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Abstract

Let γ be a generator of a cyclic group G of order n. The least index
of a self-mapping f of G is the index of the largest subgroup U of G
such that f(x)x−r is constant on each coset of U for some positive inte-
ger r. We determine the index of the univariate Diffie-Hellman mapping
d(γa) = γa

2

, a = 0, 1, . . . , n − 1, and show that any mapping of small
index coincides with d only on a small subset of G. Moreover, we prove
similar results for the bivariate Diffie-Hellman mappingD(γa, γb) = γab,
a, b = 0, 1, . . . , n − 1. In the special case that G is a subgroup of the
multiplicative group of a finite field we present improvements.

Keywords: Diffie-Hellman mapping, cryptography, cyclic groups, index,
cyclotomic mappings.
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1 Introduction

Let G be a (multiplicatively written) finite cyclic group of order n ≥ 2, γ be
a generator of G and ℓ be a positive divisor of n. Then the set of nonzero ℓth
powers

Cℓ,0 =
{

γjℓ : j = 0, 1, ...,
n

ℓ
− 1

}
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is a subgroup of G of index ℓ. The elements of the factor group G/C0 are the
cyclotomic cosets

Cℓ,i = γiCℓ,0, i = 0, 1, ..., ℓ− 1.

For any positive integer r and any a0, a1, ..., aℓ−1 ∈ G, we define the r-th
order cyclotomic mapping f r

a0,a1,...,aℓ−1
of index ℓ by

f r
a0,a1,...,aℓ−1

(x) = aix
r if x ∈ Cℓ,i, i = 0, 1, . . . , ℓ− 1. (1)

For a self-mapping f of G we denote by ind(f) the smallest index ℓ such that f
can be represented by a mapping of the form (1).

Any self-mapping of the multiplicative group F
∗
q of a finite field can be

uniquely represented by a polynomial over Fq of degree at most q − 1 with
f(0) = 0. The index of any polynomial over Fq (with constant term 0) intro-
duced in [1, 19] (which was based on [16]) coincides with our definition. In
this special case the index has raised increasing interest, see for example [7],
the survey article [20] and references therein. In particular, any mapping of
small index is highly predictable and a large index is needed for cryptographic
functions.

The security of the Diffie-Hellman key exchange, see for example [17, Chap-
ter 2], for the group G is based on the infeasibility of evaluating the (bivariate)
Diffie-Hellman mapping D,

D(γa, γb) = γab, a, b = 0, . . . , n− 1. (2)

The bivariate Diffie-Hellman mapping can be efficiently reduced to the uni-
variate Diffie-Hellman mapping,

d(γa) = γa2 , a = 0, . . . , n− 1, (3)

since
D(γa, γb)2 = d(γa+b)d(γa)−1d(γb)−1

and square roots in G can be calculated efficiently using the Tonelli-Shanks
algorithm, see for example [2, Chapter 7].

In practice, subgroups of the multiplicative group of a finite field and elliptic
curves over finite fields are mainly used. For these groups many results on
polynomials representing and interpolating the univariate and bivariate Diffie-
Hellman mapping have been obtained, in particular, lower bounds on degree
and sparsity, see [3, 4, 5, 6, 8, 9, 12, 13, 14, 21] and the monograph [18].

In this paper, we first study the index of the univariate Diffie-Hellman
mapping for a generic cyclic group of order n in Section 2. We show that
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ind(d) is n for odd n and n/2 for even n as well as that each mapping of small
index coincides with d only on a small subset of G.

In Section 3 we introduce the index pair of a bivariate function over G
and obtain similar results for the bivariate Diffie-Hellman mapping, as well.
For G = F

∗
q and k-variate polynomials the index k-tuple has already been

defined in [15].
In the special case that G is a subgroup of the multiplicative subgroup F

∗
q

of the finite field Fq we obtain some improvements in Section 4.
We will use the notation

f(n) = O(g(n)) if |f(n)| ≤ cg(n)

for some constant c > 0 and

f(n) = o(g(n)) if lim
n→∞

f(n)

g(n)
= 0.

f(n) ≪ g(n) and g(n) ≫ f(n) are both equivalent to f(n) = O(g(n)).

