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SIMPLIFICATION OF M-RING EXPRESSIONS IN THE GROTHENDIECK
RING OF CHOW MOTIVES

DAVID ALFAYA

ABSTRACT. The Grothendieck ring of Chow motives admits two natural opposite A-ring structures,
one of which is a special structure allowing the definition of Adams operations on the ring. In this
work I present algorithms which allow an effective simplification of expressions that involve both
A-ring structures, as well as Adams operations. In particular, these algorithms allow the symbolic
simplification of algebraic expressions in the sub-A-ring of motives generated by a finite set of curves
into polynomial expressions in a small set of motivic generators. As a consequence, the explicit
computation of motives of some moduli spaces is performed, allowing the computational verification
of some conjectural formulas for these spaces.
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1. INTRODUCTION

A A-ring is an abelian unital ring endowed with a set of maps A" for each natural number which
satisfy the identities

N(z) =1, M(z) = =, "r+y) = Z)\Z INT ()

These rings, first introduced by Grothendieck, generalize simultaneously several common structures
in mathematics. For example, binomial coefficients (Z) give a A-ring structure on Z and symmetric
powers and exterior powers of bundles induce different A-ring structures on the K-theory of a
manifold.

In algebraic geometry, A-ring structures play an important role in invariant computations and,
more precisely, in computations of motives of algebraic varieties. In addition to its relation with
K-theory, symmetric powers of varieties induce a natural A-ring structure on both Grothendieck’s
ring of varieties Ky(Vark) and several spaces of motives, such as the ring of Chow motives CMg
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and its Grothendieck ring Ko(CMxk) | ]. In particular, it is common for the motive of a variety
to be described as an algebraic expression in the corresponding A-ring.

In particular, this type of A-expressions appear naturally in the computation of motivic classes of
different types of moduli spaces. For example, the virtual classes in Ko(CMx) of moduli spaces of
vector bundles of rank n = 2,3 over a curve X with fixed degree and fixed determinant are obtained
as algebraic functions of the classes of symmetric powers of the curve C' and the Lefschetz motive L
[ , , |. This also holds for moduli spaces of Higgs bundles | | and,
conjecturally, for the virtual class of moduli stacks of vector bundles of any rank in the completion
of the Grothendieck ring of varieties | ]

Nevertheless, manipulating, simplifying and comparing these type of expressions can be difficult.
Expanding )\ operations on an arbitrary A-expression in a general A-ring is not always entirely possi-
ble, as expressions like A" (xy) or A(\M (z)) might not be simplifiable unless the A-structure satisfies
additional axioms (e.g., providing a special A-ring structure). Moreover, expressions involved in
motive computations sometimes involve more than one A-structure (typically, a A-structure, its
opposite structure and its associated Adams operations). Even when possible, expanding these
operations directly from the axioms can be computationally demanding.

In this paper, an algorithm for simplifying arbitrary algebraic expressions involving a A-ring, its
opposite A-structure and its associated Adams operations is obtained under the condition that the
opposite A-ring is special. More precisely, the algorithm transforms any such expression into an
integral polynomial in A\-powers of elementary generators of the original expression (see Algorithm
1 and Theorems 3.7 and 3.8).

Theorem 1.1. Let L) _yings = (+,—,-,0,1) U{A\", 0™, ¥"},en be the language of rings with two
A-structures A and o and Adams operations 1, and let T be the theory of A\-rings (R, \) whose
opposite A-structure, o is special. Then for each expression p(x1,...,xy) in the language Lx_rings,
there exists a unique integral polynomial PQ EL[T1 1y Tldys - Tnls - Tnd,) Such that

T EV2y,....zno(z1,...,2,) = P;‘()\l(xl), A (@), A @), A ()
Moreover, for torsion free rings, Algorithm 1 finds the polynomial PQ from every expression .

