noise-affected version of wj(X) (see (9)).

In the previous section, we proved that the distribution of

wj(X) mod f(X) is either degenerate or uniform or restricted

uniform. We consider the case when wj(X) mod f(X) fol-

lows each type of the distribution separately and study the

distribution of yj(X) mod f(X). The case when wj(X) mod
f(X) follows the degenerate distribution, i.e., when n = ln0,

s = s0, and f(X) is a factor of g0(X) is studied in detail in

[16] and [17]. In the following theorem, we consider that case

when wj(X) mod f(X) follows the uniform distribution.

Theorem 4. Let yj(X) and wj(X) be the jth noise-affected

received polynomial and error-free polynomial respectively,

for j = 1, 2, . . . ,M . Then yj(X) mod f(X) follows the

uniform distribution if wj(X) mod f(X) follows the uniform

distribution.

Proof: Since wj(X) mod f(X) follows the uniform

distribution, it takes any value in Pdeg(f) with probability

1/2deg(f). We now find the probability that yj(X) mod f(X)
takes a value b(X) ∈ Pdeg(f) as follows.

P
[

yj(X) mod f(X) = b(X)
]

= P
[

[wj(X) + ej(X)] mod f(X) = b(X)
]

=
∑

d(X)∈Pn

P
[

[wj(X) + d(X)] mod f(X) = b(X)
]

P
[

ej(X) = d(X)
]

=
∑

d(X)∈Pn

P
[

wj(X) = d(X) mod f(X) + b(X)
]

P
[

ej(X) = d(X)
]

(a)
=

∑

d(X)∈Pn

1

2deg(f)
P
[

ej(X) = d(X)
]

=
1

2deg(f)

∑

d(X)∈Pn

P
[

ej(X) = d(X)
]

=
1

2deg(f)
. (16)

where the equality in (a) is obtained since [d(X) mod f(X)+
b(X)] is polynomial in Pdeg(f) and wj(X) mod f(X) takes

any value in Pdeg(f) with probability 1/2deg(f). From (16),

yj(X) mod f(X) follows the uniform distribution and the

proof is complete.

We now consider the case when wj(X) mod f(X) follows

the restricted uniform distribution. Let us first consider an

example distribution of yj(X) mod f(X) when wj(X) mod
f(X) follows the restricted uniform distribution.

Example 2. Suppose code C(n0, g0) with n0 = 15 and

g0(X) = (X4 + X + 1)(X4 + X3 + 1) is used at the

transmitter. For n = 10, suppose n-bit vector wj is formed

by the initial n = 10 bits of a codeword in C(n0, g0). For

a factor f(X) = X4 + X3 + X2 + X + 1 of X10 + 1, the

distributions of wj(X) mod f(X) and yj(X) mod f(X) are

shown in Fig. 4(a) and (b) respectively. It can be seen that,

wj(X) mod f(X) follows the restricted uniform distribution

0 1 X X2 X3 + 1 X3 +X2 + 1

0.25

(a) Distribution of wj(X) mod f(X)

0 1 X X2 X3 + 1 X3 +X2 + 1

0.125

(b) Distribution of yj(X) mod f(X)

Fig. 4. The distributions of wj(X) mod f(X) and yj(X) mod f(X) are
illustrated when wj(X) is formed by the initial 10-bits of a codeword in
code C(15, g0) with g0(X) = (X4 +X +1)(X4 +X3 +1) and f(X) =
X4 +X3 +X2 +X + 1.

but the distribution of yj(X) mod f(X) is neither uniform

nor restricted uniform. �

Example 2 suggests that, when wj(X) mod f(X) fol-

lows the restricted uniform distribution, the distribution of

yj(X) mod f(X) need not be uniform or restricted uniform.

Let S be the support set of wj(X) mod f(X). In Example 2,

the support set of wj(X) mod f(X) is S = {0, X2, X3 +
1, X3 + X2 + 1} (see Fig. 4(a)). From the definition of the

restricted uniform distribution, for any a(X) ∈ S,

P
[

wj(X) mod f(X) = a(X)
]

=
1

|S|
. (17)

The probability that yj(X) mod f(X) takes the value b(X) ∈
Pdeg(f) is given by,

P
[

yj(X) mod f(X) = b(X)
]

= P
[

[wj(X) + ej(X)] mod f(X) = b(X)
]

= P
[

ej(X) mod f(X) = [wj(X) mod f(X)] + b(X)
]

(a)
=

∑

a(X)∈S

P
[

ej(X) mod f(X) = a(X) + b(X)
]

P
[

wj(X) mod f(X) = a(X)
]

=
1

|S|

∑

a(X)∈S

P
[

ej(X) mod f(X) = a(X) + b(X)
]

,

(18)

where the equality in (a) is obtained by conditioning over the

support set S of wj(X) mod f(X) and the last equality is

obtained from (17). For a1(X), a2(X) ∈ S since a1(X) +
a2(X) ∈ S, from (18) we get

P
[

yj(X) mod f(X) = a1(X)
]

= P
[

yj(X) mod f(X) = a2(X)
]

. (19)

From (19), yj(X) mod f(X) takes any value in S with the

equal probability. In Example 2, it can be seen that the

probability of observing any two syndromes in S is the same.
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In Fig. 4(b), yj(X) mod f(X) takes the two values X2

and X3 + X2 + 1 in S with equal probability. However,

for calculating the value of P[yj(X) mod f(X) = b(X)]
for any b(X) ∈ Pdeg(f) would require the knowledge of

the support set S and the coset weight distribution of code

C(n, f) (see (18)). Since finding the coset weight distribution

is NP-hard and the knowledge of the support set S would

require the knowledge of the unknown true code C(n0, g0),
finding the value of P[yj(X) mod f(X) = b(X)] is in general

computationally intractable. Thus finding the distribution of

yj(X) mod f(X) when wj(X) mod f(X) follows the re-

stricted uniform distribution is computationally intractable.

V. APPLICATION TO BLIND RECONSTRUCTION OF CYCLIC

CODES

In the literature, Yardi et al. [17] and Zhou et al. [18],

[19] have proposed blind reconstruction methods when both

the length of the cyclic code and the synchronization of the

received data are not known. In this section, we provide a

theoretical analysis of these methods.

A. A theoretical analysis of the blind reconstruction method

proposed in [17]

Yardi et al. have proposed the zero syndrome distribution

based method for blind reconstruction [17]. In this method,

authors make use of the zero syndromes of the received

polynomials. Suppose rj(X) = yj(X) mod f(X) for j =
1, 2, . . . ,M . They proved that, for a given n, s, and f(X)
there are either of the following two cases (see Theorem 1

of [17]).

(1) When n = ln0 such that l ∈ N, s = s0, and f(X) is a

factor of g0(X),

P[rj(X) = 0] = P (C(n, f)),

for j = 1, 2, . . . ,M and P (C(n, f)) is defined as,

P (C(n, f)) :=
n∑

i=0

Aip
i(1− p)n−i (20)

where {A0, A1, · · · , An} is the weight distribution of

C(n, f).
(2) When either n 6= ln0 or s 6= s0 or f(X) is a not factor

of g0(X),

P[rj(X) = 0] < P (C(n, f)),

for j = 1, 2, . . . ,M .

