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Abstract
Traditional global stability measure for sequences is hard to determine because of 
large search space. We propose the k-error linear complexity with a zone restric-
tion for measuring the local stability of sequences. For several classes of sequences, 
we demonstrate that the k-error linear complexity is identical to the k-error linear 
complexity within a zone, while the length of a zone is much smaller than the whole 
period when the k-error linear complexity is large. These sequences have periods 2n , 
or 2vr (r odd prime and 2 is primitive modulo r), or 2vps1

1
⋯ p

sn
n  ( pi is an odd prime 

and 2 is primitive modulo p2
i
 , where 1 ≤ i ≤ n ) respectively. In particular, we com-

pletely determine the spectrum of 1-error linear complexity with any zone length for 
an arbitrary 2n-periodic binary sequence.
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1 Introduction

Let S = (s0, s1, s2,…) be an N-periodic sequence with terms in the finite field �q of 
q elements. We note that N need not be the least period of the sequence. We denote 
S = (s0, s1,… , sN−1)

∞ and define SN(x) = s0 + s1x +⋯ + sN−1x
N−1 . The linear com-

plexity of a periodic sequence over �q is the length of the shortest linear recurrence 
relation which the sequence satisfies. In algebraic terms the linear complexity of an 
N-periodic sequence is given by L(S) = N − deg(gcd(1 − xN , SN(x))) ; see for exam-
ple [3, p. 28].

For an integer k, 0 ≤ k ≤ N , the minimum linear complexity of those sequences 
with not more than k term changes in a period N from the original sequence S is 
called the k-error linear complexity of S, denoted as LN,k(S) , i.e.,

where T is an N-periodic sequence, WH(T) is the Hamming weight of T in one 
period, the addition “ + ” for two sequences is defined elementwise in �q . A sequence 
T reaching the LN,k(S) is called an error vector of the k-error linear complexity. 
When N = 2n , denote the k-error linear complexity of S by Lk(S).

In addition to the Berlekamp–Massey algorithm [11] for computing the linear 
complexity with computational complexity O(N2) , there are efficient algorithms of 
several types of periodic sequences with computational complexity O(N), such as 
the Games-Chan algorithm [7] for computing the linear complexity of a 2n-periodic 
binary sequence; the algorithm due to Meidl [13] for computing the linear complex-
ity of a u2n-periodic binary sequence, where u is odd; the algorithm for computing 
the linear complexity of a sequence with period pn over �q [26], where p is an odd 
prime and q is a prime and a primitive root mod p2 ; and the algorithm for comput-
ing the linear complexity of a sequence with period 2pn over �q [25], where p and q 
are odd primes, and q is a primitive root mod p2 . These algorithms work because the 
factorization of XN − 1 is simple under these assumptions.

Correspondingly, there are also efficient algorithms of computing the k-error lin-
ear complexity for certain types of sequences such as the Stamp–Martin algorithm 
[20] for computing the k-error linear complexity of a 2n-periodic binary sequence, 
the algorithm for computing the k-error linear complexity of pn-periodic sequences 
over �pm [9], and the algorithm for computing the k-error linear complexity of a 
sequence with period 2pn over �q [27]. We also remark that there are some studies on 
the properties of k-error linear complexity of binary sequences, see [8, 23]. Earlier, 
Sălăgean et al. studied approximation algorithms for the k-error linear complexity of 
odd-periodic binary sequences by using DFT and some relaxation [1, 19]. However, 
there is no efficient general algorithm for calculating the k-error linear complexity 
for an arbitrary binary sequence, in particular, binary sequence with arbitrary even 
period.

A well-designed sequence should not only have a large linear complexity, but also 
large k-error linear complexities for cryptographic purpose. This means its linear 
complexity should not decrease a lot when k errors occur; see [20] and [4]. In order 
to measure the stability of a given periodic sequence, we have to consider k errors 

LN,k(S) = min
WH (T)≤k

{L(S + T)},
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that can occur anywhere within the whole period N. This means the computational 
task is heavy because the capacity of search space for all possible binary errors is ∑k

t=0

�
N

t

�
 , which is very large for common N and moderate k. Indeed, it becomes 

exponential of N when k is large, resulting in infeasible computations. This moti-
vates us to study k-error linear complexity with a zone restriction. Intuitively, there 
can be many error vectors that reach the k-error linear complexity. We show that for 
many sequences we can find a window of proper length Z containing at least one 
error vector, no matter where we start with. For this purpose, we first define the k-
error linear complexity with a zone of length Z starting at the position j, denote by 
(N, k; Z, j)-error linear complexity, as the minimum of all linear complexities such 
that these errors occur in positions between j and j + Z − 1 . That is,

where [j, j + Z mod N) ∶= [j,N) ∪ [0, (j + Z) mod N) if N − Z < j < N . Moreover, 
we define the k-error linear complexity with a zone of length Z as

 Obviously, LN,k;Z,j(S) is easier to compute and this provides a natural upper bound 
of LN,k(S) . By the definition, LN,k;Z,j(S) can be different for different choices of j’s.

In this paper, we study the relation between LN,k;Z,j(S) and LN,k(S) and 
prove that for a zone length Z appropriately chosen, for any j we have 
LN,k;Z(S) = LN,k;Z,j(S) = LN,k(S) for several classes of sequences, and Z can be very 
small compared to the period N. Accordingly, we can efficiently determine the 
global stability via a local stability. We focus on binary sequences with even period 
and a large k-error linear complexity, in particular, several classes of sequences with 
periods 2n , or 2vr (r odd prime and 2 is primitive modulo r), or 2vps1

1
⋯ p

sn
n  ( pi is an 

odd prime and 2 is primitive modulo p2
i
 , where 1 ≤ i ≤ n ) respectively.

Sequences with period 2n have attracted a lot of attention [5]; one typical example 
is the de Bruijin sequence of maximal 2n-periodic sequence generated by NFSR of 
stage n [2]. Despite that there is an efficient algorithm to compute the k-error linear 
complexity of these sequences, we still demonstrate our method by showing that 
there exists a small zone of length Z = 2⌈log2(2n−Lk(S))⌉ containing the support (posi-
tions of nonzero entries) of an error vector reaching the k-error linear complexity for 
any 2n-periodic binary sequence. This means that we can indeed reduce the global 
stability to a local stability. Furthermore, we completely describe the spectrum of 
1-error linear complexity with any given zone length. This can help us to obtain the 
exact counting functions of the (N, k; Z, 0)-error linear complexity for any 2n-peri-
odic binary sequence.

