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Abstract In this paper we go further with the study initiated by Behle, Krebs
and Reifferscheid in 2011, who gave an Eilenberg-type theorem for non-regular
languages via typed monoids. We provide a new extension of that result, in-
spired by the one carried out by Pin in the regular case in 1995, who considered
classes of languages not necessarily closed under complement. We introduce
the so-called positively typed monoids, and give a correspondence between
varieties of such algebraic structures and positive varieties of possibly non-
regular languages. We also prove a similar result for classes of languages with
weaker closure properties.

Keywords monoids - varieties - formal languages

Mathematics Subject Classification (2010) 68Q70 - 68Q45 - 20MO07 -
20M35

1 Introduction

Within the algebraic study of formal languages, as Pin [14] pointed out, the
most important tool for classifying regular languages is Eilenberg’s variety
theorem [9], which provides a one-to-one correspondence between varieties of
finite monoids and varieties of languages. Since the establishment of this cele-
brated theorem, many generalisations have been obtained from different points
of view. For instance, in some cases languages of words are replaced by lan-
guages of different structures, such as trees [19,4,5]. Another direction is to
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consider different closure properties for the classes of languages and monoids
[1,14,16]. A further development in [2] deals with varieties of non-regular lan-
guages and new algebraic structures. More recently, a categorical approach has
been used to obtain Eilenberg-like theorems in [22] (for regular languages), and
also in [18].

The starting point of our investigations is the work of Pin [14], where
he extends the variety theorem to positive varieties of regular languages. A
positive variety is obtained by relaxing the definition of a variety in the sense
that only positive Boolean operations (union and intersection) are allowed,
that is, the class of languages is not necessarily closed under complement. On
the algebraic counterpart, he defines varieties of ordered monoids, which are
monoids equipped with a stable order relation (see also [7,8]). Further research
in the same line can be found in [16], where Poldk extends Eilenberg’s variety
theorem to conjunctive and disjunctive varieties of languages, which are classes
of languages closed under intersection and union, respectively. On the algebraic
side, monoids and ordered monoids are replaced by commutative semirings.
Note that the extensions made by Pin and Poldk work for regular languages
only.

Later on, Behle, Krebs and Reifferscheid [2] introduce a new algebraic
structure, called typed monoid, to describe formal languages. This structure
adds additional information to a monoid, which leads to a finer notion of lan-
guage recognition. In the classical approach, a language L. C X* is recognized
by a monoid M if there exist a morphism h : X* — M and a subset P of M
such that L = h=!(P). The notion of syntatic monoid as a minimal recognizer
is key in the study of regular languages. However, the syntactic monoid does
not capture enough information, in particular when one goes beyond regular
languages. In the new strategy developed by these authors, on the one hand
it is possible to control the morphisms allowed (especially over the images of
single letters) and, on the other hand, the allowed accepting sets are also lim-
ited. The union of these two ideas leads to the concept of typed monoid, which
can be applied to infinite monoids and recognition of non-regular languages.

The strategy of limiting the allowed accepting subset was already used
by Sakarovitch [17] for an algebraic study of context-free languages, through
the category of pointed monoids. In the new approach proposed in [2] instead
of adding a “point” to the monoid, a finite Boolean algebra is attached to
the monoid and the accepting subsets are required to be elements of this
Boolean algebra. In fact, a preliminary version of the notion of typed monoid,
named finitely typed monoid, was first introduced in [11], just controlling the
accepting sets but not the morphisms. In the latter case the aim was to study
some circuit classes, in the framework of the known connections between formal
languages, logic and circuit complexity. We refer readers interested in those
connections to the book [20].

The idea of having some control on the morphisms arising in the language
recognition by monoids was also considered by Pin and Straubing in [15],
based on previous work of the latter author [21]. They introduced the notion
of C-variety, where C' is a category of admissible morphisms between finitely



A positive extension of Eilenberg’s variety theorem for non-regular languages 3

generated free monoids, and the elements of such varieties are not semigroups
or monoids, but morphisms from finitely generated free monoids onto finite
monoids, called stamps. The proposal in [2] to limit the morphisms is through
the use of the so-called units in the definition of a typed monoid. It is to be
said that one of the motivations for both developements is that some classes of
languages defined through logic or circuit complexity do not form varieties in
the usual sense, since they are not closed under arbitrary inverse morphisms.

The purpose of this paper is to achieve a new extension of the Eilenberg’s
theorem for varieties of non-regular languages by combining the above men-
tioned approaches. We consider classes of languages not closed under com-
plements, as proposed by Pin, and a new algebraic object, called positively
typed monoid, inspired by the one defined by Behle, Krebs and Reifferscheid.
This requires the redefinition of concepts such as positively typed morphisms,
recognition of languages and so on, and some adjustments in the proofs, which
are mainly inspired by the ones in [2].

Also an Eilenberg-like theorem is given for classes of languages with weaker
closure properties than positive varieties, such as the closure under inverse
length preserving morphisms instead of arbitrary morphisms (see section 5).
The role of units in the positively typed monoids is significant in the algebraic
study of such classes, since it allows to give a notion of length preserving
morphisms through a requirement that units are mapped to units.

Our hope is that our approach could be the appropriate tool to characterize
algebraically some interesting classes of languages defined by logic which are
not closed under either complements or inverse morphisms. Examples of these
classes are regular classes of languages described by fragments of first order
logic with modular predicates as considered in [6], or some classes of non-
regular languages recognized by Parikh automata (see [10] and [3]). We will
not delve here into the detailed description of such classes, but mention them
as a motivation for our work.

The structure of the paper is the following: After giving some preliminaries
in section 2, in section 3 we present the fundamental notions and basic results
regarding positively typed monoids. In section 4 we connect these concepts
with the ones dealing with recognizability and define the syntactic positively
typed monoid. In section 5 we introduce positive weakly closed classes of lan-
guages and we show that they correspond to weakly closed classes of positively
typed monoids. Next we present in section 6 the announced extension of the
Eilenberg’s variety theorem by considering positive varieties of languages and
varieties of positively typed monoids. Finally, in the last section we present an
example and discuss some possible further work.

2 Preliminaries
We assume the reader to be familiar with the basic notions of monoids, lan-

guage recognition and varieties, and, more specifically, with Eilenberg’s variety
theory. Our main reference on this topic is the book [13] and our notation will
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follow mainly this source (see also [12]). For the sake of completeness, we
review some notions.

