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Skew constacyclic codes over a non-chain

ring Fq[u, v]/〈f(u), g(v), uv − vu〉
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Abstract

Let f(u) and g(v) be two polynomials of degree k and ℓ respectively, not both
linear, which split into distinct linear factors over Fq. LetR = Fq[u, v]/〈f(u), g(v),
uv−vu〉 be a finite commutative non-chain ring. In this paper, we study ψ-skew
cyclic and θt-skew constacyclic codes over the ring R where ψ and θt are two
automorphisms defined on R.

MSC : 94B15, 11T71.
Keywords : Skew polynomial ring; skew cyclic codes; skew quasi-cyclic codes;
quasi-twisted codes; Gray map.

1 Introduction

Cyclic codes over finite fields have been studied since 1960’s because of their
algebraic structures as ideals in certain commutative rings. Interest in codes
over finite rings increased substantially after a break-through work by Ham-
mons et al. in 1994. In 2007, Boucher et al. [3] generalized the concept of
cyclic code over a non-commutative ring, namely skew polynomial ring Fq[x; θ],
where Fq is a field with q elements and θ is an automorphism of Fq. In the
polynomial ring Fq[x; θ], addition is defined as the usual one of polynomials and
the multiplication is defined by the rule axi ∗ bxj = aθi(b)xi+j for a, b ∈ Fq.
Boucher and Ulmer [4] constructed some θ-cyclic codes called skew cyclic codes
with Hamming distance larger than that of previously known linear codes with
the same parameters. Siap et al. [18] investigated structural properties of skew
cyclic codes of arbitrary length.

After the first phase of study on skew cyclic codes over fields, the focus of
attention moved to skew cyclic codes over rings. Abualrub et.al [1] studied skew
cyclic codes over F2 + vF2, where v

2 = v and the automorphism θ was taken
as θ : v → v + 1. Li Jin [13] studied skew cyclic codes over Fp + vFp, where
v2 = 1 with the automorphism θ taken as θ : a+ bv → a− bv. In 2014, Gursoy

∗E-mail: swatibhardwaj2296@gmail.com
†Corresponding author, e-mail: mraka@pu.ac.in
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et al. [10] determined generator polynomials and found idempotent generators
of skew cyclic codes over Fq + vFq, where v

2 = v and the automorphism θ was

defined as θt : a+ bv → ap
t
+ bp

t
v. Minjia Shi et al. [16] studied θt-skew-cyclic

codes over Fq+ vFq+ v
2
Fq, where v

3 = v. Later Minjia Shi et al. [17] extended
these results to skew cyclic codes over Fq + vFq + · · ·+ vm−1

Fq, where v
m = v.

Gao et al. [5] studied skew constacyclic codes over Fq + vFq, where v
2 = v.

Recently people have started studying skew cyclic codes over finite commu-
tative non-chain rings having 2 or more variables. Yao, Shi and Solé [19] studied
skew cyclic codes over Fq+uFq+vFq+uvFq, where u

2 = u, v2 = v, uv = vu and
q is a prime power. Ashraf and Mohammad [2] studied skew-cyclic codes over
Fq+uFq+vFq, where u

2 = u, v2 = v, uv = vu = 0. Islam and Prakash [11] stud-
ied skew cyclic and skew constacyclic codes over Fq + uFq + vFq + uvFq, where
u2 = u, v2 = v and uv = vu. Islam, Verma and Prakash [12] studied skew con-
stacyclic codes of arbitrary length over Fpm [v,w]/ < v2 − 1, w2 − 1, vw−wv >.

In all these papers θ was taken as θt : a→ ap
t

defined on Fq.

In this paper, we study skew cyclic and skew constacyclic codes over a
more general ring. Let f(u) and g(v) be two polynomials of degree k and ℓ
respectively, which split into distinct linear factors over Fq. We assume that at
least one of k and ℓ is ≥ 2. Let R = Fq[u, v]/〈f(u), g(v), uv−vu〉 be a finite non-
chain ring. Cyclic codes over this ring R were discussed in [8]. A Gray map is
defined fromRn → F

kℓn
q which preserves duality. We define two automorphisms

ψ and θt on R and discuss ψ-skew cyclic and θt-skew α-constacyclic codes over
this ring, where α is any unit in R fixed by the automorphism θt, in particular
when α2 = 1. Some structural properties, specially generator polynomials and
idempotent generators for skew constacyclic codes are determined. We shall
show that a skew cyclic code over the ring R is either a quasi-cyclic code or
a cyclic code over R. Further we shall show that Gray image of a θt-skew α-
constacyclic code of length n over R is a θt-skew α-quasi-twisted code of length
kℓn over Fq of index kℓ. Some examples are also given to illustrate the theory.

In [15], Raka et al. had discussed α-constacyclic codes over the ring Fp[u]/〈u
4−

u〉, p ≡ 1(mod 3) for a specific unit α = (1−2u3). (Note that the unit α here sat-
isfies α2 = 1 in the ring Fp[u]/〈u

4−u〉). On taking θt as identity automorphism,
the results on θt-skew α-constacyclic codes (Section 4) give the corresponding
results for α-constacyclic code over R which generalize the results of [15].

The results of this paper can easily be extended over the more general ring
Fq[u1, u2, · · · , ur]/〈f1(u1), f2(u2), · · · fr(ur), uiuj−ujui〉 where polynomials fi(ui),
1 ≤ i ≤ r, split into distinct linear factors over Fq.

The paper is organized as follows: In Section 2, we recall the ring R =
Fq[u, v]/〈f(u), g(v), uv − vu〉 and the Gray map Φ : Rn → F

kℓn
q . In Section 3,

we define two automorphisms ψ and θt on R, while in Sections 3.1, we discuss
skew cyclic codes over R with respect to ψ. In Section 4, we study skew α-
constacyclic codes over the ring R with respect to the automorphism θt.
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2 The ring R and the Gray map

2.1 The ring R

Let q be a prime power, q = ps. Throughout the paper, R denotes the commu-
tative ring Fq[u, v]/〈f(u), g(v), uv−vu〉, where f(u) and g(v) are polynomials of
degree k and ℓ respectively, which split into distinct linear factors over Fq. We
assume that at least one of k and ℓ is ≥ 2, otherwise R ≃ Fq. If ℓ = 1 or k = 1,
then the ring R = Fq[u, v]/〈f(u), g(v), uv − vu〉 is isomorphic to Fq[u]/〈f(u)〉
or Fq[v]/〈g(v)〉. Duadic and triadic cyclic codes, duadic negacyclic codes over
Fq[u]/〈f(u)〉 have been discussed by Goyal and Raka in [6, 7]. Further in [8, 9],
Goyal and Raka have discussed polyadic cyclic codes and polyadic constacyclic
codes over R = Fq[u, v]/〈f(u), g(v), uv − vu〉.