Moreover, we found two more classes of binary sequences such that their 
global stability can be reduced to a local stability. The first class of sequences 
has a large linear complexity and a large k-error linear complexity with period 
2vr , such that r is an odd prime and 2 is a primitive root modulo r. The length of 
a zone is Z = 2⌈log2(N−LN,k(S))⌉ . More details can be found in Theorem 3. We want 

LN,k;Z,j(S) = min
WH(T) ≤ k

supp(T) ⊆ [j, j + Z mod N)

{L(S + T)},

LN,k;Z(S) = min
j∈[0,N)

{LN,k;Z,j(S)},
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to emphasize that our result applies to quite a lot of sequences. By Artin’s con-
jecture, approximately 37% of all primes satisfy that 2 is a primitive root mod-
ulo r. We also justify that there is a high proportion of sequences who have the 
required a large linear complexity and a large k-error linear complexity, among 
those sequences with period 2vr where 2 is primitive modulo r. In particular, 
we show that if 2v is upper-bounded by a polynomial of r and 

∑k

t=0

�
2vr

t

�
<

2r−1

2v
 , 

then a large proportion of these sequences have desired properties so that their 
global stability can be reduced to local stability. The second class of sequences 
has the period N = 2vp

s1
1
p
s2
2
… p

sn
n  , where pi is odd prime and 2 is a primitive root 

modulo p2
i
 for all 1 ≤ i ≤ n . For any such N-periodic binary sequence S such that 

L(S) > LN,k(S) ≥ N −min(2v, p1 − 2,… , pn − 2) , we show in Theorem 4 that there 
exists a zone of length Z = 2⌈log2(N−LN,k(S))⌉ such that LN,k(S) = LN,k;Z,j(S) for any 
j. We remark that the length Z of the properly chosen zone is dependent on the 
k-error linear complexity of the sequence. One may argue that we can not save 
on computation since we do not know apriori what Z should be. However, most 
sequences that are used in cryptography have a large k-error linear complexity, 
and thus the length Z is rather small. Therefore, with a reasonable effort and a few 
trials, the computations would stablize and an error vector can be found within 
the zone. In summary, our reduction method works best for those types of peri-
odic sequences with the large k-error linear complexity, which is very common 
due to cryptographic requirement.

The rest of this paper is organized as follows. In Sect. 2, we study the (k; Z, j)-
error linear complexity for any periodic binary sequence S with period 2n , and find 
a proper zone of length Z = 2⌈log2(2n−Lk(S))⌉ such that LN,k(S) = LN,k;Z,j(S) = LN,k;Z(S) 
for any j. The larger LN,k(S) , the smaller zone length Z. In Sect. 3, we study the lin-
ear complexity affected by 1-error occurrence within a zone of length Z, and give 
the exact counting functions of the 1-error linear complexity with a restriction on 
zone length Z for a random 2n-periodic binary sequence. In Sect. 4, we prove Theo-
rems 3 and 4.

2  Reduction from global stability to local stability with a zone 
restriction for any binary sequence of period 2n

In this section, we show that the global stability can be reduced to local stabil-
ity with zone restriction for any binary sequence of period 2n . We denote the 
binary sequence with the only nonzero entry ‘1’ at position j by E1(j) , 0 ≤ j < 2n , 
in each period 2n , and the expected (k;  Z,  0) linear complexity of N-periodic 
sequences by EN,k;Z,0 . Without causing any confusion, we denote Ek;Z,0 the expected 
(k;  Z,  0) linear complexity of 2n-periodic binary sequences, and Nk(c) the num-
ber of sequences achieving k-error linear complexity value c of 2n-periodic binary 
sequences. Because the sequence S has period 2n , we only need to consider the 
multiplicity of x = 1 as a root of S2n(x) when we compute the linear complexity 
L(S) = 2n − deg(gcd(1 − X2n , S2

n

(X)) . It is straightforward to derive the following 
useful result.
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Lemma 1 For two 2n-periodic sequences S, S′ , if L(S�) ≠ L(S) , then 
L(S + S�) = max{L(S), L(S�)} . If L(S) = L(S�) , then L(S + S�) < L(S) = L(S�) . In par-
ticular L(E1(j) + E1(j + i2s)) ≤ 2n − 2s , where 0 ≤ s < n.

Proof Obviously, we can write S2n(x) = (1 − x)2
n−L(S)gS(x) for the sequence S, 

where gS(1) = 1 . Similarly, S�2
n

(x) = (1 − x)2
n−L(S)gS� (x) , where gS� (1) = 1 . If 

L(S�) ≠ L(S) , then S2
n

(x) + S�2
n

(x) = (1 − x)2
n−max{L(S),L(S�)}g̃(x) , and g̃(1) = 1 . 

Therefore we have L(S + S�) = max{L(S), L(S�)} . If L(S�) = L(S) , we obtain 
S2

n

(x) + S�2
n

(x) = (1 − x)2
n−L(S)(gS(x) + gS� (x)) , and gS(1) + gS� (1) = 0 . Therefore, 

L(S + S�) < L(S) = L(S�) . In particular, the degree of gcd(xj + xj+i2
s

, x2
n

− 1) is at least 
2s because xj + xj+i2

s

= xj(1 + xi)2
s .   ◻

For the trivial case Lk(S)=0, there is only one error vector in a period. It is well 
known from [12] and [23] that Lk(S) ≠ 2n − 2s for any integer s < n , k > 1 , and for S 
with odd Hamming weight, L1(S) = L0(S) . In particular, when k = 1 , we can deter-
mine the number of error vectors E1(j) such that L(S + E1(j)) = L1(S).

Next, we study the number of error vectors by Lemma 1.

Lemma 2 For a sequence S satisfying L(S) = 2n and 2n − 2s < L1(S) < 2n − 2s−1 , we 
have exact 2n−s error vectors with Hamming weight 1 in one period achieving L1(S).

Proof Suppose there is E1(j) such that 0 ≤ j < 2s and L(S + E1(j)) = L1(S) , we claim 
that we must have a set of error vectors at positions j + i2s , where 0 ≤ i < 2n−s and 
the addition + is performed modulo 2n , such that 
L(S + E1(j + i2s)) = L

((
S + E1(j)

)
+
(
E1(j) + E1(j + i2s)

))
= L(S + E1(j)) . Since 

L(E1(j) + E1(j + i2s))≤2n − 2s < L1(S) = L(S + E1(j)) , we conclude the above claim 
by Lemma 1.

For any other error vector E1(j
�) such that j� − j ≡ d (mod 2s) and 

0 < d < 2s , the largest nonnegative integer t such that 2t ∣ (j� − j) must sat-
isfy t < s . Hence the degree of gcd(xj + xj

�

, x2
n

− 1) is exactly 2t ≤ 2s−1 
and thus L(E1(j) + E1(j

�)) = 2n − 2t ≥ 2n − 2s−1 > L1(S) . Therefore 
L(S + E1(j

�)) = L(S + E1(j) + E1(j) + E1(j
�)) = L(E1(j) + E1(j

�)) > L1(S)  . 
This shows that there is exactly one error vector E1(j) such that 0 ≤ j < 2s and 
L(S + E1(j)) = L1(S) . Hence there are exactly 2n−s error vectors in the whole period 
achieving L1(S) .   ◻

For any positive integer m, we let Em denote a binary vector of length 2n with 
Hamming weight m. For example, assume Em has ‘1’ at positions i1, i2,… , im , 
where 0 ≤ i1 < i2 < … < im ≤ 2n − 1 . Then we define the support of Em as 
Supp(Em) = {i1, i2,… , im} . Now we can show that there exists at least one error vec-
tor whose support is contained in a smaller zone, by adjusting entries of an error 
vector.

