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Abstract

InfoMod is a new software and application devoted to the modular
group, PSL2(Z). It has algorithms that deals with the classical corre-
spondences among continued fractions, geodesics on the modular surface
and binary quadratic forms. In addition the software implements the
recently discovered representation of Gauss’ indefinite binary quadratic
forms and their classes in terms of certain infinite planar graphs (dessins)
called çarks. InfoMod illustrates various aspects of these forms, i.e. Gauss’
reduction algorithm, the representation problem of forms, ambiguous and
reciprocal forms. It can be used as an educational tool, and might be used
to explore some new facts about these objects.

1 Introduction

InfoMod is an innovative software which aims to visualize the deep arithmetic
questions encircled by finitely generated infinite index subgroups of the modular
group, which is by definition the the group consisting of 2× 2 integral matrices
of determinant 1, denoted by PSL2(Z). These lead to the study of algebraic
number theory of real quadratic number fields. Its intended use is instructive as
well as research-level visual explorations of the modular group, binary quadratic
forms, their geodesics, form classes, class groups and some algorithms such as
Gauss’ reduction algorithm.

One of the main problems of algebraic number theory is to understand fac-
torization in the ring of integers of number field. The class group and its size,
called the class number, are the prime indicators of how unique factorization
in a ring of integer is. There are several important questions and conjectures
about class groups and class numbers. One needs to recourse to algorithms for
explicit computations of these groups. Since these problems resisted centuries
of attacks, these are also important from the computational perspective and
present many challenges.
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The simplest case of quadratic number fields, can be understood in terms
of the binary quadratic forms of Gauss. Here the main difficulty is in the real
quadratic case, which corresponds to indefinite binary quadratic forms. These
forms can be represented as the fixed points of the elements of the modular
group, and this group is the main hero of our paper.

The modular group is isomorphic to the free product Z/2Z ∗Z/3Z. As such
its elements can be represented as the set of half-edges of an infinite rooted
bipartite tree FT with a planar structure, called the Farey tree. In order to
visualize the elements of FT , we broaden the branches of FT until they touch
each other. The resulting mantra-like model of PSL2(Z) with cells representing
its elements, fills the entire plane and is called the sunburst. It allows one to
simultaneously represent up to approx. 1000 elements of the modular group
on a computer screen with a standard resolution. By moving the centre of this
sunburst (operation which is implemented in InfoMod), it is possible to represent
another 1000-element portion of the modular group. By clicking over a cell, it
is possible to obtain a detailed information on the group element represented by
this cell. In particular, it is possible to see the corresponding binary quadratic
form as well as its discriminant.

Now we alter our perspective slightly to get another representation of forms.
Suppose that the element M ∈ PSL2(Z) represents a reduced real binary
quadratic form fM . As a matter of fact, every element different from iden-
tity in the subgroup 〈M〉 also represents the same reduced form. The group
〈M〉 acts on the tree F in a natural way, and the quotient graph FT /〈M〉 also
represents fM . Given an edge of the quotient graph, it is possible to recover the
form. These graphs are called çarks. They look same as FT except that they
have exactly one circuit inside, called the spine. InfoMod makes it possible to
pass, from the cell of M , to its çark.

Many notions related to forms acquires a new formulation in terms of these
graphs. For example, equivalent forms have isomorphic çarks. The reduction
algorithm of Gauss simply moves the edge characterizing the form towards the
spine of the çark. This new formulation already served the first named author
to give a solution of the representation problem of forms and improve on the
Gauss reduction algorithm, [20]. InfoMod makes it possible to observe how
these algorithms are carried out on the graph.

Paper is organized as follows: In the next section we overview the theoretical
background outlined in the above lines. More details can be found in [18]. The
third section is devoted to the software implementation of InfoMod, where we
present a code library which help represent and do computations on binary
quadratic forms, including reductions and enumeration of other forms which
share a cycle with a reduced form. Later we present an interactive visualization
application to explore the mentioned sunburst and çarks visually. We plan to
build into InfoMod some new features pertaining to the outer automorphism of
the group PGL(2,Z) in the future.
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2 Preliminaries

This section is devoted to recalling the basic facts around the modular group,
binary quadratic forms, reduction theory and çarks. There are many beautiful
texts on the subject among which we must note the first historically systematic
treatment by Gauss, [8]. We refer to [2, 3] for a modern treatment of the topics
related to binary quadratic forms.