Using (1) and (2), they formulated and solved the blind

reconstruction problem via hypothesis testing problem given

by,

H0 : I{rj(X)=0} ∼ Bernoulli
(

P (C(n, f))
)

H1 : I{rj(X)=0} ∼ Bernoulli
(

Pj

)

s.t. Pj < P (C(n, f)),

(21)

where j = 1, 2, . . . ,M and I{rj(X)=0} is the indicator random

variable for the event rj(X) = 0. For analyzing the perfor-

mance of this method, one needs to analyze the performance

of the hypothesis testing in (21). The performance of the

hypothesis testing can be characterized using the Kullback-

Leibler (KL) divergence between the two distributions [27,

Ch. 11]. However in (21), the distribution under hypothesis H1

is not known in general. From Theorem 4, when wj(X) mod
f(X) follows the uniform distribution, yj(X) mod f(X) also

follows the uniform distribution and hence in this case under

hypothesis H1 we have,

H1 : I{rj(X)=0} ∼ Bernoulli

(
1

2deg(f)

)

. (22)

When wj(X) mod f(X) follows the restricted uniform

distribution, due to the reasons mentioned in Section IV,

characterizing the distribution of rj(X) = yj(X) mod f(X)
is computationally intractable. Hence in the following theorem

we provide an upper bound on P[rj(X) = 0] which is strictly

less than P (C(n, f)).

Theorem 5. Let y1(X),y2(X), . . . ,yM (X) be the sequence

of received polynomials for an assumed length n and synchro-

nization (see Section II). For a factor f(X) of Xn+1, suppose

rj(X) = yj(X) mod f(X), for j = 1, 2, . . . ,M . When either

the assumed length n is not a multiple of the correct length

n0 or synchronization is not correct or f(X) is not a factor of

the generator polynomial g0(X) of the code C(n0, g0) used

at the transmitter,

P
[
rj(X) = 0

]
≤ P

(
C(n, f)

)
(
λ+ 1

2

)

, (23)

where the expression for P(C(n, f)) is given in (20) and λ is

defined as follows

λ :=
1− (1− 2p)n−deg(f)+1

1 + (1− 2p)n−deg(f)+1
. (24)

Proof: The proof is given in Appendix F.

Using Theorem 5, we now find a lower bound on the KL-

divergence between the two distributions in (21) as follows.

Let P and Q denote the pmf of I{rj(X)=0} under hypoth-

esis H0 and H1 respectively. Suppose P :=
[
p0 p1

]
and

Q :=
[
q0 q1

]
, where p0 and q0 are the probabilities of

observing the all-zero syndrome under hypotheses H0 and H1

respectively. A lower bound on the KL-divergence DKL(P,Q)
between distributions P and Q is given by [27, Sec. 11.6],

DKL(P,Q) ≥
1

2 ln 2

(

|p0 − q0|+ |p1 − q1|
)2

. (25)

Substituting p1 = 1− p0 and q1 = 1− q0 in (25) we get,

DKL(P,Q) ≥
1

2 ln 2

(

|p0 − q0|+ |(1 − p0)− (1 − q0)|
)2

(26)

=
1

2 ln 2

(

|p0 − q0|+ |q0 − p0|
)2

(27)

(a)
=

1

2 ln 2

(

2|p0 − q0|
)2

(28)

=
2

ln 2

(
p0 − q0

)2
, (29)

where the equality in (a) is obtained since |p0−q0| = |q0−p0|
and the last equality is obtained since |p0− q0|

2 = (p0− q0)
2.
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From Theorem 5 we have, q0 ≤ p0(λ+1)/2 and substituting

this in (29) we get,

DKL(P,Q) ≥
2

ln 2

[

p0 −

(
p0(λ+ 1)

2

)]2

, (30)

=
2

ln 2

[

p0

(
1− λ

2

)]2

(31)

=
2

ln 2

(
1− λ

2

)2 (

P (C(n, f))
)2

, (32)

where the last equality is obtained by substituting p0 =
P (C(n, f)). From (32), we obtain a lower bound on the KL-

divergence between two distributions in (21).

To summarize, depending on whether wj(X) mod f(X)
follows the uniform or the restricted uniform distribution, we

can characterize the distribution of I{rj(X)=0} using (22) and

(23), which is required for analyzing the performance of the

hypothesis testing of (21) in the zero syndrome distribution

based method.

B. A theoretical analysis of the blind reconstruction method

proposed in [18]

Zhou et al. have proposed the factor-entropy based method

for blind reconstruction of binary cyclic codes [18]. The basic

idea of this method is as follows. Suppose H is a parity

check matrix of the code C(n, f) generated by a factor f(X)
of Xn + 1. They consider the sequence received vectors

y1,y2, . . . ,yM and find the inner product of each yj with

H given by,

yjH
T =

[

rj,0 rj,1 . . . rj,deg(f)−1

]

. (33)

They define the mean value of probability of zero syndrome

P (yj , f) as,

P (yj , f) :=
1

deg(f)

deg(f)−1
∑

l=0

P[rj,l = 0]. (34)

For blind reconstruction they assume that, when either n or s
is incorrect,

P (yj , f1) = P (yj , f2), (35)

where f1(X) and f2(X) are any two factors of Xn+1. They

further assume that when n = n0 and s = s0 the assumption

in (35) is not valid. The correct length and synchronization are

distinguished from any incorrect ones using this assumption.

In this section, we verify the validity of the assumption

in (35). We next illustrate an example situation where for an

incorrect s, P (yj , f1) 6= P (yj , f2) which implies that the

assumption in (35) is not correct.

Example 3. Suppose the cyclic code C(n0, g0) with n0 = 7
and g(X) = X3 + X + 1 is used for the communication.

Let us assume that s0 = 0 is the correct synchronization.

For n = 7 and s = 1, the values of P (yj , f) for all possible

factors of X7+1 are provided in Table I, for j = 1, 2, . . . ,M .

It can be seen that, for the chosen incorrect parameters, the

assumption in (35) is not valid. In this example, note that the

assumed length n was correct, f(X) was a factor of g0(X),

f(X) P (yj , f) P (yj , f) P (yj , f)
for p = 0 for p = 0.01 for p = 0.05

X + 1 0.5 0.5 0.5
X3 +X + 1 0.8334 0.8076 0.7184
X3 +X2 + 1 0.5 0.5 0.5

TABLE I
THE VALUES OF P (yj , f) FOR ALL POSSIBLE FACTORS OF X7 + 1 ARE

ILLUSTRATED WHEN n = 7 AND s = 1.

but the assumed synchronization was not correct. In general,

when n = n0 but s 6= s0, the assumption in (35) need not be

true. �

Though the assumption in (35) is not valid always, in the

following theorem we prove that, the assumption in (35) is

true when C(n0, g0) not degenerate and the assumed length

n < n0.