Let f(u) = (u − α1)(u − α2)...(u − αk), with αi ∈ Fq, αi 6= αj and g(v) =
(v − β1)(v − β2)...(v − βℓ), with βi ∈ Fq, βi 6= βj . R is a non chain ring of size
qkℓ and characteristic p.

For k ≥ 2 and ℓ ≥ 2, let ǫi, 1 ≤ i ≤ k and γj, 1 ≤ j ≤ ℓ, be elements of the ring
R given by

ǫi = ǫi(u) =
(u−α1)(u−α2)···(u−αi−1)(u−αi+1)···(u−αk)

(αi−α1)(αi−α2)···(αi−αi−1)(αi−αi+1)···(αi−αk)
and

γj = γj(v) =
(v−β1)(v−β2)···(v−βj−1)(v−βj+1)···(v−βℓ)

(βj−β1)(βj−β2)···(βj−βj−1)(βj−βj+1)···(βj−βℓ)
.

(1)

If k ≤ 1, we define ǫi = 1 and if ℓ ≤ 1, we take γj = 1.

We note that ǫ2i = ǫi, ǫiǫr = 0 for 1 ≤ i, r ≤ k, i 6= r and
∑

i ǫi = 1 modulo
f(u); γ2j = γj , γjγs = 0 for 1 ≤ j, s ≤ ℓ, j 6= s and

∑

j γj = 1 modulo g(v)
in R.

For i = 1, 2, · · · , k, j = 1, 2, ..., ℓ, define ηij as follows

ηij = ηij(u, v) = ǫi(u)γj(v). (2)

Lemma 1: We have η2ij = ηij , ηijηrs = 0 for 1 ≤ i, r ≤ k, 1 ≤ j, s ≤ ℓ, (i, j) 6=
(r, s) and

∑

i,j ηij = 1 in R, i.e., ηij ’s are primitive orthogonal idempotents of
the ring R.

This is Lemma 2 of [8].

The decomposition theorem of ring theory tells us that R =
⊕

i,j

ηijR.

For a linear code C of length n over the ring R, let for each pair (i, j), 1 ≤ i ≤
k, 1 ≤ j ≤ ℓ,

Cij = {xij ∈ F
n
q : ∃ xrs ∈ F

n
q , (r, s) 6= (i, j), such that

∑

r,s

ηrsxrs ∈ C}.

Then Cij are linear codes of length n over Fq, C =
⊕

i,j

ηijCij and |C| =
∏

i,j

|Cij |.

Theorem 1 Let C =
⊕

i,j

ηijCij be a linear code of length n over R. Then

(i) C⊥ =
⊕

i,j

ηijC
⊥

ij ,
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(ii) C is self-dual if and only if Cij are self-dual,

(iii) |C⊥| =
∏

i,j

|C⊥

ij |.

Proof: Let a = (a0, a1, · · · , an−1) ∈ C⊥. This gives a · b = 0 for all b =
(b0, b1, · · · , bn−1) ∈ C. Let ar =

∑

i,j

ηijaijr and br =
∑

i,j

ηijbijr for 0 ≤

r ≤ n − 1 where aijr, bijr ∈ Fq. Take aij = (aij0, aij1, · · · , aij(n−1)) and
bij = (bij0, bij1, · · · , bij(n−1)) so that aij , bij ∈ F

n
q and a =

∑

i,j

ηijaij, b =
∑

i,j

ηijbij .

As b ∈ C, we find that bij ∈ Cij. Now a · b = 0 implies

0 = (
∑

ηijaij0)(
∑

ηijbij0)+(
∑

ηijaij1)(
∑

ηijbij1)+· · ·+(
∑

ηijaij(n−1))(
∑

ηijbij(n−1))

which gives, using Lemma 1
∑

ηijaij0bij0 +
∑

ηijaij1bij1 + · · · +
∑

ηijaij(n−1)bij(n−1) = 0

i.e.
∑

ηij(aij · bij) = 0. This implies aij · bij = 0 for all i, j, where bij ∈ Cij .
Therefore aij ∈ C⊥

ij . Hence a ∈
⊕

i,j

ηijC
⊥

ij , so that C⊥ ⊆
⊕

i,j

ηijC
⊥

ij . The reverse

inclusion can be obtained by reversing the above steps. This proves (i) and (ii),
(iii) follow immediately from (i). �

2.2 The Gray map

Every element r(u, v) of the ring R = Fq[u, v]/〈f(u), g(v), uv − vu〉 can be
uniquely expressed as

r(u, v) =
∑

i,j

ηijaij,

where aij ∈ Fq for 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ.

Define a Gray map Φ : R → F
kℓ
q by

r(u, v) =
∑

i,j

ηijaij 7−→ (a11, a12, · · · , a1ℓ, a21, a22, · · · , a2ℓ, · · · , ak1, ak2, · · · , akℓ).

(3)
This map can be extended from Rn to (Fkℓq )n component wise i.e. for

r = (r0, r1, · · · , rn−1), where rs = η11a
(s)
11 + η12a

(s)
12 + · · · + ηkla

(s)
kℓ ∈ R, define

Φ as follows

Φ(r0, r1, · · · , rn−1) =
(

Φ(r0),Φ(r1), · · · ,Φ(rn−1)
)

=
(

a
(0)
11 , a

(0)
12 , · · · , a

(0)
kℓ , a

(1)
11 , a

(1)
12 , · · · , a

(1)
kℓ , a

(n−1)
11 , · · · , a

(n−1)
kℓ

)

.

