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Integration in Finite Terms: Dilogarithmic Integrals

Yashpreet Kaur and Varadharaj R. Srinivasan

Abstract

We extend the theorem of Liouville on integration in finite terms to include dilogarith-
mic integrals. The results provide a necessary and sufficient condition for an element of
the base field to have an antiderivative in a field extension generated by transcendental
elementary functions and dilogarithmic integrals. We also study algebraic independence
of certain dilogarithmic integrals.

1 Introduction

In this paper, a field always means a field of characteristic zero and differential fields are
equipped with a single derivation map denoted by ’. If F' is a differential field then the kernel
C'r of the derivation map is a subfield of F, called the field of constants of F'. Let 0,1 € F' with
n # 0and ¢ = 1’ /n. Then 6 is called a logarithm of  and ) is called an exponential of §. Note that
for any ¢ € C, we have (0 + ¢)’ = 1/ /n and for any nonzero ¢ € Cr, we have 0’ = (¢n)’'/(cn).
For convenience and clarity, if an element 6 is a logarithm (respectively, an exponential) of n
then we shall use the symbol log(n) (respectively, e”) to denote 6. A differential field extension
E =F(0y,...,6,)is called an elementary extension of F' if either 0, is a logarithm of an element
of F,_y := F(fy,...,0;_1) or 6, is an exponential of an element of F;_; or §; is algebraic over
F,_1, where F;, := F. An element f € F'is said to admit an elementary integral if there is an
elementary extension £ of /' with Cr = Cp such that v’ = f for some u € E; in which case, u
is called an elementary integral of f.

In [7], Rosenlicht provided a purely algebraic necessary and sufficient criterion for a function
to admit an elementary integral. This criterion, often referred in the literature as Liouville’s
Theorem on integration in finite terms, states that if f € F' has an elementary integral then

there are constants cy, ..., ¢, € Cr and elements w, rq, ..., r, € F' such that
=Y ¢gLt+uw. 1.1
f ; (11)

Thus, if u is an elementary integral of f then there is an element w € F' such that u — w is
a Cr—linear combination of logarithms of elements of F. Ever since the publication of Liou-
ville’s Theorem, several mathematicians extended the theorem to include special functions
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such as logarithmic integrals, dilogarithmic integrals, Fresnel integrals and error functions. A
detailed account of the history of this problem can be found in [1], [6] and [9]. In this paper we
consider the problem of extending Liouville’s Theorem by allowing dilogarithmic integrals in
addition to transcendental elementary functions.

Letg € F\{0,1}. Anelement ¢y(g) € F is called a dilogarithm (See [1], p.912) of g or a dilogarith-
mic integral of g if there is an element § € F' such that ¢’ = —(1—g)'/(1—g) and ¢5(g) = (¢'/9)0.
A differential field extension £ = F'(0,...,6,) of F is a dilogarithmic-elementary extension of F'
if 0; is algebraic over F;_; or 6; is exponential of an element of F;_; or 6; is a logarithm of an
element of F;_; or there is an element g € F;_; \ {0, 1} such that ¢; is a dilogarithm of g. If
none of the ¢, are algebraic over F;_; then we say L is a transcendental dilogarithmic-elementary
extension of F. The following theorem, which deals with the problem of integration in finite
terms with dilogarithmic integrals, is the main result of this paper and its proof is contained
in Theorem 2.4.

Theorem 1.1. Let E = F(6,,...,6,) be a transcendental dilogarithmic-elementary extension of F,
Cg=Crandu € E. Then v’ € F if and only if there is a finite indexing set I and elements r;,w € F
and g; € F'\ {0, 1} such that

= ri& + ', (1.2)
icr i
1—g) g;
,rl/ = CZ< - + CZ”_]7
1 — 3 Z J 5
jerl

where c; and c;; are constants such that c;; = c;;.

The problem of integration in finite terms with dilogarithmic integrals was first considered
by Baddoura (See [1], p.933), where he proved the following theorem: If E is a transcendental
dilogarithmic-elementary extension of F, Cr = Cp, CF is an algebraically closed field, F'is a
liouvillian extension of Cr and u € F is an element such that f := «' € F then

u= Z ¢ D(gi) + Z s;log(v;) + w, (1.3)

icl jed

where g;, sj,vj, w are elements in F, ¢; € Cp and D(g;) = l2(g:) + (1/2)log(g:) log(1l — g;).
In [4], p.228 , Theorem 6.1, we devised new techniques that allowed us to generalize' and
provide a simpler proof of this theorem of Baddoura. In a recent article (See [3]), Hebisch has
generalized and reproved results of Baddoura on dilogarithmic integrals using completely
different techniques that involve certain tensor product constructions. The generalization is
that he also allows algebraic elements in the field of definition and thus the hypothesis that 0
must be transcendental over F;_; in Baddoura’s theorem shall be dropped. Note that Equation
1.3 only provides an expression for v in terms of dilogarithms and logarithms of elements of F.
Our result, in the spirit of Liouville’s Theorem, provides a necessary and sufficient condition

We no longer require that C'r is an algebraically closed field or that F is a liouvillian extension of C.
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(See Equations 1.2) for the element v’ € F' to admit an antiderivative in a transcendental
dilogarithmic-elementary extension.

