
HAL Id: hal-01715832
https://inria.hal.science/hal-01715832v2

Submitted on 12 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Deterministic factoring with oracles
François Morain, Guénaël Renault, Benjamin Smith

To cite this version:
François Morain, Guénaël Renault, Benjamin Smith. Deterministic factoring with oracles. Applicable
Algebra in Engineering, Communication and Computing, 2023, 34 (4), pp.663-690. �10.1007/s00200-
021-00521-8�. �hal-01715832v2�

https://inria.hal.science/hal-01715832v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

DETERMINISTIC FACTORING WITH ORACLES

FRANÇOIS MORAIN, GUÉNAËL RENAULT, AND BENJAMIN SMITH

Abstract. Can we factor an integer N unconditionally, in determin-
istic polynomial time, given the value of its Euler totient ϕ(N)? We
show that this can be done under certain size conditions on the prime
factors of N . The key technique is lattice basis reduction using the LLL
algorithm. Among our results, we show that if N has a prime factor
p >

√

N , then we can recover p in deterministic polynomial time given
ϕ(N). We also shed some light on the analogous factorization problems
given oracles for the sum-of-divisors function, Carmichael’s function,
and the order oracle that is used in Shor’s quantum factoring algorithm.

1. Introduction

The fundamental theorem of arithmetic states that every positive integer
N can be written in a unique way, up to permutation of the factors, as

N =

k∏

i=1

peii

where the pi are distinct primes, and each ei > 0. Making this theorem
explicit by computing the prime factorization of N—that is, computing the
pi and ei—is a fundamental problem in algorithmic number theory. This
article is concerned with deterministic factorization algorithms.

Some numbers are easy to factor deterministically. If N is prime, then
Miller [41] proved that N can be proven prime in deterministic polynomial
time assuming the Generalized Riemann Hypothesis (see also [35]). The
same result was proven unconditionally in [2]. In practice, small numbers
can be proven prime using a combination of pseudoprimality tests. For large
numbers, several faster (though heuristic) methods exist: see [20] for details.
Prime powers can be detected in quasi-linear time [6].

But when N has more than one prime factor, hard work is generally
required. In the quantum world, we can apply Shor’s algorithm [51]. In
the classical world, the fastest algorithms are non-deterministic: depending
on the size of N , one may use Lenstra’s ECM or the Number Field Sieve
(NFS), the best general-purpose factoring algorithm, which runs in heuristic

time exp((3

√
64/9 + o(1))(log N)1/3(log logN)2/3) [20]. This complexity ex-

plains the success of the RSA cryptosystem, which is based on the supposed
difficulty of factoring numbers with only two prime factors.

Date: August 12, 2021.

1

2 FRANÇOIS MORAIN, GUÉNAËL RENAULT, AND BENJAMIN SMITH

Deterministic unconditional factoring methods are rare; all such meth-
ods known have exponential running time for general N . The first such
method was due to Fermat, followed by Lehman [33]; Pollard’s approach [44]
has been built on by recent methods including Bostan–Gaudry–Schost [9],

Costa–Harvey [19], and Hittmeir [26], all in time Õ(N1/4). More recently,

this complexity has been improved to Õ(N2/9) by Hittmeir [27], and to

Õ(N1/5) by Harvey [24] (see also [25] for a later speedup). Better results
exist for numbers known to have special forms: for example, [8] describes a
method to factor N = pr1p2 that runs in polynomial time when p1 and p2
are of roughly the same size and r is in Ω(log p1). This was extended in [18]
to numbers N = pr1p

s
2 with r and/or s in Ω((log p1)

3).
The use of oracles allows us to abstract and encapsulate the availability

of extra information about the number N . It is thus a traditional way of
trying to understand the difficulty of factoring. In this work, we consider
factoring algorithms with access to one of the following oracles (defined
formally in §2.1):

• Φ: on input N returns ϕ(N), the value of the Euler totient function;
• Λ: on input N returns λ(N), the value of the Carmichael lambda

function;
• O: on input N and a with gcd(a,N) = 1, returns the order of a

modulo N ;
• Σ: on input N returns σ(N), the sum of all positive divisors of N .

We study the conditions under which these oracles can be used to factor
N deterministically, unconditionally, and in a time complexity better than
exponential, in the spirit of [1, Rem2386].

The story of factoring with oracles began with Miller [41], who proved
the equivalence of Φ and factoring under ERH. Long [38] proved that fac-
toring is randomly polynomially equivalent to computing orders. Woll [54]
explored relationships between number-theoretic problems including factor-
ization and the Φ and O oracles. Źra lek [55] has shown that almost all inte-
gers N can be factored in deterministic polynomial time given ϕ(N); also,
iterated calls to Φ allow deterministic factoring in subexponential time, after
using Landau’s algorithm to reduce to the squarefree case (see §5.1). This
work was subsequently extended in [56] (using methods tangential to ours).

In a different direction, Bach, Miller, and Shallit [4] showed that Σ allows
efficient randomized factoring (see §2.3). Chow [10] has studied factoring
with an oracle of a completely different nature, using coefficients of mod-
ular forms; this turns out to be very powerful, since it solves the integer
factorization problem.

There is also an important practical motivation for oracles in factoring.
In the context of RSA moduli N = p1p2, the problem of factoring given
additional information on p1 and p2 has been studied since 1985. For ex-
ample, Rivest and Shamir showed in [47] that if N has bitlength n and the
factors p1 and p2 are balanced (with bitlengths close to n

2), then N can be

DETERMINISTIC FACTORING WITH ORACLES 3

factored in polynomial time if we have access to an oracle returning the n
3

most significant bits of p1. Beyond their theoretical interest, these algo-
rithms are motivated by cryptographic hardware attacks: the oracle is an
abstraction representing side-channel analysis revealing some of the bits of
the secret factors. In 1996, Coppersmith improved Rivest and Shamir’s re-
sults by applying lattice-based methods to the problem of finding small inte-
ger roots of bivariate integer polynomials (what is now called Coppersmith’s
method [11]). For instance, knowing the n/4 most (or least) significant bits
of p is enough to factor N in polynomial time. In the same cryptographic
context, the Coppersmith approach was used to prove that given a pair of
RSA exponents (e, d) (with d ≡ 1/e mod ϕ(N)), one can recover the two
prime factors of N in deterministic polynomial time [15].

In this article we combine these approaches, applying lattice-based tech-
niques to factoring with number-theoretic oracles. Our results rely on dio-
phantine geometry, using classical continued fractions and the LLL algo-
rithm in a manner inspired by the cryptographic work mentioned above.
Our results include the following:

Theorem 1.1. Assume N is squarefree and has at least three prime factors,
of which the largest p satisfies p >

√
N . Then we can recover p in deter-

ministic polynomial time in log(N) given one of ϕ(N), λ(N), or σ(N).

Proof. See Theorem 5.4. �

Theorem 1.2. Assume N is squarefree and has exactly three prime factors
p1 > p2 > p3. Put αi = log pi/ logN . Then we can compute a nontrivial
factor of N in deterministic polynomial time in log(N) given ϕ(N) or σ(N)
if at least one of the following conditions hold:

(1) α1 > 1/2; or
(2) 2α1 + 3α2 ≥ 2; or
(3) α2 > (−1 +

√
17)/8.

Proof. Follows from Theorems 5.5, 5.6, 5.9, and 5.4. �

We define the oracles, and recall some associated number-theoretic results,
in §2, before stating the relevant results of Coppersmith and Howgrave-
Graham in §3. Our core results in §4 solve (generalizations of) the following
problem: given N and M such that there exists a (large enough) prime p
with p | N and p ± 1 | M , recover p in deterministic polynomial time. We
apply these algorithms to factoring with Φ, Λ, and Σ in §5, and with O and
other oracles in §6.

2. Number-theoretic oracles

As above, suppose N =
∏k

i=1 p
ei
i , where the pi are distinct primes and

ei > 0. Let ω(N) denote the number of prime divisors of N (so ω(N) = k
above). Recall that ω(N) is trivially bounded above by (logN)/(log 2), and
is of order log logN on average.

4 FRANÇOIS MORAIN, GUÉNAËL RENAULT, AND BENJAMIN SMITH

2.1. The oracles.

Definition 2.1 (The Φ oracle). Given N as above, the oracle Φ returns the
value of the Euler totient function

ϕ(N) =

ω(N)∏

i=1

pei−1
i (pi − 1) ,

which counts the number of integers in {1, . . . , N − 1} that are prime to N ;
that is, ϕ(N) is the cardinality of the multiplicative group (Z/NZ)×.

Definition 2.2 (The Λ oracle). Given N as above, the oracle Λ returns the
value of Carmichael’s λ function

λ(N) = lcm
ω(N)
i=1 λ(peii) where λ(peii) =





1 if pi = 2 and ei = 1,

2 if pi = 2 and ei = 2,

ϕ(2ei)/2 if pi = 2 and ei > 2.