Let the Gray weight of an element r ∈ R be wG(r) = wH(Φ(r)), the Hamming
weight of Φ(r). The Gray weight of a codeword c = (c0, c1, · · · , cn−1) ∈ Rn is
defined as wG(c) =

∑n−1
i=0 wG(ci) =

∑n−1
i=0 wH(Φ(ci)) = wH(Φ(c)). For any two

elements c1, c2 ∈ Rn, the Gray distance dG is given by dG(c1, c2) = wG(c1 −
c2) = wH(Φ(c1) − Φ(c2)). The next theorem is a special case of a result of
Goyal and Raka [8].

Theorem 2 The Gray map Φ is an Fq - linear, one to one and onto map. It is
also distance preserving map from (Rn, Gray distance dG) to (Fkℓnq , Hamming

distance dH). Further Φ(C⊥) = (Φ(C))⊥ for any linear code C over R.
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Sometimes it is more convenient to use a permuted version of the Gray map

Φ on Rn. For r = (r0, r1, · · · , rn−1), where rs = η11a
(s)
11 +η12a

(s)
12 + · · ·+ηkla

(s)
kℓ ,

define Φπ : Rn → (Fkℓq )n by

Φπ(r0, r1, · · · , rn−1) =
(

a
(0)
11 , a

(1)
11 , · · · , a

(n−1)
11 , a

(0)
12 , a

(1)
12 , · · · , a

(n−1)
12 , · · · ,

a
(0)
kℓ , a

(1)
kℓ , · · · , a

(n−1)
kℓ

)

.
(4)

Clearly the Gray images Φ(C) and Φπ(C) of a linear code C over R are equivalent
codes.

3 Skew Cyclic codes over the ring R

Let θ be an automorphism of R. The map θ can be extended to Rn component
wise i.e. for c = (c0, c1, · · · , cn−1),

θ(c) =
(

θ(c0), θ(c1), · · · , θ(cn−1)
)

. (5)

Let c = (c0, c1, · · · , cn−1) ∈ Rn. The cyclic shift of θ(c)- called θ-cyclic shift or
the skew cyclic shift is defined as

σθ(c) = (θ(cn−1), θ(c0), · · · , θ(cn−2)). (6)

Let c be divided into m equal parts of length r where n = mr, i.e.

c =
(

c0,0, c0,1, · · · , c0,r−1, c1,0, · · · , c1,r−1, · · · , cm−1,0, · · · , cm−1,r−1

)

.

Write c =
(

c(0)|c(1)| · · · |c(m−1)
)

. The skew quasi-cyclic shift of c of index m is
defined as

τθ,m(c) =
(

θ(c(m−1))|θ(c(0))| · · · |θ(c(m−2))
)

. (7)

A linear code C of length n over R is called a skew cyclic code if σθ(C) = C
and a skew quasi-cyclic code of index m if τθ,m(C) = C.

The set R[x, θ] = {a0 + a1x + a2x
2 + · · · + asx

s : ai ∈ R, s ≥ 0 integer},
where the variable x is written on the right of the coefficients, forms a ring under
usual addition of polynomials and the multiplication is defined as axi ∗ bxj =
aθi(b)xi+j for a, b ∈ R. The skew polynomial ring R[x, θ] is non-commutative
unless θ is the identity isomorphism. Let Rn = R[x, θ]/〈xn − 1〉. Rn is a
left R[x, θ]-module with usual addition and left multiplication defined as r(x) ∗
(f(x)+〈xn−1〉) = r(x)∗f(x)+〈xn−1〉 for r(x) ∈ R[x, θ] and f(x)+〈xn−1〉 ∈
Rn. In polynomial representation, a linear code of length n over R is a skew
cyclic code if and only if it is a left R[x, θ]-submodule of R[x, θ]/〈xn − 1〉.

In polynomial representation, a skew quasi-cyclic code of length n = mr and
index m can be viewed as a left R[x, θ]/〈xm − 1〉-submodule of

(

R[x, θ]/〈xm −
1〉
)r

due to the one-to-one correspondence : Rmr →
(

R[x, θ]/〈xm − 1〉
)r

given
by

c =
(

c0,0, c0,1, · · · , c0,r−1, c1,0, · · · , c1,r−1, · · · , cm−1,0, · · · , cm−1,r−1

)

→
(

c0,0 + c1,0x+ · · · + cm−1,0x
m−1, c0,1 + c1,1x+ · · ·+ cm−1,1x

m−1,
· · · , c0,r−1 + c1,r−1x+ · · ·+ cm−1,r−1x

m−1
)

In this paper, we will consider the following two automorphisms on the ring
R = Fq[u, v]/〈f(u), g(v), uv − vu〉.
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1. Without loss of generality, suppose that ℓ ≥ 2. For an a ∈ R

a =
∑

i,j ηijaij =
∑ℓ

j=1 η1ja1j +
∑ℓ

j=1 η2ja2j + · · ·+
∑ℓ

j=1 ηkjakj, define

ψ(a) = (η1ℓa11 + η11a12 · · ·+ η1(ℓ−1)a1ℓ) + (η2ℓa21 + η21a22 · · ·+ η2(ℓ−1)a2ℓ)

+ · · · + (ηkℓak1 + ηk1ak2 · · ·+ ηk(ℓ−1)akℓ)
.

Clearly the order of ψ is ℓ.

2. Let q = ps and t be an integer 1 ≤ t ≤ s. Define an automorphism
θt : Fq → Fq given by θt(a) = ap

t
and extend it to θt : R → R by

θt
(

∑

i,j

ηijaij
)

=
∑

i,j

ηija
pt

ij .

Note that if t = s, θt is the identity map and this automorphism is irrele-
vant if q is a prime.

Clearly the order of θt is |θt| = s/t and the ring Fpt[u, v]/〈f(u), g(v), uv −
vu〉 is invariant under θt.

3.1 ψ-skew Cyclic codes over the ring R

In this subsection, we discuss skew cyclic codes over R with respect to auto-
morphisms ψ.

Theorem 3 The center Z(R[x, ψ]) of R[x, ψ] is Fq[x
ℓ].

Proof : Since the order of ψ is ℓ, for any natural number i and a ∈ R, we have
xℓi ∗ a = (ψℓ)i(a)xℓi = a ∗ xℓi; so xℓi is in the center of R[x, ψ]. As the fixed
ring of R by ψ is Fq, any f ∈ Fq[x

ℓ] is a central element. Conversely for any
f ∈ Z(R[x, ψ]) and a ∈ R, we have x∗f = f ∗x and a∗f = f ∗a which implies
f ∈ Fq[x

ℓ]. �

Corollary 1 The polynomial xn − 1 is in the center Z(R[x, ψ]) if and only if
ℓ divides n.