In particular, this is the situation happening in the Grothendieck ring of Chow motives, where the
A-ring is induced by symmetric powers of varieties. This A-ring is not special itself, so, in principle,
simplification of arbitrary expressions would be challenging, but in | | it is proven that its
opposite A-structure is indeed special, so the proposed algorithm can be applied. In particular,
incorporating the properties of motives of curves, we obtain a way to reduce any motivic expression
generated by a finite set of curves into an integral polynomial in a finite set of motivic generators
(See Theorem 4.1 and Algorithm 2)

Theorem 1.2. Let Xq,...,X,, be smooth projective curves over a field K of characteristic 0. Then
any expression P, in the sub-(\,0,1)-ring of the completion of the Grothendieck ring of Chow
motives Ko(CMg) spanned by the motives of the curves and the Lefschetz motive L = [Al] is
simplified by Algorithm 2 into an integral polynomial P, such that

(,D(]L, [Xl], vy [Xn]) = P@(La a171, e ,a17gl, v ,an,gn)
where a; ; = N\ ([h(X;)]).

As an application of this theorem, we will verify computationally a conjectural formula stated by
Mozgovoy | | for the moduli space of twisted Higgs bundles on a curve in low rank, genus and
degree of the twisting line bundle. To check the result, we will compare it with the recent motivic
formula for such moduli spaces obtained in [ |. In principle, both formulas are very different
and involve nontrivial expressions in the A-ring of motives. Moreover, in the case of Mozgovoy’s
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conjecture, the expression involves the application of Adams operations for the opposite structure
of the symmetric A-ring structure on several A-ring expressions. Using the proposed algorithm,
both formulas are converted into integral polynomials on the same set of generators, which depend
solely on the curve. The resulting polynomials are verified to coincide, thus proving the conjectural
formula for the motive.

The structure of the paper is the following. We start recalling the definitions of A-structure,
opposite A-structure and Adams operations, as well as the algebraic relations between them (Sec-
tion 2). Section 3 includes the main simplification theorems for £_ings-terms and the proposed
simplification algorithm for abstract A-rings (R, A) whose opposite A-structure is special. These
results are then particularized in Section 4 for the A-structure on the Grothendieck ring of Chow
motives induced by taking symmetric powers of varieties. As an application, in Section 5 we will
apply the proposed algorithm to prove computationally that Mozgovoy’s conjectural formula for
the motive of the moduli space of L-twisted Higgs bundles holds in low genus, rank and degree.
Finally, as an annex, some of the obtained explicit simplified polynomial formulas for the motives
of such moduli spaces of twisted Higgs bundles are included.

Acknowledgments. This research was funded by MICINN grant PID2019-108936GB-C21. 1
would like to thank André Oliveira for useful discussions.

2. A-RINGS AND ADAMS OPERATIONS

We will start by a brief reminder about A\-ring structures (c.f. | I, [ ). Let R be an
abelian unital ring.

Definition 2.1. A \-ring structure on R is set of maps (not necesarily homomorphisms) \' : R —
R indexed by natural numbers i € N which satisfy the following properties.

(1) For all z € R, \%(z) = 1 and \'(z) = .

(2) For all x,y € R and alln € N

n

X'z +y) =D X(z)A"(y)

i=0
Alternatively, we can codify the information of the A\’ maps into a generating series
M(z) =D N(a)t!
i>0
In this context, condition (1) ensures that for each z € R, A\(z) € 1+ tR[[t]] and it is therefore

an invertible series and condition (2) is equivalent to stating that for each x,y € R the following
equality holds in 1 + ¢tR][t]]
M@+ y) = M(@)\e(y)
i.e. that the map A\ : (R,+) — (1 + tR[[t]],-) is a group homomorphism. From these properties
one can deduce that for each A\-ring structure A on R, there exists an “opposite” A-ring structure
o given by the following relation
-1

(2.1) ol(x) =) o)t = | Y N@) (=) | = ((a)
>0 >0
In particular, as 1 = \(0) = A\¢(x)A\¢(—2), we have
or(—x) = A¢(x)
(2.2) o (=) = (=1)"A"(x)
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Definition 2.2. A A-ring is special if, moreover, for all x,y € R and all n,m € N
N (zy) = Py (A (@), .., A" (@), A (y), ..., A" (y))

AN N™(2)) = Pym (AH(2), ..., A" (2))

where P, € Z( X1, ..., Xp, Y1,...,Yy) and Py, € Z( X1, ..., Xpm) are certain universal polynomials
called Grothendieck polynomials, defined as follows. If

Smm (X1, Xn) = > 11 x.

