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Abstract

Let f(u) and g(v) be two polynomials of degree k and ¢ respectively, not both
linear, which split into distinct linear factors over F,. Let R = F4[u, v]/(f(u), g(v),
uv—vu) be a finite commutative non-chain ring. In this paper, we study -skew
cyclic and 6-skew constacyclic codes over the ring R where ¢ and 6; are two
automorphisms defined on R.
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1 Introduction

Cyclic codes over finite fields have been studied since 1960’s because of their
algebraic structures as ideals in certain commutative rings. Interest in codes
over finite rings increased substantially after a break-through work by Ham-
mons et al. in 1994. In 2007, Boucher et al. [3] generalized the concept of
cyclic code over a non-commutative ring, namely skew polynomial ring F[x; 6],
where [Fy is a field with ¢ elements and 6 is an automorphism of F,. In the
polynomial ring F[z; 6], addition is defined as the usual one of polynomials and
the multiplication is defined by the rule az’ x bx/ = af(b)z'*J for a,b € F,.
Boucher and Ulmer [4] constructed some 6-cyclic codes called skew cyclic codes
with Hamming distance larger than that of previously known linear codes with
the same parameters. Siap et al. [I8] investigated structural properties of skew
cyclic codes of arbitrary length.

After the first phase of study on skew cyclic codes over fields, the focus of
attention moved to skew cyclic codes over rings. Abualrub et.al [I] studied skew
cyclic codes over Fy + vFs, where v?2 = v and the automorphism 6 was taken
as 0 : v — v+ 1. Li Jin [13] studied skew cyclic codes over Fj, + vF,, where
v? = 1 with the automorphism 6 taken as 6 : a + bv — a — bv. In 2014, Gursoy
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et al. [10] determined generator polynomials and found idempotent generators
of skew cyclic codes over F, + vF,, where v? = v and the automorphism 6 was
defined as ; : a + bv — a?" + b v. Minjia Shi et al. [16] studied y-skew-cyclic
codes over F, + vF, + v?F,, where v3 = v. Later Minjia Shi et al. [17] extended
these results to skew cyclic codes over Fy + vFg +--- + vmfllﬁ'q, where v™ = v.

Gao et al. [5] studied skew constacyclic codes over F, + vF,, where v? = v.

Recently people have started studying skew cyclic codes over finite commu-
tative non-chain rings having 2 or more variables. Yao, Shi and Solé [19] studied
skew cyclic codes over Fy +ulF, +vF,+uvF,, where u?
q is a prime power. Ashraf and Mohammad [2] studied skew-cyclic codes over
F,+uF,+vF,, where u? = u,v? = v,uv = vu = 0. Islam and Prakash [11] stud-
ied skew cyclic and skew constacyclic codes over F, + ulFy + vIFy + uvF,, where
u? = u,v? = v and uv = vu. Islam, Verma and Prakash [12] studied skew con-

stacyclic codes of arbitrary length over Fpm[v,w]/ < v* —1,w? — 1, 0w — wv >.

= u, v = v, uv = vu and

In all these papers 6 was taken as 6; : a — a?" defined on Fy.

In this paper, we study skew cyclic and skew constacyclic codes over a
more general ring. Let f(u) and g(v) be two polynomials of degree k and ¢
respectively, which split into distinct linear factors over IF,. We assume that at
least one of k and £is > 2. Let R = Fy[u,v]/(f(u), g(v), uv—vu) be a finite non-
chain ring. Cyclic codes over this ring R were discussed in [§]. A Gray map is
defined from R™ — IF’;Z" which preserves duality. We define two automorphisms
1 and 0; on R and discuss ¢-skew cyclic and 6;-skew a-constacyclic codes over
this ring, where « is any unit in R fixed by the automorphism 6;, in particular
when a? = 1. Some structural properties, specially generator polynomials and
idempotent generators for skew constacyclic codes are determined. We shall
show that a skew cyclic code over the ring R is either a quasi-cyclic code or
a cyclic code over R. Further we shall show that Gray image of a 0;-skew a-
constacyclic code of length n over R is a 0;-skew a-quasi-twisted code of length
kfn over F, of index kf. Some examples are also given to illustrate the theory.

In [15], Raka et al. had discussed a-constacyclic codes over the ring F[u] /(u*—

u), p = 1(mod 3) for a specific unit o = (1—2u3). (Note that the unit o here sat-
isfies o = 1 in the ring Fp[u]/(u* —u)). On taking 6; as identity automorphism,
the results on f;-skew a-constacyclic codes (Section 4) give the corresponding

results for a-constacyclic code over R which generalize the results of [15].

The results of this paper can easily be extended over the more general ring

Folui,uz, -+ ur]/{f1(u1), fa(u2), - fr(ur), uvivj—uju;) where polynomials f;(u;),
1 <4 < r, split into distinct linear factors over IF,,.

The paper is organized as follows: In Section 2, we recall the ring R =
Folu,v]/{f(u),g(v),uv — vu) and the Gray map ® : R" — F]qdn. In Section 3,
we define two automorphisms ¥ and 6; on R, while in Sections 3.1, we discuss
skew cyclic codes over R with respect to 1. In Section 4, we study skew a-
constacyclic codes over the ring R with respect to the automorphism 0;.