Theorem 6. Suppose the true code C(n0, g0) used at the

transmitter is not degenerate. For an assumed length n and

synchronization s, let yj and wj be the jth noise-affected and

noise-free n-bits vectors respectively, for j = 1, 2, . . . ,M . For

a factor f(X) of Xn + 1, let P (yj , f) be as defined in (34).

If n < n0, we have P (yj , f1) = P (yj , f2), where f1(X) and

f2(X) are any two factors of Xn + 1.

Proof: The proof is given in Appendix G.

C. A theoretical analysis of blind reconstruction method pro-

posed in [19]

In [19], Zhou et al. have proposed the root-entropy based

method for blind reconstruction. In this method, for an as-

sumed length n and synchronization s, authors consider the

received polynomials y1(X),y2(X), . . . ,yM (X). They find

an empirical probability of each root β of Xn+1 being a root

of the received polynomials. They assume that, when either n
or s is incorrect, all possible roots of Xn+1 are equally likely

to be roots of the received polynomials, i.e., for any two roots

β1 and β2 of Xn + 1,

P
[

β1 is a root of yj(X)
]

= P
[

β2 is a root of yj(X)
]

,

(36)

for j = 1, 2, . . . ,M . In Example 4, we provide an example

situation when this assumption is not true.

Example 4. Suppose code C(n0, g0) with n0 = 15 and

g0(X) = (X4+X3+1)(X4+X3+X2+X+1)(X+1) is used

at the transmitter and s0 = 0 is the correct synchronization

of the received sequence. For an assumed length n = 7 and

synchronization s = 0, the first n-bit received vector y1 will

be y1 = w1 + e1, where w1 is formed by the initial 7 bits of

a codeword in code C(15, g0). Consider two roots β1 and β2

of X7 + 1, whose minimal polynomials are f1(X) = X + 1
and f2(X) = X3 +X +1 respectively. It is known that, βi is

a root of y1(X) if and only if the minimal polynomial fi(X)
of βi is a factor of y1(X), for i = 1, 2 [23, Sec. 2.2]. Thus

the probability of a given βi is a root of y1(X) is the same

as that of the probability that fi(X) is a factor of y1(X).
For a factor fi(X) of X7 +1, the probability that fi(X) is a
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factor of y1(X) can be found by conditioning over all possible

codewords in C(15, g0). For two factors X3+X+1 and X+1
of X7 + 1, it can be verified that for any value of crossover

probability p,

P
[

β1 is a root of y1(X)
]

=
1

2deg(f)
= 0.125

P
[

β2 is a root of y1(X)
]

=
1

2deg(f)
= 0.5.

It can be seen that, the assumption in (36) is not valid for

y1(X). �

VI. CONCLUSION

In this paper, we analyzed the syndrome distribution of

the noise-free and noise-affected received sequence. For the

noise-free case, we completely characterized the syndrome

distribution of the received sequence. We proved that the

distribution of syndrome of any noise-free received polynomial

with respect to a candidate polynomial f(X) is degenerate

if and only if the assumed length is an integer multiple of

the correct length, assumed synchronization is correct, and

f(X) is a factor of the generator polynomial of the true code.

We proved that, in all the remaining cases the distribution

can either be uniform or restricted uniform. We also provided

the conditions under which this distribution will be of either

of the type. For the noise-affected situation we observed

that, while the syndrome distribution could be completely

characterized for some of the assumed parameters, in general

finding this distribution becomes computationally intractable.

Finally, we provided a theoretical analysis of the existing

methods available in the literature for blind reconstruction.

APPENDIX A: SOME PROPERTIES OF LINEAR BLOCK CODES

Lemma 1. Consider a non-trivial linear block code C(n)
of length n and dimension k. Every codeword in this code

is chosen according to the uniform distribution. Consider a

codeword v ∈ C(n) and a vector h ∈ Fn
2 . Then the inner

product vhT is equally likely to be zero or one if and only if

h /∈ C⊥(n).

Proof: Suppose the inner product vhT is equally likely

to be zero or one. If h ∈ C⊥(n), then the inner product vhT

will always be zero, which is a contradiction. This implies that

h /∈ C⊥(n) and the proof is complete.

We now prove the converse. Suppose h /∈ C⊥(n). Suppose

〈C⊥(n),h〉 denotes the subspace spanned by a set of linearly

independent vectors of C⊥(n) and h. In this case we have

C⊥(n) ⊆ 〈C⊥(n),h〉 and this implies that,

〈

C⊥(n),h
〉⊥

⊆
(

C⊥(n)
)⊥

= C(n). (37)

Since the dimension of C(n) is k, the dimensions of C⊥(n)
and 〈C⊥(n),h〉 will be n− k and n− k+1 respectively. The

dimension of 〈C⊥(n),h〉⊥ is n − (n − k + 1) = k − 1 and

hence in (37) we have,

〈

C⊥(n),h
〉⊥

⊂ C(n). (38)

Since h /∈ C⊥(n) and the dimension of 〈C⊥(n),h〉⊥ is

exactly one less than the dimension of C(n), from (38), the

inner product vhT will be zero for exactly 2k−1 number of

codewords in C(n). Since every v ∈ C(n) is chosen according

to the uniform distribution, vhT will be equally likely to be

zero or one and the proof is complete.

Lemma 2. Consider a linear block code C(n) and a vector

h /∈ C⊥(n). For positive integers d1 and d2, let C1(d1)
and C2(d2) be the linear subspaces formed by the set of

prefixes and suffixes of codewords in C(n) of lengths d1 and

d2 respectively, where 1 ≤ d1, d2 < n such that d1 + d2 = n.

Then either of the following is true.

(1) h(0 : d1 − 1) /∈ C⊥
1 (d1)

(2) h(d1 : n− 1) /∈ C⊥
2 (d2)

Proof: When h(0 : d1 − 1) /∈ C⊥
1 (d1), condition (1) of

the lemma is satisfied and the lemma is trivially true. Hence

we consider the case when h(0 : d1 − 1) ∈ C⊥
1 (d1). This

implies that, for any v ∈ C(n),

v(0 : d1 − 1)h(0 : d1 − 1)T = 0. (39)

We now prove by contradiction that h(d1 : n− 1) /∈ C⊥
2 (d2).

When h(d1 : n− 1) ∈ C⊥
2 (d2), for any v ∈ C(n),

v(d1 : n− 1)h(d1 : n− 1)T = 0. (40)

From (39) and (40), vhT will always be zero. Since it is given

that h /∈ C⊥(n), we get a contradiction from Lemma 1. Hence

h(d1 : n− 1) /∈ C⊥
2 (d2). Thus the condition (2) of the lemma

is satisfied and the proof is complete.

Lemma 3. Consider a cyclic code C(n, g) of length n and

generator polynomial g(X). Let g⊥(X) be the generator

polynomial of the dual code of C(n, g). Then C(n, g) contains

a codeword of a degenerate pattern if and only if there exists

a factor of g⊥(X) whose order is strictly less than n (see

Definitions 3, 6).