An alphabet X is a finite nonempty set whose elements are called letters.
The elements of the free monoid X* are called words and a language is any
subset L C X*, that is, any set of words over Y. The length of a word u is
denoted by |u]. If a is a letter, |u|, denotes the number of occurrences of a
in u. Given two alphabets, X' and A, a morphism ¢ : X* — A* is called
length preserving if (X)) C A, i.e., if it maps letters to letters. If L C X* is a
language and M is a monoid, M recognizes L if there exist a subset P of M
and a monoid morphism ¢ : ¥* —s M such that L = ¢~ (P).

The syntactic congruence of a language L C X* is defined as: for words
x and y, z~p y iff for every u,v € X* it holds uzv € L < uyv € L. The
corresponding quotient monoid of X™* is called the syntactic monoid of L,
denoted by M(L). The canonical epimorphism associated to this congruence
is called syntactic morphism and denoted by pr.

We introduce some basic notions we need to define our main algebraic
structure, the positively typed monoids.

Consider a nonempty set S. A positive Boolean algebra A over S is a set
of subsets of S which is closed under finite union and finite intersection. Note
that a positive Boolean algebra always contains the empty set and the full
set since ) = U;¢pS; and S = N;¢pS;. The intersection of all positive Boolean
algebras containing a set F of subsets of S is again a positive Boolean algebra,
called the positive Boolean algebra generated by F.

Let A, B be positive Boolean algebras over S and T', respectively. A mor-
phism h from A on B is an application h : A — B, such that: h(0) =
0; h(S) = T;h(Ar U A2) = h(A1) U h(A2); h(A1 N Az) = h(A1) N h(Az), for
every Ay, As € A.

A Boolean algebra over S is a positive Boolean algebra which is also closed
under complements.

As usual, we will denote by Z the infinite monoid consisting of the integers
with addition, which is finitely generated by the set {1,—1}. We also denote
by Z™ the set of positive integers and by Z(T the set Z+U{0}. For each positive
integer m, we denote by Z,, the corresponding monoid of integers modulo m.

3 Positively typed monoids

We establish in this section the concept of positively typed monoid and the
corresponding morphisms. Following the approach in [2], and starting from the
canonical definition of language recognition, our first aim will be to limit the
allowed accepting sets. To do this, we require them to be elements of a finite
positive Boolean algebra over the initial monoid. Moreover, we wish to control
the morphisms allowed, specially to rule where the single letters are mapped
to, which will be helpful when dealing with infinite monoids or non-regular
languages. So, we also add to our structure a finite subset of the considered
monoid and require morphisms to map elements of this subset on themselves.
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Definition 1 A positively typed monoid is a triple (S, A, &), where S is a
finitely generated monoid, A is a finite positive Boolean algebra over S, and
£ is a finite subset of S. The elements of A are called (positive) types and the
elements of £ are called the units.

We say that a positively typed monoid (S, .4, &) is free, if the monoid S is
a free monoid.

If the positive Boolean algebra A is generated by a single set S, then we
will write (S, S1, &) instead of (5,{S, S1,0},E).

Note that the above definition extends the one of typed monoid (5, A4, &)
in [2], where A is a Boolean algebra instead of a positive Boolean algebra, i.e.,
A is closed under unions, intersections and complements. Hence all examples
of typed monoids are, in particular, examples of positively typed monoids.

Ezxample 1 Given a language L C X*, we can build the positively typed
monoid (X* L, X)) = (X* {¥* L,0},Y). Note that, in our case, in contrast
to what happens for typed monoids, a language L and its complement L¢ do
not lead to the same positively typed monoid.

Observe also that in this example the units are precisely the letters in the
corresponding alphabet, so every element has a unique representation as a
product of the units. However, in our general definition of a positively typed
monoid (S, A, E) we do not require the units £ to be generators of the monoid

S.

Now we introduce the notion of morphism between positively typed monoids.
The lack of complements in the positive Boolean algebra causes that our def-
inition needs to be amended with respect to the one given for typed monoids.

Definition 2 A  positively typed morphism h : (S, A,€) — (S/,.A/,Sl) of
positively typed monoids is a triple (b, hq,hy), where hy,, @ S — S is
a morphism of monoids, h, : A — A" is a morphism of positive Boolean
algebras, and h, : & — £ is a mapping of sets, such that the following
conditions hold:

1) h;l(ha(SZ)) = Si, VS; € A,
2) hp(w) = hy(w), Yw € €.

Note that we use subscripts m, a and u to denote the monoid morphism,
the morphism of positive Boolean algebras, and the mapping for units, respec-
tively. The above definition guarantees that all these mappings are compatible.
The following Lemma analyzes the scope of this definition.

Lemma 1 Let (S, A,€) and (S/,A,,El) be positively typed monoids. Let hy, :
S — S and hg : A — A be a morphism of monoids and a morphism of
positive Boolean algebras, respectively, satisfying the following condition:

1) hyt(ha(S:)) = Si, ¥S; € A.
Then the following conditions hold:
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2) hon(5:) = ha(S:) O hn(S), VS; € A.
3) hm(Sz) - ha(Si), vS; € A.

Assume, in addition, that A is a Boolean algebra, i.e. A is also closed under
taking complements (this is to say that (S, A,E) is a typed monoid). Then all
conditions 1) - 3) are equivalent.

Proof We first prove that 1) = 2). Assume that 1) holds and let S; € A.
Then by, (ha(S:) 1 i (S)) = hig (ha(S6)) O A5 (o (S)) = i (a(S1)) N1 S =
S;. Since h,, is surjective when co-restricted to h,,(S) it holds h,,(S;) =
B (Rt (ha(Si) N him(S))) = ha(Si) N Ay (S), as desired.

It is clear that 2) = 3).

Now assume that A is also closed under taking complements.

3) = 2). Assume that 3) holds but there exists some S; € A such that
him(Si) # ha(Si) N hp(S). Since hy,(S;) € ha(Si) N hp(S), this means that
there exists © € hy(S;) N Ay (S) such that z ¢ h,,(S;). But « € h,,,(S) implies
that @ = hp,(y) with y € S. Since © ¢ h,,(S;), then y € S; and so z €
hm(S§). But A is closed under taking complements, so S¢ is again a type
and, therefore, x € h, (SF) C he(SP). Since x € hqe(S;) too, this implies that
T € he(S;) NMhe(SE) = ha(SiNSE) = hye(P) = 0. This is a contradiction so the
claim follows.