In Section 4, we provide a new dilogarithmic identity (See Proposition 4.2 iii) and show that

for distinct elements a4, ..., a; € Fand t > 3, the set {/, (g:zz ) :k > j} is algebraically inde-
pendent over the logarithmic extension £ = F(6)({log(a; — ax),log(d — «;); 7,k = 1,...,t}).
The necessary differential algebra preliminaries required to read this article can be found in

Section 2 of [4].

2 Integration in DEL extensions

An extension F is called a DE L—extension ([4], pp. 210-211) of F if E = F(0y,...,0,), Fo .= F
and F; = F,_1(0;) with Cr = CF, where 6; is algebraic over F;_; or 6; is an exponential of
an element of F;_; or 6; is a logarithm of an element of F;_; or §; is a dilogarithmic integral
of an element of F;_; or 6; is an error function of an element of F;_; (that is 6, = «'v, where
v' = (—u?)'v for some u,v € F;_;) or 6; is a logarithmic integral of an element of F;_; (that is,
0! = u' /v, where v/ = u' /u for some u,v € F;_).

The main result of this section is Theorem 2.4, where we shall classify all elements of the field
F' that admits an antiderivative in a transcendental DE L—extension of F'. As a corollary, we
shall obtain a proof of Theorem 1.1. We first recall from [4] the following definitions and a
theorem.

An element v € F'is said to admit a DEL—expression over F' if there are finite indexing sets
I,J, K and elements r; € F, g; € F'\ {0,1} for all i € I, elements u;,log(u;) € F and constants
a; for all j € J, elements vy, e v € F and constants by, for all £ € K, and an element w € F

such that
gl —’U2
U—Zn —l—Z ]log (@) —|—Zbkvl;e k4 (2.1)
jed

where for each i € I, there is an integer n; such that r; = ;" ¢;hl,/hy for some constants ¢;
and elements h;; € F'. A DEL—expression is called a special DE L—expression if for each i € I,
ri = ¢;(1—g;)' /(1 — g;) for some constant ¢; and a D—expression if it is special and for each j, &,
a; = bk =0.

A differential field extension E of F'is called a logarithmic extension of F'if Cr = Cr and there
are elements hy, ..., h,, € F such that £ = F(loghy,...,logh,,).

Theorem 2.1. ([4], p.227) Let E = F(0y,...,0,) be a transcendental DE L—extension of F. Sup-
pose that there is an element v € E with u' € F then ' admits a special DE L—expression over
some logarithmic extension of F' and a DEL—expression over F'. Furthermore, if E is a transcen-
dental dilogarithmic-elementary extension of F' then v’ admits a D—expression over some logarithmic
extension of F.



Observe that Theorem 2.1 provides a necessary condition for an element to admit an an-
tiderivative in a transcendental DEL—extension. In the next two Propositions, we modify
Theorem 2.1 so as to obtain a criteria that is both necessary as well as sufficient. One of the
important ingredients in the next proposition is a version of the Kolchin-Ostrowski Theorem,
whose statement we shall reproduce here for the benefit of the reader.

Kolchin-Ostrowski’s Theorem. ([5], p.1155 or [8], Appendix.) Let E = F(0y,0,,...,0,) be a
differential field extension of F with ¢, € F for each i and Cp = Cp. If y € Eand y € F then
y =y, cb; +n, for constants cy,--- ,c,and n € F.

Theorem 2.2. Let F be a differential field and v € F. If v admits a special DE L—expression over a
logarithmic extension E of F' then v admits a DE L—expression over F' of the following form.

_ g?{ U; ’_—v? !/
(DD B DLLCR R .
iel jeJ keK
1— : / /
SR Cll DI QP 23)

where ¢; and c¢;; are constants such that c¢; = ¢;.

Proof. Assume that v admits special DE L—expression over some logarithmic extension of £’
and proceed as in the proof of Lemma 4.3 of [4], with F in place of F'(6), to obtain the following
special DE L—expression for v.

_ g?{ U; ;v !/
0= Doyt D i+ Y ke (2.4)

i€l v jed

where each g;, u;, log u;, vg, e belongs to F, each r; and w belong to some logarithmic exten-
sion F of I’ and for some constant c;,

= (2.5)

LetS:=v—3,; ajk:gl—juj + 3 ek brvpe~ € F and observe that

9i
S=> s+ (2.6)
ier i
For convenience, let I = {1,2,...,t} and assume that {log(1 — ¢1),...,log(1 — g,)} forms a
transcendence base for the differential field F'({r;|i € I}). Then itis well-known that F'({r;|i €
I}) = F(log(l — ¢1),...,log(1l — g,)). Since 7, = ¢;(1 — ¢;)'/(1 — ¢;), by the Kolchin-Ostrowski
Theorem, we have

ri = ¢ log(1—g;) +e; for i=1,...,n

and ri:Zcﬂlog(l—gl)jLsi for i=n+1,...,1, (2.7)
1=1



where ¢;, ¢;; are constants and s; € F.