ϕ(peii) if pi > 2 .

This is the exponent of (Z/NZ)×: that is, the maximal multiplicative order
of an element modulo N .

Definition 2.3 (TheO oracle). Given N as above and a with gcd(N, a) = 1,
the oracle O returns the order

ordN (a) := min{r : r ∈ Z>0 | ar ≡ 1 (mod N)} .
Shor’s quantum factorization algorithm uses the Quantum Fourier Trans-

form to construct a quantum polynomial-time order-finding algorithm, which
yields an efficient factorization algorithm after some classical post-processing
(similar to the process in §2.3 below). This order-finding algorithm is not
a true realization of O, since it is only guaranteed to return a divisor of
ordN (a), but for most inputs it returns the true order with very high proba-
bility. Factoring with O therefore gives us valuable intuition into Shor-style
quantum factoring algorithms.

Definition 2.4 (The Σ oracle). Given N as above, the oracle Σ returns the
sum of the divisors of N : that is,

σ(N) :=
∑

d|N

d =

ω(N)∏

i=1

pei+1
i − 1

pi − 1
.

2.2. Relationships between Φ, Λ, and O. Lagrange’s theorem tells us
that the order of an element divides the order, and indeed the exponent, of
the group. Applying this to (Z/NZ)× gives

ordN (a) | λ(N) and λ(N) | ϕ(N)

for all N and all a prime to N .

DETERMINISTIC FACTORING WITH ORACLES 5

While the ϕ and λ functions may seem very close, it is easy to see that
ϕ(N)/λ(N) can be made quite large. For example, if N = p1p2 where

p1 − 1 = 2(p2 − 1), then ϕ(N)/λ(N) = p2 − 1 = Ω(
√
N).

Recall that if p is a prime, then the valuation νp(x) of an integer x at p is

the maximal e such that pe | x. If N is odd, then ν2(ϕ(N)) =
∑ω(N)

i=1 ν2(pi−
1) ≥ ω(N) is an easy upper bound for ω(N), which may be useful when we
have access to Φ (though this bound is generally far from tight). In contrast,

ν2(λ(N)) = max
ω(N)
i=1 ν2(pi − 1) gives us no information about ω(N) on its

own—and so neither does ν2(ordN (a)) for any a.

2.3. Randomized and conditional algorithms. All of these oracles give
efficient randomized factoring algorithms (see [4]). When N is composite,
ϕ(N) and λ(N) are even, which enables us to find some c 6= ±1 in Z/NZ

such that c2 ≡ 1 (mod N), and then gcd(c − 1, N) is a nontrivial factor
of N . See Appendix A for the corresponding algorithms. For Σ, we refer to
[4] again.

Folklore tells us that there is a randomized polynomial-time reduction
between computing square roots modulo N and factoring N . Rabin gives a
precise analysis when N is a product of two primes in [45, Theorem 1]. To
render this approach deterministic (as in [41]) one needs a bound on non-
quadratic residues, but this bound is currently only known to hold under
ERH.

3. Lattices, Coppersmith’s method, and approximate common

divisors

In this section we recall some essential results on our two basic tools:
Coppersmith’s method for finding small roots of polynomials, and Howgrave-
Graham’s approximate common divisors. We also introduce some elemen-
tary subroutines that we will use to improve the quality of our factorizations.

The Lenstra–Lenstra–Lovász lattice basis reduction algorithm (LLL) [34]
is at the heart of both Coppersmith’s and Howgrave-Graham’s methods.
Recall that if L is a lattice of dimension n in R

n (with the Euclidean norm
‖·‖), then LLL produces a basis (b1, b2, . . . , bn) of L satisfying (among other
conditions)

‖b1‖ ≤ 2(n−1)/4det(L)1/n .

The LLL algorithm computes an LLL-reduced basis for L in polynomial
time in n, and in logB where B is a bound on all ‖bi‖2. The resulting b1
is approximately as short as possible: ‖b1‖ ≤ 2(n−1)/2 minv∈L\{0} ‖v‖. Note
that all our lattices will have integer coefficients.

Many variants of LLL have been designed for more speed and accuracy
(e.g. [50, 42, 43]), but the original LLL algorithm suffices for our results.

3.1. Bivariate Coppersmith. Theorem 3.1 describes the input and out-
put of Coppersmith’s method for finding small zeroes of integer bivariate

6 FRANÇOIS MORAIN, GUÉNAËL RENAULT, AND BENJAMIN SMITH

polynomials [11, 12]. Coppersmith’s algorithm is clarified in [16] and [7],
and extended to the general multivariate case in [30], [13], [7], and [46].

Theorem 3.1. Let f(x, y) =
∑

pi,jx
iyj ∈ Z[x, y] be irreducible, of degree at

most δ in x and y, and suppose f(x0, y0) = 0 for some |x0| < X, |y0| < Y .
If

XY <W2/(3δ) where W = ‖f(xX, yY)‖∗ := max
i,j
|pi,j|XiY j ,

then we can find all such solutions (x0, y0) in deterministic polynomial time
in logW and δ.

Proof. See Coron’s treatment in [17]. �

In this article we will apply the special case of Theorem 3.1 where the
polynomial f is linear in each variable to find divisors of N . In another
direction, but using the same techniques, Theorem 3.2 improves on a result
of Lenstra [36].

Theorem 3.2 (Coppersmith–Howgrave-Graham–Nagaraj [14]). Let 0 ≤
r < s < N with gcd(r, s) = 1 and s ≥ Nα for some α > 1/4. The number of

divisors of N that are congruent to r (mod s) is in O((α − 1/4)−3/2). The
divisors can be found in deterministic polynomial time.

3.2. Approximate common divisors. One of the first applications of
Coppersmith’s method was to attack RSA moduli, factoring N = p1p2 in
polynomial time given half of the bits of p1. The algorithmic presentation of
these theorems used today is due to Howgrave-Graham [28], who later used
this result to solve the Approximate Common Divisor Problem (ACDP) [29],
which we formalize in Definition 3.3.

Definition 3.3 (ACDP). Given integers A and B, and bounds X and D0

for which there exists at least one (x,D) with |x| ≤ X and D > D0 such
that D | B and D | (A + x), the ACDP is to find all such (x,D).

Before going further, we must make the following very important obser-
vation (not present in [29]).

Remark 3.1. If (x,D) is an ACDP solution for (A,B,X,D0), then so is
(x,D/z) for any divisor z of D such that D/z > D0.

Howgrave-Graham gives two types of algorithms for solving ACDP in-
stances in [29]. The first, using continued fractions, is described by Propo-
sition 3.5 and Algorithm 1 (ACD CF). The second approach, using LLL, is
described by Theorem 3.6 and Algorithm 2 (ACD LLL). Both algorithms run
in deterministic polynomial time, unlike the algorithms for the Generalized
Approximate Common Divisor problem (GACDL) also considered in [29].

As noted in [29], the continued fraction (ACD CF) and lattice (ACD LLL)
approaches are subtly different: ACD CF requires only a lower bound on one
exponent α, but ACD LLL requires some relation between two exponents, α

DETERMINISTIC FACTORING WITH ORACLES 7

and β (or ǫ). We will encounter this difference in §5.4. Similar phenomena
appear in the context of implicit factorization (e.g. [40, 48, 22, 49]), but in
these cases the two exponents can be handled more easily.

3.3. Computing approximate common divisors via continued frac-

tions. The following is taken from [29]. We include the proof here, because
we will need to be precise about what the algorithm actually outputs.

Proposition 3.4 (Howgrave-Graham). Given integers A < B, and real
α > 1/2, we can find all integers |x0| < X = B2α−1/2 such that there exists
D > Bα dividing both A + x0 and B, or decide that no such x0 exists, in
deterministic polynomial time in logB.

Proof. Suppose (x,D) is one of the desired ACDP solutions: then D | B
and D | (A + x), with D > Bα and |x| ≤ B2α−1/2. Write a′ = (A + x)/D
and b′ = B/D; then b′ < B1−α, from which

∣∣∣∣
A

B
− a′

b′

∣∣∣∣ =
|x|
B

<
1

2(b′)2
.

The classical theory of continued fraction approximations tells us that a′/b′

must be one of the convergents (g1/h1, g2/h2, . . .) of A/B (see for example
[37, Theorem 9.10]). We note that the convergents are obtained in reduced
form, that is, with gcd(gi, hi) = 1; the hi are strictly increasing; and the last
term is hk = B. Last but not least, this sequence is finite and has polynomial
size in logB (this is closely related to the computation of gcd(A,B), and
can be done in deterministic polynomial time [31, 52]).

A solution yields (A + x)/B = gi/hi: that is, hi(A + x) = Bgi. Since
gi and hi are coprime, this implies that gi | A + x. Put D = (A + x)/gi.
Now hiD = B, and hi must divide B. If this is the case, then we have
recovered the ACDP solution (x,D) = (Dgi − A,B/hi). We can stop as
soon as hi ≥ B1−α, because such hi cannot yield D > Bα. �

Remark 3.2. As noted in [29], if our problem requires A > B, then we can
replace A by using q such that A− qB < B.