Proof: Suppose g⊥(X) has a factor f⊥(X) of order n′

such that 1 ≤ n′ < n. Let f(X) be the generator polynomial

of the dual code of C(n, f⊥). It is known that C(n, f) ⊆
C(n, g) [25, Sec. 7.4]. Since the order of f⊥(X) is strictly

less than n, C(n, f) will be a degenerate code [22, Sec. 8.3]

and the proof is complete since C(n, f) ⊆ C(n, g).
We now prove the converse. Suppose there exists a code-

word v ∈ C(n, g) of a degenerate pattern, i.e., v can be written

as,

v =
[

w w · · · w
︸ ︷︷ ︸

l times

]

, (41)

where l > 1 and w is a vector of length n′ = n/l such that w

is not a vector of a degenerate pattern. Since v is a codeword

in a cyclic code, the vector v(i) obtained by i right cyclic

shifts of v will also be a codeword in C(n, g) given by,

v(i) =
[

w(i) w(i) · · · w(i)
︸ ︷︷ ︸

l times

]

, (42)

where w(i) is the vector obtained by i right cyclic shifts of w

and 1 ≤ i < n. From (41), vector v(n′) obtained by n′ right
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cyclic shifts of v will be equal to
[
w w . . . w

]
= v.

Thus the set of codewords {v(1),v(2), . . . ,v(n′) = v} will

be distinct. It can be easily shown that the subspace spanned

by {v(1),v(2), . . . ,v(n′)} is a cyclic code. Let f(X) be the

generator polynomial of this code, denoted by C(n, f). Ob-

serve that every codeword in code C(n, f) is of a degenerate

pattern (see (42)), i.e., C(n, f) is a degenerate cyclic code

such that C(n, f) ⊆ C(n, g). This implies that C(n, f⊥) ⊇
C(n, g⊥) [1] and f⊥(X) is a factor of g⊥(X).

From (42), the period of the linear recurring sequence given

by [w(i) w(i) · · · ] is n′, which implies that f(X) divides

Xn′

+ 1 [23, Sec. 3.1]. Since n′ < n, the order of f⊥(X)
is strictly less than n and the proof is complete.

APPENDIX B: PROOF OF PROPOSITION 1

In this appendix, we will prove Proposition 1. We first

summarize some properties of syndrome r(X) that will be

required to prove this proposition.

Property 1. Let W be a linear subspace of Fn
2 . Let w(X) be

the polynomial corresponding to w ∈ W. For a polynomial

f(X) ∈ F2[X ], suppose the syndrome r(X) of w(X) with

respect to f(X) is given by,

r(X) = w(X) mod f(X)

= r0 + r1X + . . .+ rdeg(f)−1X
deg(f)−1,

(43)

where each rl ∈ F2, for l = 0, 1, . . . , deg(f) − 1. Then for

every coefficient rl of r(X), there exists a vector hl ∈ Fn
2

such that

rl = whT
l ,

where l = 0, 1, . . . , deg(f)− 1. �

Proof. For polynomial f(X), define the map L acting on w ∈
W as follows,

L(w) := w(X) mod f(X) = r(X). (44)

It can be seen that L is a linear map. Let r be the vector

corresponding to r(X), where r ∈ Fdeg(f)
2 . Since w and

r are in one-to-one correspondence with w(X) and r(X)
respectively, the linear map L can be given by

L : Fn
2 → Fdeg(f)

2 . (45)

It is known that, corresponding to every linear transformation

L : Fn
2 → Fdeg(f)

2 , there exists some matrix A ∈ Fn×deg(f)
2

associated to it such that

L(w) = wA = r, (46)

where w ∈ Fn
2 and r ∈ Fdeg(f)

2 are considered as row

vectors [28, Ch. 4]. Suppose matrix A is given by,

A =
[
h0 h1 · · · hdeg(f)−1

]
, (47)

where hl ∈ Fn
2 for l = 0, 1, . . . , deg(f) − 1 are the columns

of matrix A. From (46) and (47) it can be seen that the lth
coefficient rl of r can be written as whT

l and the proof is

complete.

Let us consider an example to explain this property.

Example 5. For n = 7 and f(X) = X3 +X2 + 1, r(X) is

given by

r(X) = w(X) mod f(X) = r0 + r1X + r2X
2

= (w0 + w1X + . . .+ w6X
6) mod (X3 +X2 + 1)

=
[

w0 + w3 + w4 + w5

]

+
[

w1 + w4 + w5 + w6

]

X

+
[

w2 + w3 + w4 + w6

]

X2

= whT
0 +whT

1 X +whT
2 X

2, (48)

where h0 = [1 0 0 1 1 1 0], h1 = [0 1 0 0 1 1 1] and h2 =
[0 0 1 1 1 0 1]. �

Property 2. When f(X) is a factor of Xn + 1, the set of

vectors {h0,h1, . . . ,hdeg(f)−1} in Property 1 form a basis

for the dual code C(n, f⊥) of cyclic code C(n, f). �

We first provide an example of this property and then

provide a proof.

Example 6. In Example 5, f(X) = X3 + X2 + 1 is a

factor of X7 + 1. The generator polynomial of the dual code

of C(7, f) is f⊥(X) = (X + 1)(X3 + X2 + 1). In (48),

the polynomials corresponding to h0,h1, and h2 are given

by, h0(X) = (X + 1)f⊥(X), h1(X) = X(X + 1)f⊥(X),
and h2(X) = X2f⊥(X) respectively. It can be seen that

h0,h1,h2 are linearly independent and form a basis of

C(7, f⊥). �

Proof of Property 2: For w(X) ∈ Pn, it is known that

w(X) ∈ C(n, f) if and only if r(X) = w(X) mod f(X) =
0 [1]. From (44), r(X) = 0 implies that rl = whT

l = 0,

for l = 0, 1, . . . , deg(f) − 1. The inner product whT
l = 0

for every w ∈ C(n, f) implies that hl ∈ C(n, f⊥), where

C(n, f⊥) is the dual code of C(n, f). Using this, the code

C(n, f) is given by,

C(n, f) =
{

w ∈ Fn
2

∣
∣
∣whT

l = 0 for l = 0, 1, . . . , deg(f)− 1
}

.

(49)

We now prove by contradiction that the set of vectors

{h0,h1, . . . ,hdeg(f)−1} in (49) are independent which com-

pletes the proof of the property. Without loss of gener-

ality suppose h0 can be written a linear combination of

{h1, . . . ,hdeg(f)−1} given by,

h0 = a1h1 + a2h2 + . . .+ adeg(f)−1hdeg(f)−1, (50)

where ai ∈ F2 for i = 1, 2, . . . , deg(f)− 1. From (50), if

whT
i = 0 for i = 1, 2, . . . , deg(f)− 1 we get whT

0 = 0.

Using this in (49) we get,

C(n, f) =
{

w ∈ Fn
2

∣
∣
∣whT

i = 0 for i = 1, . . . , deg(f)− 1
}

.