Lemma 3 Let S be a binary sequence with period 2n . Suppose 
2n − 2s < Lk(S) < 2n − 2s−1 for some integer s. For any 0 ≤ j < N , there exists 
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at least one error vector Em of weight m, m ≤ k such that L(S + Em) = Lk(S) and 
supp(Em) ⊆ [j, j + 2s mod N) , where [j, j + 2s mod N) ∶= [j,N) ∪ [0, (j + 2s) mod N) 
if N − 2s < j < N.

Proof According to the definition of the k-error linear complexity, there exists 
an error vector Em , m ≤ k of Hamming weight m such that L(S + Em) = Lk(S) . If 
im ≥ 2s , then we can define a new vector E�

m
∶= Em + E1(im) + E1(im mod 2s) so that

By the assumption and Lemma 1, we have

and thus L(S + Em� ) = Lk(S) , where Supp(E�
m
) = Supp(Em) ⧵ {im} ∪ {im mod 2s} . 

Therefore, we can consecutively adjust those entries of Em so that we can find Ēm 
such that supp(Ēm) ⊆ [0, 2s) and L(S + Ēm) = Lk(S).

Since L(S) = N − deg(gcd(1 − xN , SN(x))) = N − deg(gcd(1 − xN , xj ⋅ SN(x))) , the 
linear complexity of a periodic sequence S is invariant to the cyclic shift with respect 
to the offset j, and the cyclic-shift invariant property also holds for the k-error linear 
complexity. Therefore, the proof is complete.   ◻

Because of the assumption 2n − 2s < Lk(S) < 2n − 2s−1 , we derive 
2s−1 < 2n − Lk(S) < 2s . Let Z = 2⌈log2(2n−Lk(S))⌉ . Then for any 0 ≤ j < N , 
Lk;Z,j(S) ≤ Lk(S) by Lemma 3. Conversely, it is always true that Lk(S) ≤ Lk;Z,j(S) . 
Therefore we obtain the following theorem.

Theorem  1 Let S be any 2n-periodic binary sequence. For any positive inte-
ger k, there always exists k′ ≤ k such that k� ≤ Z = 2⌈log2(2n−Lk(S))⌉ and 
Lk(S) = Lk� (S) = Lk�;Z,j(S) = Lk�;Z(S) , for any 0 ≤ j < 2n.

Proof If k ≤ Z , then Lk(S) = Lk;Z,j(S) . Otherwise if k > Z , then we can find an error 
vector Ek′ with the support in [j, j + Z mod N) such that Lk(S) = L(S + Ek� ) by adjust-
ing the error positions into the zone, in which some mapped positions in the zone 
will collide. Accordingly, we have Lk(S) = Lk� (S) . Then, Lk� (S) = Lk�;Z,j(S) for any 
0 ≤ j < 2n , and the latter is equal to Lk�;Z(S) .   ◻

Theorem 1 shows that we can efficiently verify the global stability of a binary 
sequence of period 2n with large k-error linear complexity via a local stability. If 
Lk(S) is big, then Z can be very small. If k is large, then we can reduce k so that 
it is bounded by the zone length as well. Of course, there is the degenerated case 
when Lk(S) = 0 , in this case we have to set Z = 2n . However, as we commented 

L(S + E
�

m
) = L

(
S + Em + E1(im) + E1(im mod 2s)

)
.

L(S + Em) = Lk(S) > 2n − 2s ≥ L(E1(im) + E1(im mod 2s)),
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earlier, we focus on sequences with a large k-error linear complexity and thus the 
zone length is significantly reduced.

Stamp and Martin [20] proposed the efficient algorithm for computing the 
k-error linear complexity of 2n-periodic binary sequence, which is an extension 
of the Games-Chan algorithm [7], by using a cost array recording the number of 
bits changes required in the original sequence without influence on the results of 
any previous steps. The error vectors were not investigated in [20]. Lauder and 
Paterson [10] studied the error linear complexity spectrum of 2n-periodic binary 
sequence, where they can recover one error vector (they defined it as the criti-
cal error sequence) by a deterministic algorithm using the B-Pullup and L-Pullup 
[10, p. 275, 1 a), 2 a)].

Remark 1 Let 2n − 2s < Lk(S) < 2n − 2s−1 , then according to the Stamp-Martin 
algorithm, the left part and the right part of intermediate sequence are not equal for 
the initial n − s steps. By the deterministic B-Pullup algorithm [10, p. 275, 1 a)] of 
an error sequence of length 2s , the support of the expanded error sequence is located 
at the left part. Indeed, followed by n − s B-Pullups we finally obtain an error vector, 
whose support is in the zone [0, 2s = 2⌈log2(2n−Lk(S))⌉).

Example 1 Let S = (10000011001000110000000000000000)∞ be a 32-periodic 
sequence. By the algorithm for computing the error linear complexity spectrum [10, 
p. 277] as well as the ‘C’ code implementation at http://www.isg.rhul.ac.uk/~kp/
celcs .c, we obtain L(S) = 30 , L2(S) = 23 , and deduce one error vector by the deter-
ministic B-Pullup and L-Pullup [10, p. 275, 1 a), 2 a); p.278] as follows:

Therefore, from their method one error vector with support (2, 8) is derived. How-
ever, there still exists another error vector with support (0, 10) in the zone [0, 16), 
not discovered by the B-Pullup and L-Pullup.

By a deterministic algorithm using the B-Pullup and L-Pullup [10, p. 275, 1 a), 
2  a)], one error vector is obtained. But there may exist many error vectors, even 
in the zone. Actually, the number of error vectors of Lk(S) depends on the value of 
Lk(S) , and we can determine the complete set of error vectors of Lk(S) of 2n-peri-
odic sequences from an error vector by some transformations for k ≤ 4 , see [23]. In 
the following, we will provide an algorithm deriving an error error within the zone 
[0, Z), Z = 2⌈log2(2n−Lk(S))⌉ from any other error vector.

(1)
e = 0

LPullup
�→ 10

BPullup
�→ 1000

BPullup
�→ 10000000

LPullup
�→ 0010000010000000

BPullup
�→ 00100000100000000000000000000000.

http://www.isg.rhul.ac.uk/%7ekp/celcs.c
http://www.isg.rhul.ac.uk/%7ekp/celcs.c
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Note that Algorithm  1 can be directly extended to any zone [j, j + Z mod N) 
because of the cyclical-shift-invariant property on the k-error linear complexity 
of a periodic sequence. Moreover, the computational complexity of the steps 3–5 
in Algorithm 1 is O(k), which does not bring much extra cost in addition to the 
Stamp-Martin or Lauder-Paterson Algorithm.