Find hy,..., h, in F so that {loghy,...,logh,,} forms a transcendence base for E over
F(log(1—g¢1),...,log(l—g,)). Then E = F(log(1 —¢1),...,log(1—g,),logh,...,logh,,). Now
w € F and v’ is a linear polynomial in log(1 — g;), therefore, using Proposition 2.2(c) of [4], we
shall write

w=>"aplog(l—g)log(l—g,) + > wlog(l— g)+ b, (2.8)
l,p=1 =1
where each q,, is a constant and elements y;, w belongs to F'(logh, .. .,logh,,). Substituting

Equations 2.7 and 2.8 in Equation 2.6 and equating the coefficients of log(1—g;) to 0, we obtain

t n
aq— + Z cil—+Z(apl+azp)W+yl =0e€r. (2.9)
. p

In particular, we have y; € F. Since y; € F(loghy,...,logh,,), from the Kolchin-Ostrowski
Theorem, iy, = Z;”Zl eiqlog hy + 2z for constants ¢, and elements z; € F. Rewriting Equation
2.6, we get

g= el Y Si_ T Sy i LR (2.10)

Substituting for y;, we obtain

n t ’ n m ’
i 9; 1—yg ~
S = g ei; + E 82-; + E ( E eiqlog hy + zl> ( ) + . (2.11)
i=1 =1 \g=1

1 —
) P— ) _ _ gi

Thus @' is a linear polynomial in log h,, for each ¢, over F. Using Proposition 2.2(c) of [4], for
constants d;, and w,, wy € I, we write

W= djgloghjloghy+ > wylog hy + wy.
jqul

q=1

Substitute w in Equation 2.11 and compare the coefficients of log h, to obtain

That is, > ", elglog(l — 1) + > 7~ (djq + dgj)logh, + w, is a constant in F. Since log(1 —
g1),...,log(1 —g,),loghy, ..., logh,, forms a transcendence base for £ over F the coefficients
eig, djq + dgj must be 0. Therefore, y; = 2 € F, w, € Cr and @ = Y77 | w, log by + wy.
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Now Equation 2.11 becomes

g g U—g) NS
S:Zeig—l— Z si;—l—ZylijLquh—jtwo. (2.12)

i=n+1 v =1

From Equations 2.5and 2.7, fori =n +1,...,1,

Thus, for some constants a; and b;,

si:cilog(l—g,-)—Zcillog(l—gl)+di for i=n+1,...,t and
=1

t n
y = —c¢logg — Z calog gi — Z(alp + ay)log(l —g,) + b for 1=1,...,n.
i=n+1 p=1

Now Equation 2.12 becomes

/

n / t n
S = Zei% + Z (Ci log(1 — g;) — Zcil log(1—¢g;) + di)%
i=1

3 3

i=n+1 =1
- : - N (1 - gl>/ = h; /
+ Z ( —qlogg — Z cilog g; — Z(alp + ay)log(l —g,) + bl)?gz + wqh—q + wy.
=1 i=n+1 p=1 q=1

(2.13)

Note that the coefficient of (¢;/g;) log(1—g;) is same as that of ((1—g;)'/(1—g;)) log g;. Therefore,
assuming

yi, if 1<i<n 1—g;,if 1<i<n

si, if n+1<i<t . gi, if n+1<i<t

iz, if t+1<i<t+n gi_e, if t+1<i<t+n

Wi—gpif t4+n+1<i<t+m+n hici_nif t4+n+1<i<t+m+n



and L ={1,2,...,t +n+ m}, we rewrite Equation 2.12 as

S = Z)\:uz /

€L
ie., U_ZAMZ+Za11 +Zbkvke ”k+w0
i€l 08 U; keK
1— )
and N =T ) 3 et (2.14)
I — py el !
for suitably chosen constants ¢; and ¢; with ¢; = ¢. O

Proposition 2.3. Let F' be a differential field and v € F. Suppose v admits a DE L—expression over
F of the form

v = ngl + Z ]10 —|— Z brupe” vk 4 w', (2.15)

el jeJ keK
1_ )
n’-—czl 9 4§ Zlgl (2.16)
Y lel

where ¢; and c¢;; are constants with ¢; = c;;. Then there exists a DE L—extension E of I containing an
antiderivative of v.