Proposition 3.5. Given integers A < B, Algorithm 1 (ACD CF) computes
all integers |x0| < X = B2α−1/2 for some α > 1/2 such that there exists
D > Bα dividing both A+ x0 and B, or reports that no such x0 exists. The
algorithm runs in deterministic polynomial time in logB.

Proof. It is enough to use Proposition 3.4 for all possible α > 1/2, or equiva-
lently test all convergents of A/B (as noted above, since A/B is rational, its
sequence of convergents is finite, and has polynomial length). Algorithm 1
begins by computing these convergents. �

Remark 3.3. The bound X in Proposition 3.5 can be relaxed to B2α−1 (with-
out the factor of 1/2) if we use intermediate convergents, but asymptotically
this has no real importance.

8 FRANÇOIS MORAIN, GUÉNAËL RENAULT, AND BENJAMIN SMITH

Remark 3.4. If we want all solutions (x,D), then we have to include all
solutions coming from divisors of D, in the sense of Remark 3.1—but finding
the divisors of D would imply resorting to non deterministic and/or non-
polynomial-time algorithms.

Algorithm 1: Computing approximate common divisors using con-
tinued fractions.

1 Function ACD CF(A, B)
Input : A < B
Output: The set of solutions (x,D) to the ACDP for (A,B) (so

D | (A + x) and D | B) with |x| < X := 1
2B

2α−1 and
D > D0 := Bα for some α > 1/2.

2 (g0/h0, . . . , gn/hn)← continued fraction convergents of A/B

3 R← ∅
4 for i← 0 to n do

5 if hi | B (and hi > 1) then

6 D ← B/hi
7 x← Dgi −A

8 R ← R∪ {(x,D)}

9 return R

3.4. Computing approximate common divisors via lattice reduc-

tion. Theorem 3.6 enlarges the set of α for which we can find the factoriza-
tion of N . The proof of correctness can be found in [29]; optimal parameters
are given in Algorithm 2. Remark 3.4 applies here too.

Theorem 3.6 (Howgrave-Graham). Given integers A < B, and α in (1/2, 1)
and β in (0, α2), Algorithm 2 (ACD LLL) computes all x such that there is
some D with (x,D) a solution to the ACDP for (A,B) with |x| < X := Bβ,
D > D0 = Bα, in deterministic polynomial time in logB and 1/ǫ where
ǫ = α2 − β.

3.5. Algorithms to refine partial factorizations. Many algorithms (in-
cluding some given below) return nontrivial divisors of N , rather than com-
plete prime factorizations. We can improve the quality of these partial
factorizations using some basic auxiliary algorithms, that all run in deter-
ministic polynomial time. The following two algorithms are taken from [3].

Refine takes a set of integers {M1, . . . ,Mk}, and returns a set of pairs
(Ni, ei) with each Ni > 1 and ei > 0, and with the Ni all pairwise coprime,
such that

∏
i Mi =

∏
i N

ei
i . This can be done by iterating the rewriting

formula

M1M2 = (M1/d)(d2)(M2/d) where d = gcd(M1,M2) .

DETERMINISTIC FACTORING WITH ORACLES 9

Algorithm 2: Approximate common divisors using LLL

1 Function ACD LLL(A, B, α, β)
Input : A < B and α ∈ (1/2, 1), β ∈ (0, α2)
Output: The set of solutions (x,D) to the ACDP for (A,B) (so

D | (A + x) and D | B) with |x| < X := Bβ and
D > D0 := Bα.

2 h← ⌈α(1 − α)/ǫ⌉ − 1 where ǫ = α2 − β > 0

3 u← ⌈hα⌉
4 L← the (h + 1)-dimensional lattice of p̃i-coefficients defined in

the proof of Theorem 3.6

5 (v0, . . . , vh)← ShortVector(L) // Use LLL; each vi is

divisible by Xi

6 P (Z)←∑h
i=0(vi/X

i)Zi

7 X ← integer roots of P (Z)

8 R← ∅
9 for x ∈ X do

10 D ← gcd(A + x,B)

11 if 1 < D < B then

12 R ← R∪ {(x,D)}

13 return R

Faster algorithms for Refine appear in [5] and [6].
CleanDivisors takes an integer m and a list of divisors (d1, . . . , dk) of m,

and returns a set of pairs (mi, ei) such that m =
∏

im
ei
i where the mi are

pairwise coprime and such that each di =
∏

j m
ei,j
j for some ei,j ≥ 0. This

can be done by applying Refine to {d1,m/d1, . . . , dk,m/dk}, which yields

{(n1, f1), . . . , (nℓ, fℓ)} such that
∏ℓ

i=1 n
fi
i = mk with the ni pairwise co-

prime. The fi are all multiples of k, so the result is {(n1, f1/k), . . . , (nℓ, fℓ/k)}.

4. Finding particular divisors of an integer

This section describes algorithms that find a large divisor D of N if
(D − z) | M for an auxiliary integer M and some small z. We use the
simplest case, where D = p is prime and z = 1 (resp. z = −1) for factoring
with Φ (resp. Σ) in §5, but we think that these more general results have
independent interest.

4.1. Factoring with unknown difference. First, consider the search for
divisors D of N such that that (D − z) | M where M is given and a small
z 6= 0 is unknown. For our needs (factoring N), the interesting case has
gcd(N,M) = 1. We can compute such D in deterministic polynomial time
by reduction to an ACDP instance as follows. Let y = M/(D − z), so
M = y(D − z) = yD − yz; computing the product yz leads to the divisor

10 FRANÇOIS MORAIN, GUÉNAËL RENAULT, AND BENJAMIN SMITH

D by computing gcd(N,M + yz) since gcd(N,M) = 1. But x = yz is the
solution of the modular equation M + x ≡ 0 (mod D), and thus (x,D) is a
solution to ACDP for (A,B) = (M,N). At this point, we finish using the
results of §3.

Theorem 4.1. Let 1/2 < α < 1 be a real number. Let N and M be
coprime integers and put M = N θ with 1/2 < α < θ < 1. Suppose there
exists D > Nα such that D | N and (D − z) | M for a small unknown
integer z 6= 0, with |z| ≤ N ε such that 0 < ε < α. Then we can compute D
in deterministic polynomial time in the following two cases:

(1) ε ≤ 3α− 1− θ;
(2) ε < α2 + α− θ.

Proof. Write β = log(M/(D − z))/ log N ≈ θ − α, so that y = Nβ and
x = yz = N θ+ε−α. In Case (1) we have θ+ε−α ≤ 2α−1, and Proposition 3.5

applies. In Case (2), since |z| < Nα2−β , we get |x| ≤ Nα2

, and we can
compute x in deterministic polynomial time by Theorem 3.6. �

4.2. Factoring with known difference. Now we consider the opposite
case: finding D | N such that (D − z) | M where z is known. In our
applications with Φ and Λ, we take z = 1; with Σ we take z = −1. In full
generality, provided z is especially small, we use Coppersmith’s bivariate
method from Theorem 3.1 to obtain the following result.

Theorem 4.2. Let N , u, and M be integers with u 6= 0 and |u| = N ε, and
M = N θ with 0 ≤ ε < θ < 1. Fix 0 ≤ ε < α < θ. Suppose there exists
D > Nα such that D | N and (D − u) | M . Then Algorithm 3 computes D
in deterministic polynomial time if

(1) α >
1

4
(1 + θ) .

Proof. Rewrite the problem as N = x0D and M = y0(D−u), so M +uy0 =
y0D. Eliminating D, we see that (x0, y0) is a zero of f(x, y) = Ny− x(M +
uy) = −Mx + Ny − uxy. If D > Nα, then x0 < N1−α and y0 < N θ−α are
both small, and we can use Theorem 3.1. First, as in [16], we let

f∗(x, y) := f(x, y + 1) = N − (M + u)x + Ny − uxy.

Now f∗ is irreducible, and linear in x and y, so it meets the conditions of
Theorem 3.1 with δ = 1; and f∗(0,−1) = 0. Assume |x0| < X and |y0| < Y .
The crucial bound is

W = ‖f∗(xX, yY)‖∗ = max(N, (M + u)X,NY,XY).

Using (X,Y) = (N1−α, N θ−α) gives XY = N1+θ−2α and

W = max(N,N1+θ−α, N1+θ−2α) = N1+θ−α.

Ignoring small constants, we want

1 + θ − 2α <
2

3
(1 + θ − α)

DETERMINISTIC FACTORING WITH ORACLES 11

which implies α > 1
4(1 + θ); the result follows. �

Remark 4.1. A weaker but simpler result can be obtained using Coron’s
algorithm, as in [16, §2]: if we use f∗(x, y) = N − (M + u)x + Ny − uxy,
then α > (1 + θ)/3 is enough to recover D.