2.1 Modular group, binary quadratic forms and geodesics

The modular group, PSL2(Z), acts on the upper half planeH = {z ∈ C : Im(z) >

0} via Möbius transformations, i.e. for W =

(
p q
r s

)
∈ PSL2(Z) and z ∈ H,

we have W · z := pz+q
rz+s . This action leaves the Poincaré metric on H invariant.

Hence the geodesics of this metric, i.e. lines that are vertical to the real line
and half circles whose centers are on the real line, are mapped onto geodesics
by PSL2(Z).

An integral binary quadratic form (or BQF for short) is a homogeneous
polynomial of degree two in two variables with integer coefficients. A BQF
f(x, y) = ax2 + bxy + cy2, is usually denoted by (a, b, c) or its matrix form(
a b/2
b/2 c

)
. We call f primitive if the greatest common divisor of a, b and c

is 1.

An element W =

(
p q
r s

)
∈ PSL2(Z) has two fixed points, which are, by

definition, roots of the quadratic equation rz2 + (s − p)z − q = 0. To W we
associate the BQF fW := 1

δ

(
rx2 + (s− p)xy − qy2

)
; where δ is the greatest

common divisor of r, s − p and q, so that fW is by definition primitive. The
discriminant of a BQF f = (a, b, c) is defined as ∆(f) = b2 − 4ac. A BQF
is called degenerate if ∆(f) is a perfect square, positive definite if ∆(f) < 0
and a > 0, negative definite if ∆(f) < 0 and a < 0. Finally, a BQF is called
indefinite if ∆(f) > 0.

We may classify elements on PSL2(Z) according to their traces. Namely,
W is called elliptic, parabolic and hyperbolic if |Tr(W )| < 2, |Tr(W )| = 2 and
|Tr(W ) > 2, respectively. In other words, parabolic elements have a unique
real fixed point. Elliptic elements have two fixed points one in the upper half
plane and the other in the lower half plane. Hyperbolic elements have two
distinct real fixed points. The geodesic in H joining the two fixed points of
a hyperbolic element W ∈ PSL2(Z)1 which is merely a half circle of center
(p− s)/2r and radius 1

2r

√
Tr(W )2 − 4 is called the geodesic associated to W

and denoted by γW . Observe that the classification of elements of PSL2(Z) and
BQFs are quite parallel. Namely, parabolic elements give rise to degenerate
BQFs, elliptic elements give rise to definite BQFs and hyperbolic elements give
rise to indefinite BQFs.

1One may define attracting and repelling fixed points of W by looking at its action along
this geodesic. This distinction is unnecessary for our purposes.
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2.2 Reduction Theory of BQFs

The modular group acts on the set F of non-degenerate binary quadratic forms
by change of variables. More precisely, given f = (a, b, c) and an element Mo =(
p q
r s

)
we define Mo · f to be the BQF associated to the symmetric matrix

M t
oMfMo; where M t

o stands for the transpose of Mo. In particular, we say
that two forms f = (a, b, c) and f ′ = (a′, b′, c′) are equivalent if there is an
Mo ∈ PSL2(Z) so that Mo · f = f ′. This action leaves the discriminant ∆
invariant, that is ∆(f) = ∆(f ′) if f and f ′ are equivalent, and the equivalence
class of a form f is denoted by [f ]. Therefore PSL2(Z) acts on the set of non-
degenerate BQFs of the same discriminant, say a square-free integer ∆, denoted
by F(∆). In the search for a canonical representative of each class, in [8], Gauss

have defined a form f = (a, b, c) to be reduced whenever
∣∣∣√∆(f)− 2 |a|

∣∣∣ < b <√
∆(f). It turns out that whenever f is definite (positive of negative) then

there is a unique reduced BQF in its class, [f ]. If f is indefinite, then there are
at least two reduced forms in [f ]. Gauss have also given an algorithm which
takes any non-degenerate BQF as an input and produces an equivalent reduced
BQF, described in [8].