Proof. We claim that E = F'({log(1 — g;),10og gi, £2(g:), li(u;), er f(vy)}) contains an antideriva-
tive of v. Since r; = ¢;log(1 — ¢;) + >, calog g + e; for constants e; and ¢;; = ¢y, it follows
that

gz gl —1)2
U—chlogl—gl : ZC” log g; log g1) —I—Zel —I—Z jlo u]+Zbkv,'€e k4w
el i,lel i€l k
Observe that the element
1 )
U= — Zcifg(g,-) + 3 Z cqlog gilog g1 + Z e;log g; + Zaj li(u;) + Z by erf(vg) +w
i€l i,lel 1€l jeJ keK
is an antiderivative of v and that u € F. O

Theorem 2.4. Let E = F(6,,...,6,) be a transcendental DE L—extension of F. Then there is an
element uw € E with v’ € F if and only if v’ admits a DE L—expression over F' of the form

/

u = Zﬁg—; +Z ]loguy —I—Zbkvke L

i€l b jed

where a;, by, ¢;, and c; are constants such that c;; = cy;.
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Proof. From Theorem 2.1, we know «’ satisfies a special DE L—expression over a logarithmic
extension of F. Now apply Propositions 2.2 and 2.3 to complete the proof. O

Proof of Theorem 1.1. Apply Theorem 2.1, Theorem 2.2 and Proposition 2.3 with J and K
being empty sets. O

3 Applications

Example 3.1. Consider the differential field F = C(z,log(1 + z),log(2(1 — 2)(1 — z — 2%))) and
the element

1—2— 2\/ /

v = Ot it log(1+ 2) + = log(z(1 — 2)(1 — 2z — 2%)) + v, € F. (3.1)

1—2z—22 z
Through a lengthy calculation, it was proved in [4], pp.231-232 that v admits an antiderivative
in a transcendental dilogarithmic-elementary extension of F'. However, if welet g; := 1 — 2z —
2%, gy =2, 11 = —log(l + 2) and r, = log((2(1 — 2)(1 — 2z — 2?))) then we see that

/ 1 / / 1_ / /
VI A U WA U 1) A S
z 1+2 z 1—g g2
1—2) 1—z—2%) 2 1—go) 1 5
O Ok V2 _0-9) g, 6 (3.2)
1—2 1—2z— 22 z 1—go g1 go

which is in accordance with the Theorem 1.1. Thus it has become immediate that v admits an
antiderivative in some transcendental dilogarithmic- elementary extension F of F.

Example 3.2. Let /' = C(z, ¢”) be the ordinary differential field with derivation’ := d/dz and
consider the differential field £ = C(z, e*,log(1 — e*), l5(e”)). We shall now find all elements
of F' having an antiderivative in E.

Let v € E and that v’ € F. Then by the Kolchin -Ostrowski Theorem, for some w €
C(z, e*,log(1l — e”)) and constant ¢, we have u = cly(e”) + w. That is,

: (e")

u = —c¢
et

log(1 — €”) +w' = —clog(1 — ) + ', (3.3)

which is a D—expression over C(z, ¢”,log(1—e€")). Then using Proposition 2.2 (c) of [4], we can
write w = ¢; log”(1 — %) + w; log(1 — €®) 4 wy, for some constant ¢; and elements w;, wy € F.
Substituting v’ in Equation 3.3 and comparing the coefficients of log(1 — ), we obtain

1 _ efE)/
o9, 1 2C)
wy=c= 20—
That is, (w; — cz)’ = 2¢1(1 — €*)'/(1 — €*) One can show that there is no element z € F' such
that 2’ = (1 — €”)'/(1 — €”) and therefore ¢; = 0. Hence from Equation 3.3, we obtain that
1 R AV x\/
ﬂﬂtwg, where w] :c:c(e ) :
1—e”* er

v =wn



Conversely, it is easy to see that if
(1 —e€")
1—e®
= —r'log(1 — ") + (w + rlog(1 — "))’

+uw' eF

vi="T

where r,w € C(z,e*) and 1’ = ¢ for some ¢ € C then [v = cly(e”) + w+rlog(l —e”) +d € E
for some constant d € C.

Theorem 3.3. If H € C(Y') is a non-constant rational function such that H (log(x)) has no antideriva-
tives in C(x,log(z)) then it has no antiderivatives in any transcendental dilogarithmic-elementary
extension of C(x,log(x)).

Proof. Suppose on the contrary that H(log(z)) has an antiderivative in a transcendental
dilogarithmic-elementary extension of C(z)(log(z)). Then from Theorem 1.1, we have

/
H(logx) = r 4 w', (3.4)
ier 7
1—g) /
==t 52, 63
gi jer Ji

where 75, g;,w € C(z,log(x)) and ¢; and ¢;; are constants such that ¢;; = ¢;;. Observe that
(xlog(x) — z)" = log(z) and define Ry = x and for n > 1, R, := xlog"(z) — nR,_;. Then
it can be easily verified that R, = (zlog"(z) — R,—1)" = log"(x) for n > 1. Therefore for
any polynomial P € C[Y], there is an element ¢ € C(z)[log(z)] with ¢' = P(log(x)). Thus,
if necessary, we shall suitably replace w and assume that the partial fraction expansion of
H(log(z)) over C is of the form

mp

Ja
H(log(x)) = Y 3.6
(log(x)) ; ; (o8 o) (3.6)
where f,,, o, € C.
Let

where P is a polynomial over C(x), be the partial fraction expansion of w over C(z). Note that
P(log(z))" is again a polynomial in log(z) over C(z). Assume for the moment that we have

/ [

proved } ., ri% is a polynomial in log(z) over C(z). Since

( g )/ — Whq _ qupg((1/2) — B,)
(log(x) — f3p)1 (log(x) — B,)7  (log(z) — B,)at’
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it then follows from Equation 3.4 that

/

P(log(x Z 91 and that

el 9i

H(logx) = (w — P(log(x)))".