1<j1<..<jn<m k=1

is the elementary symmetric polynomial of degree n the m variables X1,..., Xm, then

P (51.0m(IXi}), - s Snmnm ({Xi})) = coeffsn 11 (1 +t]] Xjk)
k=1

1<ii<..<jm<nm

n

P, (sin({Xi})s -y snn({Xi}), s1.0({Yi}), .- s snn({Yi})) = coeffyn H (1+1tX;Y5)

1,7=1

If X\ is special, then a certain set of well-behaved endomorphisms of the A-ring (R, \) called
Adams operations can be constructed as follows.

Definition 2.3. Let A\ be a A-ring structure on the ring R. Let N, € Z[s1,...,s,] be the n-th
Hirzebruch-Newton polynomial, defined as follows. It is the unique polynomial such that for each
méeN

> X = No(sim({Xi}), -+ snm({Xi})) € Z[X1, ..., X
=1

Then for each n € N, define the n-th Adams operation of the A-ring (R, \) as
Yn(x) = Ny(A(), ..., \"(x))
Proposition 2.4 (c.f. | , Theorem 9.2]). If X\ is special, then
(1) For every j € N, 1 : (R;\) = (R, A) is a A-ring homomorphism.
(2) For every x € R, ¢1(x) = z.
(3) For every i,j € N, ¥ o9 = 1.

From this point on, let (R, ) be a A-ring, and assume that the opposite A-ring structure, which
will be called o, is special. Let 1, be the Adams operations associated with such special A-
structure o. Let us recall some algebraic relations between these three families of maps, A", "
and 1,. Although most of these relations are well known in the literature (c.f. | I [ 1), a
proof of each of them is included as, in addition to demonstrating the corresponding results, they
present some effective recursive methods for the computation of the maps which will be used in the
main simplification algorithm.

First of all, solving the triangular system of equations defined by Equation (2.1) and taking into
account that the opposite structure of ¢ is A yields the following.

Proposition 2.5. For eachn > 0 there exists a degree n polynomial Py (x1,. .., 2,) € Z[x1, ..., 2]
such that for all t € R
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and the polynomials PyP satisfy the following recursive relation.

PP =1
n—1 '

PP =Y PPz, i(-1)""* ¥n>1
1=0

Proof. As the opposite A-structure of o is A, it is only necessary to prove that there exists a set of
polynomials satisfyig the given recursive relation and such that for each x € R

o"(x) = P,‘L’p()\l(m), A (2))

We will prove this by induction on n. For n = 0, the axioms imply that 0°(z) = 1 = A\%(z) for each
z € R, so Py¥ =1 as stated. Let n > 0 and suppose that the polynomials P/* exist for each i <n
and stisfy the requiered properties. For every x € R we have

S o@D N (@) (1) ZZ )N @) (~1)" )

i>0 7>0 n>0i=0

Thus, for every n > 0

n—1
0" () + 3 o )N (@) (1) =0
=0
And, therefore
n—1
Z O’ )\n z ( 1)n i+1
1=0
Now we can apply induction and write o’(z) = PP (A\(z),..., A (z)), so

n—1
= 3" PP (x), .. N (@) A () (~1)
i=0

As this holds for each z € R, taking

n—1
P =3 PP (1)
1=0

we have o™(x) = PP(A(z),...,A\"(z)). Finally, the fact that the degree of Py’ is n is trivially
proven inductively, as from the recursive equation we have

deg(Fy") < max {deg(F")} +1

Suppose that deg(P{”) =i for all i < n. Then
deg(P?) < max {deg(P")}+1=n—-14+1=n
1<i<n
and, moreover,

deg(PPzp_i) =i+1<n

forall i <n—1, so
deg(P2?) = deg(P 1) = n
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By construction, recall that the Hirzebruch-Newton polynomials N,, provide an algebraic depen-
dency of the Adamas operations in terms of the special A-structure o.

(2.3) bn(x) = No(o'(2),...,0"(2))
The following presentation of Newton’s identities
n—1
(24) Un(@) = (=1)" Tno™(x) = Y (1" 0" (@)hi(z) Ve ER
i=1
provides a fast recursive method for computing such degree n Newton polynomials
(2.5) N 1 =21
n—1 '
(2.6) Ny = (=1)" " nay = (=1 i
i=1
If R is a divisible torsion free ring, then it is well known that the process can be reverted and
that the special A-structure can be expressed as an algebraic combination of Adams operations

Proposition 2.6. Let (R,0) be a special A-ring such that R is torsion free. Then for everyn > 0,
there is a degree n polynomial Ly (x1,...,x,) € Q[z1,...,zy,] such that for each x € R

o (x) = Lp(Y1(x),. .., ¥n(x))
satisfying the following recursive relation.