One must note that there are other inequivalent notions of being reduced.
For instance, Lagrange defines a BQF, say f = (a, b, c), to be reduced when
|b| ≤ a ≤ c and b ≥ 0 if either a = c or |b| = a. Just as in the case of Gauss, every
PSL2(Z)-class of a positive definite BQF contains a unique Lagrange reduced
form which can be found by the an algorithm that takes any non-degenerate
BQF as input and produces an equivalent Lagrange reduced BQF, see the proof
of [5, Theorem 2.8]. According to Zagier, an indefinite BQF is called reduced
if both

√
∆(f) < b <

√
∆(f) + 2a and

√
∆(f) < b <

√
∆(f) + 2c are satisfied

by f = (a, b, c). We refer to [19, § 13] for further details.

2.3 Ideal classes in quadratic number fields

A field K is called a number field whenever it is a finite extension of Q. The
dimension of K as a vector space over Q is called the degree of the extension
and denoted by [K : Q]. K is called quadratic quadratic whenever [K : Q] = 2.
In this case, one can always find a square-free integer d with the property that
K = Q(

√
d). If d > 0, then we say that the extension is real and if d < 0 then

the extension is called imaginary. The map · : K −→ K sending an element
α = a+ b

√
d to α := a− b

√
d is the only non-trivial automorphism of K which,

together with identity, form the Galois group of K.
An element α ∈ Q(

√
d) is called an algebraic integer if it is a root of a monic

polynomial pα(x) ∈ Z[x]. It is not so hard to see that the set of algebraic integers
in Q(

√
d), which will be denoted by Od, depends on the square-free integer d in

the following manner: if d is congruent to 1 modulo 4 then Od = Z+ 1+
√
d

2 Z, and

Od = Z +
√
dZ otherwise. In particular, Od is a Dedekind ring. The property

of Od being a unique factorization domain (UFD) is equivalent to Od being
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a principal ideal domain(PID). And for any given ideal, a, of Od there are at
most 2 elements α and β of Od so that the ideal generated by α and β, denoted
〈α, β〉, is equal to a. This means fractional ideals of K, that is two dimensional
Z-modules, a, of K for which there is an element ka ∈ Z so that ka · a is an
ideal of Od, can also be generated by at most 2 elements. Given a fractional
ideal a = 〈α, β〉, we say that the pair (α, β) is oriented if (αβ − βα)/

√
d > 0.

The set of oriented fractional ideals is an abelian group under multiplication,
denoted by I+(K). The subset of principal fractional ideals, that is subsets of
the forms αOd ⊂ K where α ∈ K, is a subgroup of I+(K) denoted by P (K),
and the quotient H+(K) = I+(K)/P (K) is called the narrow ideal class group
of K. The ideal class group of K, denoted H(K), is defined as the quotient
I(K)/P (K); where I(K) is the multiplicative group of fractional ideals of K.
The group H(K) is naturally a subgroup of H+(K). H(K) is of index 2 if Od
admits an element of norm −1 and H(K) and H+(K) are isomorphic if there
are no elements of norm −1 in Od.

2.4 Çarks and ideal classes

The orbit of the geodesic γ in the upper half plane joining
√
−1, marked with

◦, to e2π
√
−1/3, marked with •, is a bipartite ribbon graph2 in H, where the

vertices decompose naturally into two sets V◦ = {orbits of
√
−1} and V• =

{orbits of e2π
√
−1/3}. The orientation is induced from the orientation of H.

This graph is called the (bipartite) Farey tree and denoted by FT , see Figure 1.
Vertices of type ◦ are always of valency (or order or degree) 2 and vertices of
type • are always of valency 3.

Figure 1: The Farey tree.

Given any element W ∈ PSL2(Z), by restricting the action of PSL2(Z) on
H to an action on FT we can consider the quotient of FT by the subgroup
generated by W . The quotient is a bipartite ribbon graph which we refer to as
a çark. The classification of elements of PSL2(Z) reflects itself in its çark, see
Figure 2.

2A bipartite graph is a graph whose vertices can be decomposed into two disjoint sets so
that no two edge belonging to the same set are joined by an edge. A ribbon graph is a graph
together with a cyclic ordering of edges emanating from each vertex.
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Figure 2: Elliptic, parabolic and hyperbolic çarks, respectively.