2 The ring R and the Gray map
2.1 The ring R

Let ¢ be a prime power, ¢ = p®. Throughout the paper, R denotes the commu-
tative ring Fy[u, v]/(f(u), g(v), uv—vu), where f(u) and g(v) are polynomials of
degree k and / respectively, which split into distinct linear factors over F,. We
assume that at least one of k and ¢ is > 2, otherwise R ~F,. If { =1or k =1,
then the ring R = Fy[u,v]/(f(u), g(v),uv — vu) is isomorphic to Fqlu]/(f(u))
or Fy[v]/(g(v)). Duadic and triadic cyclic codes, duadic negacyclic codes over
Fq[u]/(f(u)) have been discussed by Goyal and Raka in [6] [7]. Further in [8], 9],
Goyal and Raka have discussed polyadic cyclic codes and polyadic constacyclic
codes over R = Fy[u,v]/(f(u), g(v),uv — vu).

Let f(u) = (v — oq)(u — a2)...(u — ay), with a; € Fy, o # a; and g(v) =
(v —=PB1)(v = B2)...(v — B¢), with B; € Fy, B; # ;. R is a non chain ring of size
¢** and characteristic p.

For k>2and £ > 2,let ¢;, 1 <¢ < kand;, 1 <j </ be elements of the ring
R given by

and

o) —  (uman)(u—as)-(u—ai1) (u—og1 ) (U—on)
€ = €(u) = (ai—ar)(ai—az)(ai—ai—1)(ai—aiy1) (i —ay)

(o) — (=B (v=PB2)(v=B-1)(v=Bj+1)(v—PB¢)
% = %) = G =508, A28~ Pr1) By~ 1By Fe)

If k <1, we define ¢; = 1 and if £ < 1, we take v; = 1.

We note that 612 =€, 6, =0 for 1 <i,r <k, i#r and ) ,¢ =1 modulo
fu); ’yjz =7, Vs =0 for 1 <j, s <L, j#s and } ;v; =1 modulo g(v)
in R.

Fori=1,2,--- ,k,j =1,2,...,¢, define 7;; as follows

nij = Mij(u,v) = €;(u)y;(v). (2)

Lemma 1: We have 77@-2]» = Nij, Mijrs =0 for 1 <id,r <k, 1<j,s</4,(i,5) #
(r,s) and z” n;j = 1 in R, i.e., n;;’s are primitive orthogonal idempotents of
the ring R.
This is Lemma 2 of [§].
The decomposition theorem of ring theory tells us that R = & n;;R.

i7j
For a linear code C of length n over the ring R, let for each pair (i,7),1 <7 <
k1<j5<Y,

Cij = {zij € Fy : 3 xps € Fy, (1,8) # (i,7), such that ) n.szps € C}.
r,8
Then C;; are linear codes of length n over Fy, C = @ n;;C;; and |C| = []|Ci;].
2 i,J
Theorem 1 Let C = & 0;;Ci; be a linear code of length n over R. Then
i7j

(i) CL = @ m-jC%,
b



(ii) C is self-dual if and only if C;; are self-dual,
(iii) |ct| = I1 IC:5l.
0.

Proof: Let a = (ag,a1,--- ,a,_1) € C*. This gives a-b = 0 for all b =
(bo,bl,--- ,bnfl) € C. Let a, = Z MijQijr and b, = Z nijbijr for 0 <
27.] Z7.]
T S n — 1 where aijr, bz‘jr S Fq. Take aij = (aijo,aiﬂ,--- ,aij(n_l)) and
bij = (bijO, bijla cee ,bij(nfl)) SO that al-j, bij S FZ’ and a = Zm-jaij, b = Z’I’]me
7/7] Zh]

As b € C, we find that b;; € C;;. Now a-b = 0 implies
0 = (3 miaijo) (22 nijbijo)+ (0 mijaijt) (22 Mijbiji )+ - 40 M5 @i (n—1)) Q2 Migbijn—1))

which gives, using Lemma 1
> Mijaijobijo + D2 Mij@ijibiji + -+ Yo Mij0ijm—1)bijn—1) = 0
ie. Y mij(aij - bij) = 0. This implies a;; - b;; = 0 for all 4,5, where b;; € C;;.
Therefore a;; € Cﬁ Hence a € nijC$, so that ¢t C &b ijZ#. The reverse
i3 i,J
inclusion can be obtained by reversing the above steps. This proves (i) and (ii),
(iii) follow immediately from (i). O

2.2 The Gray map
Every element r(u,v) of the ring R = F,[u,v]/(f(u),g(v),uv — vu) can be

uniquely expressed as
r(u,0) =Y mijai,
/[:7-7

where a;; € Fyfor 1 <i <k, 1 <5</,
Define a Gray map @ : R — F’;g by

’I"(U,U) = E Tij Qij ? (CLll,(llQ,"' y A10, 021,022, ,A2¢, "+ 5 Ak1, Ak2, " * aak‘ﬁ)'
1,7