Ll =

1 n—1 '
L, = E <(—1)n_1l‘n + Z(—l)l_an_il‘i> Vn >1
=1

In this expression, we write “Y:%X” to denote that there exists an element in R which multiplied
by n yields X (which is unique by torsion freeness of R) and that Y is such element.

Proof. Rearanging Newton’s identity (2.4) we have that for each € R

O,n(x):%<( n lwn Z 2 1 o 2 )wz( ))

Moreover, o' (z) = x = 11 (x), so L1 = z; and, inductively, it is clear that if o*(z) = Ly (¥1(z), ..., Yx(x))
for all z € R and all k < n, then if we define L,, by the given recursion, the following holds for each
x € R.

n—1
o"(x) = L <(—1)"_1¢n(w)+2(—1)’ o @) ))
i=1

n

= - (( n 1¢n Z Z an i ’lzz)l( ) cee 7¢n—2(l‘))wz($>> = Ln(wl(l‘)a cee 7¢n($))

Finally, the degree n assertion becomes straightforward from the recurrence relation. It is clear
by induction that the degree is at most n. If we focus on the monomials of the form ¥ in the
polynomials, it is straightforward to prove inductively that for each n > 1, coeff,r(L;,) # 0. We
know that L; = ;1 and computing the coefficient of 27 in L,, in the recursion equation and taking
into account that deg(Lyj) < n for each k < n yields

1
coeff L, = —(—1)"} coeff Ly, #0 Vn > 1

n —
Ty n z7
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O

Combining the polynomials L, and N, with the opposite polynomials PkOp for k < n, we can
obtain similar relations between the Adams operations ¢ and the non-special A-structure on the
ring, A.

Corollary 2.7. Let (R, )\) be a torsion free A\-ring such that the opposite \-structure o is special.
Then for every n > 0, there is a degree n polynomial Ly’ (z1,...,x,) € Q[x1,...,2,] such that for
each r € R

A'(x) = LP(Y1(2), -, Pn(T))

Proof. The existence of the polynomial is clear, as we know that for each x € R

N'(z) = PP(c!(x),...,0"(x)) = PP(Li(¢1(x)),..., Lo(1(z), ..., n(x)))
SO
LP(x1,...,2;) = PP(Li(21), .., Ly(z1,. .., 20)) € Qz1, ..., 2]

We can then use the recursive definition of Py? to verfy inductively that the degree of the resulting
polynomial is exactly n. For n = 1 it is trivial, as L’ = x1. Assume that deg(L;*) = i for all
i < n. Applying the recursive equation for P;’ from Proposition 2.5 yields

n—1 n—1

LP =PP(Ly,...,Ly) = > PP(L1,...,Li)Lpi(=1)"7 =Y " LPL, (—1)""
i=0 i=0
O

Corollary 2.8. Let (R, \) be a A\-ring such that the opposite structure o is special. Then for every
n > 0, there is a degree n polynomial NP (x1,...,n) € Z[x1,...,xy,] such that for each v € R

Un(x) = NP (A (@), .., A" ()
Proof. The proof is completely analogous that the one for Corollary 2.7, taking
NP = N,(P?,...,PP)

3. ABSTRACT SIMPLIFICATION ALGORITHM

Let us consider the following languages:
o Let Lyings = {+,—,,0,1} be the language of (unital) rings.
o Let Ly_rings = Lrings U {A\", 0", ¥ }nen denote the language of rings with two opposite
A-structures A and o and Adams operations ).
o Let E?ilr‘{gs = Lyings U {-/n}nen be the language of divisible rings.

e Let ﬁ‘iil’rings = Lx—rings U {:/n}nen be the language of divisible rings with a (), 0,)-

structure.
Moreover, let T be the L£y_ ings-theory of L£y_ ings-structures (R, 4+, —,-,0,1, A, 0,%) which satisfy
that
(R,+,—,0,1) is an abelian unital ring.
A and o are oposite A-ring structures on R
o is a special A-ring structure.
1) are the Adams operations of o

Finally, let T D T be the theory of L£)_jings-structures satisfying 7 such that (R, +) is torsion
free.
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Definition 3.1. Let ¢(x1,...,2z,) be an L—rings-term in n variables. We define recursively
the mazimum \-depth of the term p(x1,...,x,) in the variables (x1,...,x,), which we write as
depth(p) = (dy,...,d,), as follows.