When W is elliptic of order 2 or 3 we obtain a rooted tree. If W is parabolic
then the corresponding çark has a unique cycle, named spine, which is assumed
to be oriented counter-clock-wise and finitely many rooted trees attached to
this cycle each of which is a rooted tree attached to vertices of type • of the
spine. Such components are called Farey components of the çark. They all
point outwards. When W is hyperbolic, once again the graph has a unique
cycle, named spine, having finitely many vertices. To each vertex of type •
there is a Farey component attached. In this case, Farey components must
point both inwards and outwards.

As a result of the construction the cosets γ ·〈W 〉 ∈ PSL2(Z)/〈W 〉 correspond
in a one to one fashion to edges of the çark FT /〈W 〉. So we conclude that there
is a one to one correspondence between the set of edges of the çark corresponding
to the form fW and element of the equivalence class [f ], see [18, § 2] for details.

3 Software Design

3.1 Components

InfoMod consists of a shared library coded in C for computationaly heavy func-
tions, some convenience wrapper classes for Matlab and Python to facilitate
interfacing the library, and a visualization application written in ActionScript
version 3.

The native code shared library implements the computation of the two meth-
ods of reduction (çark and Gauss), enumeration of quadratic forms residing on
a spine and computation of the signature of a spine. On the other hand wrap-
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per classes to access the library from Matlab and Python environments provide
an easy way to invoke library functions, while providing an Object Oriented
representation for the involved quadratic forms. Source code for Matlab and
Python libraries are available online https://github.com/hayral/infomod.
Many functions which aren’t computationaly demanding, such as evaluating a
form at a point, obtaining the matrix representation of the form, or query-
ing the spinality, primitivity and reducedness, are implemented in the wrapper
classes, as the overhead of function invocation from dynamic library outweights
the benefits for those cases.

Figure 3: BinaryQuadraticForm class in Matlab and Python wrapping low-
level reduction library and providing some convenience functions. (parameter
and return types seen on figure are for UML diagramming purposes, actual
implementation types differ according to Matlab/Python environment )

3.2 Visualization of the modular group and Sunburst

While Matlab and Python libraries are designed to be used as part of other
computational code, the interactive visualization application of InfoMod is de-
signed as an exploration tool to provide insight. It uses the same code base as
the libraries, but ported to ActionScript programming language; as we planned
to deploy this application to web and mobile, invoking our native code shared
library or relying on Matlab/Python was not an option. Before elaborating on
the visualization aspect of the software, let us define the underlying mathemat-
ical structure that visualization is designed to explore.

Modular group is generated by two torsion elements S =

(
0 −1
1 0

)
and
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L =

(
1 −1
1 0

)
of orders 2 and 3, respectively. There are no relations among

S and L hence we have the isomorphism PSL2(Z) ∼= Z/2Z ∗ Z/3Z. So every
element in PSL2(Z) can be written as a word in S, L and L2. Without loss of
generality, we assume that the length of words, denoted by `(W ), are of minimal
length3. Given two words W and W ′ in PSL2(Z), by W ∩W ′ we denote the
word which is equal to the common initial part of the words W and W ′. For
instance, for W = (LS)2(L2S)3LSL and W ′ = (LS)2(L2S)3L2SLSL2 we have
W ∩W ′ = (LS)2(L2S)3.

Let us now construct the slit disk, which we denote by D. We start with
a standard disk, split into three equal area pieces by lines from the center of
the disk. The so obtained three cells are labeled as I, L and L2. To the
circumference of this disk we glue an annulus which is also divided in 3 pieces
by prolonging the lines that were used to divide the initial disk. This time,
the 3 new cells are identified with S, LS and L2S, respectively. The next
step is to attach two annuli each of which is divided evenly into 6 pieces via
first prolonging the existing lines and then adding 3 more lines so that the cell
labeled S is neighbors with the cells SL and SL2, and these are in turn neighbors
with SLS and SL2S in the second annulus. Similarly, the cell labeled LS is
neighbors with the cells LSL and LSL2, and these are in turn neighbors with
LSLS and LSL2S in the second annulus and finally the cell labeled L2S is
neighbors with the cells L2SL and L2SL2, and these are in turn neighbors with
L2SLS and L2SL2S in the second annulus. Inductively, we obtain a disk, to
which we will refer as the slit disk, where each cell is labeled with a word in S,
L and L2 see Figure 4. As a result of the construction given above we have a
one to one correspondence between elements of PSL2(Z) and cells in D.