Now P(log(x)) € C(x)[logz] and P(log(z))" € C(x)[logz]. By Proposition 2.1 (a) of [4], there is
an element Q(log(z)) € C(z)[log z| such that Q(log(x))" = P(log(z))’". Thus,

H(logz) = (w — Q(log(x)))
which is a contraction and this completes the proof of the theorem.

Now we shall in fact prove that } ., rig—l{ = nlog(z) + ¢ for some 7, € C(x). Let g; =
i [Ip=1(log(z) — By)*r and 1 — g; = &[I;_,(log(z) — B,)"», where 1;, & € C(x), 8, € C(x)

and a;,, b;, are integers. Then

(=) €, s~ Gosta) =5 o

p—— and ——~=> ;
P log(x) — B, 1—g i P log(x) — B,

and thus Equation 3.5 becomes

r = Cz + Z ” 77] + Z <clb,p + Zcmazp> w. (3.9

Jjel jel

Let z € C(z)(log(x)) have a pole of order m > 1 at § € C(z). Using the partial fraction
expansion of z, we find a unique element Z € C(x)(log(x)) such that Z has no pole at 5 and

that ; 5
m 0
(log(z) — B)™ log(z) — 8
Since Z has no pole at 3, its derivative Z' cannot have a pole at § either. Since there is no
element in C(z) whose derivative is 1/x, we have ' # 1/x and it follows that

; _ mfm(log(z) — B)'

1
Z = + terms involving lower powers of ——— + Z (3.11)

(log(z) — B)™*! log(z) — 3
has a pole at 5 of order m + 1 > 2. Thus, for any z € C(z)(log(z)), 2’ has no simple poles.

+Z, where f,, #0. (3.10)

Taking z = r;, we obtain from Equation 3.9 that both r; and r cannot have poles. Thus for

eachi € I, Cibz’p + Zje[ CijQip = 0 and

= cz + Z cm (3.12)

Jjel
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Note that r; € C(x)(logx) and r; € C(x). Therefore, by Kolchin-Ostrowski Theorem, r; =
e; log(x) + d; for some constants d; and e;. Thus

KA KA - 1 /8 )/
an Z e; log(x (77 +Z p—;i 5, >

’l

el el
:Z(e-log( )+ d; 772+ZZ (e:iBp + d;) a; (log —l—ZZea (log(x) — B,)".
‘ 7 iMp ip 10 1Uip
el iel p=1 iel p=1
(log(x) — &)’
= nlog(z) + ¢ + eibp + di) ap—~——~——>=, (3.13)
ZGZI; ! " log(x) — B,
where n = Y, , ez-— C(z) and ¢ = D ier iy ot D ier domey €itlip (5 ﬁ’) C(x). We claim

that for each p, ) ., (€;3, + d;)a;, = 0 and thls would prove that .
degree at most one, as desired.

;e iy is a polynomial of

Suppose that 3 € C(x) be a pole of w of order m > 1. Then as noted earlier, w' has a pole at
of order m + 1 > 2. From Equation 3.13, we observe that ) _._, r, - can have only simple poles.
Now since H (log(x) = > .., 7i g: +w’ and that the poles of H(log( )) € C(log(z)) are constants,
we obtain that /5 is must also be a constant. That is 5 € C. Now the poles of H (log(z)) and v’
are constants and therefore the poles of ) ., ;% = H(log(x)) — w' are constants as well.

If 5, € Cisapoleof 3, _; ri% then

¢ 1= Resg, (H(log(x))) = Resg, (Y1) + Ress, () = 3 ag(eif, + d;) (log(x) — B,)' + wpy,
icl v icl

where ¢ € C and w,; € C(z) is the residue of w at 3,. Since 3, has to be a simple pole of
>icr iy, wehave d == 37, ay(eif, + d;) to be a nonzero constant. Thus we obtain

d S

c——= w,,  for wy € C(x),
which contradicts the fact that 1/z has no antiderivative in C(z). Therefore >, ;7 has no
poles, thatis, > ., (e;, + d;)a;, = 0 for each p. O

Remark 3.4. It can be shown (either through a hand computation or applying Risch al-
gorithm) that C(z)(log(z)) does not contain any antiderivative of 1/log(x). Thus, taking
H(Y) =1/Y, weshall apply Theorem 3.3 and prove that the logarithmic integral [ 1/ log(z)dx
does not belong to any transcendental dilogarithmic-elementary extension of C(z, log(z)).