(1)

depth(0) = depth(1) = (0,...,0)
) |
depth(x;) = (0, ..., i, ...,0)
(3) If p(z1,...,2p) and £(x1, ..., %) are Ly_yings-terms with respective mazimum \-depths
depth(yp) = (dy,...,d,), depth(¢) = (dy,...,d),)
then
depth(—¢) = depth(p)
depth(p + &) = depth(p - £) = (max{d;, d}}, ..., max{d,,d,})
(4) If p(x1,...,2pn) 1S @ Ly_yings-term with depth(yp) = (d1,...,dy), then for each k > 0

depth(\*(p(z1, ..., 2,))) = depth(c®(@(z1, ..., 2,))) = depth(Vp(p(z1, ..., 20))) = (kdy, ..., kdy,)

div
A—rings

depth(¢/n) = depth(p) VneN

Analogously, define the mazimum A-depth of an L -term by the relation

The following notations will become useful in the next lemmas. We say that (d},...,d,) < (di,...,d,)
ifd; < d; foralli=1,...,n and we say that (dy,...,d,) < (di,...,d,) if (d},..., )S(dl, S dp)
and (dy,...,d.) # (di,...,d,). Finally, given a tuple of positive integers d = (dl, ey dy), we will

write k[z5] to denote the ring
Elxg] == klz11, .. 14, %21, - B2,dys - - -5 Trdy, |
and we will write
AN (z) = M2y, .. ) = AN @), A (1), A (22), .. AR (22), ..., AT (2))

The idea is that the maximum A-depth of an expression identifyies the maximum ¥ that has
to be computer of each variable (x1,...,2,) in order to compute the expression. Here are some
examples of depths of terms in £ _rings

Example 3.2. For all polynomials P(x1,...,%y) in Lyings involving all variables x1,...,z,
depth(P(z1,...,2,)) = (1,...,1)
Example 3.3. For all k >0
depth(A\*(2)) = depth(c”(2)) = depth(yy(z)) =k Vk
Example 3.4.
depth(\>(y + o?(zy) +3(y))\*(2)) = (6,9)
Remark 3.5. If d' < d, then we have a canonical injection
klzg] < klzg]

First of all, observe that the algebraic relations from the previous section allow us to rewrite any
expression in a A-ring (R, A) whose opposite A-structure o is special exclusively in terms of either
A or o, without changing the maximum A-depth of such expression. More explicitly, the following
Lemma holds.
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Lemma 3.6. Let ¢(z1,...,2,) be a Ly_yings-term. Then there exists a Lyings U {o™}-term ¢, and
a Lyings U {\"}-term @y with the same mazimum X\-depth as ¢ such that

TEVYL, ..., epo(x1, ..., 20) = 0o (21, ., Tn)

TEVYL, ..., xqo(x1, ..., 2n) = ox(T1, .-, Tn)
Proof. Let us prove it inductively in A-terms. If ¢ is a constant or a variable, then ¢, = ) = ¢
stisfies the result. If ¢ = ¢’ + ¢”, then

Yo = Yo+ ¢y
satisfies the statement, as in both cases
depth(p,) = max(depth(y;,), depth(¢])) = max(depth(y'), depth(y"”)) = depth(¢p)
Similarly, if ¢ = ¢’ - ¢”, then, analogously, ¢, = ¢ - ¢.. If ¢ = —¢' then ¢, = —p, holds. If
© = o¥(¢') for some k, then ¢, = 0*(¢) clearly satisfies the result, as
depth(yp,) = kdepth(¢)) = kdepth(¢’) = depth(y)
If p = M(¢') for some k, then take
0o = PR (' (¢h); -, 0" (¢)

Taking into account the induction hypotyesis on ¢’, by Proposition 2.5, T E V1, ..., 2y (21, ..., Tn) =
o(x1,...,x,) and we have

depth(yp,) = max(depth(at(¢)), ..., depth(c®(¢))))) = max(depth(¢'),. .., kdepth(¢’)) = k depth(y’) = depth(g
Analogously, if ¢ = ¥, (¢") for some k, then take