If the a cell in D is labeled as W and ending with L or L2 then there are
4 cells surrounding it: three of them are labeled with WL, WL2 and WS.
Remark that `(W ∩W ′) ≥ `(W ) − 1 where W ′ is one of WL, WL2 or WL2.
The fourth neighbor, say W ′′, of W satisfies `(W ∩ W ′′) ≤ `(W ) − 2 with
`(W ) = `(W ′′). Similarly, if W is a word ending with S, then there are 5 cells
surrounding this cell. Three of them, which satisfies `(W ∩W ′) ≥ `(W )−1, are
labeled with WL, WL2 and WS. The remaining two words W ′′ and W ′′′ satisfy
`(W ) = `(W ′′) = `(W ′′′) and `(W∩W ′′) < `(W )−2 and `(W∩W ′′′) < `(W )−2.

3The length of a word is defined to be the number of letters (L, L2 and S) appearing in
the word.
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Figure 4: Main display of InfoMod

The main visualization of the application is the above described slit disc
(sunburst) type diagram. When the user moves the mouse pointer over one
of the cells on D, a blue line indicates the path to the center of the disc as it
passes by the centers of the parent cells. Due to the exponential growth of the
number of child nodes on a binary tree, this sunburst type visualization can
only depict eight levels of depth for common mobile device and desktop screen
resolutions. Once a cell representing an element of PSL2(Z) is left clicked, a
radial menu appears with options. Apart from the elements in the menu related
to the visualization of the corresponding binary quadratic form along with its
neighbors the button “Move to Center” is used to interact with elements of
the modular group which are at depth nine or further. Namely, on click by
conjugation, the chosen element becomes the center of the displayed D and all
the other elements are translated accordingly. In this fashion, one may travel
arbitrarily far from the actual center.
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Figure 5: Radial menu on web application and main screen on mobile application

Challenges implementing the web and mobile visualization app Ac-
tionScript isn’t designed with scientific computing or high performance com-
puting as primary concern, but it has all the features of a modern managed
object oriented language [6], and provides access to hardware accelerated graph-
ics capabilities of the underlying operating system. Flash runtime is generally
deployed in the form of a browser plugin (Flash Player), but standalone ap-
plications can be deployed as independent executables without requiring being
embedded in a browser.

ActionScript and the Flash Runtime has no direct access to mathemati-
cal computing libraries; therefore one of the challenges was the necessity to
implement all mathematical structures and computation codes from scratch;
including a class to represent a binary quadratic form, a class to represent an
element from the modular group, and minimal linear algebra to operate on the
matrix representation of elements of modular group4.

Another challenge was the code being run by a JIT compiling VM with
automatic garbage collection which is the Flash Runtime. Even though we
didn’t need C/C++ like native code speed, having numerous visual objects (up
to the order of 212) visible on the screen with many destroyed and some newly
created at each user interaction cause a heavy burden on the garbage collector;
therefore we employed some object pooling and caching methods to maintain
interactive speeds and minimize stutter caused by garbage collector. Another
challenge was to port the same application to mobile platforms, namely Android
and iOS. AIR compiler provides platform independence to some degree, but user
experience is not the same due to differences on hardware features. One of the

4Standard ActionScript libraries do provide a native 3× 3 matrix class, but in our case we
needed some extra functions like trace,transpose and multiplication with specific constants
(i.e. generators of modular group and some of their compositions) which reduces to simple
swap and sign change of values when optimized.
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two main manifestations of this are the resolution and aspect ratio differences
of different mobile devices requiring the size and placement of visual objects to
be flexible and independent of screen size (including fonts and text rendering
which is not as fast and flexible on mobile platforms); and the other being the
relatively limited resources in terms of computing power and memory.

3.3 Visualization of the çarks and geodesics

Let us now fix a hyperbolic element W ∈ PSL2(Z). The çark visualization con-
sists of edges forming the spine (which are called semi-reduced) and the rooted
Farey trees attached to it. The correspondence between edges of FT /〈W 〉 and
forms f that are equivalent to fW can be investigated by hovering the mouse
cursor over, thus highlighting the edge green and updating the top left corner
green label with the corresponding forms expression. The form corresponding
to W is indicated as a red edge, and has a label for its expression on top left.