4 Logarithmic and Dilogarithmic Identities

The goal of this section is to establish certain logarithmic and dilogarithmic identities. Let
F G F(0) be differential fields, where 6 is transcendental over F, f € F(f) be a non-zero
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element and F' be an algebraic closure of F. Choose monic coprime polynomials P, Q € F[f]
and elements 7, £ € F' so that

P Q —nP
f=n—= and 1-—f= )
Q Q
Let 12 be a monic polynomial such that R = () — nP and observe that R is coprime to both P
and Q. Let ay, as, ..., a; € F be distinct elements such that

P=T[0 - o™, é: ] 60y and R= [[ (6-ay)".

J=1 j=m+1 j=n+1
where a4, - - - , a,, are positive integers, a,,+1, - - - ,a, are negative integers and b,,.1, - - - , b, are
positive integers. Then

t

f=n]J00-a)% and 1-f=¢]]0—a))",
j=1

i=1

where a1 =---=a,=0,b =---=b,, =0and b; = a; for j = m+ 1,...,n. Let E be any
differential field extension of F, with Cp = CF, containing ¢5(n), logn,log & and log(c; — a;)
for all i # j.

Proposition 4.1. For any vy, ..., v, € E, the following identities hold:

(i) Sfor (anby — asbe) 2ok = 304, (bk — g) Uk
k#j !

(ZZ) Z§7k:1(akbj — Cijk) lOg(Oéj — Oék)’Uk = 22:1 (bk 10g7] — Qg log§ + Ck) Vi where each Ck is a
k#j

constant.

Proof. Consider the expression

/

T = Z akb —ajbk '_ak

7,k=1
k#j

Sinceb; =--- =10, =0,ay,41 =---=a, =0and a; = b; for j =m +1,...,n, we observe that
T =T, + 15 + T3, where

n-3a( > nlot

k=1 j=m+1
n
O{ _Ofk
Ty = — E bi; g aga — |
k=n+1 =1 k
n
Z Z —aj, Z
T3 = Q. b — bk CLJ V.
j — Ok - Q; — Qg
k=m+1 Jj=m+1 j=1
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Since nP + (R = Q, if P(ak) = 0 for some k = 1,...,m then {R(ax) = Q(ax

R(ag)  Qayg)

- = —=. Note that
Rla) Qo) §
R(ay) t ) — Qo) - a — «
= b and =— b
R(ox) ]:Zn;l ay — a; Q) ]:Zm;l ay, — a;
Thus,
O i L GV CT S
o= Tag—an Rlar)  Qow) 3
This implies
Tl - - Z akévk
o S

Similarly one shows for k =n +1,...,¢ that

i“ o —ap _ Plar) Qo) n
Q; — Qg

and
t /)7/
T2 = Z bk—'Uk
k=n+1
Since for k =m +1,...,n we have a, = by, it follows that
- o — oy
b —b =0.
s oy e D =0
j=m+1 j=m-+1

Since Q(ay) =0fork=m+1,...,n we have T)P(ozk) = —¢(R(ay,). Thus

t n m /

a — o a — o o —
k k k
oy, Q; ozk a oy, Q; — ay

J=m+l j=1 j=n+1 =1
_ Plaw)” | R(ow)'
Plag)  R(ow)

This implies

/

) and therefore

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)



Add Equations 4.2, 4.4 and 4.6 to obtain the identity (i). Take the antiderivative of Equations
4.1, 4.3 and 4.5, multiply by v, and then sum over all j and k with j # k to obtain identity
(ii). O
Proposition 4.2. If deg(P) < deg(Q) then

(i) Sy =31 (arla(n) + arlognlog & — Sby, log®n) is a constant in I.

(i) Sy :=>;_,(axlog& — by logn) is a constant in F.

(iii) For some constants® c, dy, and e,

6(f(0)) = La(n) — Z a;bily (9 - aj) - % Z a;bi log?(0 — )

; 0 — ag ;
J.k=1 j.k=1
k£
t t
— Z bi log(0 — o) logn — elogn + Z di log(0 — ay) + c.
k=1 k=1

(iv) For any j, k, there are constants cj, and d,j, such that

l, (9 - O‘j) A (9 - O‘k) +1og(6 — o) log(6 — ay,)

0 — ap 0 — o

1 0 —
— = (log*(0 — o) +log?(0 — ay)) + dji. log ) 4 Cik-
2 0 — ay

Proof. Note that if deg(P) < deg(Q) then >, _, b, = 0 and log¢ is a constant. Also f5(n) =
—log&logn + c for a constant c. Therefore, S; = >, _ azcand Sy = 37, _, a;log& are both
constants. On the other hand, if deg(P) = deg(Q) then >, _, a; = 0 and either 3", _, b, = 0 or
n = 1. Thus either S, = Sy =0or S; = —(1/2) 3, _, bplog>nand Sy, = — 37, _, by log 7 are both
constants. This proves (i) and (ii).