Po = Nk(O'l(C,D;), s 7Jk(90:7))
The previous computation of the depth of ¢, also works in this case and, by construction of vy
(Definition 2.3), T | Va1,..., 20 ¢o(z1,...,20) = @(1,...,2,). The result for ) is completely
analogous, setting N from Corollary 2.8 instead of Ny, from Definition 2.3. O

Theorem 3.7. Let p(x1,...,2y) be a Ly_rings-term with A-depth depth(y) = (d1,...,dy). Then
there exist unique polynomials
Pé\(xl,la s T T2 Tngdy,) € Z[T115 -+ Tnd,] = Z[Tdepth(p)]
Pl(z11,- @140, %215+ Tnd,) € Z[T11, -, Tnd,| = L] Tdepin(y)]
such that
T EVz,...,xq0(1, ..., 2y) = P;‘(/\l(:nl), A (), M (22), . AT (1))
T EVry, ..o, . xn) = PI(0! (1), ...,0M (1), 0! (22), ..., 0% (2))

Proof. We will address first existence the polynomials. The existence of Pé‘ clearly follows from
the existence of P7, as Proposition 2.5 implies that

T E=Vry,...,zp Pg(al(ajl), o (xy), 0 (), ... oM (=) = Pg(Plop()\l(xl)), . ,ng’()\l(ajl), o A1)y,

so we can take

A _ op op op
P‘P ($1,1, e 7$n,dn) == Pg(Pl (:El), e ’Pdl (33‘171, e ,33‘17d1), e ’Pdn ($n,1 e ,ﬂj‘mdn))
Let us focus on the existence of PJ. By the previous lemma we can assume without loss of

generality that A\* and v, do not appear in . Let us start by proving that if ¢ has the form
© = o"(y") where k > 0 and ¢’ is a Lrings-term, then ¢ satisfies the Theorem. Let us prove it
inductively on terms of ¢'.
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If Y =0o0r ¢ =1, then P =0 or P = 1 satisfy the Theorem respectively. If ¢/ = z; for some
7, then

J
depth(c®(¢")) = (0,...,k,...,0)
and P;k(x-) = xj 1, considered as a polynomial in Z[z11,...,%j1,...,%jk,-..,Tn1] clearly satisfies
J

the result for each k.
If ' = ¢} + ¢}, then

T EVe, ... a0 0@ +¢h) =Y o7 (g))o" ()

.
o

By induction hypothesis, then for each j and [ = 1,2

Tl Var. 0 (@1, @) = P (07 PR (2))

where P?

oi()) € Z[xkdepth(gp;)]- Thus

k
T Vo, ... o o (G (@1, ... 2n)+ (@1, . 2n)) = ZP;J.(%)(O.J depth(sﬁ'l)($))P(;‘k7j(<pé)(a(k—])depth(sﬁé)(gp))
=0

and a straightforward computation shows that last polynomial lives in

Z[xk dopth(go’ﬁ-goé)] = Z[xdepth(go)]

In an analogous way, if ¢’ = ¢} - ¢}, then

T EVry,..., o, Jk(go’l(:nl, ey ) b (T, )
= Pe(o (@) (m1, .. xn))s o 0 (P (@1, ), 0 (Ph (@, ), 0 (2, @)

= Pu(P (0P (@), Py (RPN (), P (0P (@), P (0RO ()

composing the last polynomials Pk(Pgl(@,), ..., P, (@,)) we obtain the desired polynomial, which
1 o7\¥a

clearly lives in Z[Zmax{kdepth(¢}),k depth(py)}] = Z[Tdepth(p)]- Finally, if ¢ = oF(—¢'), then we can

use the identity (2.2) and Proposition 2.5 to obtain that

T EVT, ..z, (=d (21, x0)) = (D)X (21, .. 20))
= (—1)kP,:p(01(<p/(:171, cees @)y ,Jk(go/(:nl, )]

And we can then repeat the previous argument on o¢7(¢') for each j = 1,...,n, obtaining a poly-
nomial
Pl:p(Pgl(sp/)()\depth(@/)(x)% SRR ;k(w,)()\depth(cp )(‘T))) € Z[xk depth(cp’)] = Z[‘Tdepth(ak(—gp’))]