3) = 1). Assume 3) holds. We claim first that under this assumption, it
holds that h,,'(hy,(S;)) = Si, VS; € A. If this is not true, then there exists
some S; € A such that S; C h. ' (h,,(S;)). Hence there exists # € h, (b (S;)),
such that z ¢ S;, so x € S¢. Now, x € h, )t (h,,,(S;)) implies that h,,(z) €
him(Si) C hqe(S;). On the other hand, x € S¢ implies that hy,, (z) € by, (SF). But
S¢ is again a type since A is a Boolean algebra, so it holds h.,, (S5) C he(SY)
by 3). Hence it follows that hy,(z) € ha(S;) Nha(S5) = ha(S;NSE) =0, which
is a contradiction. So the claim follows.

Now let any S; € A. We have just proved that h;!(h,,(S;)) = S;. But
since 3) is equivalent to 2), we also have that h,,(S;) = ha(S;) N hm(S). Hence
Si = hpy (R (S0)) = byt (ha(Si) N A (S)) = bt (ha(S:)) and we are done.

Note that the definition of typed morphism of typed monoids which appears
in [2] requires that Condition 2) in the above Lemma holds. We have replaced
this in our definition of positively typed morphism by Condition 1). Hence,
the above result shows, in particular, that our definition extends the one of
typed morphism in [2]. Indeed we see in the next example that the equivalence
of all conditions 1) - 3) fails to be true under the weaker hypotheses we are
considering.

Example 2 We see next that the condition that A is a Boolean algebra is neces-
sary to prove that 3) = 1) in the above Lemma. Consider the positively typed
monoids (Z4, {0}, {0}), (Z4,{0,1},{0}) and the mapping h : (Z4, {0}, {0}) —
(Z4,{0,1},{0}) given in the following way:

- hyp : Zy —> Z4 is defined by hy,(x) = 22 (mod 4),
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- ha : {0,{0},Zs } — {0,{0,1},Z4 } is given by h,(0) = 0, h({0}) = {0,1}
and ha(Z4) = Z4,
- hy(0) =0.
Then hm({o}) = ha({o}) N hm(Z4) = {071} N {052} = {O}’ but {O} #
hH(he({0})) = {0,2}. Therefore h,,(S;) = ha(S;) N hy(S) does not imply
that h,,!(ha(S;)) = S; for every type S; in A.

Remark 1 Let h: (S, A,€) — (S', A",E) be a morphism of positively typed
monoids. Then note that the following facts hold:

a) The morphism of monoids h,, maps units to units and is compatible with
the mapping h,; in particular, h,, induces h,,.

b) The morphism h,, also respects the union and the intersection of types,
because of Condition 2) in the previous Lemma and the fact that h, does
SO.

¢) If the morphism of monoids h,, : S — S is surjective and Condition
2) holds, then h,,(S;) = ha(Si) N hm(S) = ha(Si), and so h,'(ha(S;)) =
hot(hm(S;)) = Si, i.e. Condition 1) holds. Hence in this case all conditions
1) - 3) in Lemma 1 are equivalent and, indeed, they are equivalent to:
hm(S;) = ha(Si), VS; € A. In particular, if h,, is surjective, then h,, also
induces h,,.

d) The morphism of positive Boolean algebras h, is injective, since if h,(.S;)
= hq(S;) with S;, S; € A, then h,;,} (hq(S:)) = hyt(ha(S;)), which implies
that S; = S;. This means, in particular, that [.A| < |A'|.

Definition 3 Let (S, A, &), (T,Z,F) be positively typed monoids.

— A positively typed morphism h : (S, A,€) — (T,Z,F) is injective (resp.
surjective, bijective) if h.,, hq, b, are all injective (resp. surjective, bijec-
tive).

— A positively typed monoid (T,Z,F) is a positively typed submonoid of
(S, A,€) if T is a submonoid of S and there exists an injective positively
typed morphism from (T,Z, F) to (S, A4,¢&).

- (T,Z,F) divides (S, A,€) if (T,Z,F) is the epimorphic image of a sub-
monoid of (5, .A4,&). In this case, we will write (T,Z, F) < (S, A, ).

Remark 2 As expected, given a positively typed morphism h : (S, A4,&) —
(T,Z,F), the image of h:

h((S, A, €)) = (hn(S), {ha(S1) N him(S), Si € A}, ha(E)),
is a submonoid of (T,Z, F). Analogously, the preimage of h:
h=' (1,2, F)) = (hy, (T), {ha ' (T3), Ti € T}, by (F)),
is a submonoid of (S, A, &) (recall that h, is injective).

Lemma 2 Let (S, A,€&),(T,Z,F),(U,P,G) be positively typed monoids and
let h : (S, AE) — (T,Z,F), and f : (T,Z,F) — (U,P,G) be positively
typed morphisms. Then the composition f o h is a positively typed morphism
from (S, A, €) to (U,P,G).
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Proof We prove only Condition 1) for f o h, since Condition 2) is trivial.
Let S; € A. Since h is a positively typed morphism, then h_!(h.(S;)) =
Si. Moreover h,(S;) is a type of (T,Z,F) and f is a positively typed mor-
phism 00, hence £, (fu(ha(S:))) = ha(Se), and then by, (£, (fa(ha(S5))) =
han! (ha(S5)) = Si.

Example 3 Consider the positively typed monoids:

- (XZ*, Leyen, {a}), where L.y, is the set of all words of even length over the
alphabet X' = {a},

- (Sa'A’g) = (Z4a{®7 {0},Z4},{1}),

- (T>Iv}_): (Z%{@a{o}’Z?}v{l}))

- (U’P7g) = (Z47{®’ {052}aZ4}7{1}>

We can define a surjective positively typed morphism A from (X*, Leyen, {a})
to (T,Z,F), where h,,(w) = |w| (mod 2), for any w € X*, h, acts in such a
way that he(Leven) = {0} and hy(a) = 1. It is straightforward to check that
Conditions 1) and 2) of the definition hold.

On the other hand, there exists also a surjective positively typed morphism
g from (X* Leyen,{a}) to (U, P,G), where: g, (w) = |w| (mod 4), for any
w € X*, g, acts so that go(Leven) = {0,2}, and g, (a) = 1. Conditions 1) and
2) of the definition are clearly satisfied.