(3)
This map can be extended from R"™ to (qud)" component wise i.e. for

r = (ro,r1, -, n—1), where ry = 7711a§sl) + 7712a§32) +- nkla](:g) € R, define

® as follows

‘1)(7‘0, 1, ,Tnfl) = ((I)(’I“o), ‘1)(7‘1), ety ‘I)(T‘nfl))

0 0 0 1 1 1 n—1 n—1
= <a§1),a§2),--- aa/(cz)’agl)’agz)a"' ’al(cﬁ)’agl )a"' ’al(cﬁ ))'

Let the Gray weight of an element r € R be wg(r) = wg(®(r)), the Hamming
weight of ®(r). The Gray weight of a codeword ¢ = (cg,c1,-+ ,cn—1) € R™ is
defined as wg(c) = 31 wa(e) = S0 g w(®(ci)) = wy(P(c)). For any two
elements c1,co € R™, the Gray distance dg is given by dg(c1,c2) = wg(ep —
c2) = wy(P(c1) — ®(cz)). The next theorem is a special case of a result of
Goyal and Raka [].

Theorem 2 The Gray map ® is an Fy - linear, one to one and onto map. It is
also distance preserving map from (R™, Gray distance dg) to (F ]qd", Hamming

distance dg ). Further ®(Ct) = (®(C))* for any linear code C over R.
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Sometimes it is more convenient to use a permuted version of the Gray map

® on R". For r = (rg,71,* "+ ,7n—1), where ry = nnagsl) +7712a§32) R +77kla;(;) )

define @ : R™ — (F6)" by

0 (1 n—1) (0) (1 n—1
Qr(ro, 11, ,Tpo1) = (agl)’agl)"" ,ag1 ),agz),agg,--- aagz )"“ ) 4
© 1 (o) (4)
Opp s Qg > » Ay .

Clearly the Gray images ®(C) and ®(C) of a linear code C over R are equivalent
codes.

3 Skew Cyclic codes over the ring R

Let 6 be an automorphism of R. The map 6 can be extended to R"™ component
wise i.e. for ¢ = (co,c1, ,Cn-1),

O(c) = (0(00),0(01),--- ,H(Cn_l)). (5)

Let ¢ = (co, 1, ,cn—1) € R™. The cyclic shift of 0(c)- called §-cyclic shift or
the skew cyclic shift is defined as

og(c) = (0(cn-1),0(co), - ,0(cn—2)). (6)

Let ¢ be divided into m equal parts of length » where n = mr, i.e.

c= (CO,Oa ¢,1, " ,€,r-1,€1,0,""" yClr—1,""" ,Cm—1,0,"" " )Cmfl,rfl)-
Write ¢ = (C(O)|C(1)| e |C(m_1)). The skew quasi-cyclic shift of ¢ of index m is
defined as
70.m(c) = (6™ )OO+ B 2)). (7)

A linear code C of length n over R is called a skew cyclic code if oy(C) =C
and a skew quasi-cyclic code of index m if 7y ,,(C) = C.

The set Rz,0] = {ao + a1z + a2x® + - -+ + asz® : a; € R, s > 0 integer},
where the variable z is written on the right of the coefficients, forms a ring under
usual addition of polynomials and the multiplication is defined as ax® * bzl =
af’(b)x**J for a,b € R. The skew polynomial ring Rz, 6] is non-commutative
unless 0 is the identity isomorphism. Let R, = R[z,0]/(z" — 1). R, is a
left Rz, #]-module with usual addition and left multiplication defined as r(z) *
(f(x)+(z"—=1)) =r(x)* f(z)+ (2" —1) for r(z) € R[z,0] and f(z)+ (" —1) €
Ry. In polynomial representation, a linear code of length n over R is a skew
cyclic code if and only if it is a left R[x, #]-submodule of R|x,0]/(z" — 1).

In polynomial representation, a skew quasi-cyclic code of length n = mr and
index m can be viewed as a left R[z,]/(z™ — 1)-submodule of (R[z,0]/(z™ —
1))" due to the one-to-one correspondence : R™ — (R[z,0]/(z™ —1))" given
by

c= (00,0700,17"' ,€0,r—1,€1,0," " »Clr—1,""" ,Cm—1,0,""" 7cm—1,r—1)
— (Co,o 10T 4+ Cmo1,08™ o FeriT A+ o+ Cpe112™
-1
€01+ Clr1T F e F o1

In this paper, we will consider the following two automorphisms on the ring

R = Fylu,v]/{f (u). g(v), uv — vu).



1. Without loss of generality, suppose that £ > 2. For an a € R
l ¢ l
a =3 Mgy = D i1 Mj01j + D51 7j02; + - + 251 Mkjakj, define

Y(a) = (nueair +mrarz - +nie—1yaie) + (M2eazn +n21a22 - -+ + Mae—1)a2e)
+ o+ (Meears + Mk1ak2 -+ -+ Nie—1)Ake) '

Clearly the order of 9 is /.

2. Let ¢ = p® and t be an integer 1 < t < s. Define an automorphism
0; : F, — F, given by 6;(a) = a”" and extend it to f; : R — R by

0 ( Z Nijaij) = Z Wijali);-
i,J .3

Note that if ¢ = s, 6; is the identity map and this automorphism is irrele-
vant if ¢ is a prime.