Remark 4.2. If u < 0, then we have θ ≥ α which leads to θ > 1/3.

Corollary 4.3. Using the notation of Theorem 4.2: we can recover D in
deterministic polynomial time provided D > N1/2.

Proof. It suffices to observe that α > 1/2 > (1 + θ)/4 for 0 ≤ θ < 1. �

Algorithm 3: Factoring with known difference

1 Function FactoringWithKnownDifference(N , M , u, α)
Input : Positive integers N and M , an integer u, and a real

number α such that (1 + θ)/4 < α < θ where
θ := logM/ logN

Output: {D > Nα : D | N and (D − u) |M}
2 f∗ ← N − (M + u)x + Ny − uxy in Z[x, y]

3 R← BivariateCoppersmith(f∗,X, Y) where X = N1−α and

Y = N θ−α

4 D ← ∅
5 for (x, y) in R \ {(0,−1)} do
6 D ← D ∪ {N/x}
7 return D

5. Factoring with the Φ, Λ, and Σ oracles

We now return to factoring with oracles. We treat the closely-related
problems of factoring with Φ, Λ, or Σ simultaneously here, before treating
O in §6.2. We consider odd N , since detecting and removing powers of 2 is
easy. Ordering the prime divisors of N by decreasing size, we write

N =

ω(N)∏

i=1

peii with primes p1 > p2 > · · · > pω(N) > 2 .

To simplify the exposition, the function associated with an oracle ̟ will be
denoted by F(̟) (e.g., F(Φ) = ϕ).

5.1. Reduction to the squarefree case. We begin by reducing to the
case of squarefree N : that is, e1 = · · · = eω(N) = 1.

Theorem 5.1 (Landau [32]). Given N and ̟ ∈ {Φ,Λ,Σ}, Landau’s al-
gorithm returns in deterministic polynomial time a list (N1, . . . , Nr) such
that N = N1N

2
2 · · ·N r

r , each Ni is squarefree or 1, and the Ni are pairwise
coprime using O(ω(N)) calls to ̟.

12 FRANÇOIS MORAIN, GUÉNAËL RENAULT, AND BENJAMIN SMITH

5.2. Reduction to the case gcd(N,F(̟)(N)) = 1. Suppose N is square-
free. For ̟ = Φ, Λ, or Σ, if gcd(N,F(̟)(N)) > 1 then we obtain a
nontrivial divisor d of N , and we can combine the factorizations of d and
N/d recursively. Thus, we reduce to the problem of factoring squarefree N
where gcd(N,F(̟)(N)) = 1.

5.3. Products of two primes. It is well-known that we can factor N =
p1p2 given ϕ(N), as we recall in Lemma 5.2. This immediately yields Al-
gorithm 4 (FactorizationWithPhi2), which factors a squarefree integer N
with ω(N) = 2 given M = ϕ(N). Rephrased, this gives also that oracle Φ
can answer the decision problem of determining whether ω(N) = 2.

Lemma 5.2. If N is a product of two distinct primes, then the two primes
are

s/2±
√

(s/2)2 −N where s := N + 1− ϕ(N) .

Proof. If N = p1p2 with p1 and p2 prime, then ϕ(N) = (p1 − 1)(p2 − 1) =
N−(p1+p2)+1; so s = p1+p2, and p1 and p2 are the roots of the quadratic
equation X2 − sX + N . �

Algorithm 4: Factoring a 2-factor integer using M = ϕ(N)

1 Function FactorizationWithPhi2(N , M)
Input : N and M = ϕ(N), where N is squarefree
Output: {p1, p2} if N is the product of two distinct primes, or ∅

2 s← N + 1−M

3 ∆← s2 − 4N // ∆ = discriminant of X2 − sX + N

4 if ∆ is not square then

5 return ∅
6 p1 ← 1

2 (s +
√

∆)

7 p2 ← N/p1
8 return {p1, p2}

To convert Algorithm 4 into an algorithm taking λ(N) instead of ϕ(N),
we use Lemma 5.3, which shows that when ω(N) = 2, we can efficiently
compute ϕ(N) from λ(N). Thus, any algorithm calling Φ can be immedi-
ately transformed into an algorithm making the same number of calls to Λ.
In particular, Algorithm 4 can be used with M = λ(N) · gcd(N − 1, λ(N))
instead of ϕ(N).

Lemma 5.3. If N = p1p2 is a product of two distinct primes, then ϕ(N) =
λ(N) · gcd(N − 1, λ(N)).

Proof. Suppose N = p1p2. Write g = gcd(p1 − 1, p2 − 1); then p1 − 1 = gq1
and p2 − 1 = gq2 with gcd(q1, q2) = 1. Now

λ(N) = (p1 − 1)(p2 − 1)/g = gq1q2 ,

DETERMINISTIC FACTORING WITH ORACLES 13

from which gcd(N−1, λ(N)) = g ·gcd(gq1q2 +q1+q2, q1q2), but gcd(gq1q2 +
q1 + q2, q1q2) = 1. �

Finally, for the oracle Σ, given σ(N) = N + 1 + p1 + p2, we immediately
recover p1 + p2 and then compute p1 and p2 as above.

5.4. Products of more than two primes. Returning to the general
squarefree case, suppose

N = p1 · · · pk with primes p1 > · · · > pk > 2 and ω(N) = k ≥ 3 .

The relative sizes of the pi will be important in what follows. We set

αi := logN pi , so pi = Nαi .

Clearly
∑k

i=1 αi = 1 and 1 > α1 > · · · > αk > 0; so, in particular, α1 > 1/k
and αk < 1/k.

We first rephrase Corollary 4.3 to show that unbalanced numbers (having
a large prime factor) are easy to factor with ̟ ∈ {Φ,Λ,Σ). In contrast,

compact N (with all prime factors ≤ N1/2) are harder to factor. This gives
us a result already stated (in a simple form) as Theorem 1.1.

Theorem 5.4. If ω(N) ≥ 3 and α1 > 1/2, then we can recover the divisor
D = p1 of N in deterministic polynomial time in log(N) given F(̟)(N) for
̟ ∈ {Φ,Λ,Σ}.
Proof. We use (D − 1) | ϕ(N) (resp. (D − 1) | λ(N)); the result follows
directly from Corollary 4.3. The same holds for Σ using (D+ 1) | σ(N). �

Remark 5.1. When using λ(N) in Theorem 5.4, we can recover p1 in deter-
ministic polynomial time provided α1 > (1+θ)/4, where θ = log λ(N)/ log N .
When θ is significantly smaller than 1, this gives a substantially lower bound
on α1; but finding a condition analogous to Inequality (2) is not so easy in
that case.

The results of §4 yield conditions on the αi under which factors of N can
be computed with the algorithms of §3. Theorems 5.5 and 5.6 show that
we can factor N by solving ACDP instances if the pi satisfy certain relative
size conditions. As a first step, Theorem 5.5 gives conditions for efficient
factoring using Algorithm 5 (SplitCF), which applies ACD CF using Φ or Σ.

Theorem 5.5. Suppose ω(N) ≥ 3 and there exists 1 ≤ r < ω(N) such that

(2) αr ≥ 2

ω(N)∑

i=r+1

αi .

Then ACD CF recovers the factor D =
∏r

i=1 pi in deterministic polynomial
time given ϕ(N) or σ(N).

Proof. Write α =
∑r

i=1 αi. The hypothesis implies α > 1/2; otherwise
αr ≥ 2(1 − α) and α ≤ 1/2, hence αr ≥ 1, which is impossible. Expanding
the formula for ϕ(N) yields ϕ(N) = DQ1−N/pr+Q2 for some Q1 and Q2. If

14 FRANÇOIS MORAIN, GUÉNAËL RENAULT, AND BENJAMIN SMITH

x = N/pr−Q2, then (x,D) is a solution to the ACDP for (A,B) = (ϕ(N), N)
with (M,X) = (Nα, N2α−1), and ACD CF will find (x,D) because α > 1/2.
In this case x ≈ N/D = N1−α, and the condition becomes 1−αr ≤ 2α− 1,
which yields Inequality (2).

The same reasoning is valid for σ(N), simply changing signs to get σ(N) =
DQ1+N/pr+Q2. (Strictly speaking, we should use (A,B) = (σ(N)−N,N)
to get A < B: see Remark 3.2.) �

Algorithm 5: Splitting an integer using ACDCF

1 Function SplitCF(N , ̟)
Input : N to be factored using oracle ̟ ∈ {Φ,Σ}
Output: ∅ or a set of pairs (Mi, ei), with the Mi pairwise

coprime and N =
∏

iM
ei
i

2 M
̟←− F(̟)(N)

3 sgn←
{
−1 if ̟ = Φ

1 if ̟ = Σ

4 if M = N + sgn then // N is prime

5 return {(N, 1)}
6 A ← ACD CF(M,N)

7 for (x,D) in A do

8 D ← D ∪ {D,N/D}
9 if D = ∅ then

10 return ∅
11 return CleanDivisors(N , D)

We can go further using ACD LLL instead of ACD CF. Theorem 5.6 is the
corresponding analogue of Theorem 5.5.