However, there is no positively typed morphism h from (X*, Leyen, {a})
to (S, A, &). If such a morphism h would exist, then it would satisfy § #
hin(Leven) C ha(Leven) = {0} and hy,(a) = hy(a) = 1. Then, either A, (w) =
1, or hpy(w) = |w| (mod 4), for any word w € X* \ Leyen. Clearly, none of
these choices provides a monoid morphism h,, from X* to Z,.

We see now that there is no positively typed morphism from (S, .4, &) to
(T,Z,F) . If such a morphism h would exist, then clearly h,,(0) = 0 and
hm(1) = hy(1) = 1. The monoid morphism h,,(z) = z (mod 2) does not
define a positively typed monoid, since it holds h,'(h,({0})) = {0,2} # {0}.
In fact, any monoid morphism such that h,,(z) = 0 for some  # 0 does not
define a positively typed morphism, since Condition 1) fails. But the other
possible mappings from Z,4 to Zs do not give a monoid morphism. Similarly,
it is easy to see that there is no positively typed morphism from (T,Z,F) to
(S, A,¢E).

Finally, note that the mapping f : (U, P,G) — (T,Z, F) given by f.(z) =
x (mod 2), for every x € Zy, f,({0,2}) = {0} and f,(1) = 1, defines a surjec-
tive positively typed monoid. In particular (T,Z, F) divides (U, P, G).

Lemma 3 If (S, A, &) divides (T,Z,F) and (T,Z,F) divides (U,P,G), then
(S, A, E) divides (U, P,G).

Proof By definition, there exist positively typed submonoids (T/,II,}J) of
(T,Z,F),and (U, P",G") of (U, P,G), respectively, and surjective morphisms
a: (T T,F) — (S,A,&) and 8 : (U,P,¢) — (T,I,F).

We denote (U”,P",G") = g~((T",Z', F')), and " is the restriction of 3
to (U”,P",G"). Then a0 8 is a surjective positively typed morphism from
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(U",P",G") onto (S, A,E). Since (U",P",G") is a positively typed submonoid
of (U, P,G), then (S, A, &) divides (U, P, G).

(5,4,8) (T,Z,F) (U, P,G)

177

(T, 7, F) ', P,q")

17

(U//’ 7)// : g//)

The previous Lemma says that division is a preorder in the class of pos-
itively typed monoids. However, it is not in general a partial order, as in
the finite monoids case. It is not hard to construct examples of two (posi-
tively) typed monoids, say (5,.4,&) and (T,Z,F), such that (5, A, ) divides
(T,Z,F), (T,Z,F) divides (S, A,E) but they are not isomorphic (see [2, Ex-
ample 4.4]).

Next we define the notion of congruences for our new algebraic object,
which are closely connected to morphisms. Beside the compatibility with the
monoid’s operation, our congruences must be compatible with the set of types.

Definition 4 Let (S, .A,€) be a positively typed monoid. A congruence ~
over S is a positively typed congruence if

VS; 6./4,81752 €S: 81~83AN8€S8;=55€8;.
We say in this case that ~ is finer than A.

Let (S,A, &) be a positively typed monoid, and let ~ be a positively typed
congruence on it. Consider:

Si/~={lz]~ |2 €Si}; A/w={Si/~ | Si € A};

Efn ={lal~ [z €&}

Since ~ is finer than A, then (S, A,&)/~ = (S/~, A/~,E/~) is a positively
typed monoid, called the positively typed quotient monoid of (S, A, E) by ~.

The canonical projection mapping from (S, A, £) onto (5, A4, £)/ ~ is clearly
a positively typed morphism. Conversely, any positively typed morphism h on
a positively typed monoid (S, .4, £) defines a positively typed congruence via
81 ~p S2 < h(s1) = h(sz). This congruence is called the kernel of h.

Ezample 4 Let (S, A, E) be a positively typed monoid. We can define, in par-
ticular, a congruence ~g, associated to a fixed type S;, as follows:

$1 g, S2 < (usiv € S; < usav € S, Yu,v € S).
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The congruence ~g, is called the syntactic congruence associated to the type
Si.

In particular, in the case when A is the positive algebra generated by S,
ie, A = {0,5;,5}, it holds that ~g, is a positively typed congruence and
(S, A75)/Nsi is the syntactic positively typed monoid of S;. The canonical
projection pg, : (S, A,&) — (S,A,&)/~g, is called the syntactic positively
typed morphism associated to S;. '

As we will see in the next section, a relevant particular case will appear for
the positively typed monoid (X*, L, X)) associated to a language L C X.

4 Recognizability and syntactic positively typed monoid

In this section we deal with the recognizability of languages via positively typed
monoids. As mentioned in the introduction, the allowed monoid morphisms are
limited by requiring that they map letters to units and, moreover, only types
are allowed to be accepting sets.

Definition 5 A positively typed monoid (5,4, E) recognizes a language L C
2* if there exist a monoid morphism h : X* — S with h(X) C £, and a type
S; € A such that L = h=1(S;).

Lemma 4 A positively typed monoid (S, A, E) recognizes a language L if and
only if there exists a positively typed morphism h: (X* L, X) — (S, A,E).

Proof Assume first that (S, A4, £) recognizes a language L C X*. Then there
exist a monoid morphism h,, : X* — S with h,,(X) C £, and a type S; € A
such that L = h;,}(S;). We choose such a type S; and we define a positively
typed morphism h : (X*, L, X) — (5, A,€) as follows: h,, : X* — S is
the given morphism of monoids, h, : X — & is the restriction of h,, to
X (which is well defined since h,,,(X) C &), and h, is given by hy(0) = 0,
he(X*) = S and ho(L) = S;, where S; is the chosen type in A such that
L = h,;}(S;). Now we show the positively typed morphism conditions for h. For
the first condition: h,,'(he(0)) = k)t (0) = 0, byt (ha(2F)) = hH(S) = X%,
and h,'(ha(L)) = h;;}(S;) = L. The condition for units is obvious.

Now let h: (X*,L, X)) — (S, A, &) be a positively typed morphism. Let
hpm @ X* — S be the monoid morphism and let S; = h,(L) € A. Then
hi,1(S;) = h;, Y (ha(L)) = L, since L is a type. Moreover, h,,,(X) = h,(X) C .
So the claim follows.