Since

£(£16)) = ~ L0 og(1 ~ 6)),

we shall replace f(#) and 1 — f(#) with their partial fraction expansions, then log(1 — f(0)) =
log & + ZZZI b log(# — ay,) + e for some constant e, and rearrange the terms to obtain

/ t / /

t
/ . n/ 9/ - ak —
G((0)) == - logé - kZu log€ —bilogn) g— = D ajbig—_+log(6 — au)

j,k=1

’ t

t / / /
N 0 — ay
_ ( ;:1 bi log(0 — ) logn) - e(z + E Gy - ) 4.7)

k=1

2In [1], p.923, Baddoura established a similar identity for dilogarithmic integrals in terms of their Bloch-
Wigner-Spence function and our proof of identity (iii) uses similar techniques.

14



From the definition of dilogarithmic integral, observe

t
0 — 0 —ao 0 —a aj —
o i\ _ ' J _ k J k
2 abils (9—%) ZW’C(@—% H—Qk)10g<9—ak>

J.k=1 jk=1
i ket
——Zab—ab)lo( —oz)‘g_Oé—Zabc(9 %
N k avk sler k 60— [09% k ik 60— (077
J,k=1 gk=1
k#j k#j
0 — a 9 — o
b — £ ) (log(6 — : 4.8
‘X (e 9_%)<og< ) + ). @8)
k#j
where constants c;, = log(a,—a;)—log(a;—ay) and ¢, = log(F—= ) log(a;—ag)+log(f—ay).

Using Proposition 4.1 (ii), Equation 4.8 can be written as

t t
0 — o 0 — o 0 —
Z a;bily <9—a2) = —Z(bklogn—aklog§+0k)9_ E_ Z akbjcjke_ .

k=1 k=1 R Ak
k#j k#j
6)/ _ O/» 9/ o O/
- a;b - k) (log(0 — ag) + k),
j;l ]k<9_aj e_ak)( g( k) + Cikk)
ki
where ¢, are constants. For constant e;, := —c¢;, + Z;=1,j¢k(_akbjcjk — ajbrcikr + agbjcki;), we
have
t t
0 — o, 0 — a 0 — o
a;byl ! aylog € — by lo + a;b — ) log(6 — a
j%z:l jk2<9_ak) ;(k g& — by gn Z 30k 0o, 06— 8( k)
k£j g

i (e
— O
+Zek9_ak'

k=1

Using the above equation, we shall rewrite Equation 4.7 as

£ ) = Lioge - Zamw( —%) - Zajbk ~ % iog(9 - a)

7,k=1
k#j
t ! 77/ t 0 — o
— D brlog(h — ax)logn | —e-+> dy k. (4.9)
k=1 oo o

where dj, = e, —eay. Observe that if deg(P) < deg(() then log ¢ is a constant and (7/n) log & =
(log £ logn), if deg(P) = deg(Q) and n = 1 then %/ log¢ = 0 and finally, if n # 1 then{ =1 — 7

and L log§ = —(5(n). Thus in any event, by taking the antiderivative, Equation 4.9 yields the
1dent1ty (iii).
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Note that
, (0 —q; 0 —af 0 —a a; — oy,
= — — 1
gQ(H—ozk) (9—0@ 0 — 08 0 —

0 — o r
=— 4 _ 0o log(a; — ay,) —log(6 — ai) + )
J

0 — «; 0 — ay

, [0 — ay 0 — a, 9’—@3— ap —
= — — 1
Ez(ﬁ—aj) (9—ozk 0 — o 06 0 —

¢ —a O —a;
= (G T2 ostay - aw) ~ 1og(0 - ) + ),

and

where §; and J;, are constants. Adding the above two equation gives

(0= , (0= ay , 0 —a
- ") = — o — _ 1 o
ly (9—04,) + 0 (9—%) (log(# — o) log(6 — ay)) =y og(f — aj)
0" — o] =
0—ca; O—ap)’

/

ra— log(@ — o) +djg <

where d;;, = 6; — ;. Rearrange the above terms and take the antiderivative to prove the
identity (iv). O

4.1 Algebraic independence of certain dilogarithmic integrals.

Gaj

From the identity (iv), it is clear that {>(5=?) and /; (9 a‘;) are algebraically dependent over
any differential field contammg log(6 — aj) and log(6 — ay). However, in the next lemma, we
shall show that the set {5 (

over logarithmic extensions of F(Q)

) k > j,a; # o for j # k} is algebraically independent

Lemma 4.3. Let F'(§) D F be differential fields, 0 be transcendental over F, Cpyy = Cp and as-
sume that either ' € F or 0'/0 € F. Let ay,...,aq, t > 3 be distinct elements in F. Then the set

{ls (9 O”) ik > j} is algebraically independent over the logarithmic extension E = F(0)({log(a; —
)710g(0 a])7j7k:177t})

Proof. Suppose the set {/, ( ) k > j} is algebraically dependent over E. Since for each