Remark 1 If ℓ|n, then Rn = R[x, ψ]/〈xn − 1〉 is a ring and a skew cyclic code
C of length n over R is a left ideal in Rn.

Theorem 4 Let C be a skew cyclic code of length n. If g(x) is a polynomial
in C of minimal degree and leading coefficient of g(x) is a unit in R, then
C = 〈g(x)〉 where g(x) is a right divisor of xn − 1.

Proof : Let c(x) ∈ C. Write c(x) = q(x)g(x) + r(x) where q(x), r(x) ∈ R[x, ψ]
and deg r(x) <deg g(x). Since C is a left R[x, ψ]-submodule, r(x) = c(x) −
q(x)g(x) ∈ C. Therefore we must have r(x) = 0 and so C = 〈g(x)〉. Further if
xn − 1 = q(x)g(x) + r(x) for some skew polynomials q(x), r(x) ∈ R[x, ψ] and
deg r(x) <deg g(x), then r(x) = (xn − 1) − q(x)g(x) ∈ C and so r(x) = 0.
Therefore g(x) is a right divisor of xn − 1. �

Theorem 5 Let C be a skew cyclic code of length n over R and let r =
gcd(n, |ψ|) = gcd(n, ℓ). If r = 1, then C is a cyclic code of length n over
R; if r > 1 then C is a quasi-cyclic code of index n/r.

6



Proof: Let n = mr. Find integers a and b > 0 such that aℓ = r + bn. (As
gcd(ℓ, n) = r, there exist integers a′, b′ such that a′ℓ + b′n = r. If b′ < 0,
we are done. If b′ > 0, find a positive integer t such that ℓt − b′ > 0. Then
(a′ + nt)ℓ = r + (ℓt− b′)n.) Let
c =

(

c0,0, c0,1, · · · , c0,r−1, c1,0, · · · , c1,r−1, · · · , cm−1,0, · · · , cm−1,r−1

)

be a codeword in C divided into m equal parts of length r.

Write c =
(

c(0)|c(1)| · · · |c(m−1)
)

. Since C is a skew cyclic code, σψ(c), σ
2
ψ(c), · · · ,

σrψ(c), · · · all belong to C. Since r + bn is divisible by ℓ = |ψ|, we have

σrψ(c) =
(

ψr(c(m−1))|ψr(c(0))| · · · |ψr(c(m−2))
)

σ2rψ (c) =
(

ψ2r(c(m−2))|ψ2r(c(m−1))| · · · |ψ2r(c(m−3))
)

σnψ(c) =
(

ψn(c(0))|ψn(c(1))| · · · |ψn(c(m−1))
)

σbnψ (c) =
(

ψbn(c(0))|ψbn(c(1))| · · · |ψbn(c(m−1))
)

σr+bnψ (c) =
(

ψr+bn(c(m−1))|ψr+bn(c(0))| · · · |ψr+bn(c(m−2))
)

=
(

c(m−1)|c(0)| · · · |c(m−2)
)

= τθ,m(c),

where θ is Identity automorphism. Therefore τθ,m(c) ∈ C. If r > 1, C is a
quasi-cyclic code of index m. If r = 1, i.e. m = n, then C is a cyclic code of
length n over R. �

Remark 2 The above result holds for any automorphism θ on R.

Example 1 : Let R = F4[u, v]/〈u(u − 1)(u − α), v2 − v, uv − vu〉, where

F4 = F2[α] and α
2 +α+1 = 0. Here ǫ1 =

(u−1)(u−α)
α

, ǫ2 =
u(u−α)
1−α , ǫ3 =

u(u−1)
α(α−1) ,

γ1 = 1 − v and γ2 = v. We have γ1 = 1 − v = (1 · η11 + 0 · η12) + (1 · η21 + 0 ·
η22) + (1 · η31 + 0 · η32). One finds that ψ(1− v) = (0 · η11 + 1 · η12) + (0 · η21 +
1 · η22) + (0 · η31 +1 · η32) = γ2 = v and ψ(v) = 1− v. The order of ψ is 2. The
polynomial g(x) = x6 + vx5 + x4 + x3 + x2 + (1 − v)x + 1 is a right divisor of
x12− 1 over the ring R[x, ψ], therefore it generates a skew cyclic code of length
12 over R. By Theorem 5, this code is a quasi-cyclic code of index 6.

Example 2 : Let R = F8[u, v]/〈u(u − 1), v(v − 1)(v − β)(v − β2), uv − vu〉,
where F8 = F2[β] and β3 + β + 1 = 0. Here ǫ1 = 1 − u and ǫ2 = u, γ1 =
(v−1)(v−β)(v−β2 )

β+1 , γ2 = v(v−β)(v−β2)
β2 , γ3 = v(v−1)(v−β2)

β
and γ4 = v(v−1)(v−β)

β2+β+1
. We

have γ1 = (1·η11+0·η12+0·η13+0·η14)+(1·η21+0·η22+0·η23+0·η24). One finds
that ψ(γ1) = γ2, ψ(γ2) = γ3, ψ(γ3) = γ4, ψ(γ4) = γ1 and ψ(ǫi) = ǫi for i = 1, 2.
The order of ψ is 4. The polynomial g(x) = x4+u(γ1+ γ3)x

3+u(γ1+ γ3)x+1
is a right divisor of x8 − 1 over the ring R[x, ψ], therefore it generates a skew
cyclic code of length 8 over R. By Theorem 5, this code is a quasi-cyclic code
of index 2.

Example 3 : Let R = F5[u, v]/〈u(u − 1), v(v − 1), uv − vu〉 and n = 9. The
polynomial g(x) = x6 + x3 +1 generates a skew cyclic code of length 9 over R.
This code is equivalent to a cyclic code of length 9, by Theorem 5.
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4 θt-skew constacyclic codes over the ring

R

In this section we will study θt-skew α-constacyclic code over R, where α is a
unit in R given by

α =
∑

i,j

ηijαij , αij ∈ Fpt \ {0}, (8)

so that θt(αij) = αij and θt(α) = α.