Example 2 Let S = (10000011001000110000000000000000)∞ be a 32-periodic 
sequence, the same sequence in Example 1. Since L2(S) = 23 , we have Z = 16 . We 
can verify that the vector with support (0, 26) is an error vector of L2(S) , by Algo-
rithm 1 we obtain an error vector within the zone Z = 16 , whose support is (0, 10).

3  Spectrum of 1‑error linear complexity with arbtrary zone length

In this section we assume N = 2n and n ≥ 4 . It is well known that the linear 
complexity of a 2n-periodic sequence S is 2n if and only if it has odd Hamming 
weight. The 1-error linear complexity of a 2n-periodic sequence can be any inte-
ger between 0 and 2n − 1 . However, if S has an odd Hamming weight, then L1(S) 
can not be any integer of the form 2n − 2s where 1 ≤ s ≤ n . For more details we 
refer the reader to [6, 12, 21, 22, 24].

If S is a 2n-periodic sequence with even Hamming weight, then L1(S) = L0(S) . 
In this case, L1;Z,0(S) = L0(S) for any zone of length Z. In order to study the dis-
tribution of L1;Z,0 , we only need to consider 2n-periodic sequences with odd Ham-
ming weight.

Theorem 2 Let S be a 2n-periodic sequence with odd Hamming weight and L1 be its 
1-error linear complexity. Let 0 < Z ≤ 2n , and a = ⌊log2(Z)⌋ . 

1. For 2n − 2s < L1 < 2n − 2s−1 with some integer s, we have the following 
 (i) if s ≤ a , then L1;Z,0(S) = L1 , and the number of such sequences S is 2L1−1+s;
 (ii) if s > a , then we have 



493

1 3

On the stability of periodic binary sequences with zone…

 The number of all the sequences S that achieve these values equals 

2. For L1 = 0 , we have 

 The number of all the sequences S that achieve these values equals 

Proof For any 2n-periodic sequence S with odd Hamming weight, we have 
2n − 2s < L1(S) < 2n − 2s−1 for some positive integer s or L1 = 0 . Let us first assume 
that 2n − 2s < L1(S) < 2n − 2s−1 for some positive integer s. From the proof of 
Lemma 2, there exists exactly one j, 0 ≤ j < 2s , such that L1(S) = L(S + E(j)) . 

 (i) if s ≤ a , then 2s ≤ 2a ≤ Z by the definition of a = ⌊log2(Z)⌋ . Hence, in the 
zone of length Z, there is at least one error vector reaching the L1(S) , so 
L1;Z,0(S) = L1(S).

 (ii) if s > a , then Z < 2s . Consider 0 ≤ j < 2s such that L1(S) = L(S + E(j)) . Let 
m ⋅ 2a+1 ≤ j < (m + 1)2a+1 for some nonnegative integer m. Let j̄ = j − m2a+1 
be the positive integer less than 2a+1 such that j̄ ≡ j mod 2a+1 . If Z < j̄ < 2a+1 , 
then we take j� = j̄ − 2a , which satisfies 0 < j′ < 2a < Z . Since j� − j is an 
odd multiple of 2a , we conclude that L(E1(j) + E1(j

�)) = 2n − 2a because 
the multiplicity of the root 1 for the binomial xj + xj

� is exactly 2a . Hence 
L(S + E1(j)) = L1(S) < 2n − 2s−1 ≤ 2n − 2a = L(E1(j) + E1(j

�))  .  T h e r e -
f o r e  L(S + E1(j

�)) = max{L(S + E1(j)),L(E1(j) + E1(j
�))} = 2n − 2a  . 

And  fo r  any  ĵ  s a t i s fy ing  Z < ĵ < 2a+1 ,  ĵ ≠ j′  ,  we  have 
L(E1(j

�) + E1(ĵ)) > 2n − 2a because |ĵ − j�| < 2a , accordingly we have 
L(S + E1(ĵ)) = max{L(S + E1(j

�)),L(E1(ĵ)) + E1(j
�))} > 2n − 2a  .  T h u s , 

L1;Z,0 = 2n − 2a.

On the other hand, we assume 0 ≤ j̄≤Z . For m = 0 , we must have L1;Z,0 = L1 because 
0 ≤ j < Z . Let m ≥ 1 . We claim L1;Z,0 = 2n − 2a+1+�2(m) where �2(m) is the largest inte-
ger such that 2�2(m) ∣ m . Indeed, we take j� = j − m ⋅ 2a+1 . which satisfies 0 < j′ < Z . 
Since j − j� = m ⋅ 2a+1 , we conclude that L(E1(j) + E1(j

�)) = 2n − 2a+1+�2(m) 
because the multiplicity of the root 1 for the binomial xj + xj

� is exactly 2a+1+�2(m) . 

L1;Z,0(S) ∈ {L1, 2
n − 2s−1,… , 2n − 2a}.

⎧
⎪⎨⎪⎩

Z ⋅ 2L1−1, if L1;Z,0 = L1;Z,0(S) = L1;

Z ⋅ 2L1+s−t−2, if L1;Z,0 = 2n − 2t,where a + 1 ≤ t ≤ s − 1;

2L1−1+s − Z ⋅ 2L1+s−a−2, if L1;Z,0 = 2n − 2a.

L1;Z,0(S) ∈ {0, 2n − 2n−1,… , 2n − 2a}.

⎧
⎪⎨⎪⎩

Z, if L1;Z,0 = L1;

Z ⋅ 2n−t−1, if L1;Z,0 = 2n − 2t, where a + 1 ≤ t ≤ n − 1;

2n − Z ⋅ 2n−a−1, if L1;Z,0 = 2n − 2a.
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We note that a + 1 + �2(m) ≤ s − 1 because j − j� = m2a+1 < 2s . Hence 
L(S + E(j)) = L1(S) < 2n − 2s−1 ≤ 2n − 2a+1+𝜈2(m) = L(E1(j) + E1(j

�)) . There-
fore L(S + E1(j

�)) = max{L(S + E1(j)),L(E1(j) + E1(j
�))} = 2n − 2a+1+�2(m) . 

And for any ĵ satisfying 0 ≤ ĵ < Z , ĵ ≠ j′ , we have 
L(E1(j

�) + E1(ĵ)) ≥ 2n − 2a because |ĵ − j�| < 2a+1 , accordingly we have 
L(S + E1(ĵ)) = max{L(S + E1(j

�)),L(E1(ĵ)) + E1(j
�))} ≥ 2n − 2a . In this case, 

L1;Z,0 = 2n − 2a+1+�2(m) . Hence L1;Z,0(S) ∈ {L1, 2
n − 2s−1,… , 2n − 2a} . We summa-

rize these results in Table 1 and Fig. 1.
Now we count the number of all these sequences having the 1-error lin-

ear complexity L1 and odd Hamming weight such that L1;Z,0(S) = 2n − 2t where 
a + 1 ≤ t ≤ s − 1 . For each sequence S with 1-error linear complexity L1 and odd 
Hamming weight, we need to count the number of error positions j’s such that 
L1;Z,0 = L(S + E1(j)) = 2n − 2t . We prove that the proportion of j’s over an interval 
of length 2t+1 such that L1;Z,0 = 2n − 2t is Z∕2t+1 , where t ≥ a + 1.