Remark 3 a) Note that this definition extends the one for typed monoids,
which in turn allowed to retrieve the standard notion of language recognition
for finite monoids. Observe that a typed monoid (5,4, £) which recognizes a
language L C X* via a given typed morphism h, also recognizes its complement
L€ via the same morphism h. This makes a main difference with our notion of
recognizability via positively typed monoids (see Example 5 b) below).

b) The notion of language recognition for finite ordered monoids introduced
by Pin in [14] coincides with our notion in the following way: given a finite
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ordered monoid (S, <), let A be the set of order ideals of (S, <); then (S, <) and
the positively typed monoid (S, .4, S) recognize exactly the same languages.

Ezample 5 a) Consider the language Leye, consisting of all words of even
length over the alphabet X = {a}. The examples in the previous section show
that Leyen is recognized both by the positively typed monoids:

- (T,Z,F)= (Z2,{0,{0},Z},{1}) , and
- (U,P,g): (Z47 {®7 {072}7 Z4}7 {1})

However, the positively typed monoid (S, A, &) = (Z4,{0,{0},Z4}, {1})
does not recognize this language.
b) Consider the alphabet X' = {a,b} and the context-free language

Liaj ={z € X% | |z|q > |z|p}

Define the monoid morphism h : X* — Z by h(a) = 1 and h(b) = —1. Then
h(X) C Z and L. = {x € X* | h(z) > 0} = h=(ZT). Hence a positively
typed monoid recognizing Li,q; is (Z,{Z,Z%,0},{1,—1}). Observe that this
positively typed monoid can not recognize (Lyq;)°.

c¢) Let again X' = {a,b} and consider the non-regular language

Leg = {w € X" [ 2] = [z[p}.

A positively typed monoid recognizing L., is (Z,{Z, {0}, 0}, {1, —1}), via the
monoid morphism h : X* — Z given by h(a) =1 and h(b) = —1.

Two positively typed monoids that divide each other do not need to be
isomorphic, but we see next that they recognize the same languages. We will
prove this with the help of the notion of syntactic positively typed monoid,
which is a particular case of the construction given in Example 4.

Definition 6 Let L C X* be a language and consider the syntactic congru-
ence associated to L, i.e.:

x~py < (uzv € L < uyv € L, Yu,v € X*).

Then syn(L) = (X*, L, X)/~, is the syntactic positively typed monoid of L and
pr (XL, Y) — (X*,L,X)/~, is the syntactic positively typed morphism.

Clearly, syn(L) recognizes L via the syntactic positively typed morphism
pr- As in the finite case we will show next that syn(L) is the minimal positively
typed monoid (with respect to division) recognizing the language L, which we
will prove using some technical lemmas.

Lemma 5 Leth: (S, A, &) — (T,Z,F) be a positively typed morphism where
(S, A, &) is a free positively typed monoid, and & is the generator set for S.
Let f: (U,P,G) — (T,I,F) be a surjective positively typed morphism. Then
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there exists a positively typed morphism g : (S, A, &) — (U, P,G) such that
h=fog.
(S, A,€)

g X
£

(U,P,G) (T,Z,7)

!

Proof Note that f,,, fa, fu are all surjective maps, since f is surjective. More-
over, f, is a bijective map.

For each unit s € £ there exists an element u € G C U, such that f,,(u) =
fu(uw) = hp(s), because f is surjective and hq,,(s) = hy(s) € F. For each
s € € we choose such an element, denoted by us. Then we define a mapping
gu : € — G by setting g, (s) = us. In particular, this defines a mapping from
€ to U which can be extended to a monoid morphism, say ¢, : S — U,
which verifies by, = fi, © gm and also g, (€) = gu(€) C G. Now, we define a
morphism of positive Boolean algebras g, : A — P by g, = f; ! o h, (recall
that f, is bijective).

We consider g = (gm, ga>gu) : (5, A,E) — (U,P,G) and we will prove
that ¢ is a positively typed morphism. Let S; a type in A. We have to
prove that g, '(g.(S;)) = S;. Since g,(S;) is a type in (U,P,G) and f :
(U,P,G) — (T,I,F) is a surjective positively typed morphism, we have
that go(S:) = fil(fa(9a(S:))). But fu(ga(Si)) = ha(S:), so it follows that
9a(S:) = f1(ha(S:)). Applying now that f,, © gm = hm, we deduce that
95 (9a(S:) = 9. (fn (ha(Si))) = hy, (ha(Si)) = S;, where the last assertion
follows from the fact that S; is a type in A and h : (S, A4,&) — (T,Z,F)
is a positively typed morphism. Hence g is a positively typed morphism and
clearly h = fog.

Lemma 6 Let (S,A,E) be a positively typed monoid which recognizes a lan-
guage L C X* by a surjective positively typed morphism h. Then there is an
isomorphism ¢ : (X*, L, X)) ~— (8, A, )/ ~sg, with p o p~, = pag, oh,
where S; is the type in A such that L = h;,}(S;), and the respective p’s are the
canonical projections.

(25 L,8) —" s (S, 4,8)

P~p ipNSi

(T L, D) [y, —5> (S AE) s,

Proof Note that the fact that h is surjective implies that S; is unique, and
also that A = {0, S;, S} and so ~g, is a positively typed congruence. Observe
that for any w € X*, the condition pwq € L for p,q € X* is equivalent to
Bon (D) e (W) (¢) € S;. Then, for any pair wy,ws € X*, it holds that wy ~,
wy if and only if Ay, (w1) ~g, hm(wsz). Then, if we define @, : X*/., —
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S/ ~s, such that o, ([wil~,) = [hm(w;)]~g, , we have that ¢, is a monoid mor-
phism which is well defined and injective. Clearly, ¢,,(X/~,) C £/~ s, More-
over, since h,, : X* — § is surjective we deduce that ¢, is an isomorphism of
monoids. Now, we define a morphism of positive Boolean algebras by the com-
position ¢, = Pag, © he OpgjL. Then it holds that ¢ = (@m, @, P) s a posi-
tive typed morphism, since ¢, (¢a(L/~p)) = 03 (ha(L)/~s,) = @1 (Si/ ~s,)
—L/-,.

Lemma 7 Let (S, A,€) and (S,,.A,,E’) be positively typed monoids such that
(S,A,&") divides (S, A,E). Then every language recognized by (S , A ,E') is
also recognized by (S, A, E).

Proof Since (S,,A/,E’) divides (S, A, &), there exist a submonoid (T,1,F)
of (5,A,€) and a surjective positively typed morphism g : (T,Z,F) —
(8", A", &"). Let L C X* be a language recognized by the positively typed
monoid (S/,A/,S’ ). By definition there is a positively typed morphism « :
(£, L, %) — (8", A", &.