Gaj

k > j, the derivative ¢, € F, we shall apply Kolchin-Ostrowski Theorem and obtain
PPy

0— oy ¢ 0 — a;
_ E ny J
r (9—@2) k=1 Cjk2<9_ak)+v’
k>, kA2

16



where each cj; is a constant and v € E. Taking the derivatives, we obtain

0 —ao) 0 —a ] — Qi ¢ 0 —a; 0 —a, i — oy
_ _ 1 —_ . i_ loo [ &= % 2
(9—@1 9—042) Og(@—ag %2—1 Cik 0 — o 0 — 08 0 — v
12 ko

(4.10)

Let /™ be a subfield of E such that 6 is transcendental over F* and F*(0) = F(6)({log(c;—ay)}.
Since ¢ or #'/6 € F, the elements log(f — 1), ...,log(¢ — «,,) are algebraically independent
over F*(6), except when #'/6 € F and «; = 0. Since log(f — o) is transcendental over the field
Fy = F*(0)({log(d — «;);j # 2}), v must be a polynomial in log(¢ — a2) of degree at most 2
and thus we shall write v = ¢; log?(f — ) 4 vy log(f — ) + v, where ¢; € Cr and vy, vy € Fy.
Compare the coefficients of log(¢ — a») in the above equation and obtain

0 —a; 0 —d

_ =2
9—061 9—042 CIQ—OZQ

0" — of
2 4 vy

It is obvious that ¢; = —1/2 and for a constant ¢, v; = log(6 — ;) + ¢. Thus the Equation 4.10
becomes

I r
_ (9 aq _99 QZ)IOg(al_a2>:

0 —ay — O
t
0 — o 9 — o o — 0 — o
- - - £ ) log | L— 2 (log(6 — @11
;1 c;k(e_aj 9_%) Og(@—ak +9_a2(0g( ay) +¢) + v (4.11)
S

Since log(f — o) is transcendental over F; = F*(6)({log(d — «;);j # 1,2}), except when
¢'/6 € F and a; = 0, we observe that if oy # 0 then v, must be a polynomial in log(f — «;) of
degree at most 2. Thus we shall write vy = ¢, log?(0 — ay) +wy log (0 — ay ) 4wy, for ¢, € Cr and
wy, wy € Fy. Comparing the coefficients of log(¢ — a4 ) in the above equation, we shall obtain

0 — o 0 — o
+ 2¢
Q—Oég 29—0&1

+w) =0.

But, irrespective of whether ¢’ or §'/0 € F, w; has no poles. Thus we have arrived at a
contradiction. Hence, we shall assume «; = 0.

Let /0 = ', where x € F and oy = 0. Then the Equation 4.11 becomes

0 —ay ‘ 0 —af -, aj — ay 0 — ol
_ 1 _ — § . J k 1 J 2 /.
(9—@2 a:) o8 (~0z) — Gk 0—a; 0—oy o8 0 — oy +9_a2(:)3+c)+v0
k2 k2
4.12)

Proceeding as earlier, since log(¢ — «3) is transcendental over the differential field F; :=
F*(0)({log(0 — a;);7 # 1,2,3}), we conclude that v, is a polynomial in log(f — «3) of the
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form vy = c3log?(f — a3) + s1log(8 — as) + o, for c5 € Cp and sy, 59 € Fy. Substituting vy and
comparing the coefficients of log(¢ — a3) in Equation 4.12, we obtain

0 — 0 — o 0 — a 0 — a
C13 (ZL’I - Oég) + Co3 ( ! — Oég) + 20370;3 + 8,1 =0. (413)

0 — as 0—ay 60— a3 0 — «
Comparing the poles, we get ¢13 = 2c3, co3 = 0 and s; = —ci37 + d, where d € Cp. Thus, the
Equation 4.12 reduces to
0 —af d 0 —a; 0 —q, aj — ag 0 — o
— 1 _ — _ ) J _ k 1 J 2
<9—a2 9:) %8 (~0) ;1 ot 0—a; O—o o8 0 — ay +9—a2(x+c)
kS k2,3
0 — o 0 — o
+e |2 — % log(—as) + (c13 + d) 9 + sp. (4.14)
0 — 3 0 — (0%

Repeating this procedure and comparing the coefficients of log(# — ) for k£ > 3, we obtain
cjr=0forall2 < j <k <tand

r t P P
(9 %—x/)log(—ag):—chk(x’—e ak)log(—ak)—l—ee a2($+0)

0 — ay P 0 — oy —
d 0 — aj,
d t 4.1
+kz>2(01k$+ k)H—OAk + to, (4.15)

where d;, € Cr and element ¢, € F. Now since (6 — a4)/(0 — a) = 2/ + (/g — o) /(0 — aw),
we shall compare the poles of § — «, in Equation 4.15 and obtain that log(—a,) = = + ¢
That is, (a2)'/(a2) = 2’ = (¢')/(f) and (0/as)’ = 0. This contradicts our assumption that
Crwy = Cp. O
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