First we show that every sub-interval I of length 2t+1 in the inter-
val [0, 2s) contains at least one interval of length Z for possible j’s such that 
L1;Z,0 = 2n − 2t . We will construct an interval of length Z for j’s within I. 
Because the length of I is 2t+1 , we can always choose an odd integer m′ such that 
[m�2t, (m� + 1)2t) ⊂ I . By the above proof, there exists an interval of length Z 
within the interval m�2t = (m�2t−a−1)2a+1 ≤ j < ((m�2t−a−1) + 1)2a+1 such that 
L1;Z,0 = 2n − 2a+1+�2(m

�2t−a−1) = 2n − 2a+1+t−a−1 = 2n − 2t.
Then we show that I can not contain more than one intervals of length Z for pos-

sible j’s such that L1;Z,0 = 2n − 2t . We prove it by contradiction. Suppose there are 
j, j′ such that 0 < |j� − j| < 2t+1 and L(S + E1(j)) = L(S + E1(j

�)) = 2n − 2t . In this 
case, L(E1(j) + E1(j

�)=L(S + E1(j) + S + E1(j
�)) < 2n − 2t . However, the root 1 of 

xj + xj� is at most 2t times, implying L(E1(j) + E1(j
�)) ≥ 2n − 2t , a contradiction.

Therefore, the proportion of j’s in each interval of length 2t+1 such that 
L1;Z,0 = 2n − 2t is Z∕2t+1 , for each sequence having the 1-error linear complexity L1 

Table 1  L
1;Z,0

 values at different 
intervals

0 ≤ j (mod 2
a+1) ≤ Z Z < j (mod 2

a+1) < 2
a+1

0 ≤ j ≤ 2
a+1 L

1
2
n − 2

a

2
a+1 ≤ j < 2

a+2
2
n − 2

a+1 2
n − 2

a

⋮ ⋮ ⋮

m ⋅ 2
a+1 ≤ j < (m + 1)2a+1 2

n − 2
a+1+�

2
(m) 2

n − 2
a

⋮ ⋮ ⋮

2
s − 2

a+1 ≤ j < 2
s

2
n − 2

s−1 2
n − 2

a

Fig. 1  L
1;Z,0

 values for j at different intervals
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and odd Hamming weight. Since there are 2L1−1+s sequences with odd Hamming 
weight such that 2n − 2s < L1 < 2n − 2s−1 (see [24][p. 2000, Theorem 3]), there are 
Z2L1−1+s∕2t+1 = Z2L1+s−t−2 sequences having the 1-error linear complexity L1 and 
odd Hamming weight such that L1;Z,0(S) = 2n − 2t . Similarly, for L1;Z,0 = L1 , there 
is only one internal of length Z within the interval [0, 2s) and thus the proportion is 
Z∕2s . From Table 1 and Fig. 1, the proportion of j’s giving 2n − 2a is 1 − Z

2a+1
.

When L1 = 0 , the proof is similar and thus we omit the details.   ◻

The distribution of k-error linear complexity is provided in [23] when k ≤ 4 . 
In particular, the number N0(c) of 2n-periodic sequences with the linear complex-
ity c is 2c−1 ; see [14]. In Theorem 2, we have counted the number of sequences 
with odd Hamming weight achieving (1,  Z)-error linear complexity values. In 
the following, we count the number N1;Z,0(c) of all sequences achieving (1, Z)-
error linear complexity value c, without emphasizing on their Hamming weights.

Corollary 1 Let a = ⌊log2(Z)⌋ . The value N1;Z,0(c) is equal to

Proof We note that every 2n-periodic sequence S has a linear complex-
ity L(S) = c < 2n if and only if it has an even Hamming weight. In this case, 
L1(S) = L(S) . Hence the result follows immediately from Theorem 2.   ◻

The exact expectation E1;Z,0 can be derived from the above counting functions, 
and may be used as a measure for determining the randomness of a 2n-periodic 
binary sequence, with variations on Z. The exact formula is too complicated. 
Thus we omit all the details here. Instead, we provide a concrete example for 
the expected values of L1;Z,0 for sequences with period N = 28 in Table 2. Note 
that the row Z = N  corresponds to the expected 1-error linear complexity of 28
-periodic binary sequences, where the expected 1-error linear complexity of 2n
-periodic binary sequences was provided in [12, 24].

4  Extension to sequences with other even periods

Now we consider stability of other periodic sequences with even period N = 2vr 
such that r, v are positive integer and r is odd. For some types of 2vr-periodic binary 
sequences, we can still find a proper zone of length Z so that LN,k(S) = LN,k;Z,j(S) . 

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2
c−1 + 2

c−1+s
, if s ≤ a, 2n − 2

s
< c < 2

n − 2
s−1

;

(1 + Z)2c−1, if s > a, 2n − 2
s
< c < 2

n − 2
s−1

;

n�
s=a+1

2
n−2s−1−1�

L1=2
n−2s+1

(1 −
Z

2a+1
) ⋅ 2L1−1+s + (1 −

Z

2a+1
) ⋅ 2n + 2

2
n−2a−1

, if c = 2
n − 2

a
;

n�
s=t+1

2
n−2s−1−1�

L1=2
n−2s+1

Z

2t+1
⋅ 2

L1−1+s +
Z

2t+1
⋅ 2

n + 2
2
n−2t−1

, if c = 2
n − 2

t
, a < t ≤ s − 1;

1 + Z, if c = 0.
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From the paper by Niederreiter [16, Theorem 1, P. 503], there exists 2vr-periodic 
binary sequence S with LN,k(S) ≥ N − 2v and L(S) = N , provided that

where C2,… ,Ch are the different cyclotomic cosets modulo r. In the following, 
we will reveal that LN,k(S) = LN,k;Z,j(S) = LN,k;Z(S) with certain Z ≪ N for some of 
these ‘ideal’ cryptographic sequences.

Theorem 3 Let N = 2vr , v > 0 , r be an odd prime, and 2 be a primitive root modulo 
r. If S is an N-periodic binary sequence such that

for some nonnegative integer c, then for any 0 ≤ j < N there exists at least one error 
vector Em , m ≤ k such that

where Z = 2⌈log2(N−LN,k(S))⌉ . In particular, if L(S) = N > LN,1(S) ≥ N −min(2v, r − 2) , 
then there exists exactly one error vector E1 satisfying that 
Supp(E1) ⊆ [j, j + Z mod N) and LN,1(S) = LN,1;Z,j(S).