Theorem 5.6. If there exist α in (1/2, 1) and β in (0, α2) such that α ≤∑r
i=1 αi and 1 − αr ≤ β for some 1 ≤ r < ω(N), then we can recover

the divisors D = p1 · · · pr and N/D = pr+1 · · · pω(N) of N in deterministic
polynomial time given α and β, using Φ or Σ.

Proof. Write

ϕ(N) = [(p1 − 1)(p2 − 1) · · · (pr − 1)]K = DK − p1p2pr−1pr+1 · · · pω(N) + E

where E is negligible with respect to N/pr. We obtain

ϕ(N) = DK − (N/pr) + E.

Now, Theorem 3.6 will use ACD LLL given A = ϕ(N), B = N , α ≤∑r
i=1 αi,

and β ≤ 1 − αr to find (x,D) where D = p1p2 . . . pr and x = N/pr − E ≈
N1−αr .

The same conclusion holds for σ(N) = DK + N/pr + E′. �

DETERMINISTIC FACTORING WITH ORACLES 15

Theorem 5.6 is difficult to apply directly, because of the subtlety alluded
to in §3.4: it is not enough to simply know that α and β satisfying the
bounds exist, because we need to use them as parameters to ACD LLL. On
the other hand, ACD LLL does not need their exact values (indeed, if we knew
the exact value for β = 1−αr, then we would already know the prime factor
pr = Nαr). If we can guess that a suitable r exists, then we can give a lower
bound for αr implying a lower bound for α and an upper bound for β that
allow us to apply ACD LLL. While the bounds may be far from the optimal
values of α and β, thus yielding sub-optimal performance for ACD LLL, the
solution is still polynomial time, and it allows us to factor some integers
that ACD CF cannot.

Definition 5.7. For each positive integer r, we define a constant

αr :=
−1 +

√
1 + 4r2

2r2
.

The first few of these constants are

α1 = (−1 +
√

5)/2 ≈ 0.618 ,

α2 = (−1 +
√

17)/8 ≈ 0.3904 ,

α3 = (−1 +
√

37)/18 ≈ 0.2824 .

Lemma 5.8. If αr > αr for some 0 < r < ω(N), then r, α = rαr, and
β = 1− αr meet the conditions of Theorem 5.6.

Proof. Let α̃ =
∑r

i=1 αi and β̃ = 1 − αr; these are the ideal values for α
and β when applying Theorem 5.6. Clearly α̃ > rαr. We can therefore
use Theorem 5.6 with α = rX and β = 1 − X for any X ≤ αr such that
1 − X < (rX)2; that is, as long as X > αr. Moreover, 1/2 < rar < 1 for
all r > 0. Hence (α, β) = (rαr, 1 − αr) meets the conditions of the theorem
for the given r. �

We emphasize that Lemma 5.8 only gives a sufficient condition for suit-
able α and β, but we can use it to turn the proof of Theorem 5.6 into an
effective algorithm.

Theorem 5.9. Fix an integer R > 1. If there exists an 0 < r < min(R +
1, ω(N)) for which αr ≥ αr, then Algorithm 6 (SplitLLL) recovers the
divisor D = p1 · · · pr = Nα of N in deterministic polynomial time using Φ
or Σ.

Proof. Algorithm 6 tries to factor N by calling ACD LLL using increasing
values of r (up to and including min(R + 1, ω(N)), which in any case is
trivially bounded by log2 N , though much smaller values of R are more
interesting), with the bounds for α and β suggested by Lemma 5.8. The
result therefore follows from R serial applications of Theorem 5.6. �

16 FRANÇOIS MORAIN, GUÉNAËL RENAULT, AND BENJAMIN SMITH

Algorithm 6: Splitting an integer using ACDL

1 Function SplitLLL(N , ̟, R)
Input : N to be factored using oracle ̟ ∈ {Φ,Σ}, and a bound

R > 1 on putative r
Output: ∅ or a set of pairs (Mi, ei), with the Mi pairwise

coprime and N =
∏

iM
ei
i

2 M
̟←− F(̟)(N)

3 D ← ∅
4 for r ← 1 to R do

5 αr ← (−1 +
√

1 + 4r2)/(2r2)

6 A← ACD LLL(M,N, rαr, 1− αr) // use

(α, β) = (rαr, 1− αr)

7 for (x,D) in A do

8 D ← D ∪ {(D,N/D)}

9 if D = ∅ then
10 return ∅
11 return CleanDivisors(N , D)

5.5. Products of exactly three primes. We can say a little more for the
special case of squarefree N with ω(N) = 3. The difficult part is in breaking
N : once a non-trivial divisor is found, we are left with a prime and a product
of two primes that can be easily factored recursively using the oracle.

Write

N = p1p2p3 where p1 > p2 > p3 .

As usual, we set αi = logN pi; by definition, 1 > α1 > α2 > α3 > 0, and α3

is completely determined by (α1, α2) because α1 +α2 +α3 = 1. Lemma 5.10
defines the polygon in the (α1, α2)-plane corresponding to the domain of
validity of the exponents for ω(N) = 3.

Lemma 5.10. With N and αi = logN pi defined as above, (α1, α2) lies in
the region of the (α1, α2)-plane defined by the inequalities

0 < α2 < α1 , α1 + α2 < 1 , α1 > 1/3 , 2α1 + 3α2 > 3/2 .

Proof. The first three inequalities follow immediately from the definition
of the αi. For the last, if 2α1 + 3α2 ≤ 3/2 then α2 ≤ (3/2 − 2α1)/3,
whence 1 − α1 = α2 + α3 < 2α2 ≤ 2/3(3/2 − 2α1), so α1/3 < 0, which is
impossible. �

Figure 1 depicts the values of (α1, α2) that our methods can tackle, shad-
ing in various regions of the polygon of Lemma 5.10. Each result applies only
to the interior of the corresponding region, and does not apply to points on
the boundary lines. We can factor N using Φ (resp. Σ) with

DETERMINISTIC FACTORING WITH ORACLES 17

• Theorem 5.4 when α1 > 1/2, so (α1, α2) is in the diagonally shaded
polygon;
• Theorem 5.5 with r = 2 when α2 ≥ 2α3, which translates as 2α1 +

3α2 ≥ 2, so (α1, α2) is in the horizontally shaded polygon with ver-
tices (2/5, 2/5), (1/2, 1/2), (1/2, 1/3);
• Theorem 5.9 with r = 2 when α2 > α2, so (α1, α2) is in the tiny black

triangle with vertices (α2, α2), (2/5, 2/5), (1− 3α2/2 = 0.415, α2).

The grey polygon with vertices (1/3, 5/18), (1/3, 1/3), (α2, α2), (1−3α2/2, α2),
(1/2, 1/3), and (1/2, 1/6) is the zone where we cannot prove deterministic
polynomial-time factorization.

A necessary condition to apply Theorem 5.6 in our case for r = 2 (r = 1
being uninteresting) is

1− α2 < (α1 + α2)2 ,

or

α2 > f(α1) :=
−(2α1 + 1) +

√
4α1 + 5

2
.

The function f is decreasing on [0, 1] and is smaller than α2 for α1 ≥ (
√

17−
1)/8 ≈ 0.3904; note that f(1/2) = (

√
7 − 1)/2 ≈ 0.3229. This is the dash-

dotted line, which corresponds to a sharp limit on using this theorem.

α1

α2

5/18

1/3 1/22/5 1

2/5

1/2

3/4

Figure 1. Cases covered by our results when ω(N) = 3.

5.6. Numerical examples. We use Algorithms 1 (ACD CF) and 2 (ACD LLL)
to factor various N given ϕ(N) or λ(N). The algorithms succeed when the
divisors of N satisfy the required properties.

We start with a numerical example for each sub-region in Figure 1).

Example 5.6.1 (SplitCF with Φ). Consider an attempt to factor

N = 14300000000000000000000000045617

18 FRANÇOIS MORAIN, GUÉNAËL RENAULT, AND BENJAMIN SMITH

using SplitCF. The oracle Φ tells us that

ϕ(N) = 12000000000000000000000000038160 .

Applying ACD CF with A = ϕ(N) and B = N reveals that N has a divisor

D = 100000000000000000000000000319 ,

which turns out to be prime; the cofactor is 143 = 13 · 11. In this case,
α1 = 0.93082 . . . > 1/2.

Example 5.6.2. Let us factor

N = 215453441884154813899608536725827949716396214692299863

using SplitCF again. The oracle Φ tells us that

ϕ(N) = 215453439729720123839763043257007943520875035231793568 .

Applying ACD CF with A = ϕ(N) and B = N reveals that N has a divisor

D = 2154434690059745273387380265425792937208898747 ,

which has two prime factors. In this case (α1, α2, α3) = (0.45, 0.4, 0.15), a
point in the horizontally shaded part.