On the other hand, we have that (X* L,X) is a free typed monoid and
8:(T,1,F) — (S/,A,,E’) is a surjective morphism. Hence, by Lemma 5,
there exists a positively typed morphism ¢ : (X* L, X)) — (T, 1, F), such that
a = Boy. Then we can define a positively typed morphism A : (2*, L, Y) —
(S, A,€) as the composition i o ¢, where ¢ is an injective positively typed
morphism from (7,1, F) on (S5, A4,€).

(S, A,€)
7
ho ;

(E*7L52) L (Tv\}wl—:)

N

(s, A&

Hence the language L C X* is also recognized by (5, A4, E).

Lemma 8 Let L C X* be a language and let (S, A,E) be a positively typed
monoid. Then:

1) (S, A, &) recognizes L if and only if syn(L) divides (S, A,€E).
2) If (S, A,E) recognizes L and (S, A,E) divides syn(L), then (S,A,E) is
isomorphic to syn(L).

Proof 1) From Lemma 7 it is clear that if syn(L) divides (S,.4,&), then
(S, A, E) recognizes L.

Assume now that (S, A, £) recognizes L and let h : (X*, L, X)) — (S, A, &)
be a positively typed morphism and S; a type in A such that h,'(S;) = L.
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Now, let (S',A",€') be the image of h, and h : (£*,L, %) — (S, A, &)
the corresponding surjective positively typed morphism from (X*, L, ) to
(S, A,E&"). Denote S! = S; N hp(S), a type in (S,A,E"), and observe
that h,'(S!) = h,'(S;) = L. Then by Lemma 6 there is an isomorphism
¢ syn(L) — (S, A&/ ~g;. Hence the composition o := ¢~' o p,
(where p., is the corresponding canonical projection) is a surjective posQ
itively typed morphism from (S, A’,€") to syn(L) = (£*,L,%)/~,. This
means that syn(L) divides (S, A, £).

(2*7L72) n (SI,A,,EI)% (SaA75)

P~r ip”sg

(2L, 8)/my —5> (8, A8/,

where the respective p’s are the canonical projections.

2) Let (5,4, &) be a positively typed monoid which recognizes a language
L C ¥* via a positively typed morphism h, and assume that (S, A, E) divides
syn(L). Then there exist both a submonoid (T, I, F) of syn(L) and a surjective
positively typed morphism 3 from (T, I, F) onto (S, A, £). Moreover, as in the
preceding paragraph, we can construct a surjective positively typed morphism,
say «, from (5", A, &) = h((S,A,€E)) (submonoid of (S,.A,€E)) onto syn(L).
Hence we have the following diagram:

(2L, 5) Lo (8" A, &) = (5,4,8)

Py, /

syn(L) ’

(T,1,F)

Since X' generates X* and iz, pL are surjective morphisms, £ generates S’,
and X*/., is generated by X'/.,. On the other hand, we have that | £ |<
| &< F [<| X/~p [<] €|, and hence [ E" |=| € |= | F [=| X/~ |. Now,
since X* /., is a finitely generated semigroup with generating set X'/, , and
(T,I,F) is a submonoid of syn(L) with | F |=| X/~ |, this means that
(T,Z,F) is isomorphic to syn(L). Therefore, because of the surjectivity of 3,
we can deduce that £ generates S. This latter fact implies again that (S, A, &)
is isomorphic to (S’, A’, &").

We have then a surjective positively typed morphism from (5,4, £) to syn(L),
say @, besides the surjective positively typed morphism 8 from syn(L) onto
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(S, A,&). Since & o B is a permutation of the finite set £, then there exists
some power of & o 8 which is the identity on £. Hence this power also defines
an identity on (5,4, &), and so (5, A4, E) is isomorphic to syn(L).

Note that the fact that we are dealing with finitely generated monoids and
the role of units are both relevant in the proof of the “uniqueness” of the
syntactic positively typed monoid (Lemma 8 b)).

5 Positive weakly closed classes

Eilenberg introduced in [9, Chapter ITI] classes of transformation semigroups
with weaker closure properties than varieties, the so called weakly closed
classes. Also many sets of languages described via logic do not form a va-
riety, although they enjoy weaker closure properties. Motivated by these facts,
in [2] weakly closed classes of typed monoids and languages were defined, in
order to obtain a weaker version of Eilenberg’s variety theorem. In this section
we will develop a corresponding theory in the “positive” world.

We introduce next the operations on positively typed monoids we will make
use of. The first one allows to identify positively typed monoids recognizing
the same languages.

Definition 7 Let (S, A, ), (T,Z,F) be positively typed monoids, such that
there is a surjective positively typed morphism from (7,Z,F) to (S, A,¢&),
then we say that (T,Z,F) is a trivial extension of (S, A, ).

Observe that, in particular, if (T,Z, F) is a trivial extension of (S, .4, ), then
(S, A, E) divides (T,Z,F).

Lemma 9 If (T,Z,F) is a trivial extension of (S, A,E), then they recognize
ezxactly the same languages.

Proof From Lemma 7, it is clear that every language recognized by (S, A, £) is
also recognized by (T,Z, F). Now let L be a language recognized by (T,Z,F)
via the positively typed morphism h : (X*,L,Y) — (T,Z,F) and let f :
(T,Z,F) — (S, A, &) be a surjective positively typed morphism. Then L is
recognized by (S, A, £) via the composition f o h.

Another usual operation on algebraic structures is the direct product. Now
we introduce it for positively typed monoids in the expected way:

Definition 8 The direct product of two positively typed monoids (5,4, ¢&)
and (T,Z, F), denoted by (S, A, E)x (T,Z,F), is defined as (S x T, Ax T, E x
F), where A x T is the positive Boolean algebra over S x T generated by the
sets Ax I, withAec A, ITe€l.

We see next that direct products correspond to unions and intersections in
the language counterpart.
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Lemma 10 Let Ly, Ly C X* be languages recognized by (S, A, E) and (T,Z,F)
respectively. Then L1 N Ly and Ly U Ly are recognized by (S x T, AXZ,E X F).

Proof Let Ly, Ly C X* be recognized by (5,4, €) and (T,Z, F) via the posi-
tively typed morphisms h : (2%, Ly, 2) — (S, A,€) and b’ : (X%, Ly, &) —
(T,T,F), respectively. Let S; € A, T, € I such that L; = h_'(S;) and
2 = hy"Y(T}). Now we define a monoid morphism h,, : X* — S x T by
(2) = (hm(2), h,,(x)). It is easy to prove that h;}(S; x T;) = Ly N Ly and
1((52 X T) U (S X Tz)) = L1 ULQ.