(51)

From (51), the dimension of C(n, f) should be greater than

or equal to n − deg(f) + 1. This is a contradiction since

the dimension of C(n, f) is equal to n − deg(f) [1]. This

completes the proof. �

Using Properties 1 and 2 we now characterize the distri-

bution of r(X) = w(X) mod f(X), when w(X) lies in any

linear subspace W(n) in the following lemma.
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Lemma 4. Consider a linear subspace W(n) of Fn
2 . Sup-

pose every w(X) ∈ W(n) is chosen i.i.d. according to

the uniform distribution. For a factor f(X) of Xn + 1,

suppose r(X) = w(X) mod f(X). Then the distribution of

the random variable corresponding to r(X) can either be

degenerate or uniform or restricted uniform (see (6), (7), (8),

Fig. 2).

Proof: Suppose r(X) = w(X) mod f(X) is given by,

r(X) = r0 + r1X + . . .+ rdeg(f)−1X
deg(f)−1

= whT
0 +whT

1 X + . . .+whT
deg(f)−1X

deg(f)−1,
(52)

where the last equality is obtained from Property 1 such

that each hl ∈ Fn
2 for l = 0, 1, . . . , deg(f) − 1. Let

{R0, R1, . . . , Rdeg(f)−1} be the set of random variables corre-

sponding to {r0, r1, . . . , rdeg(f)−1}. For a given hl and W(n)
there are two possibilities, either hl ∈ W⊥(n) or hl /∈ W⊥(n),
where W⊥(n) is the dual code of W(n). When hl ∈ W⊥(n),
the corresponding Rl is always zero and when hl /∈ W⊥(n),
from Lemma 1 of Appendix A, the correspondingRl is equally

likely to be zero or one. We now consider various situations

for the set of random variables {R0, R1, . . . , Rdeg(f)−1}.

(i) Each Rl for l = 0, 1, . . . , deg(f) − 1 is zero with

probability one. This implies that in (52), the random

variable corresponding to r(X) is zero with probability

one, which is the degenerate distribution (see Fig. 2 (a),

(6)).

(ii) The set of random variables {R0, R1, . . . , Rdeg(f)−1}
satisfy a linear relation given by

a0R0 + a1R1 + . . .+ adeg(f)−1Rdeg(f)−1 = 0, (53)

where each al ∈ F2, for l = 0, 1, . . . , deg(f) − 1.

We consider the case when at least one of the Rl

is equally likely to be one or zero, otherwise this

case will get reduced to case (i). From (53), R0 de-

pends on R1, R2, . . . Rdeg(f)−1. Thus the random vector

[R0 R1 . . . Rdeg(f)−1] cannot take all possible 2deg(f)

values. As each Rl is either zero with probability one or

equally likely to be zero or one, in (52) r(X) will follow

the restricted uniform distribution (see Fig. 2 (c), (8)).

(iii) The set of random variables {R0, R1, . . . , Rdeg(f)−1}
are independent. In this case, when each Rl for l =
0, 1, . . . , deg(f)− 1 is equally likely to be zero or one,

the random variable corresponding to r(X) will take all

possible 2deg(f) values with equal probability, which is

the uniform distribution (see Fig. 2 (b), (7)).

We now show that the set of random variables

{R0, R1, . . . , Rdeg(f)−1} satisfies either of the above situa-

tions, which completes the proof. Let us first consider the

case when W(n) is a nontrivial code. The case when W(n)
is a trivial code will be considered later in this proof. For the

two codes W⊥(n) and C(n, f⊥) there are the following four

possibilities.

1) W⊥(n) = C(n, f⊥)
2) C(n, f⊥) ⊂ W⊥(n), where ⊂ denotes strict subset

3) W⊥(n) ⊂ C(n, f⊥)
4) W⊥(n) * C(n, f⊥) and C(n, f⊥) * W⊥(n)

In cases 1) and 2), we have C(n, f⊥) ⊆ W⊥(n). From

Property 2, every hl ∈ C(n, f⊥) and hence we have hl ∈
W⊥(n), for l = 0, 1, . . . , deg(f) − 1 (see (52)). When hl ∈
W⊥(n), the corresponding Rl is always zero which is the case

(i).

In cases 2) and 4), there exists a vector h ∈ C(n, f⊥) ∩
W⊥(n), where ∩ denotes the intersection. When C(n, f⊥) ∩
W⊥(n) = 0n we have h = 0n, otherwise there exists

a vector h 6= 0n that belongs to the intersection space

C(n, f⊥) ∩ W⊥(n). Let us first consider the case when

there exists a vector h ∈ C(n, f⊥) ∩ W⊥(n) such that

h 6= 0n. From Property 2, the vector space spanned by

{h0,h1, . . . ,hdeg(f)−1} is equal to the code C(n, f⊥) and

hence h ∈ C(n, f⊥) can be written as

h = a0h0 + a1h1 + . . .+ adeg(f)−1hdeg(f)−1, (54)

where each al ∈ F2 for l = 0, 1, . . . , deg(f)− 1 such that for

some i, 0 ≤ i < deg(f), ai 6= 0. Since h ∈ W⊥(n), we have

whT = 0 and from (54) we get

w
(

a0h0 + a1h1 + . . .+ adeg(f)−1hdeg(f)−1

)T

= 0

=⇒ a0whT
0 + a1whT

1 + . . .+ adeg(f)−1whT
deg(f)−1 = 0

=⇒ a0r0 + a1r1 + . . .+ adeg(f)−1rdeg(f)−1 = 0,
(55)

where the last equality is obtained from (52). Observe that this

corresponds to the case (ii) when the set of random variables

{R0, R1, . . . , Rdeg(f)−1} satisfy a linear relation.

We next consider the case when only the all-zero vector

exists in the intersection of C(n, f⊥) and W⊥(n), i.e., in

(54), h = 0n. From (54) and (55) this implies that, the

set of random variables {R0, R1, . . . , Rdeg(f)−1} do not sat-

isfy any linear relation. Thus the set of random variables

{R0, R1, . . . , Rdeg(f)−1} are independent. We now prove by

contradiction that each Rl is equally likely to be zero or one.

Suppose for some i, 0 ≤ i < deg(f), Ri is always zero,

which implies that hi ∈ W⊥(n). Since hi ∈ C(n, f⊥) we

have hi ∈ W⊥(n) ∩ C(n, f⊥) such that hi 6= 0n, which is a

contradiction. Note that this situation corresponds to case (iii)

and the proof is complete.

We now consider the case when W(n) is a trivial code.

When W(n) contains only the all-zero codeword, r(X) will

be zero with probability one and follows the degenerate

distribution. When W(n) = Fn
2 , since w(X) takes any

value in W(n) with the uniform distribution, the random

variable corresponding to r(X) = w(X) mod f(X) follows

the uniform distribution and the proof is complete.

We now use this lemma to prove Proposition 1.

Proof of Proposition 1:

Recall that the subspace W(n) is obtained by considering the

initial n bits of codewords of C(n0, g0) and W′(n) is defined

in (12). In [17], Yardi et al. proved that there exists a codeword

w1(X) ∈ W(n) and a codeword w′
1(X) ∈ W′(n) such that

w1(X),w′
1(X) /∈ C(n, f), where C(n, f) is the cyclic code

generated by f(X) (see Appendix B, Proposition 1 of [17]).