Example 5.6.3. Let us factor

N = 14300000027170000072930000138567

with SplitCF. The oracle Φ gives

ϕ(N) = 12000000021600000060000000108000 ,

and then ACD CF with (A,B) = (ϕ(N), N) finds a divisor

D = 100000000190000000510000000969

with two prime factors 10000000019 and 10000000000000000051, and the
cofactor N/D = 143. We have (α1, α2, α3, α4) = (0.610, 0.321, 0.0358, 0.033)
and Inequality (2) is satisfied for r = 2.

Example 5.6.4 (SplitLLL with Φ). Let us factor

N = 5872731058374808693660010068837

with SplitLLL. The oracle Φ gives

ϕ(N) = 5872725180353869744164863505600 ,

and then ACD LLL with (A,B) = (ϕ(N), N) finds a divisor

D = 5878015394214207265992137 ,

x = 5544735287880571100 ,

and D = 1425101895589 ·4124628149333, the third factor being 999101. We
have (α1, α2, α3) = (0.410, 0.395, 0.195) which is in the tiny triangle.

DETERMINISTIC FACTORING WITH ORACLES 19

Example 5.6.5 (Factoring with Σ). Let us factor

N = 2682776312933147882428349713219285333356964534315603933540

90095217359233

using SplitLLL. The oracle Σ tells us that

σ(N) = 2682803140502033115557437331732180804000067423327043796969

97748284763200 .

Trying r = 2, and calling ACD LLL with (A,B) = (σ(N) − N,N) and
(α, β) = (2α2, 1 − α2) (implying lattice parameters (h, u) = (25, 20)), we
find a solution

D = 610540229658532834519888426420070208770724882201228981991 ,

x = −23576265633281739760211511675892594424044680 .

Example 5.6.6 (Factoring with Λ). We apply SplitCF to

N = 14300000027170000072930000138567 ,

for which the oracle Λ tells us that

λ(N) = 100000000180000000500000000900 .

ACD CF reveals a divisor

D = 100000000190000000510000000969

with two factors, 10000000019 and 10000000000000000051 (which we find
recursively using FactorizationWithPhi2), and a cofactor N/D = 143 =
11 · 13. We see that λ(N)/ϕ(N) = 1/120 (so λ(N) is close to ϕ(N), and the
method may work), and

(α1, α2, α3, α4) = (0.60984, 0.32097, 0.035754, 0.033425) .

6. Other oracles

Before concluding, we briefly survey some logical extensions to other or-
acles that do not yield useful results.

6.1. Using the factorization of ϕ(N) or σ(N). Every odd prime p | N is
necessarily of the form δ + 1 for some even δ | ϕ(N), so we can compute all
prime factors p of N from the factors of ϕ(N). Unfortunately this does not
lead to polynomial-time algorithms, since the number of divisors of ϕ(N)
can be large, as shown in [39], and the same should hold for λ(N) as well.

If ω(N) = k (for squarefree N , say), then the smallest prime factor of N

has pk < N1/k, so we might content ourselves with finding pk by enumerating
divisors of ϕ(N) less than ϕ(N)α = N1/k. But this is not enough to get poly-

nomial time, since this number can be lower bounded by Cd(ϕ(N))−C′α logα

for positive constants C and C ′ (see [53], studying a function introduced by
P. Erdős in [21]).

We anticipate the same properties for σ(N).

20 FRANÇOIS MORAIN, GUÉNAËL RENAULT, AND BENJAMIN SMITH

6.2. Factoring with the order oracle. We now consider factoring using
the order oracle O, whose quantum counterpart is the core of Shor’s algo-
rithm. As explained in [23], when λ(N) has very few divisors, having the
order of an element is enough to factor N . It is doubtful that we can find an
algorithm for all integers, since λ(N) may have a lot of divisors that cannot
help factoring N .

Suppose we have the factorization of the order. As in §6.1, we might
consider a modified O that yields not only the order r of a modulo N , but
also the factorization of r. Algorithm 12 shows a straightforward way to
make use of this additional information. If N is not squarefree, then it is
possible that gcd(r,N) 6= 1, which gives us an easy factor of N (hence the
check in Line 7). Algorithm 12 fails, returning ∅, if a has order r modulo
every prime factor pi of N , or if r | pi − 1 for all i, which implies that

all divisors of N are congruent to 1 (mod r). Then, if r > N1/4+ε, we
can conclude in deterministic polynomial time using Theorem 3.2. Another
approach for large r is given in [55].

6.3. Combining different oracles. In another direction, having ϕ(N) and
σ(N) yields the factorization of squarefree N with three factors by finding
the integer roots of the polynomial (X − p1)(X − p2)(X − p3) = X3 + (N −
(σ(N) + ϕ(N))/2)X2 + ((σ(N)−ϕ(N))/2− 1)X −N , extending the result
of FactorizationWithPhi2.

7. Conclusions

We have shown a range of partial results concerning the relationships
between several elementary number theoretic functions and the integer fac-
torization problem. In each case, we have used ideas coming from lattice
reduction to improve what was known, while falling short of the goal of
completely proving the sufficiency of these oracles for efficiently factoring
all numbers.

As we saw in §6, adding more information does not pay: The complete
factorizations of oracle values (or given ϕ(N) and λ(N), or even given their
prime factorizations) still does not help factoring all N . These results may
be surprising, but they show the fundamental difficulty of factoring.

Acknowledgements. We thank J. Shallit for sending us a copy of [38], and

B. Źra lek for sending us a copy of his work [56]. We are grateful to W. George
for bringing [10] to our attention. J.-L. Nicolas and G. Tenenbaum were
kind enough to send us results related to Wolke’s work. All algorithms were
programmed and tested in Magma, and some computations were done in
Maple.

References

[1] Leonard M. Adleman and Kevin S. McCurley. Open problems in number theoretic
complexity, II. In Leonard M. Adleman and Ming-Deh Huang, editors, Algorithmic
Number Theory, pages 291–322, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

DETERMINISTIC FACTORING WITH ORACLES 21

[2] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Ann. of Math.
(2), 160(2):781–793, 2004.

[3] Eric Bach, James Driscoll, and Jeffrey O. Shallit. Factor refinement. J. Algorithms,
15:199–222, 1993.

[4] Eric Bach, Gary L. Miller, and Jeffrey O. Shallit. Sums of divisors, perfect numbers
and factoring. SIAM J. Comput., 15(4):1143–1154, 1986.

[5] Daniel J. Bernstein. Factoring into coprimes in essentially linear time. J. Algorithms,
54:1–30, 2005.

[6] Daniel J. Bernstein, Hendrik W. Lenstra, Jr., and Jonathan Pila. Detecting perfect
powers by factoring into coprimes. Math. Comp., 76(257):385–388, January 2007.

[7] Johannes Blömer and Alexander May. A tool kit for finding small roots of bivariate
polynomials over the integers. In Ronald Cramer, editor, Advances in Cryptology -
EUROCRYPT 2005, 24th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceed-
ings, volume 3494 of Lecture Notes in Computer Science, pages 251–267. Springer,
2005.

[8] Dan Boneh, Gary Durfee, and Nick Howgrave-Graham. Factoring N = prq for large
r. In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 15-19,
1999, Proceedings, volume 1666 of Lecture Notes in Computer Science, pages 326–337.
Springer, 1999.

[9] Alin Bostan, Pierrick Gaudry, and Éric Schost. Linear recurrences with polynomial co-
efficients and application to integer factorization and Cartier-Manin operator. SIAM
J. Comput., 36(6):1777–1806, 2007.

[10] Aaron Chow. Applications of Fourier coefficients of modular
forms. Phd thesis, University of Toronto, 2015. Available at
https://tspace.library.utoronto.ca/handle/1807/70815.

[11] Don Coppersmith. Finding a small root of a bivariate integer equation; factoring with
high bits known. In Ueli M. Maurer, editor, Advances in Cryptology - EUROCRYPT
’96, International Conference on the Theory and Application of Cryptographic Tech-
niques, Saragossa, Spain, May 12-16, 1996, Proceeding, volume 1070 of Lecture Notes
in Computer Science, pages 178–189. Springer, 1996.

[12] Don Coppersmith. Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Cryptology, 10(4):233–260, 1997.

[13] Don Coppersmith. Finding small solutions to small degree polynomials. In Joseph H.
Silverman, editor, Cryptography and Lattices, International Conference, CaLC 2001,
Providence, RI, USA, March 29-30, 2001, Revised Papers, volume 2146 of Lecture
Notes in Computer Science, pages 20–31. Springer, 2001.

[14] Don Coppersmith, Nick Howgrave-Graham, and S. V. Nagaraj. Divisors in residue
classes, constructively. Math. Comp., 77(261):531–545, 2008.