Proof First we consider j = 0 , i. e., the zone starts with 0. Because 2 is primitive 
root modulo the prime number r, the cyclotomic polynomial Φr(X) of the order r 
is irreducible over �2 . Hence X2vr − 1 = (Xr − 1)2

v

= ((X − 1)Φr(X))
2v . Let � be a 

primitive r-th root of unity. That is, Φr(�) = 0.
If 2v ≤ r − 2 , then � can not be a root of SN(x) + Et(x) for any error 

polynomial Et(x) of Hamming weight t ≤ k because of the assumption 
LN,t(S) ≥ LN,k(S) ≥ N − 2v . Otherwise, Φr(X) ∣ s

N(x) + Et(x) and thus the great-
est common divisor of sN(x) + Et(x) and XN − 1 has degree greater than 2v , a 
contradiction.

k∑
j=0

(
N

j

)
< 2min2≤i≤h |Ci|,

(2)L(S) = N − c > LN,k(S) ≥ N −min(2v, r − 2),

L(S + Em) = LN,k(S) and Supp(Em) ⊆ [j, j + Z mod N),

Table 2  E
N,1;Z,0

 for N = 2
8

Z EN,1;Z,0

1 254.0000
2 253.5000
3 253.2500
4 253.0000
5 252.9375
6 252.8750
7 252.8125
8 252.7500
N 252.7185
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If 2v > r − 2 , then LN,k(S) ≥ N − r + 2 . Similarly, � can not be a root of 
SN(x) + Et(x) for any error polynomial Et(x) of Hamming weight t ≤ k.

Now we only need to consider the multiplicity of root 1 when com-
puting LN,k(S) . As in the proof of Lemma  3, we can derive an error vec-
tor Em such that Supp(Em) ⊆ [0, Z) and Lk(S + Em) = LN,k(S) . Indeed, sup-
pose there exists an error vector Em such that L(S + Em) = LN,k(S) , where 
Supp(Em) = {i1, i2,… , im} . Note that Z = 2⌈log2(N−LN,k(S))⌉ ≥ N − LN,k(S) . If 
im ≥ Z , then we can define a new vector E�

m
= Em + E1(im) + E1(im mod Z) . 

Because L(S + Em) = LN,k(S) ≥ N − Z ≥ L(E1(im) + E1(im mod Z)) , we must have 
L(S + E�

m
) ≤ LN,k(S) by counting the multiplicity of 1’s. Hence L(S + E�

m
) = LN,k(S) . 

Continuing this process, we can derive an error vector such that the support is con-
tained [0, Z).

In particular, if L(S) = N > LN,1(S) ≥ N −min(2v, r − 2) , then there exists s > 0 
such that 2s−1 < N − LN,1(S) ≤ 2s . From the previous discussion, Z = 2s and there 
exists at least one error vector Em such that m ≤ 1 such that L(S + Em) = LN,1(S) and 
supp(Em) ⊆ [0, 2s) . Because L(S) > LN,1(S) , we must have m = 1 . Suppose there are 
E1,E

′
1
 such that L(S + E1) = L(S + E�

1
) = LN,1(S) and Supp(E1), Supp(E

�
1
) ⊆ [0, 2s) . 

In this case, the multiplicity of root 1 in SN(x) + E1(x) and SN(x) + E�
1
(x) is greater 

than 2s−1 respectively, however the multiplicity of root 1 of the generating polyno-
mial corresponding to E1 + E�

1
 is not more than 2s−1 , a contradiction.

Because of the cyclic-shift invariant property of the (k-error) linear complexity of 
periodic sequence, we can extend the result to any j ∈ [0,N) .   ◻

Theorem  3 says that if 2v ≥ r − 1 then Z = 2⌈log2(N−LN,k(S))⌉ ≤ 2⌈log2(r−2)⌉ < 2r . 
On the other hand, if 2v < r − 1 then Theorem 3 gives Z ≤ 2v for any N-periodic 
binary sequence S such that L(S) = N − c ≥ LN,k(S) ≥ N − 2v.

Example 3 Let S1 be the following binary sequence with period 304 (= 16 ∗ 19).

The linear complexity is 304 and 1-error linear complexity is 301. The zone length 
is 4 and we have L304,1(S1) = L304,1;4(S1).

Example 4 Let S2 be a random binary sequence with period 176 (= 11 ∗ 16),

Then L(S2) = L1(S2) = 175 , L2(S2) = 169 , and the length of zone is 8. Indeed, we 
find an error vector of L2 with two errors at positions 6 and 7 within the zone [0, 8).

S1 = 11100011001111011010100011011100110000001100000001101110010100000

1101000110010010000100011001010010100110010111001001101011001000110100

0000100100001111001000101011000010010111110101001111110101101111000110

1001111101111110101011100100010001000011000011101111111111001011011011

01001010011010010001001101000.

S2 = 11100111101100100110110111100100110101001010111111011011100010011

0001101001110010011101010100000100011111000001000011101011101101110011

10101000111010000100001101101001101110010.
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We observe that the above result can be extended to any N-periodic binary 
sequence S such that L(S) = N − c ≥ LN,k(S) = N − r + 1 when 2v < r − 1 . In this 
case, we can take Z = r.

Proposition 1 Let N = 2vr , v > 0 , r be an odd prime, and 2 be a primi-
tive root. If 2v < r − 1 and S is an N-periodic binary sequence such that 
L(S) = N − c ≥ LN,k(S) = N − r + 1 for some positive integer c, then there 
exists at least one error vector Em , m ≤ k such that L(S + Em) = LN,k(S) and 
Supp(Em) ⊆ [j, j + Z (mod N)) for any 0 ≤ j < N , where Z = r . In particular, 
LN,k(S) = LN,k;Z,j(S).

Proof First, we consider j = 0 . Let � be the primitive r-th root of unity. Since the 
multiplicity of 1 is at most 2v < r − 1 and LN,k(S) = N − r + 1 , there exists an error 
vector Em , m ≤ k reaching LN,k , such that the generating polynomial correspond-
ing to S + Em will be divisible by Φr(X) = 1 + X +⋯ + Xr−1 . Suppose Em has 
entry ‘1’ at positions i1, i2,… , im−1, im , where i1 < i2 < … < im . If im > r , since 
the generating polynomial of S + Em + E1(im) + E1(im mod r) will be also divisible 
by 1 + X +⋯ + Xr−1 , implying L

(
S + Em + E1(im) + E1(im mod r)

)
≤ N − r + 1 . 