Now, we are ready to prove the main theorem inductively on terms of £_,ings-expressions. We
have already seen that the result holds if ¢ is a constant or a variable. Suppose that the result
holds for two expressions (1 and @s. Then clearly

Prvor = By 4 Py € LlTmax{depth(pr) depth(g2)}] = Z[Tdepth(p1+65)]
Pl oy = Pg, - P, € Z[Tmax{depth(p1),depth(p2)}] = Z[Tdepth(ps-o2)]
Pfgo = _Pg € Z[:Edepth(ap)] = Z[xdopth(—go)]
and, for each k, we have

T Ve, w0t (p1(er,. . n)) = o (P, (090 (2)))
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so, applying the previous argument, we know that there exists P7, (P ( such that
©1

mdcpth(«pl)))

T EVor,. . o, oF (P2, (P () = PL,

(P‘P1 (xdcpth(tpl)

where (dy,...,d,) = depth(¢1). Then, we can simply use the fact that o is special to get that for
each a,b, c

Ja(ab(azc)) = Pa,b(al(ajc), .. ,O'ab(:EC))
To obtain that

WL, Pty Py Pras oo Peas oo Pray) € Z[Tk depth(o)]

o = PY
k(1) ok (Pyy (Zdepth(pr)

Finally, let us prove uniqueness of the polynomials. Suppose that given ¢(x1,...,z,) of depth
(di,...,dy) there exist PZ and Q7, with the given properties. In particular, if we apply the result
to the free special A-ring in variables x1,...,x, we have that

PI(c'(z1), ..., 0™ (xn)) — Q%0 (z1), ..., 0% (x)) =0

but in the free special A-ring generated by such variables, the elements o7 (z;) are all algebraically
independent, so P7 — Q¢ = 0. The proof for uniqueness of PQ is completely analogous. O

Then, we propose the following algorithm for computing the polynomial Pé‘

Algorithm 1 Simplification algorithm for £)_,ings-expressions

1: procedure A\-SIMP(p,21,. .. ,Ty)

2 Compute (dy,...,d,) = depth(yp)

3 for each z; do

4: for each k£ < d; do

5: Compute recursively ¥; = PTZ\k(sz‘) = NP(@i1,. .., %K)
6 end for

7 for each a,b, ab < d; do

8 Compute fiq(x;) = qua@b(wi)) =L} (Wiat1, Viagas - Wiays)
9: end for

10: end for

11: Scan ¢ and substitute

wk(w) — ApplyPsi(w, ka {:ua,b(l'i)})
Ne(w) = { L (app1yPsi(w, 1 {nap(@i)}). . APPLYPSi(w, K, {tap(wi)}) i w # 2,y
Li ks ifw= €Ty
" (w) = Ly, (ApplyPsi(w, 1, {sap(zi)}), - ., ApPLYPsi(w, b, {p1a,p(i)})
to get ¢. > Polynomials Ly, L;”, N¥ are pre-computed using recurrences from Propositions
2.5, 2.6 and formulas from Corollaries 2.7 and 2.8.
12: Execute ¢ and expand the resulting rational polynomial

13: end procedure
14: function ApPPLYPSI(¢,k,{1tqp(2:)})

15: for each z; do

16: for each j do

17: Substitute x; ; by g ;(z;) in ¢
18: end for

19: end for

20: end function

))(01(01(3:1)), ... ,Jk(al(:nl)), ... ,ak(ad” (zn)))
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Theorem 3.8. For each Ly_ ings-expression ¢ in a torsion free A\-ring R, Algorithm 1 computes
the polynomial PS;\ from Theorem 3.7.

Proof. First of all, observe that, due to Corollary 2.7

7;]” ’: Vo ¢a(>\b($)) = ¢a(Lgp(¢1(l‘)a e 7¢b($))) = Lgp(%(ﬂll(x)), cee a¢a(¢b(l‘))) = Lgp(¢a+1(l‘)v s 7¢a+b($))

Therefore, it is clear that p,(x;) contain P} , as asserted.