Figure 6: Visualizations of çark for form (-14,2,1). (left) As rendered by visu-
alization application, and some branches expanded through interaction (right)
As rendered by plot cark() method of Matlab wrapper class

Every non-reduced form in the equivalence class (i.e. edges not on the spine)
can be clicked on to expand the child edges, and the whole graph re-scales and
positions itself to fit on available screen space; yet as the trees are infinite deeper
child edges get smaller angular ranges to position themselves.

Every quadratic form on the spine of the çark also corresponds to a geodesic
in upper half-plane. Once an edge is selected on the çark visualization, the
geodesic of the form corresponding to selected edge can be plotted, both in H
or in the unit disk, D = {z ∈ C : |z| < 1}.
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Figure 7: Visualization of the geodesics (left) Upper half plane model (right)
Disc model

Flips There is a close relationship between mapping class groups of surfaces of
genus g with n punctures and the groupoid whose objects are bipartite ribbon
graphs of genus g with n punctures and morphisms are flips (or Whitehead
moves or HI moves), see Figure 8. Indeed, flips do not change the invariants g
and n and act transitively on the set of ribbon graphs of fixed g and n. Then, as
a result of a generalization of Dehn-Nielsen-Baer theorem, [7, Theorem 4.8], we
obtain the required injection. InfoMod can make explicit computations using
flips in the case of annulus.

Figure 8: (left) Flip action on ribbon graphs (right) Visualization of intervals
exchanged on the boundary of the disk for a specific flip

4 Representation problem

Representation problem deals with the existence and values of integer solutions,
that makes a given binary quadratic form equal to a chosen integer. For the
positive definite forms if integer solutions exist, they are finitely many; on the
other hand for indefinite case if an integer solution exists, then there is a family
of countably infinite pairs of integers. Each solution pair (x, y) can be obtained
by multiplying a non-trivial solution with an automorphism of the form of ap-
propriate order.
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It must be mentioned that there is a non-exact algorithm presented on the
web-page “https://www.alpertron.com.ar/quad.java”. In addition, in [14] La-
grange has put forward a method to solve similar equations which run in expo-
nential time, which are then further optimized in [15]. Some related algorithms
have been investigated in [13]. Pell equation is another class of such equations
whose theory is well developed, [10]. In [9] equations of the form aX2−bY 2 = N
are discussed. Algorithms concerning the case N = −1 (sometimes referred to
as non-Pellian equation), have been discussed by Lagarias in [12].

In [12] Lagarias proposes a modification to classical reduction method, through
which he established a worst case time complexity of O(nµ(n)) with µ(n) be-
ing the time complexity of the chosen n-bit multiplication algorithm, yielding
O(n3) in case regular multiplication is employed. In [1] Buchmann improves
the complexity analysis of Lagarias to O(n2) without changing the algorithm,
using the observation that if for a form f neither f, ρ(f) or ρ2(f) 5 is reduced
then the absolute value of the first coefficient (a) must be at least twice the
absolute value of the last coefficient (c). Eventhough a faster reduction algo-
rithm of O(log(n)µ(n)) time complexity is presented earlier by Schnhage [16],
the asymptotic acceleration surpasses the other algorithms only when the num-
ber of binary digits of the coefficients of the form to be reduced is in the order
of 104 or greater.

The representation problem is closely related to class group computations in
quadratic number fields. For instance, in [17], Shanks developed a new method
for the computation of class numbers of quadratic number fields, which further
resulted in a new factorization of large integers. The thesis of Jacobson, [11],
discusses such algorithms in detail. Similar results for general number fields are
presented in [4].

Here, we present an algorithm to solve the representation problem given a
binary quadratic form and an integer to solve for. The algorithm relies on two
things: first to find another form which is part of a face with label equal to
given integer if such a face exists (or to show that such a face doesn’t exist),
and second to compute the path leading from this form found to the form given.