Clearly the order of §; is |6;] = s/t and the ring Fp[u, v]/(f(u), g(v),uv —
vu) is invariant under 6;.

3.1 -skew Cyclic codes over the ring R

In this subsection, we discuss skew cyclic codes over R with respect to auto-
morphisms .

Theorem 3 The center Z(R[z,v]) of Rz, ] is F,[z’].

Proof Since the order of ¢ is £, for any natural number ¢ and a € R, we have
2% a = (Y (a)r" = ax 2% so 2" is in the center of R[z,v]. As the fixed
ring of R by v is IFy, any f € Fq[azé] is a central element. Conversely for any
f € Z(R[z,v]) and a € R, we have zx f = f*x and ax f = f*a which implies
f e[zl O

Corollary 1 The polynomial ™ — 1 is in the center Z(R|x,]) if and only if
¢ divides n.

Remark 1 If ¢|n, then R,, = R[z,v]/(z" — 1) is a ring and a skew cyclic code
C of length n over R is a left ideal in R,,.

Theorem 4 Let C be a skew cyclic code of length n. If g(x) is a polynomial
in C of minimal degree and leading coefficient of g(x) is a unit in R, then
C = (g(x)) where g(x) is a right divisor of ™ — 1.

Proof : Let ¢(z) € C. Write ¢(x) = ¢(x)g(x) + r(z) where ¢(z),r(z) € Rz, ]
and deg r(z) <deg g(x). Since C is a left R[z,]-submodule, r(z) = c(z )
q(z)g(x) € C. Therefore we must have r(x) = 0 and so C = (g(x)). Further if
" —1=q(x)g(x) + r(z) for some skew polynomials ¢(z),r(z) € R[z,v] and
deg r(x) <deg g(z), then r(z) = (2™ — 1) — q(z)g(z) € C and so r(z) = 0.
Therefore g(z) is a right divisor of 2™ — 1. O

Theorem 5 Let C be a skew cyclic code of length n over R and let r =

ged(n, [¥|) = ged(n,l). If r = 1, then C is a cyclic code of length n over
R; if r > 1 then C is a quasi-cyclic code of index n/r.
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Proof: Let n = mr. Find integers a and b > 0 such that a/ = r + bn. (As
ged(¢,n) = r, there exist integers a/,b’ such that a’¢ +0'n = r. If b < 0,
we are done. If ¥ > 0, find a positive integer ¢ such that ¢t — o’ > 0. Then
(@ +nt)l =r+ (Lt —b)n.) Let

c= (00,0,00,1,"' yC0r—1,€1,05" " ,Clr—1,""" ,Cm—1,0," "~ acmfl,rfl)

be a codeword in C divided into m equal parts of length 7.

Write ¢ = (C(O)|C(1)| e |C(m_1)). Since C is a skew cyclic code, oy (c), Ji(c), s
oy,(c), -+ all belong to C. Since r + bn is divisible by £ = [, we have

o(e) = (@ () ()] g (etm2)))
i) = (¥ (NP (D) [P ()
ap(e) = @) (eD)] - [y (em=1))
oy (e) = (@) [ (et )
Tyt (e) = (T ()] fyrn (e 2))

= (C(mfl |c(©) ,...,c(m%)) = To.m(C),

where 6 is Identity automorphism. Therefore 79,,(c) € C. If r > 1, C is a
quasi-cyclic code of index m. If r = 1, i.e. m = n, then C is a cyclic code of
length n over R. U

Remark 2 The above result holds for any automorphism 6 on R.

Example 1 : Let R = Fyfu,v]/(u(u — 1)(u — a),v? — v,uv — vu), where

Fy = Fala] and o® + a+1 = 0. Here ¢; = W, P ) I ZEZ:?),

l-a 7
v1=1—vand v =v. Wehave yy =1—v=(1-m1+0-1m12)+ (1121 +0-
m22) + (1 -m31 + 0-7n32). One finds that (1 —v) = (0-m11 +1-m2) + (0121 +
1-m22)+(0-m31 +1-m32) =v2 =v and ¢(v) =1 —v. The order of ¢ is 2. The
polynomial g(x) = 2% + va® + 2* + 2% + 22 + (1 — v)x + 1 is a right divisor of

12 _ 1 over the ring R[z,v], therefore it generates a skew cyclic code of length
12 over R. By Theorem 5, this code is a quasi-cyclic code of index 6.

Example 2 : Let R = Fglu,v]/{u(u — 1),v(v — 1)(v — B)(v — B%),uv — vu),
where Fg = Fy[f] and 32 + 8+ 1=0. Here ¢y = 1 —u and €3 = u, 71 =

v— v— v— 2 v \v— v— 2 v(v— v— 2 v\v— v—
ONE-P0F) ) _ B0 DB g g, = WDED)

have y1 = (1-m11+0-m12+0-m13+0-m14) + (1:121 +0-122+0-1m23+0-724). One finds
that ¥ (71) = 72, ¥(72) = 73, ¥(73) = 14, ¥(1a) = 11 and P(e;) =¢; for i =1,2.
The order of 1 is 4. The polynomial g(z) = z* 4+ u(y1 +v3)x® +u(y1 +73)z + 1
is a right divisor of 28 — 1 over the ring R|[x, 1], therefore it generates a skew
cyclic code of length 8 over R. By Theorem 5, this code is a quasi-cyclic code
of index 2.