For w1(X) and w′
1(X), the corresponding syndromes r(X) =

w1(X) mod f(X) and r′(X) = w′
1(X) mod f(X) will be
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nonzero polynomials. Since the all-zero vector is always a

codeword in any linear block code, r(X) and r′(X) will be

the zero polynomial for the all-zero codeword. Since r(X)
and r′(X) can take at least two values in Pdeg(f) with a non-

zero probability, r(X) and r′(X) cannot follow the degenerate

distribution (see (6)). From Lemma 4, the distribution of the

random variables corresponding to r(X) and r′(X) will either

be uniform or restricted uniform and the proof is complete. �

APPENDIX C: PROOF OF THEOREM 1

We first prove the necessary condition of the theorem that,

if r(X) = w(X) mod f(X) follows the restricted uniform

distribution, g⊥0 (X) has a factor of order strictly less than

n0. Let W(n) be the vector space obtained by puncturing the

last n0 − n bits of codewords in code C(n0, g0) such that

w(X) ∈ W(n). Since C(n0, g0) is a cyclic code, the initial k0
bits can be considered an information set and the assumption

k0 < n < n0 implies that the dimension of W(n) is k0.

Suppose r(X) = w(X) mod f(X) is given by,

r(X) = r0 + r1X + . . .+ rdeg(f)−1X
deg(f)−1

= whT
0 +whT

1 X + . . .+whT
deg(f)−1X

deg(f)−1,
(56)

where the last equality is obtained from Property 1 of Ap-

pendix B such that each hl ∈ Fn
2 for l = 0, 1, . . . , deg(f)− 1.

From Property 2 of Appendix B, each hl ∈ C(n, f⊥) where

C(n, f⊥) is the dual code of the cyclic code C(n, f) and the

vector space spanned by {h0,h1, . . . ,hdeg(f)−1} is equal to

C(n, f⊥).
As explained in the proof of Lemma 4, the random variable

corresponding to r(X) follows the restricted uniform distri-

bution if and only if there exists a non-zero vector h ∈ Fn
2

that lies in the intersection space of the codes C(n, f⊥) and

W⊥(n) (see Appendix B). Since h ∈ C(n, f⊥), for some

u1(X) ∈ Pn−deg(f⊥) we have

h(X) = u1(X)f⊥(X). (57)

We now prove that the vector h′ := [h 0n0−n] lies in the

code C(n0, g
⊥
0 ). For any v ∈ C(n0, g0), the inner product of

v and h′ is given by

v(h′)T =
[

v(0 : n− 1) v(n : n0 − 1)
][

h 0n0−n

]T

= v(0 : n− 1)hT

= whT

= 0,

(58)

where the last equality is obtained since h ∈ W⊥(n). Since

h′ ∈ C(n0, g
⊥
0 ), for some u2(X) ∈ Pn0−k0 we have

h′(X) = h(X) = u2(X)g⊥0 (X). (59)

Equating (57) and (59) we get

h(X) = u1(X)f⊥(X) = u2(X)g⊥0 (X). (60)

From the assumption of the theorem, deg(f) ≤ k0 which

implies that n − deg(f) ≥ n − k0. Since deg(f⊥) = n −
deg(f), we have deg(f⊥) ≥ n−k0. Since deg(g⊥0 ) = k0 and

deg(h) ≤ n−1, from (60) we get deg(u2) ≤ n−k0−1. Thus

in (60) we have deg(u2) ≤ n−k0−1 and deg(f⊥) ≥ n−k0.

This implies that there exists a factor f1(X) of f⊥(X) such

that f1(X) is a factor of g⊥0 (X). Since f1(X) is a factor of

Xn + 1 and n < n0, this implies that g⊥0 (X) has a factor

of order strictly less than n0 and the proof of the necessary

condition is complete.

We will now prove the converse. Suppose g⊥0 (X) has a

factor m⊥(X) of order n′ such that 1 ≤ n′ < n. For a

non-degenerate code C(n0, g0), the order of g⊥0 (X) is equal

to n0 [22, Sec. 8.3] and hence m⊥(X) 6= g⊥0 (X). From

Lemma 3 of Appendix A, this implies that there exists a

codeword of a degenerate pattern in C(n0, g0), i.e., there exists

v ∈ C(n0, g0) given by,

v =
[

w′ w′ · · · w′
︸ ︷︷ ︸

l times

]

, (61)

where l > 1, w′ is vector of length n′ such that w′ is not

a vector of a degenerate pattern (see Definition 6). Note that

m⊥(X) is the minimal polynomial polynomial of the linear

recurring sequence given by [w′ w′ · · · ] [22, Sec. 8.3]. It

is given that, m(X) is the minimal generating polynomial

of this sequence. Thus each w′(X) is a multiple of m(X)
(see Definition 7). Suppose w′(X) = u′(X)m(X), for some

u′(X) ∈ Pdeg(m⊥), since deg(m⊥) = n′ − deg(m). Substi-

tuting this in (61) we get,

v(X) = w′(X) +Xn′

w′(X) + . . .+X(l−1)n′

w′(X) (62)

= u′(X)m(X) +Xn′

u′(X)m(X) + . . .+

X(l−1)n′

u′(X)m(X) (63)

= u′(X)m(X)
(

1 +Xn′

+ . . .+X(l−1)n′
)

(64)

Let C⊥(n0,m
⊥) be the dual code of C(n0,m

⊥), where

C(n0,m
⊥) is the cyclic code of length n0 generated by

m⊥(X). Note that v(X) ∈ C⊥(n0,m
⊥) and from (64), the

set of codewords in C⊥(n0,m
⊥) are obtained considering all

possible 2deg(m
⊥) values of u′(X) ∈ Pdeg(m⊥). Since m⊥(X)

is a factor of g⊥0 (X) we have C(n0, g
⊥
0 ) ⊂ C(n0,m

⊥)
and this implies that C⊥(n0,m

⊥) ⊂ C(n0, g0). Thus the

codewords in C(n0, g0) that are multiples of m(X) are exactly

the 2deg(m
⊥) codewords in C⊥(n0,m

⊥).
From the assumptions of the converse, we have n = bn′ for

some b ≥ 1. Thus the vector w formed by the initial n bits

of v in (61) is given by,

w =
[

w′ w′ · · · w′
︸ ︷︷ ︸

b times

]

. (65)

Substituting w′(X) = u′(X)m(X) we get,

w(X) = w′(X) +Xn′

w′(X) + . . .+X(b−1)n′

w′(X)

= u′(X)m(X)
(

1 +Xn′

+ . . .+X(b−1)n′
)

. (66)

As explained in the first paragraph of the proof, the di-

mension of W(n) is k0 and hence corresponding to every

v ∈ C(n0, g0) there is a unique w ∈ W(n). From (64) and

(66), this implies that the number of w(X) ∈ W(n) that

are multiples of m(X) are equal to 2deg(m
⊥). From (66),

any w(X) ∈ W(n) that is a multiple of m(X) is also a
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multiple of (1+Xn′

+ . . .+X(b−1)n′

). For a factor f(X) of

m(X)(1+Xn′

+X2n′

+ . . .+X(b−1)n′

), the probability that

r(X) = w(X) mod f(X) is the all-zero polynomial is given

by,

P
[
r(X) = 0

]
= P

[
w(X) mod f(X) = 0

]

=
Number of w(X) ∈ W(n) that are multiples of f(X)

Total number of w(X) ∈ W(n)

=
2deg(m

⊥)

2k0

(a)
>

2k0−deg(f)

2k0

=
1

2deg(f)
(67)

where the inequality in (a) is obtained since deg(m⊥) > k0−
deg(f).