Equipped with reduction and graph topology of çarks, the computation of
integer solutions proceeds as follows: First the software performs the reduction
while recording the path down to the spine of its çark as a sequence of PSL2(Z)
generators (algorithm 1,line 2), then it travels along the spine and this time
it records the forms belonging to spine as a sequence (l.4). Depending on the
sign of the chosen integer to solve the quadratic form for, software generates all
non-spinal neighbours of recorded spinal forms, but records only those with co-
efficients having same sign as the chosen integer (l.8-17). This list of non-spinal
neighbours of the same sign with desired integer, serves as the root nodes of a
simultaneous breadth-first search along the graph of the spine (l. 18-36). This
breadth-first search travels away from the spine (inwards or outwards depend-
ing on the sign). Even though every form yields two new forms once expanded

5with ρ being the reduction operator, defined as fU(f) and U(f) =

(
0 −1
1 s(f)

)
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Algorithm 1 Solver for Representation Problem

Require: fstart is form object, N is an integer
1: function SolveForm(fstart,N)
2: path1 ← CarkReducePath(fstart) . path from fstart to spine
3: entryPoint1 ← path1( len(path1) ) . last form on path1 (it’s on spine)
4: spineForms← RevolveAroundSpine(entryPoint) . all forms on spine
5: formsToSearch← ∅

6: L←
(

1 −1
1 0

)
, S ←

(
0 −1
1 0

)
. PSL2(Z) generators

7: e1 ← (1, 0), e2 ← (0, 1) . e1, e2 : standard oriented basis of Z2

8: for each f in spineForms do . neighbours of spine
9: f1 ← f · L . PSL2(Z) group action

10: f2 ← f · L2

11: if (f1(e1)× f1(e2) > 0) ∧ (f1(e1)×N > 0) then
12: formsToSearch = formsToSearch ∪ {f1}
13: end if
14: if (f2(e1)× f2(e2) > 0) ∧ (f2(e1)×N > 0) then
15: formsToSearch = formsToSearch ∪ {f2}
16: end if
17: end for
18: temp← ∅
19: while formsToSearch 6= ∅ do . breadth-first search
20: for each f ∈ formsToSearch do
21: if (f(e1) = N) ∨ (f(e2) = N) then
22: ffound ← f . ffound: first form on the face with label N
23: break . leave the while loop
24: else
25: f1 ← f · S · L . PSL2(Z) group action
26: f2 ← f · S · L2

27: if (abs(f1(e1)) < abs(N)) ∧ (abs(f1(e2)) < abs(N)) then
28: temp = temp ∪ {f1}
29: end if
30: if (abs(f2(e1)) < abs(N)) ∧ (abs(f2(e2)) < abs(N)) then
31: temp = temp ∪ {f2}
32: end if
33: end if
34: end for
35: formsToSearch← temp, temp← ∅ . swap the lists
36: end while
37: if targetForm = ∅ then
38: return ∅ . no integer solution
39: else
40: path2 ← CarkReducePath(ffound) . path from ffound to spine
41: entryPoint2 ← path2( len(path2) ) . last form on path2 (it’s on spine)
42: path3 ← PathOnSpine(entryPoint2, entryPoint1) . path on spine between

entry points
43: path4 ← path2 + path3+ ReversePath(path1) . path from ffound to fstart
44: M ← PathToMatrix(path4)
45: if fstart(e1 ·M) = N then
46: return e1 ·M
47: else
48: return e2 ·M
49: end if
50: end if
51: end function
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on the direction of increasing distance, the number of accumulated forms does
not increase exponentially; the reason for this boils down to the coefficients of
neighbouring forms growing or decreasing (depending on the travel being di-
rected towards or away from the spine) at a non-linear speed when multiple
forms are traversed. At each iteration of breadth-first search software compares
the absolute value of the coefficients of the newly expanded forms with the abso-
lute value of the integer being searched, and discards the form if the first or last
coefficient of the form is greater than this in absolute value (l.27-32). If all the
forms on breadth-fist search list gets discarded, the loop terminates (l.19) and
algorithm doesn’t return an integer pair, indicating that there are no integer so-
lutions (l.37-38). If the search finds a form adjacent to a face with chosen label,
it breaks from the loop after marking the found form (l.21-23), and the path
from the found form and its entry point to spine is calculated (l.40-41). At this
point as we have paths from both starting and found form to the spine; to build
a continuous path from found form to starting form, we only need the path that
connects the entry points of those paths to the spine. Once the complete paths
missing part on the spine is calculated (l.42), they can be combined to build the
path leading from found form to starting form (l.43). The rest is nothing more
than converting this path which actually is a sequnce of generators on PSL2(Z)
to a matrix (l.44), and then to decide which of the two orthogonal basis solves
the form when multiplied with the path in matrix form (l.45-49).