2 Index of the univariate Diffie-Hellman map-

ping

First we determine the index ind(d) of the univariate Diffie-Hellman mapping.

Theorem 1. Let G be any cyclic group of order n with generator γ. Then the
index of the univariate Diffie-Hellman mapping d of G defined by (3) is

ind(d) =

{

n, n is odd,
n/2, n is even.

Proof. Let ℓ denote the index of d, that is,

d = f r
a0,...,aℓ−1

for some positive integer r and a0, . . . , aℓ−1 ∈ G, where f r
a0,...,aℓ−1

is defined
by (1). Then we have

d(γjℓ+i) = aiγ
r(jℓ+i) = γ(jℓ+i)2 , j = 0, . . . ,

n

ℓ
− 1, i = 0, . . . , ℓ− 1. (4)

Taking j = 0 and j = 1 we get

ai = γ−ri+i2 = γ(ℓ+i)2−r(ℓ+i), i = 0, . . . , ℓ− 1,
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which implies

r ≡ ℓ + 2i mod
n

ℓ
, i = 0, . . . , ℓ− 1. (5)

Thus either ℓ = 1 or n/ℓ divides 2.
If ℓ = 1, note that r ≡ ℓ ≡ 1 mod n by (5). Then (4) applied with j = 0

and j = n− 1 implies γ−1 = γ and thus n ∈ {1, 2}.
If n/ℓ divides 2, we have ℓ = n if n is odd and ℓ = n/2 or ℓ = n if n is

even. It remains to show that for even n, d can be represented by a mapping
of index n/2.

Suppose that n is even and ℓ = n/2, which means that each coset Cℓ,i of G
contains only two elements, γi and γi+n/2, for i = 0, . . . , n/2−1. Choose any r
with r ≡ n

2
mod 2 and ai = γi2−ir. Then it is easy to verify that

d(γi) = γi2 = aiγ
ir and d(γi+n/2) = γ(i+n/2)2 = aiγ

(i+n/2)r

for i = 0, 1, . . . , n/2− 1 and the result follows.

Theorem 1 states only that the univariate Diffie-Hellman mapping d cannot
coincide with a mapping of small index in all points. However, by the following
result it cannot even coincide in many points.

Theorem 2. The univariate Diffie-Hellman mapping d of the cyclic group G
of order n coincides with any mapping of index ℓ in

O(ℓn1/2)

elements of G. If n is prime, we have the better bound 2ℓ.

Proof. For fixed a ∈ {0, 1, . . . , n − 1} consider the mapping fa(y) = γayr,
y ∈ G. We have to estimate the number N of x = 0, 1, . . . , n− 1 with

fa(γ
x) = d(γx),

that is,
γa+rx = γx2

,

or equivalently,
x2 − rx− a ≡ 0 mod n.

By [10] we have
N = O(n1/2)

for any n. If n is prime, we have obviously N ≤ 2. Since each function of
index ℓ is the combination of at most ℓ different functions of the form fa and
the result follows.
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3 Index of the bivariate Diffie-Hellman map-

ping

Let ℓ1 and ℓ2 be divisors of n and G the cyclic group of order n.
For any positive integers r1 and r2 and any a0,0, . . . , aℓ1−1,ℓ2−1 ∈ G, we define

the (r1, r2)th order cyclotomic mapping f
(r1,r2)
a0,0,...,aℓ1−1,ℓ2−1

of index pair (ℓ1, ℓ2) by

f (r1,r2)
a0,0,...,aℓ1−1,ℓ2−1

(x, y) = ak1,k2x
r1yr2 if (x, y) ∈ Cℓ1,k1 × Cℓ2,k2, (6)

for k1 = 0, . . . , ℓ1 − 1 and k2 = 0, . . . , ℓ2 − 1. For a mapping f over G with the
property (6) we call (ℓ1, ℓ2) an index pair of f .

Theorem 3. Let G be any cyclic group of order n. Then the bivariate Diffie-
Hellman mapping D of G defined by (2) has the only index pair (n, n).