Note that α2 = 1 if and only if α2
ij = 1, i.e. if and only if αij = ±1.

In the special case when θt = identity map, we get all the corresponding
results for α-constacyclic codes over R. We shall call θt-skew constacyclic code
simply as skew constacyclic code.

A linear code C of length n over R is said to be skew α-constacyclic code if
C is invariant under the skew α-constacyclic shift ϑα, where ϑα : Rn → Rn is
defined as

ϑα(c0, c1, · · · , cn−1) =
(

αθt(cn−1), θt(c0), · · · , θt(cn−2)
)

, (9)

i.e., C is skew α-constacyclic code if and only if ϑα(C) = C. Clearly C is skew
cyclic if α = 1 and is called skew negacyclic if α = −1.

By identifying each codeword by the corresponding polynomial, a linear
code C of length n over R is skew α-constacyclic code if and only if is left
R[x, θt]-submodule of left R[x, θt]-module Rn,α = R[x, θt]/〈x

n − α〉.

Theorem 6 Let the unit α be as defined in (8). A linear code C =
⊕

i,j

ηijCij

is a skew α-constacyclic code of length n over R if and only if Cij are skew
αij-constacyclic code of length n over Fq.

Proof: Let c = (c0, c1, · · · , cn−1) ∈ C, where cs =
∑

i,j ηija
(s)
ij for each s, 0 ≤

s ≤ n − 1. Let aij = (a
(0)
ij , a

(1)
ij , · · · , a

(n−1)
ij ) so that c =

∑

i,j ηijaij , aij ∈ Cij .
Note that, using the properties of idempotents ηij from Lemma 1

αcn−1 =
(

∑

i,j

ηijαij

)(

∑

i,j

ηija
(n−1)
ij

)

=
∑

i,j

ηijαija
(n−1)
ij .

Therefore

ϑα(c) = (αθt(cn−1), θt(c0), · · · , θt(cn−2)

= (θt(αcn−1), θt(c0), · · · , θt(cn−2)

=
(

θt(
∑

i,j ηijαija
(n−1)
ij ), θt(

∑

i,j ηija
(0)
ij ), · · · , θt(

∑

i,j ηija
(n−2)
ij )

)

=
(

∑

i,j ηijαijθt(a
(n−1)
ij ),

∑

i,j ηijθt(a
(0)
ij ), · · · ,

∑

i,j ηijθt(a
(n−2)
ij )

)

=
∑

i,j ηij

(

αijθt(a
(n−1)
ij ), θt(a

(0)
ij ), · · · , θt(a

(n−2)
ij )

)

=
∑

i,j ηijϑαij
(aij).

Therefore ϑα(c) ∈ C if and only if ϑαij
(aij) ∈ Cij. �
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Example 4: Let f(u) = u4−u = u(u−1)(u−ξ)(u−ξ2), where ξ ∈ Fq, ξ
3 = 1

and q ≡ 1( mod 3). Let g(v) = v so that η11 = 1 − u3, η21 = 1
3(u − ξ)(u −

ξ2), η31 = 1
3(u − 1)(u − ξ2) and η41 = 1

3 (u − 1)(u − ξ). Take θt = Identity
automorphism and the unit α = η11 − η21 − η31 − η41 = 1− 2u3. Then a linear
code C is (1 − 2u3)-constacyclic code over R = Fq[u]/〈u

4 − u〉 if and only if
C11 is cyclic and C21, C31, C41 are negacyclic codes of length n over Fq. This is
Theorem 2 of [15].

Following is Lemma 3.1 of Jitman et al. [14], where R was taken as a finite
chain ring, but the result is true for any finite ring.

Lemma 2 Let C be a linear code of length n over a finite ring R. Let θ be an
automorphism of R and suppose n is a multiple of the order of θ. Let λ be a
unit in R such that θ(λ) = λ. Then C is skew λ-constacyclic code if and only
if C⊥ is skew λ−1-constacyclic code over R.

Theorem 7 Let the order of θt divide n. If the code C =
⊕

i,j

ηijCij is a skew α-

constacyclic of length n over R, then C⊥ is skew α−1-constacyclic code over R
and C⊥

ij are α−1
ij -constacyclic codes over Fq, where α is as given in (8). Further

for C to be self-dual it is necessary that α =
∑

i,j(±ηij), i.e. α
2 = 1.

Proof: The first statement follows from Lemma 2, as θt(α) = α. Also by
Theorem 1, we have C⊥ =

⊕

i,j

ηijC
⊥

ij , and α−1 =
∑

i,j ηijα
−1
ij . Therefore C⊥

ij

are α−1
ij -constacyclic codes over Fq. Further C is self-dual if and only if Cij are

self-dual. Now for Cij to be self dual it is necessary that αij = α−1
ij in Fq i.e.

αij = ±1. �

Remark 3: It may happen that α =
∑

i,j(±ηij), i.e. αij = ±1, but Cij are
not self-dual skew αij-constacyclic codes and so C may not be self-dual skew
α-constacyclic code.

Corollary 2 Let the order of θt divide n. Then the number of units α for
which C can be self-dual skew α-constacyclic of length n over R is 2kℓ.

Gao et al.[5] showed that a skew λ-constacyclic code of length n over Fq

is generated by a monic polynomial g(x) which is a right divisor of xn − λ in
Fq[x; θt]. Analogous to this we have the following results for skew constacyclic
codes over R.

Theorem 8 Let C =
⊕

i,j

ηijCij be a skew α-constacyclic code of length n over

R. Suppose that skew αij-constacyclic codes Cij = 〈gij(x)〉, where gij(x) are
right divisors of xn − αij for 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ. Then there exists a
polynomial g(x) in R[x, θt] such that

(i) C = 〈g(x)〉

(ii) g(x) is a right divisor of (xn − α).

(iii) |C| = qkℓn−
∑ℓ

j=1

∑k
i=1

deg(gij).
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Proof: First we show that C = 〈η11g11(x), · · · , η1ℓg1ℓ(x), η21g21(x), · · · , η2ℓg2ℓ(x),
· · · , ηk1gk1(x), · · · , ηkℓgkℓ(x)〉 = E , say.
Let c(x) ∈ C. Since Cij = 〈gij〉 and C =

⊕

i,j

ηijCij , we have c(x) =
∑

i,j

ηijuij(x)gij(x)

for uij(x) ∈ Fq[x; θt]. Therefore c(x) ∈ E and so C ⊆ E .