Example 3 : Let R = Fs[u,v]/{(u(u — 1),v(v —1),uv — vu) and n = 9. The
polynomial g(z) = 2%+ 23 + 1 generates a skew cyclic code of length 9 over R.
This code is equivalent to a cyclic code of length 9, by Theorem 5.



4 6,-skew constacyclic codes over the ring

R

In this section we will study 6s-skew a-constacyclic code over R, where « is a
unit in R given by
a= Znijaija a;; € Fp \ {0}, (8)
i7j
so that 0;(c;) = ay; and 0 (a) = a.
Note that o> = 1 if and only if a?j =1, ie. if and only if o;; = £1.

In the special case when 0; = identity map, we get all the corresponding
results for a-constacyclic codes over R. We shall call 6;-skew constacyclic code
simply as skew constacyclic code.

A linear code C of length n over R is said to be skew a-constacyclic code if
C is invariant under the skew a-constacyclic shift 9., where 9, : R — R™ is
defined as

Jalco,c1, s en1) = (abi(cn-1),0¢(co), -+, O(cn—2)), (9)

i.e., C is skew a-constacyclic code if and only if ¥,(C) = C. Clearly C is skew
cyclic if @« =1 and is called skew negacyclic if « = —1.

By identifying each codeword by the corresponding polynomial, a linear
code C of length n over R is skew a-constacyclic code if and only if is left

R[z, ;]-submodule of left R[z, §;]-module R,, o = R[z,0;]/(z" — ).

Theorem 6 Let the unit « be as defined in (8). A linear code C = @ 1;;Cij
i3
is a skew a-constacyclic code of length n over R if and only if C;; are skew

a;-constacyclic code of length n over IFy.

Proof: Let ¢ = (cp,c1,-+ ,cn—1) € C, where ¢ = Zijmjagj) for each 5,0 <
0 (1 —1
s <n—1. Let a;; = (az(j),agj),--- ,agl )) so that ¢ = Zi,j NijQij, aij € Cij.

Note that, using the properties of idempotents n;; from Lemma 1
-1 -1
Qlp—1 = <Z nijaij> <Z77z‘ja,(? )> = Z nijaija,(? )

2 i,J i,J

Therefore

Yalc) = (abi(cn-1),0(co), - ,0i(cn—2)
= (0t(acn—1),0t(co), -, Or(cn—2)

Bl Z”m]a” gj )’et(ziﬂ' Nij@; )7' (Zz]nw (n 2)))
<Zi7j mjaijat(agj - )’ Zij nijet(az(j))’ Zz 2 772]915( E;L 2))>
i )

=i Mgy (aiz)-

Therefore ¥,(c) € C if and only if ¥4, (ai;) € Cij- O
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Example 4: Let f(u) = u'—u = u(u—1)(u—E&)(u—&?), where £ € F, £ =1
and ¢ = 1( mod 3). Let g(v) = v so that nyy =1 —u®, o1 = 3(u—&)(u —
€2), m31 = %(u — 1)(u — &%) and ny = %(u — 1)(u —§). Take 6, = Identity
automorphism and the unit o = 111 — 721 — 131 — a1 = 1 — 2u3. Then a linear
code C is (1 — 2u?)-constacyclic code over R = F,[u]/(u* — u) if and only if
C11 is cyclic and Co1, C31, C41 are negacyclic codes of length n over F,. This is

Theorem 2 of [15].

Following is Lemma 3.1 of Jitman et al. [14], where R was taken as a finite
chain ring, but the result is true for any finite ring.

Lemma 2 Let C be a linear code of length n over a finite ring R. Let 6 be an
automorphism of R and suppose n is a multiple of the order of §. Let A be a
unit in R such that (A) = A. Then C' is skew A-constacyclic code if and only
if C* is skew A~ !-constacyclic code over R.

Theorem 7 Let the order of 0y divide n. If the code C = & 1;;C;; is a skew a-
i7j

-constacyclic code over R

-constacyclic codes over Fy, where o is as given in (8). Further

for C to be self-dual it is necessary that oo =3, .(E£m;;), i.e. a? =1.

constacyclic of length n over R, then Ct is skew a~"

and CZ# are a;jl

Proof: The first statement follows from Lemma 2, as (o) = «a. Also by
Theorem 1, we have C* = @ nijC$, and ot = Zijmja;jl. Therefore CZ#
i ’

1

are «;; -constacyclic codes over Fy. Further C is self-dual if and only if C;; are
self-dual. Now for C;; to be self dual it is necessary that «;; = a;jl in F, ie.
Oél'j = =+1. |

Remark 3: It may happen that a = Zij(:lzmj), ie. aj; = %1, but C;; are
not self-dual skew o;j-constacyclic codes and so C may not be self-dual skew
a-constacyclic code.

Corollary 2 Let the order of 0; divide n. Then the number of units o for
which C can be self-dual skew a-constacyclic of length n over R is 2F.