Moreover, L(E1(im) + E1(im mod r) = N − r and LN,k(S) = L(S + Em) ≤ N − r + 1 
imply that L

(
S + Em + E1(im) + E1(im mod r)

)
= N − r + 1 . Thus we get an error 

vector Em + E1(im) + E1(im mod r) reaching LN,k = N − r + 1 . Consequently, we 
obtain an error vector reaching LN,k(S) with support in [0, r). Finally, we extend to 
any j ∈ [0,N) because of the cyclic-shift invariant property on the (k-error) linear 
complexity of periodic sequence.   ◻

Remark 2 From Theorem 3 we obtain a small zone of length Z ≤ 2v or Z < 2r such 
that LN,k(S) = LN,k;Z,j(S) = LN,k;Z(S) for the above classes of sequences with large 
linear complexity and k-error linear complexity. Our assumptions on these classes 
of sequences are not very restricted. By Artin’s conjecture, there are approximately 
37% of all primes having 2 as a primitive root [15]. By the following Corollary 2, 
we show that under certain conditions almost all random sequences have k-error lin-
ear complexity greater than or equal to N − 2v and about 50% of these sequences 
have linear complexity equal to the period. Therefore our result can be very useful 
to determine the stability of many random binary sequences with low computational 
cost.

Corollary 2 Suppose r is a prime, 2 is a primitive root modulo r and 2v ≤ p(r) , where 
p(r) is a polynomial of the variable r. Let N = 2vr . If

 for 0 ≤ c < min(2v, r − 2) , we have

(3)
k∑

t=0

(
N

t

)
<

2r−1

2v
,

(4)Pr(L(S) ≥ N − c,LN,k(S) ≥ N −min(2v, r − 2)) → 1 − 2−1−c, asr → ∞.
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Proof For any positive intger k, we denote by MN,k(c) the number of N-periodic 
sequences with the k-error linear complexity not more than c. Obviously,

Then by Proposition 1 and Lemma 1 in [14] (page 2818), we have

If MN,0(N − 2v − 1)
∑k

t=0

�
N

t

�
≤ 2N , i. e.,

then we have MN,k(N − 2v − 1) ≤ MN,0(N − 2v − 1)
∑k

t=0

�
N

t

�
.

Denote by � the ratio of the number of periodic sequences satisfying 
LN,k(S) ≥ N − 2v over the number of all periodic sequences with period N. Hence

Note that

For d = 0 and s = 0 , we have 
(
2v

s

)
⋅

1

2(r−1)⋅s
−
(

2v

s+1

)
⋅

1

2(r−1)⋅(s+1)
= 1 −

2v

2r−1
 . Then for 

d > 0 , we have s ≥ 2 and

The last inequality holds because we have r > v by the assumption. Therefore, we 
obtain

MN,k(N − 2v − 1) ≤ min

(
2N ,MN,0(N − 2v − 1)

k∑
t=0

(
N

t

))
.

MN,0(N − 2v − 1) = 2N − (2r−1 − 1)2
v

⋅ 22
v

.

(5)
k∑

t=0

(
N

t

)
≤

2N

MN,0(N − 2v − 1)
=

1

1 − (1 −
1

2r−1
)2

v
,

(6)

� =
2N −MN,k(N − 2v − 1)

2N

≥ 1 −
MN,0(N − 2v − 1)

2N

k∑
t=0

(
N

t

)

= 1 −
(
1 −

(
1 −

1

2r−1

)2v) k∑
t=0

(
N

t

)
.

(
1 −

1

2r−1

)2v

=

2v−1−1∑
d = 0

s = 2d

((
2v

s

)
⋅

1

2(r−1)⋅s
−

(
2v

s + 1

)
⋅

1

2(r−1)⋅(s+1)

)
+

1

2(r−1)⋅2
v
.

(
2v

s

)
⋅

1

2(r−1)⋅s(
2v

s+1

)
⋅

1

2(r−1)⋅(s+1)

=
2r−1(s + 1)

2v − s
>

2r

2v
> 1.

(7)
(
1 −

1

2r−1

)2v
> 1 −

2v

2r−1
.
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If 
∑k

t=0

�
N

t

�
<

2r−1

2v
 , then by (7) we have 2

r−1

2v
<

1

1−(1−
1

2r−1
)2
v  and the condition (5) holds. 

Therefore, from (6) and (7) we derive

For small k, we have 
∑k

t=0

�
N

t

�
≤ c0N

k for some constant c0 , and thus
2v

2r−1

∑k

t=0

�
N

t

�
≤ 21−rc0p(r)

k+1rk ). Hence we must have

This implies that almost all sequences of period 2vr satisfy L(S) ≥ LN,k(S) ≥ N − 2v 
as long as r → ∞.

Next we prove that once r → ∞ , for 0 ≤ c < 2v we have

By the relationship between the linear complexity and Günther weight of the GDFT 
of sequences [14][p. 2818], and almost all sequences satisfy L(S) ≥ N − 2v , we only 
consider the first column of the GDFT matrix, and the contribution to the Günther 
weight of other columns are all 2v . Additionally, the elements of the first column are 
over �2 , and the pattern of the first column is the transpose of 0… 0

⏟⏟⏟
c

1 ∗∗∗ , where 

‘ ∗ ’ can be 0 or 1. Hence we have (8).
If 2v ≤ r − 2 , then we obtain Pr(L(S) ≥ N − c,LN,k(S) ≥ N − 2v) = Pr(L(S) ≥ N − c,

L(S) ≥ N − 2
v)→

1

2
+⋯ +

1

2c+1
= 1 − 2

−1−c
, as r → ∞.

If 2v > r − 2 , then almost all sequences of period 2vr satisfy 
L(S) ≥ LN,k(S) ≥ N − 2v and we obtain Pr(L(S) ≥ N − r + 2) → 1 − 21−r similarly. 
Because

for small k we have Pr(LN,k(S) < N − r + 2) = O(21−r ⋅ Nk) = O(21−rp(r)krk) , then 
Pr(LN,k(S) ≥ N − r + 2) → 1 . Therefore, for 0 ≤ c < r − 2 we obtain

analogously.   ◻

Remark 3 According to the result in [18][p. 25; Theorem 1.2.8], for 0 <
k

N
≤ 1∕2 we 

have

𝜌 > 1 −
2v

2r−1

k∑
t=0

(
N

t

)
.

� → 1 as r → ∞.

(8)
|S ∶ L(S) = N − c|
|S ∶ L(S) ≥ N − 2v|→

1

2c+1
.

Pr(LN,k(S) < N − r + 2) ≤ Pr(L(S) < N − r + 2)

k∑
t=0

(
N

t

)
,

Pr(L(S) ≥ N − c,LN,k(S) ≥ N − r + 2) → 1 − 2−1−c,

(9)
k∑

t=0

(
N

t

)
≤ 2

NH(
k

N
)
,
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where H(
k

N
) ∶= −

k

N
log(

k

N
) − (1 −

k

N
) log(1 −

k

N
) is the entropy function on the vari-

able k
N

 , and the base of the log(⋅) is 2.
Consequently, if k satisfies

then the condition (3) holds by (9) and (10). Hence we have a weaker but explicit 
requirement of k for (4) holds. Note that the entrophy function H(x) is non-decreas-
ing when 0 < x ≤ 1∕2.

We provide the following example to demonstrate the usefulness of our results.