Conversely let c(x) =
∑

i,j

ηijfij(x)gij(x) ∈ E , where fij(x) ∈ R[x; θt]. As

R =
⊕

r,s

ηrsFq, each fij(x) =
∑

r,s

ηrsurs(x) for some urs(x) ∈ Fq[x; θt]. Now

ηijfij(x) = ηijuij(x) as ηij are primitive orthogonal idempotents, we see find
that c(x) =

∑

i,j

ηijuij(x)gij(x) ∈
⊕

i,j

ηij〈gij(x)〉 = C, hence C = E .

Let g(x) =
∑

i

∑

j ηijgij(x). Then clearly 〈g(x)〉 ⊆ E = C. On the other
hand ηijg(x) = ηijgij(x), so C ⊆ 〈g(x)〉.

Let for 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ, xn − αij = hij(x) ∗ gij(x) for some hij(x) ∈
Fq[x; θt]. Let h(x) =

∑

i,j

ηijhij(x), then one finds that h(x) ∗ g(x) = xn − α so

g(x) is a right divisor of xn − α.

Since |C| =
∏

i,j

|Cij| and |Cij| = qn−deg(gij) we get (iii). �

Next we determine generator polynomial of dual of a skew α-constacyclic
codes over R, when the order of θt divide n. First we have

Lemma 3: Let order of θt divide n and D = 〈g(x)〉 be a skew λ-constacyclic
code of length n over Fq then the dual code D⊥ is a skew λ−1-constacyclic
code generated by h⊥(x) = hn−r + θt(hn−r−1)x + · · · + θn−rt (h0)x

n−r, where
xn − λ = h(x) ∗ g(x) and h(x) =

∑n−r
i=0 hix

i.

The proof is similar to that of Corollary 18 of Boucher et al. [4], where generator
of dual of a skew cyclic code was determined.

Theorem 9 Let the order of θt divide n. Let C =
⊕

i,j

ηijCij be a skew α-

constacyclic code of length n over R. Suppose Cij = 〈gij(x)〉, where x
n − αij =

hij(x) ∗ gij(x) for 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ. Then

(i) C⊥ = 〈h⊥(x)〉, where h⊥(x) =
∑

i

∑

j ηijh
⊥

ij(x),

(ii) |C⊥| = q
∑ℓ

j=1

∑k
i=1

deg(gij).

Proof : By Theorem 1, we have C⊥ =
⊕

i,j

ηijC
⊥

ij . Also, by Lemma 3, C⊥

ij =

〈h⊥ij(x)〉, we get C⊥ = 〈h⊥(x)〉, where h⊥(x) =
∑

i

∑

j ηijh
⊥

ij . (ii) follows be-

cause |C||C⊥| = qkℓn. �

Next we compute idempotent generator of the skew constacyclic code C over
R. First we have

Lemma 4 Let D be a θt-skew λ-constacyclic code of length n over Fq. If
gcd(n, q) = 1 and gcd(n, |θt|) = 1, then there exists an idempotent polynomial
e(x) ∈ Fq[x, θt]/〈x

n − λ〉 such that D = 〈e(x)〉.

The proof is similar to that of Theorem 6 of Gursoy et al. [10].
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Theorem 10 Let C =
⊕

i,j

ηijCij be a θt-skew α-constacyclic code of length n

over R. If gcd(n, q) = 1 and gcd(n, |θt|) = 1, then there exists an idempotent
polynomial e(x) ∈ R[x, θt]/〈x

n−α〉 such that C = 〈e(x)〉 and C⊥ = 〈1−e(x−1)〉.

Proof: By Lemma 4, let eij(x) ∈ Fq[x, θt]/〈x
n−αij〉 be idempotent generators

of skew αij-constacyclic codes Cij . Take e(x) =
∑

i

∑

j ηijeij(x). Then e(x) is
an idempotent and also a generator of C.

As C⊥

ij have idempotent generators 1 − eij(x
−1), C⊥ has idempotent generator

∑

i

∑

j ηij
(

1− eij(x
−1)

)

= (1− e(x−1)). �

Let c = (c0, c1, · · · , cn−1) =
(

c(0)|c(1)| · · · |c(m−1)
)

be a vector in Rn divided
into m equal parts of length r where n = mr. We define two skew α-quasi
twisted shifts ̺α,m and ρα,m as

̺α,m(c) =
(

αθt(c
(m−1))|θt(c

(0))| · · · |θt(c
(m−2))

)

. (10)

ρα,m(c) =
(

ϑα(c
(0))|ϑα(c

(1))| · · · |ϑα(c
(m−1))

)

, (11)

where ϑα is as defined in (9).
A linear code C of length n over R is called a skew α-quasi twisted code of
index m if ̺α,m(C) = C or ρα,m(C) = C.

Theorem 11 Let C be a skew α-constacyclic code of length n over R and let
r = gcd(n, |θt|). If r = 1, then C is α-constacyclic code of length n over R; If
r > 1 then C is a α- quasi-twisted code of index n/r.

Proof: Let n = mr. Find integers a and b > 0 such that a|θt| = r +
bn. Let c = (c0, c1, · · · , cn−1) =

(

c(0)|c(1)| · · · |c(m−1)
)

be a codeword in C di-
vided into m equal parts of length r. Since C is a skew α-constacyclic code,
ϑα(c), ϑ

2
α(c), · · · , ϑ

r
α(c), · · · all belong to C. Now

ϑrα(c) =
(

αθrt (c
(m−1))|θrt (c

(0))| · · · |θrt (c
(m−2))

)

ϑ2rα (c) =
(

αθ2rt (c(m−1))|αθ2rt (c(0))| · · · |θ2rt (c(m−2))
)

ϑnα(c) =
(

αθnt (c
(0))|αθnt (c

(1))| · · · |αθnt (c
(m−1))

)

ϑbnα (c) =
(

αbθbnt (c(0))|αbθbnt (c(1))| · · · |αbθbnt (c(m−1))
)

ϑr+bnα (c) =
(

αb+1θr+bnt (c(m−1))|αbθr+bnt (c(0))| · · · |αbθr+bnt (c(m−2))
)