Gao et al.[5] showed that a skew A-constacyclic code of length n over F,
is generated by a monic polynomial g(x) which is a right divisor of 2™ — X in
[Fy[z;6;]. Analogous to this we have the following results for skew constacyclic
codes over R.

Theorem 8 Let C = @ n;;C;j be a skew a-constacyclic code of length n over
i,J

R. Suppose that skew cj;-constacyclic codes Cij = (gij(x)), where g;;(x) are

right divisors of " — a;j for 1 < i < k,1 < j < £. Then there exists a

polynomial g(x) in R|x,0;] such that

(i) C = (g(x))
(i1) g(x) is a right divisor of (z" — «).
(iii) || = "5 Zi deg(9is),



Proof: First we show that C = (n11911(z), - - ,n10910(2), 21921 (), - -+, M2egoe(x),

Mgk (T), Teege(2)) = €, say.
Let ¢(x) € C. Since Cjj = (gij) and C = € 1;Cij, we have c(z) = > nijui;(2)gi;(x)
for wi;j(z) € Fy[z;6;]. Therefore c(x) € Z_J and so C C €. "

Conversely let c(z) = 3 mi; fij(x)gi;(z) € €, where fi;(z) € Rlz;0,]. As
R = @ nsFy, each fij(x)w: > Mrstips(z) for some ups(x) € Fylx; 0. Now
i fij (7;) = niuii(x) as n;; arerpsrimitive orthogonal idempotents, we see find

that c(x) = > mijuij(2)gij(x) € D mi5(gi;(x)) = C, hence C = €.
irj irj

Let g(z) = >2;>2;mij9ij(x). Then clearly (g(z)) € & = C. On the other
hand n;;9(x) = nij9ij(x), so C € (g(x)).

Let for 1 < < k,1 <j < /¥, 2" — a5 = hij(z) * gsj(x) for some hyj(x) €
Fy[z;6:]. Let h(z) = )" nijhij(z), then one finds that h(z) * g(z) = 2" — a so

0]

g(x) is a right divisor of 2" — a.

Since |C| = []|Ci;| and |C;j| = ¢"~99095) we get (iii). O

4,J
Next we determine generator polynomial of dual of a skew a-constacyclic

codes over R, when the order of #; divide n. First we have

Lemma 3: Let order of 6; divide n and D = (g(z)) be a skew A-constacyclic
code of length n over F, then the dual code Dt is a skew A\~ !-constacyclic
code generated by h'(z) = hp_p + 0s(hpyr_1)x + -+ + 07" (ho)x™™", where
" — X = h(x) x g(x) and h(z) = Y hia'.

The proof is similar to that of Corollary 18 of Boucher et al. [4], where generator

of dual of a skew cyclic code was determined.

Theorem 9 Let the order of 0y divide n. Let C = @ n:;Cij be a skew o-
i3
constacyclic code of length n over R. Suppose Cij = (gij(x)), where x™ — ayj =

hij(x) * gij(x) for 1 <i<k,1<j <L Then
(i) C+=(h"(x)), where ht(x) = 3, 37, mijhi; (@),
(i) |C*| = quzl i1 deg(gis)

Proof : By Theorem 1, we have C* = @ Wijcfj- Also, by Lemma 3, Ci# =
,J

(hi;(x)), we get Ct = (h*(x)), where ht(x) = 37,37 mijh;. (i) follows be-

cause |C||C*| = ¢k O

Next we compute idempotent generator of the skew constacyclic code C over
R. First we have

Lemma 4 Let D be a 6;-skew A-constacyclic code of length n over F,. If
ged(n,q) = 1 and ged(n, |0¢]) = 1, then there exists an idempotent polynomial
e(x) € Fylz, 0;]/(x™ — A) such that D = (e(z)).

The proof is similar to that of Theorem 6 of Gursoy et al. [10].
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Theorem 10 Let C = @ 1;;Ci; be a 0;-skew a-constacyclic code of length n

irj
over R. If ged(n,q) = 1 and gcd(n, |0¢|) = 1, then there exists an idempotent
polynomial e(x) € R[x,0;]/(x" —a) such that C = {(e(x)) and C+ = (1—e(z™1)).

Proof: By Lemma 4, let e;;(x) € Fy[z, 0¢]/(z"™ — ;) be idempotent generators
of skew aj-constacyclic codes C;j. Take e(z) = >, > mijeij(z). Then e(z) is
an idempotent and also a generator of C.

As CZ# have idempotent generators 1 — el-j(:n_l), C' has idempotent generator
S mii(1—ei(a™)) = (1 —e(z™)). O

Let ¢ = (co,c1, s cne1) = (c@]cD]. .. |c(m_1)) be a vector in R" divided
into m equal parts of length r where n = mr. We define two skew a-quasi
twisted shifts pqm and pq,m as

Oaim(€) = (B (D)8 (c)] (8™ ))). (10)

Pa,m(c) = (7904(0(0))’7904(0(1))‘ T \7904(0(’”_1))), (11)

where 9, is as defined in (9).
A linear code C of length n over R is called a skew a-quasi twisted code of
index m if gom(C) = C or pam(C) = C.