For the algorithm listing of functions referenced in Algorithm.1 see Ap-
pendix, for the listing of çark reduction algorithm see [20].

5 Conclusions

In this paper we present the software package InfoMod for representing and oper-
ating on binary quadratic forms. It consists of a library identically implemented
in Matlab and Python6, which can compute reduction of binary quadratic forms
and solve the representation problem. It also contains an interactive visualiza-
tion application available for web 7 and mobile 8 platforms, which allows to
observe the intricate patterns of forms’ properties plotted according to their
natural topology, and practically compute the reductions/representation prob-
lem solutions without writing code to invoke the libraries.
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E. Netto. Leipzig: Wilhelm Engelmann. 131 S. 8◦ (Ostwalds Klassiker Nr.
146) (1904)., 1904.

16



[15] R.E. Sawilla, A.K. Silvester, and H.C. Williams. A new look at an old equa-
tion. In Algorithmic number theory. 8th international symposium, ANTS-
VIII Banff, Canada, May 17–22, 2008 Proceedings, pages 37–59. Berlin:
Springer, 2008.

[16] Arnold Schönhage. Fast reduction and composition of binary quadratic
forms. In Proceedings of the 1991 international symposium on Symbolic
and algebraic computation, pages 128–133. ACM, 1991.

[17] Daniel Shanks. Class number, a theory of factorization, and genera. 1969
Number Theory Institute, Proc. Sympos. Pure Math. 20, 415-440 (1971).,
1971.
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[19] Don B. Zagier. Zetafunktionen und quadratische Körper. Eine Einführung
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APPENDIX

In this section you can find the algorithm listings for the functions invoked by
Algorithm 1: Representation Problem Solver.

Algorithm 2 Generate All Spinal Forms

Require: fspinal is a form on the spine
1: function RevolveAroundSpine(fspinal)
2: e1 ← (1, 0), e2 ← (0, 1) . e1, e2 : standard oriented basis of Z2

3: L←
(

1 −1
1 0

)
, S ←

(
0 −1
1 0

)
. PSL2(Z) generators

4: list← ∅
5: fnext ← fspinal

6: repeat
7: fnext ← fnext · SL . PSL2(Z) group action
8: if fnext(e1)× fnext(e2) > 0 then
9: fnext ← fnext · L . multiply again to obtain L2

10: end if
11: list← list ∪ {fnext}
12: until fnext = fspinal . repeat until we are back to starting form
13: return list
14: end function
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Algorithm 3 Path Between Two Forms on Spine as a Word

Require: ffrom and fto are forms on spine
1: function PathOnSpine(ffrom, fto)
2: e1 ← (1, 0), e2 ← (0, 1) . e1, e2 : standard oriented basis of Z2

3: L←
(

1 −1
1 0

)
, S ←

(
0 −1
1 0

)
. PSL2(Z) generators

4: path← ε . empty string
5: fnext ← ffrom
6: repeat
7: fnext ← fnext · L . PSL2(Z) group action
8: path← path+ ”L” . + : string concatenation
9: if fnext(e1)× fnext(e2) > 0 then

10: fnext ← fnext · L . multiply again to obtain L2

11: path← path+ ”L”
12: end if
13: if fnext = fto then
14: break . leave the loop early
15: end if
16: fnext ← fnext · S
17: path← path+ ”S”
18: until fnext = fto . repeat until we arrive at fto
19: return path
20: end function

Algorithm 4 Convert a sequence of PSL2(Z) generators represented as symbols
from alphabet {S,L} to a 2× 2 matrix

Require: path is a sequence of symbols from alphabet {S,L}
1: function PathToMatrix(path)

2: L←
(

1 −1
1 0

)
, S ←

(
0 −1
1 0

)
,M ←

(
1 0
0 1

)
. L, S : PSL2(Z) generators, M :

identity
3: for i← 1.. Len(path) do
4: if path[i] = ”L” then
5: M ←M · L
6: else
7: M ←M · S
8: end if
9: end for

10: return M
11: end function
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