=
(

αb+1c(m−1)|αbc(0)| · · · |αbc(m−2)
)

= αb
(

αc(m−1)|c(0)| · · · |c(m−2)
)

= αb̺α,m(c),

as r + bn is a multiple of order of θt. Therefore ̺α,m(c) ∈ C, with θt =Identity
automorphism. If r > 1, C is a α- quasi-twisted code of index m. If r = 1, i.e.
m = n, then C is α-constacyclic code of length n over R. �

Example 5 Consider the field F9 = F3[β], where β
2 + β − 1 = 0 and θ be

the Frobenius automorphism on F9 defined by θ(β) = β3. Let f(u) = u3 − u,
g(v) = v2 − 1 and R = F9[u, v]/〈u

3 −u, v2 − 1, uv− vu〉. Take α = 1−u2−u2v
a unit in R. The polynomial h(x) = x6 + αx5 + x4 + αx3 + x2 + αx + 1 is a
right divisor of x7 − α in R[x, θ]. Also gcd(n, |θ|) = gcd(7, 2) = 1. Therefore
C = 〈h(x)〉 is a (1− u2 − u2v)-constacyclic code of length 7 over R.
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In fact if α is any unit in R = Fp2 [u, v]/〈f(u), g(v), uv − vu〉 satisfying
α2 = 1, i.e. α =

∑

i,j(±ηij) and n is odd then xn − α = (x − α)(xn−1 +

αxn−2 + xn−3 + · · · + αx3 + x2 + αx + 1). Therefore the skew α-constacyclic
code C = 〈xn−1 + αxn−2 + xn−3 + · · ·+ αx3 + x2 + αx+ 1〉 is a α-constacyclic
code of length n over R.

Example 6 Consider the field F25 = F5[β], where β
2 − β + 2 = 0 and θ be

the Frobenius automorphism on F25 defined by θ(β) = β5. Let f(u) = u3 − u,
g(v) = v2 − v and R = F25[u, v]/〈u

3 − u, v2 − 1, uv − vu〉. Now x6 − 1 =
(x2− 1)(x2−x+1)(x2+x+1) and x6+1 = (x2+1)(x2+2x− 1)(x2 +3x− 1).
Let α = η11 + η12 − η21 + η22 − η31 + η32 = 1 − 2u2 + 2vu2, g11 = g12 =
g22 = g32 = x2 + x + 1 and g21 = g31 = x2 + 3x − 1. Then C = 〈g(x)〉,
where g(x) =

∑

i

∑

j ηijgij = x2+(1+2u2−2u2v)x+(1−2u2+2u2v) is a skew

(1−2u2+2vu2)-constacyclic code of length 6 over R. Further as gcd(6, |θ|) = 2,
C is a (1− 2u2 + 2vu2)- quasi-twisted code of index 3.

Theorem 12 Let ϑα be the skew α-constacyclic shift defined in (9), ρα,kℓ be the
α-quasi twisted shift as defined in (11) and let Φπ be the Gray map as defined
in (4). Then Φπσα = ρα,kℓΦπ.

Proof : Let r = (r0, r1, · · · , rn−1) ∈ Rn, where rs = η11a
(s)
11 + η12a

(s)
12 + · · · +

ηkla
(s)
kℓ . Then

ϑα(r) =
(

αθt(rn−1), θt(r0), · · · , θt(rn−2)
)

=
(

α
∑

ij ηijθt(a
(n−1)
ij ),

∑

ij ηijθt(a
(0)
ij ), · · · ,

∑

ij ηijθt(a
(n−2)
ij )

) .

Applying Φπ, we get

Φπ(ϑα(r)) =
(

αθt(a
(n−1)
11 ), θt(a

(0)
11 ), · · · , θt(a

(n−2)
11 ), αθt(a

(n−1)
12 ), θt(a

(0)
12 ), · · · , θt(a

(n−2)
12 ),

· · · , αθt(a
(n−1)
kℓ ), θt(a

(0)
kℓ ), · · · , θt(a

(n−2)
kℓ )

)

On the other hand

Φπ(r0, r1, · · · , rn−1) =
(

a
(0)
11 , a

(1)
11 , · · · , a

(n−1)
11 |a

(0)
12 , a

(1)
12 , · · · , a

(n−1)
12 |

· · · |a
(0)
kℓ , a

(1)
kℓ , · · · , a

(n−1)
kℓ

)

.

Therefore

ρα,kℓ(Φπ(r)) =
(

αθt(a
(n−1)
11 ), θt(a

(0)
11 ), · · · , θt(a

(n−2)
11 )|αθt(a

(n−1)
12 ), θt(a

(0)
12 ), · · · , θt(a

(n−2)
12 )|

· · · |αθt(a
(n−1)
kℓ ), θt(a

(0)
kℓ ), · · · , θt(a

(n−2)
kℓ )

)

Hence Φπϑα = ρα,kℓΦπ. �

Theorem 13 A linear code C of length n over R is a skew α-constacyclic code
if and only if Φπ(C) is a skew α-quasi-twisted code of length kℓn over Fq of
index kℓ.

Proof : From Theorem 12, we see that

Φπ(ϑα(C)) = Φπσα(C) = ρα,kℓΦπ(C) = ρα,kℓ(Φπ(C)).

Therefore ϑα(C) = C if and only if Φπ(C) = ρα,kℓ(Φπ(C)). �
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Corollary 3 If a linear code C of length n over R is a skew α-constacyclic (a
skew cyclic) then Φ(C) is equivalent to a skew α-quasi-twisted (a skew quasi-
cyclic) code of length kℓn over Fq of index kℓ.

Example 7 Let f(u) = u2 − u, g(v) = v(v − 1)(v − β) be polynomials over
F4 = F2[β], where β

2 + β + 1 = 0. Take R = η11F4 ⊕ η12F4 ⊕ η13F4 ⊕ η21F4 ⊕
η22F4⊕η23F4. Let θ be the Frobenius automorphism on F4 defined by θ(β) = β2.
A decomposition of x6 − 1 in the skew polynomial ring F4[x, θ] is

x6 − 1 = (x2 − 1)(x4 + x2 + 1)
= (x2 − β)(x4 + βx2 + β2)
= (x2 − β2)(x4 + β2x2 + β)
= (x3 + βx2 + β2x− β2)(x3 + β2x2 + β2x+ β).