From Proposition 1, the random variable corresponding

to r(X) can either follow the uniform distribution or the

restricted uniform distribution. For the uniform distribution,

the probability of zero syndrome is equal to 1/2deg(f). From

(67), the probability of zero syndrome is strictly more than

1/2deg(f) and hence r(X) should follow the restricted uniform

distribution. This completes the proof of the converse. �

APPENDIX D: PROOF OF THEOREM 2

Recall that the subspace W(n) is obtained by considering

the initial n bits of codewords of C(n0, g0). Since n < n0

from (12) we have W′(n) = C1(d1) +C2(d2), where C1(d1)
and C2(d2) are the linear block codes obtained by considering

the set of suffixes and prefixes of lengths d1 and d2 of

codewords in C(n0, g0) respectively. Note that due to the

cyclic nature, the subspaces spanned by the set of prefixes of

length d1 and the set of suffixes of length d1 are identical. This

implies that the code W′(n) consists of all possible prefixes

of length d1 concatenated with all possible suffixes of length

d2 and hence,

W(n) ⊆ W′(n). (68)

From (68) we have,

W′⊥(n) ⊆ W⊥(n), (69)

where W′⊥(n) and W⊥(n) are the dual codes of W′(n) and

W(n) respectively.

In order to prove that r′(X) = w′(X) mod f(X) for

w′(X) ∈ W′(n) follows the uniform distribution using

the arguments similar to the proof of Proposition 1, we

need to prove that W′⊥(n) ∩ C(n, f⊥) = 0n. From the

assumptions of the theorem, r(X) = w(X) mod f(X) for

w(X) ∈ W(n) follows the uniform distribution. Using the

arguments similar to the proof of Proposition 1, this is possible

when W⊥(n) ∩ C(n, f⊥) = 0n. From (69), this implies that

W′⊥(n) ∩ C(n, f⊥) = 0n and the proof is complete. �

APPENDIX E: PROOF OF THEOREM 3

Let us first consider that case when q = 0, i.e., r′(X) is

given by,

r′(X) = t1(X) + t2(X). (70)

We now consider the situation when both t1(X) and t2(X)
follow the uniform distribution. The probability that r′(X) is

a zero polynomial is given by,

P
[
r′(X) = 0

] (a)
= P

[
t1(X) + t2(X) = 0

]

= P
[
t1(X) = t2(X)

]

=
∑

a(X)∈Pdeg(f)

P
[

t1(X) = t2(X) = a(X)
]

(b)
=

∑

a(X)∈Pdeg(f)

P
[

t1(X) = a(X)
]

P
[

t2(X) = a(X)
]

(c)
=

∑

a(X)∈Pdeg(f)

1

2deg(f)
1

2deg(f)
=

1

2deg(f)
.

(71)

The equality in (a) is obtained from (70) and (b), (c) fol-

low since the random variables corresponding to t1(X) and

t2(X) are i.i.d. according to the uniform distribution. From

Proposition 1, the random variable corresponding to r′(X) can

either follow the uniform distribution or the restricted uniform

distribution. From (71), the random variable corresponding to

r′(X) follows the uniform distribution.

We next consider the case when either t1(X) or t2(X)
follow the restricted uniform distribution. Without loss of

generality let us consider the case when t1(X) follows the

restricted uniform distribution. From the definition of the

restricted uniform distribution we get, P[t1(X) = a(X)] >
1/2deg(f) and in (71) we have

P
[

r′(X) = 0
]

>
1

2deg(f)
. (72)

As explained earlier, the random variable corresponding to

r′(X) can either follow the uniform distribution or the re-

stricted uniform distribution. For the uniform distribution, the

probability of zero syndrome should be equal to 1/2deg(f).
From (72), the probability of zero syndrome is more than

1/2deg(f) and hence r′(X) follows the restricted uniform

distribution. This completes the proof for the case when q = 0.

The case when q > 0 can be proved using similar arguments

and hence we will not discuss it in detail. �

APPENDIX F: PROOF OF THEOREM 5

Since the proof is the same for any jth received polynomial

yj(X), for simplicity of notation we will ignore the suffix j
from yj(X) in this proof. Using this, the received polynomial

y(X) is given by,

y(X) = w(X) + e(X), (73)

where w(X) is the error-free polynomial and e(X) is the

polynomial corresponding to the error introduced by BSC(p).
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The probability of observing the all-zero syndrome is given

by,

P
[

r(X) = 0
]

= P
[

y(X) mod f(X) = 0
]

= P
[

y(X) ∈ C(n, f)
] (74)

where the last equality is obtained since the cyclic code

C(n, f) consists of possible multiples of f(X). For a given

w(X) there are two possibilities, either w(X) ∈ C(n, f) or

w(X) /∈ C(n, f). Suppose,

Q : Event when w(X) ∈ C(n, f),

Qc : Event when w(X) /∈ C(n, f).
(75)

Using total probability law in (74) we get,

P
[

r(X) = 0
]

= P
[

y(X) ∈ C(n, f)
∣
∣
∣Q

]

P[Q]+

P
[

y(X) ∈ C(n, f)
∣
∣
∣Qc

]

P[Qc]. (76)

From (73) and (75), when the event Q is true, we have

y(X) ∈ C(n, f) if e(X) ∈ C(n, f). Similarly, when the event

Qc is true, we have y(X) ∈ C(n, f) if e(X) belongs to some

proper coset G(n, f) of code C(n, f). Using this in (76) we

have,

P
[

r(X) = 0
]

= P
[

e(X) ∈ C(n, f)
]

P[Q]+

P
[

e(X) ∈ G(n, f))
]

P[Qc] (77)

From Sullivan’s subgroup-coset inequality theorem [29], for

any proper coset G(n, f) of C(n, f) we have,

P[e(X) ∈ C(n, f)]

P[e(X) ∈ G(n, f)]
≥

1− (1 − 2p)n−deg(f)+1

1 + (1 − 2p)n−deg(f)+1
= λ. (78)

We next find the probability of the event e(X) ∈ C(n, f) as

follows.

P[e(X) ∈ C(n, f)] =
∑

v(X)∈C(n,f)

P[e(X) = v(X)]

=
n∑

i=0

Aip
i(1 − p)n−i

= P (C(n, f)),

(79)

where {A0, A1, · · · , An} is the weight distribution of C(n, f)
and last equality is obtained from (20).