Theorem 11 Let C be a skew a-constacyclic code of length n over R and let
r = ged(n,|6:). If r = 1, then C is a-constacyclic code of length n over R; If
r > 1 then C is a a- quasi-twisted code of index n/r.

Proof: Let n = mr. Find integers a and b > 0 such that al6;] = r +
bn. Let ¢ = (co et cpm1) = ()] |c(m_1)) be a codeword in C di-
vided into m equal parts of length r. Since C is a skew a-constacyclic code,
Ialc), 2 (c), -+ , 9% (c),--- all belong to C. Now

ULe) = (B (e ()] ()
G2() = (abF (™ D)[ab () 97 (clm-))
Jale) = (abf ()b ()] aby (1))
Iei(e) = (a0 (cdO)alopr (V)] - - [abopr (D))
9T (c) (ab+19r+bn cm=D) | abgrHn ()] . .. ’ab9;+bn(c(mf2)))
( b+1,(m—1) ‘a o ‘...‘abc(m%))
=« (ac(m 1) ]c \---]c(m”)) = abga,m(c),

as T + bn is a multiple of order of §;. Therefore gq ,(c) € C, with 6, =Identity
automorphism. If r > 1, C is a a- quasi-twisted code of index m. If r =1, i.e.
m = n, then C is a-constacyclic code of length n over R. U

Example 5 Consider the field Fg = F3[3], where 32 +38 -1 =0 and 0 be
the Frobenius automorphism on Fg defined by 6(3) = 83. Let f(u) = u® — u,
g(v) =v?—1and R = Fo[u,v]/(u® —u,v? — 1,uv — vu). Take a = 1—u2—u2v
a unit in R. The polynomial h(z) = 2% + az® + 2* + axd + 22 + ax + 1 is a
right divisor of 27 — a in R[z,0]. Also ged(n,|d|) = ged(7,2) = 1. Therefore
C = (h(z)) is a (1 — u? — u?v)-constacyclic code of length 7 over R.

11



In fact if o is any unit in R = Fp2[u,v]/(f(u), g(v), uv — vu) satisfying
a2 =1,ie a= >_ij(Emi;) and n is odd then 2" —a = (z — o)z +
ar™ 2 + 23 4+ ...+ ax® + 22 + ax + 1). Therefore the skew a-constacyclic
code C = (z" '+ az" 2 + 2" 3 + .- + azd + 2% + ax + 1) is a a-constacyclic
code of length n over R.

Example 6 Consider the field Fo5 = F5[3], where 82 — 342 = 0 and 6 be

the Frobenius automorphism on Fgs defined by (8) = 8°. Let f(u) = u® — u,

g(v) = v> —v and R = Fos[u,v]/(u® — u,v? — 1,uv — vu). Now 2° — 1 =

(@2 =1 (2® —z+1) (2?2 +2+1) and 25+ 1 = (22 + 1) (22 + 20 — 1) (22 + 32 — 1).
Let o = M1 + M2 — 21 + M2 — M3 + 32 = 1 — 2u® + 20u?, g11 = g1 =
g2 = g32 = x>+ 2+ 1 and go; = g31 = 22 + 32z — 1. Then C = (g(z)),
where g(x) = >, > mij9i = 22+ (14 2u? — 2u?v)z + (1 — 2u® 4+ 2u?0) is a skew
(1—2u?+2vu?)-constacyclic code of length 6 over R. Further as ged(6, |0]) = 2,
Cis a (1 — 2u? + 2vu?)- quasi-twisted code of index 3.

Theorem 12 Let ¥, be the skew a-constacyclic shift defined in (9), pa, ke be the
a-quasi twisted shift as defined in (11) and let &, be the Gray map as defined
in (4). Then ®r0q = pa kePr.

Proof : Let r = (TO’TI, T ,’I“nfl) € Rn’ where Trs = 771150331) + 7712a§;) +ot
Ukla/(:g) . Then

Dalr) = (abi(rn_1),0¢(ro), -+ ,0(rn—2))
= (a > i nijet(az(‘?il))’Zij mﬂt(ag?)),--' 2D ij mjﬂt(ag”))) '
Applying &, we get
Ox(Wa(r) = (afilal; ), 00l)), - 0ulali ™), abu(aly ™), 0(al)), - Bulals ),
s afi(ay ), 00(afy). - Oulafy )
On the other hand

(I)W(T()v 1y 77an—1) = ag?)7agll)7 T 7a§7{_1) ’agg)v CL%), o 7ag72l_1)’

) ).

Therefore

pase(@x(r) = (abi(afi™),0u(aD), - Ou(ali)abh(af3 V), 01(al3), - On(als )]
...’agt(algz—l))79t(a§€0£))7... ’gt(algz—Q)))

Hence &Yy = po ke ®r. O

Theorem 13 A linear code C of length n over R is a skew a-constacyclic code
if and only if ®;(C) is a skew a-quasi-twisted code of length kén over Fy of
index kf.

Proof : From Theorem 12, we see that

@ﬂ(ﬁa(c)) = (I)ﬂaa(c) = pa,k[‘bﬂ’(c) - pa,kf(q)w(c))-
Therefore ¥,(C) = C if and only if ®(C) = pare(Px(C)). O
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Corollary 3 If a linear code C of length n over R is a skew a-constacyclic (a
skew cyclic) then ®(C) is equivalent to a skew a-quasi-twisted (a skew quasi-
cyclic) code of length kén over F, of index k(.