Proof. Since otherwise the result is trivial we may assume n ≥ 2, min{ℓ1, ℓ2} <
n and wlog. ℓ1 ≥ ℓ2.

Let (ℓ1, ℓ2) be an index pair of D, that is, D can be represented by a
mapping of the form (6). Then

D(γk1+j1ℓ1 , γk2+j2ℓ2) = γ(k1+j1ℓ1)(k2+j2ℓ2) = ak1,k2γ
r1(k1+j1ℓ1)γr2(k2+j2ℓ2) (7)

for j1 = 0, . . . , n/ℓ1 − 1, j2 = 0, . . . , n/ℓ2 − 1, k1 = 0, . . . , ℓ1 − 1 and k2 =
0, . . . , ℓ2 − 1.

Taking j1 = j2 = 0 we get

ak1,k2 = γk1k2−r1k1−r2k2. (8)

Taking j1 = 0 and j2 = 1 gives

ak1,k2 = γk1k2+k1ℓ2−r1k1−r2k2−r2ℓ2. (9)

Combining (8) and (9) yields

r2 ≡ k1 mod
n

ℓ2

for k1 = 0, . . . , ℓ1 − 1. Thus ℓ1 = 1 and also ℓ2 = 1 by our assumption ℓ2 ≤ ℓ1.
Since ℓ1 = ℓ2 = 1, we have k1 = k2 = 0 and r2 ≡ 0 mod n. Then (7)

becomes
D(γj1, γj2) = γj1j2 = a0,0γ

r1j1
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and thus
a0,0 = γj1j2−r1j1 .

Taking j1 = 0 and j1 = 1, respectively, we get

a0,0 = 1 = γj2−r1,

that is,
j2 ≡ r1 mod n

for j2 = 0, . . . , n− 1. This is not possible unless n = 1 which contradicts our
assumption.

Theorem 4. Any mapping of index pair (ℓ1, ℓ2) coincides with the bivari-
ate Diffie-Hellman mapping D of the cyclic group G of order n in at most
n1+o(1)ℓ1ℓ2 elements of G2.

Proof. For each γa ∈ G the mapping fa(γ
x, γy) = γaγr1xγr2y coincides with

D(γx, γy) = γxy if and only if

xy ≡ a+ r1x+ r2y mod n.

For fixed y put t = gcd(y − r1, n). If t does not divide a + r2y, there is no
solution x. Otherwise the equation is equivalent to

x
y − r1

t
≡

a+ r2y

t
mod

n

t
,

which has a unique solution x modulo n/t, that is, t solutions modulo n. For
each t there are ϕ(n/t) different y ∈ {0, . . . , n − 1} with gcd(y − r1, n) = t,
where ϕ is Euler’s totient function. Hence, we have

∑

t|n

ϕ(n/t)t = n
∑

d|n

ϕ(d)

d
≤ τ(n)n = n1+o(1)

solutions, where τ(n) = no(1) is the number of divisors of n. Therefore each
mapping of index pair (ℓ1, ℓ2) coincides with D in at most ℓ1ℓ2n

1+o(1) elements
of G2.

4 Multiplicative subgroups of finite fields

In this section let G be a subgroup of F∗
q of order n|q − 1 and γ ∈ F

∗
q be of

order n. First we deal with the univariate case.
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Theorem 5. Let f be any self-mapping of F∗
q satisfying

f(γx) = γx2

, x ∈ S,

for a subset S ⊆ {N + 1, . . . , N +H} of cardinality |S| = H − s with H ≤ n.
Then we have

ind(f) ≥
n

2(n−H + 2s+ 1)
.

Proof. For H = n and s = 0 the result follows from Theorem 1 and we may
restrict ourselves to the case n−H + 2s+ 1 ≥ 2. Since otherwise the result is
trivial we may also assume

ind(f) ≤ n/3.