[15] Jean-Sébastien Coron and Alexander May. Deterministic polynomial-time equivalence
of computing the RSA secret key and factoring. J. Cryptology, 20(1):39–50, 2007.

[16] Jean-Sébastien Coron. Finding small roots of bivariate integer polynomial equations
revisited. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology
- EUROCRYPT 2004, International Conference on the Theory and Applications of
Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings, vol-
ume 3027 of Lecture Notes in Computer Science, pages 492–505. Springer, 2004.

[17] Jean-Sébastien Coron. Finding small roots of bivariate integer polynomial equations:
A direct approach. In Alfred Menezes, editor, Advances in Cryptology - CRYPTO
2007, 27th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2007, Proceedings, volume 4622 of Lecture Notes in Computer Science,
pages 379–394. Springer, 2007.

https://tspace.library.utoronto.ca/handle/1807/70815

22 FRANÇOIS MORAIN, GUÉNAËL RENAULT, AND BENJAMIN SMITH

[18] Jean-Sébastien Coron, Jean-Charles Faugère, Guénaël Renault, and Rina Zeitoun.
Factoring N = prqs for large r and s. In Kazue Sako, editor, Topics in Cryptology -
CT-RSA 2016 - The Cryptographers’ Track at the RSA Conference 2016, San Fran-
cisco, CA, USA, February 29 - March 4, 2016, Proceedings, volume 9610 of Lecture
Notes in Computer Science, pages 448–464. Springer, 2016.

[19] Edgar Costa and David Harvey. Faster deterministic integer factorization. Math.
Comp., 83(285):339–345, 2014.

[20] Richard Crandall and Carl Pomerance. Prime numbers – A Computational Perspec-
tive. Springer Verlag, 2nd edition, 2005.

[21] Paul Erdős. On the sum
∑x

k=1
d(f(k)). J. London Math. Soc., 27:7–15, 1952.

[22] Jean-Charles Faugère, Raphaël Marinier, and Guénaël Renault. Implicit factoring
with shared most significant and middle bits. In Phong Q. Nguyen and David
Pointcheval, editors, Public Key Cryptography - PKC 2010, 13th International Con-
ference on Practice and Theory in Public Key Cryptography, Paris, France, May
26-28, 2010. Proceedings, volume 6056 of Lecture Notes in Computer Science, pages
70–87. Springer, 2010.

[23] Frédéric Grosshans, Thomas Lawson, Benjamin Smith, and François Morain. Fac-
toring Safe Semiprimes with a Single Quantum Query. working paper or preprint,
September 2016.

[24] David Harvey. An exponent one-fifth algorithm for deterministic integer factorisation,
2020. Available at https://arxiv.org/abs/2010.05450.

[25] David Harvey and Markus Hittmeir. A log-log speedup for expo-
nent one-fifth deterministic integer factorisation, 2021. Available at
https://arxiv.org/abs/2105.11105.

[26] Markus Hittmeir. A babystep-giantstep method for faster deterministic integer fac-
torization. Math. Comput., 87(314):2915–2935, 2018.

[27] Markus Hittmeir. A time-space tradeoff for Lehman’s deterministic integer factoriza-
tion method, 2020. Available at https://arxiv.org/abs/2006.16729.

[28] Nick Howgrave-Graham. Finding small roots of univariate modular equations revis-
ited. In Cryptography and Coding, 6th IMA International Conference, Cirencester,
UK, December 17-19, 1997, Proceedings, pages 131–142, 1997.

[29] Nick Howgrave-Graham. Approximate integer common divisors. In Joseph H. Sil-
verman, editor, Cryptography and Lattices, International Conference, CaLC 2001,
Providence, RI, USA, March 29-30, 2001, Revised Papers, volume 2146 of Lecture
Notes in Computer Science, pages 51–66. Springer, 2001.

[30] Charanjit S. Jutla. On finding small solutions of modular multivariate polynomial
equations. In Kaisa Nyberg, editor, Advances in Cryptology - EUROCRYPT ’98,
International Conference on the Theory and Application of Cryptographic Techniques,
Espoo, Finland, May 31 - June 4, 1998, Proceeding, volume 1403 of Lecture Notes in
Computer Science, pages 158–170. Springer, 1998.

[31] Donald E. Knuth. The Art of Computer Programming: Seminumerical Algorithms.
Addison-Wesley, 3rd edition, 1997.

[32] Susan Landau. Some remarks on computing the square parts of integers. Inf. Comput.,
78(3):246–253, 1988.

[33] R. Sherman Lehman. Factoring large integers. Math. Comp., 28:637–646, 1974.
[34] Arjen K. Lenstra, Hendrik W. Lenstra, Jr., and Lászlo Lovász. Factoring polynomials

with rational coefficients. Math. Ann., 261(4):515–534, 1982.
[35] H. W. Lenstra, Jr. Miller’s primality test. Inform. Process. Lett., 8(2):86–88, 1979.
[36] Hendrik W. Lenstra, Jr. Divisors in residue classes. Math. Comp., 42(165):331–340,

January 1984.
[37] William J. LeVeque. Fundamentals of number theory. Dover, 1996.
[38] Douglas L. Long. Random equivalence of factorization and computa-

tion of orders. Technical Report 284, Princeton University, Depatment

https://arxiv.org/abs/2010.05450
https://arxiv.org/abs/2105.11105
https://arxiv.org/abs/2006.16729

DETERMINISTIC FACTORING WITH ORACLES 23

of Electrical Engineering and Computer Science, April 1981. Available at
http://www.lix.polytechnique.fr/Labo/Francois.Morain/Introuvables/long-orders.pdf.

[39] Florian Luca and Carl Pomerance. On the average number of divisors of the Euler
function. Publ. Math. Debrecen, 70(1-2):125–148, 2007.

[40] Alexander May and Maike Ritzenhofen. Implicit factoring: On polynomial time fac-
toring given only an implicit hint. In Stanislaw Jarecki and Gene Tsudik, editors,
Public Key Cryptography - PKC 2009, 12th International Conference on Practice
and Theory in Public Key Cryptography, Irvine, CA, USA, March 18-20, 2009. Pro-
ceedings, volume 5443 of Lecture Notes in Computer Science, pages 1–14. Springer,
2009.

[41] Gary L. Miller. Riemann’s hypothesis and tests for primality. In Proc. 7th STOC,
pages 234–239, 1975.

[42] Phong Q. Nguyen and Damien Stehlé. An LLL algorithm with quadratic complexity.
SIAM J. Comput., 39(3):874–903, 2009.

[43] Andrew Novocin, Damien Stehlé, and Gilles Villard. An lll-reduction algorithm with
quasi-linear time complexity: extended abstract. In Lance Fortnow and Salil P. Vad-
han, editors, Proceedings of the 43rd ACM Symposium on Theory of Computing,
STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 403–412. ACM, 2011.

[44] John M. Pollard. Theorems on factorization and primality testing. Proc. Cambr.
Philos. Soc., 76:521–528, 1974.

[45] Michael O. Rabin. Digitalized signatures and public-key functions as intractable as
factorization. Technical report, Massachusetts Institute of Technology, Cambridge,
MA, USA, 1979.

[46] Maike Ritzenhofen. On efficiently calculating small solutions of systems of polynomial
equations: lattice-based methods and applications to cryptography. PhD thesis, Ruhr
University Bochum, 2010.

[47] Ronald L. Rivest and Adi Shamir. Efficient factoring based on partial information. In
Franz Pichler, editor, Advances in Cryptology - EUROCRYPT ’85, Workshop on the
Theory and Application of of Cryptographic Techniques, Linz, Austria, April 1985,
Proceedings, volume 219 of Lecture Notes in Computer Science, pages 31–34. Springer,
1985.

[48] Santanu Sarkar and Subhamoy Maitra. Further results on implicit factoring in poly-
nomial time. Advances in Mathematics of Communications, 3(2):205–217, 2009.

[49] Santanu Sarkar and Subhamoy Maitra. Approximate integer common divisor problem
relates to implicit factorization. IEEE Trans. Information Theory, 57(6):4002–4013,
2011.

[50] Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved practical
algorithms and solving subset sum problems. Math. Program., 66:181–199, 1994.

[51] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.

[52] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra (3. ed.).
Cambridge University Press, 2013.

[53] Dieter Wolke. A new proof of a theorem of van der Corput. J. London Math. Soc.
(2), 5:609–612, 1972.

[54] Heather Woll. Reductions among number theoretic problems. Information and Com-
putation, 72:167–179, 1987.

[55] Bartosz Źra lek. A deterministic version of Pollard’s p-1 algorithm. Math. Comp.,
79(269):513–533, 2010.

[56] Bartosz Źra lek. An extension of a result about divisors in a residue class and its appli-
cation to reducing integer factorization to computing Euler’s totient. Math. Comp.,
88(317):1261–1272, 2019.

http://www.lix.polytechnique.fr/Labo/Francois.Morain/Introuvables/long-orders.pdf

24 FRANÇOIS MORAIN, GUÉNAËL RENAULT, AND BENJAMIN SMITH

Appendix A. Splitting and factoring integers

In this appendix, we give several algorithms to split an integer (i.e., finding
a non-trivial divisor) or to factor it completely, summarising our work.