Example 5 Let N = 30304 = 32 ∗ 947 , i.e., r = 947 , v = 5 . Let us consider 
k = 10 . The exhaustive search method of computing LN,10(S) is estimated as ∑10

t=0

�
32∗947

t

�
>
�
32∗947

10

�
≈ 2127 , which is infeasible. But from (10) we require 

H(
k

N
) <

941

32∗947
 and thus k ≤ 96 . Hence the condition (10) holds for k = 10 . From 

Corollary 2 we know that almost all sequences satisfy LN,10 ≥ N − 32 . We can take 
the zone length Z = 32.

If c = 1 and L(S) ≥ N − c , then 3 out of 4 such random sequences satisfy the con-
dition (2) in Theorem 3, and we have LN,10(S) = LN,10;32,0(S) . If L(S) ≥ N − 2 , then 
7 out of 8 such random sequences satisfy (2), and we have LN,10(S) = LN,10;32,0(S) . 
The percentage of these sequences satisfying the condition (2) grows as c increases. 
Finally, if L(S) ≥ N − 31 , then almost any random sequence satisfy (2), and 
LN,10(S) = LN,10;32,0(S).

Now we move to other types of sequences with period N = 2vr , where r is a com-
posite. More generally, we have

where Φd(X) is the d-th cyclotomic polynomial. We do not require that Φd(X) is 
irreducible over �2 , which is required for existing fast algorithms of computing the 
(k-error) linear complexity. Then, we can similarly obtain the following result by 
analyzing the multiplicity of root 1 when the k-error linear complexity is large.

Theorem 4 Suppose N = 2vp
s1
1
p
s2
2
… p

sn
n  , v > 0 , pi is odd prime, and 2 is a primitive 

root modulo p2
i
 for all 1 ≤ i ≤ n . For any N-periodic binary sequence S such that 

L(S) > LN,k(S) ≥ N −min(2v, p1 − 2,… , pn − 2) , and any j ∈ [0,N) there exists a 
zone of length Z = 2⌈log2(N−LN,k(S))⌉ such that LN,k(S) = LN,k;Z,j(S) = LN,k;Z(S).

Proof First, we suppose N = 2v ⋅ ps , where 2v < p − 1 and 2 is a primitive root p2 . 
Then, 2 is a primitive root of ps for any integer s ≥ 1 (see [17, p. 348, Theorem 9. 
10]). From (11) we derive

(10)NH
(
k

N

)
< r − 1 − v,

(11)1 − XN = (1 − Xr)2
v

=

(∏
d|r

Φd(X)

)2v

,
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Because the degree of each irreducible polynomial Φpi(X) is �(pi) = pi − pi−1≥ p − 1 , 
we only need to consider the multiplicity of root 1 for estimating LN,k(S) . The rest of 
proof is similar to the proof of Theorem 3.

Secondly, suppose N = 2v ⋅ p ⋅ q , 2 is a primitive root modulo p and q. Let c 
be the least integer such that 2c ≡ 1 mod (pq) , then Φpq(X) can be factorized into 
(p−1)(q−1)

c
 irreducible polynomials, each with degree c. In addition, because 2 is the 

primitive root modulo p, we have (p − 1) ∣ c and thus c ≥ p − 1 . Similarly, c ≥ q − 1 . 
From (11) we derive XN − 1 =

(
(X − 1)Φp(X)Φq(X)Φpq(X)

)2v , implying the degree 
of any irreducible factors except X − 1 is greater than or equal to min(p − 1, q − 1) . 
Hence we only need to consider the multiplicity of root 1. The rest of proof follows.

Finally, if 2 is the primitive root of ps1
1
 , … , psnn  for any integers i1,… , in , then we 

obtain XN − 1 =

⎛
⎜⎜⎜⎝
(X − 1)

∏
0 ≤ tj ≤ sj

j = 1, 2,… , n

Φ
p
t1
1
⋯p

tj

j
⋯p

tn
n

(X)

⎞
⎟⎟⎟⎠

2v

 . Similarly, the degree 

of each irreducible factor of Φ
p
t1
1
⋯p

tj

j
⋯p

tn
n

(X) is no less than min(p1 − 1,… , pn − 1) . 
Hence we only need to consider the multiplicity of the root 1 analogously.   ◻

Remark 4 Actually, there is a large proportion of N satisfying Theorem 4. Heuristi-
cally, if 2 is a primitive root modulo a prime p, then 2 is also most likely a primi-
tive root modulo p2 . Indeed, because 2p−1 ≡ 1 (mod p) and 2p(p−1) ≡ 1 (mod p2) , 
2 is a primitive root modulo p2 if 2(p−1) ≢ 1 (mod p2) . However, the prime satisfy-
ing 2(p−1) ≡ 1 (mod p2) is called Wieferich Prime, and the only known Wieferich 
Prime up to now is 1093 and 3511 (https ://en.wikip edia.org/wiki/Wiefe rich_prime 
). In this case, 2 is not a primitive root of 1093 and 3511. It has been conjectured 
that infinitely many Wieferich primes exist, and that the number of Wieferich primes 
below x is approximately log(log(x)) . By Artin’s conjecture, 2 is the primitive root 
of 37% prime numbers. These prime numbers are most likely not Wieferich primes 
and therefore satisfy the conditions of Theorem 4.

Now let N = 2vM , v > 0 and M be odd. If M has the factorization ps1
1
 for certain 

prime number p1 , then the probability that p1 satisfies the condition of Theorem 4 is 
a little bit over 1/3. Similarly, If M has a factorization ps1

1
⋯ p

sr
r  , then it has at least 

(1∕3)r probability satisfying the condition. As a result, M has the probability at least 
1∕3 +⋯ + (1∕3)r +⋯ = 1∕2 satisfying the condition of Theorem 4.

We don’t estimate the probability of the condition 
( L(S) > LN,k(S) ≥ N −min(2v, p1 − 2,… , pn − 2) ) since it becomes complicated 
when the number of prime factors increases, but we experimentally observe the 
property for randomly generated sequences of such periods from time to time.

Example 6 From computer experiments, there are many exam-
ples of period N satisfying Theorem  4. For example, 
N = 1184 (= 32 ∗ 37), 484 (= 4 ∗ 112), 968 (= 8 ∗ 112), 1144 (= 8 ∗ 11 ∗ 13)  ; 

XN − 1 =
(
(X − 1)Φp(X)Φp2 (X)⋯Φps (X)

)2v
.

https://en.wikipedia.org/wiki/Wieferich_prime
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1936 (= 16 ∗ 112), 2288 (= 16 ∗ 11 ∗ 13)  ; 
3344 (= 11 ∗ 16 ∗ 19), 3952 (= 13 ∗ 16 ∗ 19) . The global stability can be effec-
tively determined by local stability within a much smaller zone. For example, for the 
random generated N = 4 ∗ 112-periodic sequence

we have L(S) = L1(S) = 482 , L2(S) = 480 , and the zone is [0,  4). Indeed, we can 
find an error vector E2 of L2 such that error positions are 1 and 3 within the zone 
[0, 4).
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