Now, by the definition of a direct product of positively typed monoids,
S; x Ty and (S; x T) U (S x T;) are types in (S, A, ) x (T, T, F). Therefore h
defines positively typed morphisms (X*, L1 N Ly, X)) — (S, A, &) x (T,Z,F)
and (X*,L1 U Ly, Y) — (S,A,€) x (T,Z,F). Hence (S, A,E) x (T,I,F)
recognizes Ly N Ly and L1 U Lo, as desired.

™~

h

o,

Definition 9 A positive weakly closed class of languages is an operator V
which associates to each alphabet X' a nonempty set X*V of languages such
that:

1) For every alphabet X, X*V is closed under finite union and finite intersec-
tion.

2) For every length preserving morphism ¢ : X* — I'* and every language
LelV, o Y(L)e X*V .

Definition 10 A weakly closed class of positively typed monoids is a nonempty
set of positively typed monoids that is closed under trivial extensions, division
and finite direct products.

Given a nonempty set 'V of positively typed monoids, let £(V) be the map-
ping which associates with every alphabet X' the nonempty set of all languages
over X' that can be recognized by a positively typed monoid in V:

X*L(V)={L C X*| L is recognized by a positively typed monoid in V}.
Clearly, the following result holds:

Lemma 11 Let V and W be sets of positively typed monoids.

1) If V is closed under division, then X*L(V) is the set of all languages
L C X* with syn(L) € V.
2) If VCW, then X*L(V) C X*L(W), for every alphabet X.

The next theorem ensures that there is a correspondence between positive
weakly closed classes of languages and weakly closed classes of positively typed
monoids. However, this correspondence is not one-to-one, in general, since
for a given positive weakly closed class of languages there could be several
associated weakly closed classes of positively typed monoids. Note that the
proof of this theorem uses the same arguments as those in [2] for the typed
case. Nevertheless, we include the proof here for the sake of comprehensiveness.
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Theorem 1 1) IfV is a weakly closed class of positively typed monoids then
L(V) is a positive weakly closed class of languages.

2) If V is a positive weakly closed class of languages, then there is a weakly
closed class of positively typed monoids V with L(V) = V.

Proof 1) Let V be a weakly closed class of positively typed monoids. We are
going to show that V = £L(V) is a positive weakly closed class of languages.
Let L C X* be a language in X*V and (5, A, £) be a positively typed monoid
recognizing L via the positively typed morphism h. Now, assume that L' C I'™*
is a language such that L' = ¢~!(L) where ¢ : I'* — X* is a length preserving
morphism. Since ¢ is length preserving, ¢(I') C X, and so it can be seen as
a positively typed morphism from (I'*,L',I") to (X*, L, ). Hence h o ¢ is
a positively typed morphism from (I'*, L', I") to (S,A,€&). Therefore L' €
I'*V. This shows that V satisfies the closure under inverse length preserving
morphisms. Since V is closed under finite direct products, the closure under
union and intersection follows from Lemma 10.

2) Let V be a positive weakly closed class of languages and let 'V be the
smallest weakly closed class of positively typed monoids that contains all syn-
tactic monoids of V. Given any alphabet X it is clear that X*V C X*L(V).
So we have to show that X*L(V) C X*V.

Let L be a language in X*£(V). To show that L € X*V we will construct a
language L' € A*, for some alphabet A, as a positive Boolean combination of
languages L; € X7V, arising from the the positively typed monoid recognizing
L, and then construct a length preserving morphism ¢ : X* — A* such that
L=¢ YL

Since L € X*L(V), it is recognized by a positively typed monoid in V.
Note that division and trivial extensions do not provide more languages in
L(V), because of Lemmas 8 and 9. Hence we may assume that there exist
some (5;, A;, &), which are syntactic monoids of some languages L; € XV,
for 1 =1,...,n, such that L is recognized via a positively typed morphism #h :
(Z*,L,%Y) — [1—1(Si, A, &). Note, in particular, that every (S;,A4;,&;) €
V.

Moreover, each language L; is recognized via the syntactic morphism
pi + (XF L, %) — (S:,A:,&). We can then construct a surjective posi-
tively typed morphism from []? ,(X¥, L;, X;) to [, (Si, Ai, &). In particu-
lar, this means that the positively typed monoid ], (X7, L;, X;) is a triv-
ial extension of []"_,(S;, Ai,&;). By Lemma 9, the language L is also recog-
nized by []"_,(X7,L;,X;), and so there exists a positively typed morphism
h:(2*L,Y) — [T, (ZF, L;, X;), as shown in the diagram below.

This implies that L = h~'(T) for some type T € [, (¥, Li, %), so
T is a Boolean combination of types T; € {0, X* L;}. Now, observe that
since h, () C i, %, it can be deduced that f,,(2*) € (I]7, Zi)*. Then
B+ 2% — (T11-, Zi)* is a length preserving monoid morphism.
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(L, ) — [](Si, A &)

=1

\\

n

H(Zz*v Lz; EZ)

i=1

If we consider A =[], X;, L’ =T and ¢ = h, then we have L' € A*V
and L = ¢~1(L'), being ¢ a length preserving morphism. This implies that
L € X*V and the result follows.

6 Positive varieties

Our aim in this section is to obtain an Eilenberg-like theorem for positive
varieties of languages and varieties of positively typed monoids. The notion of
positive variety of languages corresponds to the one introduced by Pin in [14].
We recall first the concepts of right and left quotients of languages:

Definition 11 The right quotient of a language L C X* by a € X* is defined
by La=t = {z € X* | za € L}. The left quotient of a language L C X* by
a € X* is defined by a 'L = {z € X¥* | ax € L}.

Definition 12 (see [14]) A positive variety of languages is an operator V
which associates to each alphabet X' a nonempty set X*V of languages such
that:

1) For every alphabet X, X*V is closed under finite union and finite intersec-
tion, i.e., X*V is a positive Boolean algebra.

2) If p : ¥* — I'* is a monoid morphism and L € I'*V, then ¢~}(L) € X*V.

3) If Le ¥*V and a € ¥, then a~'L and La~! belong to X*V.

In particular, X*V always contains the empty set and the whole X*, since it
is a positive Boolean algebra.