• FactorWithEvenPower (Alg. 7) is a primitive for factoring using an
element of even order;
• SplitWithOracleRandom (Alg. 8) is a randomized version of factor-

ing with oracles, together with FactorWithOracleRandom (Alg. 9).
A version for Σ can be found in [4].
• FactorWithOracle is the main function for factoring using an oracle

(Alg. 10), and its ancillary function FWO (Alg. 11);
• FactorWithFactoredOrder (Alg. 12) uses the factorization order

oracle.

Algorithm 7: Factoring with an even power

1 Function FactorWithEvenPower(N , a, k)
input : Integers (N, a, k) with k even, gcd(a,N) = 1, and

ak ≡ 1 mod N
output : a non-trivial divisor 1 < d < N or failure

2 Compute (s, t) such that k = 2s · t with s > 0, t odd

// by hypothesis, a2
s·t ≡ 1 mod N

3 b← at mod N

4 if b 6= 1 then

5 find the smallest s′, 1 ≤ s′ ≤ s such that b2
s′ ≡ 1 mod N

6 c← b2
s′−1

mod N // c is a square root of 1

7 if c 6= −1 then

8 return gcd(c− 1, N)

9 return failure

If k = ordN (a), then surely, we cannot have b = 1. When k = ϕ(N) (resp.

λ(N)), the probability that b = 1 is bounded by 1/2s ≤ 1/2ω(N). There are
2ω(N) square roots of 1 (by the Chinese Remainder Theorem), including ±1.

There are 2ω(N) − 1 possible values for c and only one is trivial. So c 6= −1
with probability ≥ 1− 1/2ω(N)−1 ≥ 1/2.

If we use the order oracle O, then we may need to try several random
values of a until we find one with even order r. And again this happens with
probability ≤ 1/2s.

(F. Morain and B. Smith) LIX - Laboratoire d’informatique de l’École poly-

technique, GRACE - Inria Saclay - Ile de France

Email address, F. Morain: morain@lix.polytechnique.fr

Email address, B. Smith: smith@lix.polytechnique.fr

DETERMINISTIC FACTORING WITH ORACLES 25

Algorithm 8: Splitting an integer with an oracle using randomness

1 Function SplitWithOracleRandom(N , ̟)
input : An integer N , an oracle ̟ ∈ {Φ,Λ,O}
output : N if N is prime, otherwise a non-trivial divisor

1 < d < N

2 if ̟ ∈ {Φ,Λ} then
3 k

̟←− F(̟)(N)

4 if k = N − 1 then // N is prime

5 return N

6 while true do

7 choose a random a ∈ [2, N − 2]

8 g ← gcd(a,N)

9 if g 6= 1 then

10 return g

11 if ̟ = O then

12 k
̟←− ordN (a)

13 if k = N − 1 then // N is prime

14 return N

// by hypothesis, ak ≡ 1 mod N

15 if k is even then

16 res← FactorWithEvenPower(N , a, k)

17 if res 6= failure then

18 return res

(G. Renault) Agence Nationale de la Sécurité des Systèmes d’Information,

and LIX - Laboratoire d’informatique de l’École polytechnique, CNRS, Insti-

tut Polytechnique de Paris and GRACE - Inria Saclay–̂Ile-de-France

Email address, G. Renault: guenael.renault@ssi.gouv.fr

26 FRANÇOIS MORAIN, GUÉNAËL RENAULT, AND BENJAMIN SMITH

Algorithm 9: Factoring an integer with an oracle and randomness

1 Function FactorWithOracleRandom(N , ̟)
input : Integer N , oracle ̟ ∈ {Φ,Λ,O}
output : A set {(p1, e1), . . . , (pr, er)} s.t. N =

∏r
i=1 p

ei
i with all

pi prime

2 d← SplitWithOracleRandom(N , ̟)

3 if d = N then // N is prime

4 return {(N, 1)}
5 else

6 L0 ← Refine({d,N/d})
// L0 = {(M1, e1), . . . , (Ms, es)}, gcd(Mi,Mj) = 1 for i 6= j

7 L ← ∅
8 for (M,e) ∈ L0 do

9 L1 ← FactorWithOracle(M , ̟)

// L1 = {(p1, f1), . . . , (pu, fu)}, pi prime

10 for (p, f) ∈ L1 do // since all Mi are coprime, p

is not in L
11 L ← L ∪ {(p, ef)}

12 return L

DETERMINISTIC FACTORING WITH ORACLES 27

Algorithm 10: Factoring an integer with an oracle

1 Function FactorWithOracle(N , ̟)
input : A squarefree integer N , an oracle ̟ ∈ {Φ,Σ}
output : Sets P and C (possibly empty) containing prime and

composite divisors of N , respectively

2 if ̟ = Φ then

3 sgn← −1

4 else

5 sgn← +1

6 M
̟←− F(̟)(N)

7 if M = N + sgn then // N is prime

8 return ({N}, ∅)
9 P ← FactorizationWithPhi2(N)

10 if P 6= ∅ then
11 return (P, ∅)
12 g ← gcd(N,M)

13 if g 6= 1 then

14 return FWO(N , {g}, ̟)

15 D ← FactoringWithKnownDifference(N , M , 1, 0.5)

16 if D 6= ∅ then // we have found some D > N
1/2
1

17 return FWO(N , D, ̟)

// Theorem 5.5 can be used?

18 D ← SplitCF(N , ̟)

19 if D 6= ∅ then
20 return FWO(N , D, ̟)

21 D ← SplitLLL(N , ̟, ⌊log2 N⌋)
22 if D 6= ∅ then
23 return FWO(N , D, ̟)

24 return (∅, {N})

28 FRANÇOIS MORAIN, GUÉNAËL RENAULT, AND BENJAMIN SMITH

Algorithm 11: Ancillary function for Algorithm 10

1 Function FWO(N , D, ̟)
input : Squarefree integer N , an oracle ̟ ∈ {Φ,Σ}, and a set

D of non-trivial divisors of N
output : Two sets (possibly empty) P and C where the former

(resp. the latter) contains prime (resp. composite)
divisors of N

2 D ← ∪d∈D{d,N/d} // force d and N/d to be in the set

3 D ← CleanDivisors(D)
4 (P, C)← (∅, ∅)
5 for d ∈ D do

6 (Pd, Cd)← FactorWithOracle(d, ̟)

7 (P, C)← (P ∪ Pd, C ∪ Cd)

8 return (P, C)

DETERMINISTIC FACTORING WITH ORACLES 29

Algorithm 12: Factoring with factorization of order

1 Function FactorWithFactoredOrder(N , a)
Input : N , a
Output: A set of pairs (Mi, ei) with the Mi pairwise coprime

and
∏

iM
ei
i = N

2 {(ℓ1, e1), . . . , (ℓu, eu)} ← Factorization(O(a,N))

3 r ← Πu
i=1ℓ

ei
i

4 if r = N − 1 then // N is prime

5 return {(N, 1)}
6 g ← gcd(r,N)

7 if g 6= 1 then

8 L ← ∅
9 for i← 1 to u do

10 v ← νℓi(N) // maximal power of ℓi dividing N

11 if v > 0 then

12 L ← L ∪ {(ℓi, v)}
13 N ← N/ℓvi

// N > 1 since r < N

14 return L ∪ FactorWithFactoredOrder(N , a)

15 M← ∅
16 for i← 1 to u do

17 b← ar/ℓi mod N

18 g ← gcd(b− 1, N)

19 if 1 < g < N then

20 M←M∪ {g,N/g}

21 return CleanDivisors(N ,M)

	1. Introduction
	2. Number-theoretic oracles
	2.1. The oracles
	2.2. Relationships between the oracles
	2.3. Randomized and conditional algorithms

	3. Lattices, Coppersmith's method, and approximate common divisors
	3.1. Bivariate Coppersmith
	3.2. Approximate common divisors
	3.3. Computing approximate common divisors via continued fractions
	3.4. Computing approximate common divisors via lattice reduction
	3.5. Algorithms to refine partial factorizations

	4. Finding particular divisors of an integer
	4.1. Factoring with unknown difference
	4.2. Factoring with known difference

	5. Factoring with the Phi, Lambda, and Sigma oracles
	5.1. Reduction to the squarefree case
	5.2. Reduction to the case gcd(N,phi(N))=1
	5.3. Products of two primes
	5.4. Products of more than two primes
	5.5. Products of exactly three primes
	5.6. Numerical examples

	6. Other oracles
	6.1. Using the factorization of phi(N) or sigma(N)
	6.2. Factoring with the order oracle
	6.3. Combining different oracles

	7. Conclusions
	Acknowledgements.

	References
	Appendix A. Splitting and factoring integers