Example 7 Let f(u) = u? — u, g(v) = v(v — 1)(v — 8) be polynomials over
Fy = Fy[f], where 8% + 8+ 1 = 0. Take R = n11Fy & n12F4 ® n13F4 & n21Fy &
n92F41Dn23F,. Let 6 be the Frobenius automorphism on Fy defined by 6(3) = 32.
A decomposition of 26 — 1 in the skew polynomial ring F4[z, ] is

= (2% — )(x4+x2+1)

= (a* = B)(z* + Ba® + %)

(902 ﬁ2)(9€ + p%a* + B)

= (¢° + B2® + Pz — §%)(a® + B22® + Bz + f).

x5 —1 T

If we take C;; = (23 + 8%z + B%z + B) for i = 1,2 and j = 1,2,3, then
C = @®n;Cij = (23 + B%2% + B2z + B) is a skew cyclic code over R of length 6.
Its Gray image ®(C) is a quasi-cyclic code of index 6 with parameters [36, 18, 4].

If we take C;; = Ci3 = (z* + 22 + 1), Cra = Co1 = (2* + az? + o?) and
Cog = Co3 = (z* + 8222 + B), then C = @n;;C;j = (x* + (Buv? + v + Bv + B*u+
a2 + (B2uv + 2% + v + pu+ 1) is a skew cyclic code over R. Its Gray image
®(C) is a quasi-cyclic code of index 6 with parameters [36, 12, 3].

Theorem 14 If n is odd and the unit o satisfies o> = 1, then a skew a-
constacyclic code of length n over R is equivalent to a skew cyclic code over

R.

Proof: Define a map ¢ : R, = Rz, 0:]/(z" — 1) = Ryo = Rlz,0:]/(z" — )
by ¢(f(z)) = f(ax). Then ¢ is Rz, #;]-module isomorphism because

flz)  =g(e) in Rlx,6:]/(" 1)
& f(z) —g(z) = h(x)=(x™ —1) for some h(z) € R[z, 0]
& flaz) — glax) = h(azx)* (™2™ —1)
= h(azx) * (az™ — 1) as " = « for n odd
= ah(az) * (2" — a) as o® = 1 and 6;(a) = «
& flax) =glaz) in Rlz,0]/(z" — ).
This gives the result. (]

Theorem 15 Let k! = 1(mod s/t). Then for any r € R", ®og,(r) = o4 ®(r).
Proof : Let r = (rg,r1, -+ ,rp—1) € R"™, where ry = Zij nijaz(j). Then
O (o, (r <1>( (rn—1),04( 7“0) , O (1 2))
¢<Zz] 7713915 U ) Zz] 772J9t( ( )) U ’Zz] nzjet(agjnim))
n— 1) 0 n— 2
= (@( Xy msti(al ™) (S mabe(ad)). - (X mybilal ™))
n 1 n—1 n—1 0
= (0u(af a§2 N Bulay ), 0u(al), Bulal) - 6 <a22>
,et<a§’1 ) el s ).
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On the other hand,

09, (®(r)) = 09, ((r0), (1), , ®(rn_1))

0 1 1 n—1 n—1
_Uet(agl)ﬂg;a'“ aéz)ﬂgl)aagz)f" aéz)v"' ag1 )a"'v Egz ))

= (Bi(afy ), 0.\, 0@, -, 60(al)), Be(al)), - . Bu(aly),
..gt(agrlb 1))7... Ht(a,(jg i)))’
02 (®(r)) = (02(ali 1), 02(als ), 02(a()), 02(al)), -, 02(al), 02(al}), -
9t2(al(€1£)) 92( (n— 1))’... ,gg(agé:;))»
A0 = (™A™ 0™, ) ). -

9

08 (), 0 (al)), - 08 (aly), - 08 (aly ), L B8 ()

Since here 0 = 6;, we find that ®oy,(r) = Jgfq)(r). O

Corollary 4 If M = 1(mod |6]), then C is a skew cyclic code if and only if
®(C) is fized by 0 ¢ skew cyclic shift.

5 Conclusion

Let R = Fglu,v]/(f(u),g(v),uv — vu) be a finite non-chain ring where f(u)
and g(v) are two polynomials of degree k and ¢ respectively, which split into
distinct linear factors over F,. We assume that at least one of k and £ is > 2.
In this paper, we define two automorphisms ¥ and 6; on R and discuss y-skew
cyclic and 0;-skew a-constacyclic codes over R, where « is any unit in R fixed
by the automorphism 6, in particular when o?> = 1. We show that a skew
a-constacyclic code of length n over R is either an a-constacyclic code or a a-
quasi-twisted code. Some structural properties, specially generator polynomials
and idempotent generators for skew constacyclic codes are determined. A Gray
map is defined from R"™ — IF’;Z" which preserves duality. It is shown that Gray
image of a #;-skew a-constacyclic code of length n over R is a 6;-skew a-quasi-
twisted code of length kfn over F, of index k¢. Some examples are also given
to illustrate the theory.
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