Note that a positive variety of languages is a positive weakly closed class
of languages which is closed under quotients, and also closed for inverse mor-
phisms which are not necessarily length preserving.

For the algebraic counterpart, new operations on positively typed monoids
should be introduced, as it was done in [2]. The first one models the closure
under right and left quotients of languages.

Definition 13 Let (S, A, €) be a positively typed monoid. Then (S, A", &) is
a shift of (S, A, &), if there exist p,q € S with A = {p~1S;¢71 | S; € A},
where p~1S;q7! = {s € S| psq € S;}.
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In order to handle non-length-preserving morphisms we do not need to
control the units, so the next concept is used:

Definition 14 Let (5, .4, &) be a positively typed monoid. If £’ is any finite
set & C S, we say that (S, .A,&’) is a unit relazation of (S, A, E).

Now we have the new closure properties needed to introduce the notion of
variety of positively typed monoids.

Definition 15 A wvariety of positively typed monoids is a weakly closed class
of positively typed monoids, which is closed under shifting and unit relaxation.

Remark 4 We have noted that given a finite ordered monoid (5, <), we can
always construct a positively typed monoid (5, .4, .5), by considering A to be
the set of order ideals of (S, <), in the sense of Pin [14]. However, a variety of
finite ordered monoids as defined in [14] does not form a variety of positively
typed monoids, since it is not closed under trivial extension leading to infinite
structures.

Our Eilenberg-type theorem for the positively typed world (Theorem 2) will
be now deduced from the next propositions. Once proper adjustments in the
definitions and previous lemmas have been done, their proofs follow the same
lines as the corresponding ones for the typed case ([2, Propositions 3, 4, 5]),
using the results on positive weakly closed classes in Section 5.

Proposition 1 If 'V is a variety of positively typed monoids, then L(V) is a
positive variety of languages.

Proposition 2 Let V and W be varieties of positively typed monoids. Then
L(V)=L(W) if and only if V.=W.

Proposition 3 For a positive variety of languages V, let 'V be the smallest
variety of positively typed monoids that contains all syntactic monoids of V.
Then L(V) = V.

Theorem 2 There is a one-to-one correspondence between varieties of posi-
tively typed monoids and positive varieties of languages:

— Given a positive variety of languages V, let 'V be the smallest variety of
positively typed monoids that recognizes all languages in V. Then L(V) =
V.

— Given a variety of positively typed monoids V, let W be the smallest variety
that recognizes all languages of L(V). Then V. = W.

7 An example and further work

We describe here an example of the correspondence between weakly closed
classes of positively typed monoids and positive weakly closed class of lan-
guages, in order to initially illustrate some of the theoretical results presented
in the paper. First we consider the non-regular language

L, = {a? | p is prime}.



20 A. Cano et al.

Let P = {p € Z" | pis a prime}. A positively typed monoid recognizing L,
is V,, = (Z& ,{Z , P, 0}, {1}), via the monoid morphism h : {a}* — Z such
that h(a) = 1.

Example 6 Let 'V be the smallest weakly closed class of positively typed
monoids that contains V,,. Then the positive weakly closed class corresponding
to V, L(V), is the class such that for any alphabet X, X*£(V) is the posi-
tive Boolean algebra generated by languages of the form L(X) = {z € X* |
|| is prime}.

First notice that the positively typed monoid V), recognizes all languages
of the form L(X), for any alphabet Y. To see this it is enough to con-
sider the monoid morphism v from X* to {a}* such that ¢(c) = a for any
¢ € X. Then V, recognizes the language L(X) via h o). This is to say that
L(X) € Z*L{V,}) C X*L(V), for any X. Note also that L(X) = ¢~(L,),
for any Y. Now, by using Theorem 1, it suffices to prove that the opera-
tor which assigns to each alphabet Y the positive algebra generated by lan-
guages of the form L(X) is a positive weakly closed class of languages. It
can be deduced from the fact that if ¢ : I'" — X™* is a length preserv-
ing morphism, then ¢~!(L(Y)) = L(I'), and for any languages L, M C X*
e HL)Ue (M) =~ (LUM) and = (L) N~ (M) =~ (LN M).

Further work

In this paper we have extended the theory of typed monoids developed by
Behle, Krebs and Reifferscheid in [2] to the positive case introduced by Pin
n [14]. As already stated in [2], the typed approach helps to obtain a more
precise description of language classes than with the usual one with monoids
or with stamps as in [15]. Our extension will allow to deal with classes of non-
regular languages which are not closed under complement, such as context-
free languages. Further work should be developed in this sense to provide for
significant examples to our positive theory.

Since the publication of [2], the theory of typed monoids has been used
to give algebraic characterizations of some concrete classes of non-regular lan-
guages. Recently, Cadilhac, Krebs and McKenzie in [3] have described, by
using this algebraic object, languages recognized by some variants (determin-
istic, unambiguous and affine) of the so-called Parikh automata. These au-
tomata were introduced in [10] and their properties were successfully used in
the model-checking of hardware circuits, which indicates that they are of inter-
est for real-world applications. As it is pointed out in [3], the class of languages
defined by general Parikh automata (also called “constrained automata”) is
not closed under complement, and hence this class does not allow a character-
ization through typed monoids. Our theory of positively typed monoids could
give the suitable framework for an algebraic characterization of such classes.
This is a relevant task to be addressed in the future.

Even in the regular case, using positively typed monoids one would be able
to deal with some classes of languages which cannot be characterized only in
terms of varieties of finite monoids. For example, classes of regular languages
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defined by existential formulas in a first order logic enriched by modular nu-
merical predicates, which were characterized in [6] using C-varieties, could be
potential candidates for this treatment.

A possible future research direction would be to connect our work to the
category-theoretic approach recently given by Urbat, Admek, Chen and Milius
in [22], or by Salamanca in [18]. At this point, our results are not direct
instances of their theory. It is to be analyzed if their methods could be extended
to obtain the results in this paper and those of [2].

As pointed out by one of the referees, it might be interesting to look at
the class of recursively enumerable languages in the context of our work. As
she/he indicates, if one could find a description of the corresponding variety
of positively typed monoids, this would potentially result in a new algebraic
approach to computability.

Finally, as mentioned in the introduction, Polék in [16] studied classes of
languages with even weaker closure properties, the so-called conjunctive and
disjunctive varieties. Therefore it is natural to wonder to what extent our re-
sults can be adapted for those conjunctive and disjunctive cases.
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