If we take Cij = 〈x3 + β2x2 + β2x + β〉 for i = 1, 2 and j = 1, 2, 3, then
C = ⊕ηijCij = 〈x3 + β2x2 + β2x+ β〉 is a skew cyclic code over R of length 6.
Its Gray image Φ(C) is a quasi-cyclic code of index 6 with parameters [36, 18, 4].

If we take C11 = C13 = 〈x4 + x2 + 1〉, C12 = C21 = 〈x4 + αx2 + α2〉 and
C22 = C23 = 〈x4+β2x2+β〉, then C = ⊕ηijCij = 〈x4 +(βuv2 + v2+βv+β2u+
1)x2 +(β2uv+β2v2 + v+βu+1) is a skew cyclic code over R. Its Gray image
Φ(C) is a quasi-cyclic code of index 6 with parameters [36, 12, 3].

Theorem 14 If n is odd and the unit α satisfies α2 = 1, then a skew α-
constacyclic code of length n over R is equivalent to a skew cyclic code over
R.

Proof: Define a map ϕ : Rn = R[x, θt]/〈x
n − 1〉 → Rn,α = R[x, θt]/〈x

n − α〉
by ϕ(f(x)) = f(αx). Then ϕ is R[x, θt]-module isomorphism because

f(x) = g(x) in R[x, θt]/〈x
n − 1〉

⇔ f(x)− g(x) = h(x) ∗ (xn − 1) for some h(x) ∈ R[x, θt]
⇔ f(αx)− g(αx) = h(αx) ∗ (αnxn − 1)

= h(αx) ∗ (αxn − 1) as αn = α for n odd
= αh(αx) ∗ (xn − α) as α2 = 1 and θt(α) = α

⇔ f(αx) = g(αx) in R[x, θt]/〈x
n − α〉.

This gives the result. �

Theorem 15 Let kℓ ≡ 1(mod s/t). Then for any r ∈ Rn, Φσθt(r) = σkℓθt Φ(r).

Proof : Let r = (r0, r1, · · · , rn−1) ∈ Rn, where rs =
∑

ij ηija
(s)
ij . Then

Φ(σθt(r)) = Φ
(

θt(rn−1), θt(r0), · · · , θt(rn−2)
)

= Φ
(

∑

ij ηijθt(a
(n−1)
ij ),

∑

ij ηijθt(a
(0)
ij ), · · · ,

∑

ij ηijθt(a
(n−2)
ij )

)

=
(

Φ
(
∑

ij ηijθt(a
(n−1)
ij )

)

,Φ
(
∑

ij ηijθt(a
(0)
ij )

)

, · · · ,Φ
(
∑

ij ηijθt(a
(n−2)
ij )

)

)

=
(

θt(a
(n−1)
11 ), θt(a

(n−1)
12 ), · · · , θt(a

(n−1)
kℓ ), θt(a

(0)
11 ), θt(a

(0)
12 ) · · · , θt(a

(0)
kℓ ),

· · · , θt(a
(n−2)
11 ), θt(a

(n−2)
12 ), · · · , θt(a

(n−2)
kℓ )

)

.
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On the other hand,

σθt(Φ(r)) = σθt
(

Φ(r0),Φ(r1), · · · ,Φ(rn−1)
)

= σθt
(

a
(0)
11 , a

(0)
12 , · · · , a

(0)
kℓ , a

(1)
11 , a

(1)
12 , · · · , a

(1)
kℓ , · · · , a

(n−1)
11 , · · · , a

(n−1)
kℓ

)

=
(

θt(a
(n−1)
kℓ ), θt(a

(0)
11 ), θt(a

(0)
12 ), · · · , θt(a

(0)
kℓ ), θt(a

(1)
11 ), · · · , θt(a

(1)
kℓ ),

· · · θt(a
(n−1)
11 ), · · · , θt(a

(n−1)
kℓ−1 )

)

,

σ2θt(Φ(r)) =
(

θ2t (a
(n−1)
kℓ−1 ), θ2t (a

(n−1)
kℓ ), θ2t (a

(0)
11 ), θ

2
t (a

(0)
12 ), · · · , θ

2
t (a

(0)
kℓ ), θ

2
t (a

(1)
11 ), · · · ,

θ2t (a
(1)
kℓ ), · · · , θ

2
t (a

(n−1)
11 ), · · · , θ2t (a

(n−1)
kℓ−2 )

)

,

· · · · · · · · ·

σkℓθt (Φ(r)) =
(

θkℓt (a
(n−1)
11 ), θkℓt (a

(n−1)
12 ), · · · , θkℓt (a

(n−1)
kℓ ), θkℓt (a

(0)
11 ), θ

kℓ
t (a

(0)
12 ), · · · ,

θkℓt (a
(0)
kℓ ), θ

kℓ
t (a

(1)
11 ), · · · , θ

kℓ
t (a

(1)
kℓ ), · · · , θ

kℓ
t (a

(n−2)
11 ), · · · , θkℓt (a

(n−2)
kℓ )

)

.

Since here θkℓt = θt, we find that Φσθt(r) = σkℓθt Φ(r). �

Corollary 4 If kℓ ≡ 1(mod |θt|), then C is a skew cyclic code if and only if
Φ(C) is fixed by σkℓθt skew cyclic shift.

5 Conclusion

Let R = Fq[u, v]/〈f(u), g(v), uv − vu〉 be a finite non-chain ring where f(u)
and g(v) are two polynomials of degree k and ℓ respectively, which split into
distinct linear factors over Fq. We assume that at least one of k and ℓ is ≥ 2.
In this paper, we define two automorphisms ψ and θt on R and discuss ψ-skew
cyclic and θt-skew α-constacyclic codes over R, where α is any unit in R fixed
by the automorphism θt, in particular when α2 = 1. We show that a skew
α-constacyclic code of length n over R is either an α-constacyclic code or a α-
quasi-twisted code. Some structural properties, specially generator polynomials
and idempotent generators for skew constacyclic codes are determined. A Gray
map is defined from Rn → F

kℓn
q which preserves duality. It is shown that Gray

image of a θt-skew α-constacyclic code of length n over R is a θt-skew α-quasi-
twisted code of length kℓn over Fq of index kℓ. Some examples are also given
to illustrate the theory.
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