A straightforward extension of [16, Theorem 1] provides that any mapping G
of index ℓ can be represented by a polynomial of the form

G(X) = Xr
ℓ−1
∑

i=0

AiX
in/ℓ. (10)

Now assume that f is of index ℓ and thus h defined by

h(γx) = f(γx)γ−rx, x = 0, . . . , n− 1,

can be uniquely represented as

h(X) = G(X)X−r

for some positive integer r and polynomial G(X) of the form (10). In partic-
ular, the weight w(h), that is, the number of nonzero coefficients of h(X), is
at most ℓ, and the degree of h(X) at most (ℓ− 1)n/ℓ ≤ n− 3. For all but at
most s+ 1 elements x of S we have

h(γx+1) = f(γx+1)γ−r(x+1) = γ(x+1)2−r(x+1)

= γx2−rx(γx)2γ1−r = γ1−r(γx)2h(γx).

Hence, the polynomial

F (X) = h(γX)− γ1−rX2h(X)

has at least |S| − s− 1 = H − 2s− 1 zeros of the form γx, x ∈ {1, . . . , n}. The
weight w(F ) of F (X) satisfies

w(F ) ≥
n

n−H + 2s+ 1

7



by [11, Lemma 1], which is applicable since deg(F ) ≤ n − 1. On the other
hand, w(F ) ≤ 2w(h) and thus

ℓ ≥ w(h) ≥
n

2(n−H + 2s+ 1)
,

which completes the proof.

Remark. Theorem 2 implies

ind(f) ≫
|S|

n1/2

for any S. This lower bound does not exceed n1/2. However, Theorem 5
provides a larger lower bound than n1/2 for any S satisfying the conditions of
Theorem 5 with n− |S| = o(n1/2).

Similar ideas can be used to prove an analog of Theorem 5 for the bivariate
Diffie-Hellman mapping.

Theorem 6. Let G be a subgroup of F∗
q of order n|q − 1 generated by γ, U

be any subset of {0, 1, . . . , n− 1} and V = {N, . . . , N +H − 1} be any set of
consecutive integers for some H ≤ n. Let f : G× G → G be any mapping of
index pair (ℓ1, ℓ2) satisfying

f(γx, γy) = γxy, (x, y) ∈ U × V.

Then we have
max{ℓ1, ℓ2} ≥ min{|U |, H}.

Proof. Put m = min{|U |, H}.
It is easy to see that any mapping f of index pair (ℓ1, ℓ2) and order (r1, r2)

can be represented by a polynomial f(X, Y ) over Fq of the form

f(X, Y ) = Xr1Y r2

ℓ1−1
∑

i=0

ℓ2−1
∑

j=0

ai,jX
in/ℓ1Y jn/ℓ2.

Then there is a subset {u0, . . . , um−1} of U such that

γux(N+y)−r1ux−r2(N+y) =

ℓ1−1
∑

i=0

ℓ2−1
∑

j=0

ai,jγ
inux/ℓ1+jn(N+y)/ℓ2 , x, y = 0, . . . , m− 1.
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Assume max{ℓ1, ℓ2} < m. Then the coefficient matrix A = (ai,j)i,j=0,...,m−1,
with ai,j = 0 if i ≥ ℓ1 or j ≥ ℓ2, satisfies

G = V1AV2,

where
V1 =

(

γinux/ℓ1
)

i,x=0,...,m−1
, V2 =

(

γjn(N+y)/ℓ2
)

y,j=0,...,m−1

and
G =

(

γ(ux−r2)(N+y)−r1ux
)

x,y=0,...,m−1
.

V1 and V2 are Vandermonde matrices and G can be reduced to a Vandermonde
matrix by multiplying the xth row by the constant γr1ux . Hence, A is the
product of three invertible matrices

A = V −1
1 GV −1

2

and thus invertible itself. In particular, each row and each column ofA contains
at least one nonzero entry which contradicts our assumption max{ℓ1, ℓ2} <
m.

Remark. Theorem 4 implies the lower bound

max{ℓ1, ℓ2} ≥ (ℓ1ℓ2)
1/2 ≥

(

|U |H

n1+o(1)

)1/2

.

Its right hand side is always smaller than n1/2. Theorem 6 provides a lower
bound ≥ n1/2 for any U and H satisfying min{|U |, H} ≥ n1/2.
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