Substituting (78) in (77) we have,

P
[

r(X) = 0
]

≤ P
[

e(X) ∈ C(n, f)
]

P[Q]+

λP
[

e(X) ∈ C(n, f))
]

P[Qc] (80)

(b)
= P(C(n, f))P[Q] + λP(C(n, f))

(
1− P[Q]

)
(81)

= P(C(n, f))
[

P[Q] + λ
(
1− P[Q]

)]

(82)

= P(C(n, f))
[

P[Q](1− λ) + λ
]

(83)

The equality in (b) is obtained from (79) and since P[Qc] =
1− P[Q] (see (75)).

From the assumption of the theorem, either n 6= ln0 or

assumed synchronization s 6= s0 or f(X) is not a factor of

g0(X). When either n 6= ln0 or s 6= s0 or f(X) is not a

factor of g0(X), from Proposition 1 and Section III-C, the

distribution of w(X) mod f(X) is either uniform or restricted

uniform. From the definition of the uniform and the restricted

uniform distributions, P[w(X) mod f(X) = 0] is less than or

equal to 1/2, i.e.,

P[w(X) ∈ C(n, f)] = P[Q] ≤
1

2
. (84)

Substituting (84) in (83) we get,

P
[

r(X) = 0
]

≤ P(C(n, f))

(
1

2
(1− λ) + λ

)

(85)

= P(C(n, f))

(
λ+ 1

2

)

(86)

and the proof is complete. �

APPENDIX G: PROOF OF THEOREM 6

Since the proof is the same for any jth received vector yj ,

we will ignore the suffix j from yj for the sake of simplicity.

Using this notation, an n-bit received vector is given by,

y = w + e, (87)

where w is an error-free vector and e is an error vector

introduced by BSC(p). For a factor f(X) of Xn+1, suppose

a parity check matrix H of C(n, f) is given by

H =









f⊥
0 f⊥

1 · · f⊥
deg(f⊥) 0 · 0

0 f⊥
0 · · · f⊥

deg(f⊥) · 0
...

. . .
...

0 · 0 f⊥
0 · · · f⊥

deg(f⊥)









=








h0

h1

...

hdeg(f)−1







, (88)

where the polynomial corresponding to the first row of H is

the generator polynomial f⊥(X) of the dual code of C(n, f),
and h0,h1, . . . ,hdeg(f)−1 are the rows of H . Suppose wHT

is given by,

wHT = t =
[

whT
1 whT

2 . . . whT
deg(f)−1

]

(89)

=
[
t0 t1 . . . tdeg(f)−1

]
(90)

where tl = whT
l , for l = 0, 1, . . . , deg(f) − 1. As shown in

Fig. 3, an n-bit noise-free vector w is either of the following

two types.

(i) w is formed by the consecutive n bits of a codeword in

the true code C(n0, g0), i.e., w ∈ W(n), where W(n) is

defined in the first paragraph of Section III.

(ii) w is a concatenation of the suffix of a codeword of

length d1, a sequence of q codewords, and the prefix

of a codeword of length d2, where 0 ≤ d1, d2 < n0,

q ≥ 1 such that n = d1 + qn0 + d2, i.e., w ∈ W′(n),
where W′(n) is defined in (12).

We now consider the cases when w ∈ W(n) and w ∈ W′(n)
separately and prove that tl in (90) is equally likely to be zero

or one for l = 0, 1, . . . , deg(f)− 1.
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(i) Case when w ∈ W(n)
From the assumptions of the theorem we have n < n0.

For a given hl we have either hl ∈ W⊥(n) or hl /∈
W⊥(n), where W⊥(n) is the dual code of W(n). We

now prove by contradiction that each hl /∈ W⊥(n), for

l = 0, 1, . . . , deg(f) − 1. Suppose hl ∈ W⊥(n) for

some l, 0 ≤ l < deg(f). Using the similar steps as

in (58) we can prove that, [hl 0n0−n] ∈ C(n0, g
⊥
0 ),

where C(n0, g
⊥
0 ) is the dual code of C(n0, g0). From

(88), the polynomial corresponding to hl can be written

as hl(X) = X lf⊥(X) and [hl 0n0−n] ∈ C(n0, g
⊥
0 )

implies that,

hl(X) = X lf⊥(X) = u(X)g⊥0 (X), (91)

where u(X) ∈ Pn0−deg(g⊥

0 ). For a nontrivial cyclic code,

g⊥0 (X) does not divide X l for any integer l [1], and

hence (91) implies that g⊥0 (X) should divide f⊥(X).
Since f⊥(X) divides Xn + 1, g⊥0 (X) also divides

Xn + 1. Since n < n0, C(n0, g0) will be a degenerate

code [22, Sec. 8.3], which is a contradiction according

to the assumptions of the theorem. This proves that

hl /∈ W⊥(n) for l = 0, 1, . . . , deg(f) − 1. From

Lemma 1, hl /∈ W⊥(n) implies that tl is equally likely

to be zero or one.

(ii) When w ∈ W′(n)
Since n < n0, an n-bit vector w is given by,

w =
[

v1(n0 − d1 : n0 − 1) v2(0 : d2 − 1)
]

, (92)

where v1,v2 ∈ C(n0, g0). For a given hl the inner

product whT
l is given by,

whT
l = w(0 : d1 − 1)hl(0 : d1 − 1)T+

w(d1 : n− 1)hl(d1 : n− 1)T . (93)

Recall that in part (i) we proved that hl /∈ W⊥(n) for

l = 0, 1, . . . , deg(f) − 1. From Lemmas 1 and 2 of

Appendix A, hl /∈ W⊥(n) implies that either w(0 :
d1 − 1)hl(0 : d1 − 1)T or w(d1 : n− 1)hl(d1 : n− 1)T

is equally likely to be zero or one. This implies that in

(93), tl = whT
l is equally likely to be zero or one.

We now have that each bit in whl is equally likely to be

zero or one, for l = 0, 1, . . . , deg(f)− 1. Let us consider the

noise-affected version of y of w (see (87)). Suppose the inner

product yhl is given by,

yHT = r =
[
r0 r1 . . . rdeg(f)−1

]
(94)

where each rl is given by,

rl = yhT
l =

[

w+ e
]

hT
l (95)

= whT
l + ehT

l (96)

Since whT
l is equally likely to be zero or one, in (96) rl is

equally likely to be zero or one. Using this we now prove that

P (yj , f1) = P (yj , f2), where f1(X) and f2(X) are any two

factors of Xn + 1. For any factor f(X) of Xn + 1, P (y, f)
is given by,

P (y, f) =
1

deg(f)

deg(f)−1
∑

l=0

P[rl = 0]

(a)
=

1

deg(f)

deg(f)−1
∑

l=0

1

2

=
1

2

1

deg(f)

deg(f)−1
∑

l=0

1 =
1

2
,

(97)

where the equality in (a) is obtained since each rl is equally

likely to be zero or one. It can be seen that the value of

P (y, f) does not depend on the chosen f(X). This implies

that P (y, f1) = P (y, f2) and the proof is complete. �
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