Ya(A(z4))
Given any Ly_rings-expression ¢ with depth(y) = (d1,...,d,), by Theorem 3.7 we have that for

each integer k

T EVy, ...,z Yp(e(xr, ... xy)) = wk(PS;\()\l(xl), .. ,)\d”(mn)))

On the other hand, as ¥, are homomorphisms, we have
T Vo, PP (A (21), o AT (20))) = PR (kA (1)), -, Yk (A7 (20)))

Thus, applying v, to any L£_ ings-expression ¢ is equivalent to substituting M (z;) (ak.a., variable
x; ; by the polynomial p, j(x;) in the associated polynomial Pé\.
On the other hand, Proposition 2.6 and Corollary 2.7, we obtain that

Tif EV21,...,2p )\k(gp(xl,...,xn)) = LP(W1(p(z1, ..y 2n)), - - Yr(o(T1, ..oy 20)))

Tif EVT1,... 2y ak(gp(xl, coyZp)) = L (e(x1, .o yxp))y -y Uk(p(z1, ..y 20)))

Thus, if w = PQ(Adeth(@) (x)) for some ¢ then applying the function ApplyPsi(w,k,{pqes(xi)})
yields an integer polynomial Q k() € Z[Tg depth(w)] = Z[Tk deptn(y)] Such that

T BVt Qur() A PN (@) = ¢ (P, (AP () = ¢ (p(a1, ... 2n)) = Py AP 4P (2))

By uniqueness of the polynomial PJJ\’@ (©) of Theorem 3.7, we obtain that ka(w) = Plz‘k ()"

Similarly, under the same assumptions on w, if now w’ is either 1z (w), A¥(w) or o¥(w), then
applying the substitutions and executing ApplyPsi in the main loop of the algorithm to such w
yields a rational polynomial (), on variables x; ; such that

T EVz1,... 20 Qw/()\k depth(¢) (7)) =/ (21,...,2,) = Pﬁ‘/()\k depth(y) (x))

Multiplying by a big enough natural number N, we would get that N@Q. is an integral polynomial
such that

Top Va1, 20 NQu (A PP (2)) = NP (WP () = No/ (a1, ) = PRy AF4PH ) ()

By uniqueness of P]i‘,w, of Theorem 3.7, we obtain that NQ , = Pji‘,w, =N Poi‘,. Assuming that the
rings are torsion free, this implies that Q. = Poi‘,.

On the other hand, by construction, each expression of the form M (z;) is transformed at the main
loop into a variable x; ; which is exactly Pi‘j (1) As the substitutions of the main loop are executed
from the inner-most parts of the formula ¢, the previous argument then shows that after each set
of substitutions is made, the resulting formula is an integral polynomial which coincides with the
simplified polynomial predicted by Theorem 3.7 for the corresponding expression. Therefore, when
the algorithm ends, the result is PS;\. O
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4. SIMPLIFICATION OF EXPRESSIONS IN THE GROTHENDIECK RING OF CHOW MOTIVES

Let K be a field of characteristic 0 and let K(CMg) denote the Grothendieck ring of motives
over k with rational coefficients. By | |, Ko(CMk) admits two natural opposite A-structures,
induced by the symmetric product of varieties. Given a Chow Motive M, take

A*([M]) = [Sym™ (M)]
More precisely, define the symmetric product Sym” (M) as the image of % Y ac g, @ X @n _y xen,
Similarly, take

o"([M]) = [Alt"(M)]
where Alt" is the alternating product, defined as the image of % Y oaes, (F1)% Y X @n _ xen,
Heinloth | | proves that \™ and o™ are A-structures Ky(CMk), but only ¢” is a special A-
structure.

Let L = [A'] € Ko(CMk) be the Lefschetz object. In addition to Ko(CMi), we will also consider
its localization Ko(CMx)[L™!] and its dimensional completion

Ko(CMg) =Y [VIL™" |[V;] € Ko(CMg) with dimY; —r — —o0
r>0

as, for some applications, we will need elements of the form L™ or L. — 1 to be invertible. Both A-
structures then extend to the localization and its completion, as IL is 1-dimensional for the opposite
structure o (and, as such, ¢, (L) = L" for all n).

Given a motive M, the formal sum

> [Sym™ M]t" = N\ ([M])
n>0

is usually called the motivic zeta function of M and it is classically denoted by Zps(t). The
motives and zeta functions of some varieties then admit some interesting decompositions and closed
expressions when expressed in terms of the A-ring structure \» = Sym"™. For instance, if X is a

projective curve of genus g > 2, then by | ] its motive splits as [X] = 1 + [A}(X)] + L and,
moreover, the zeta function of [h!(X)] ia a polynomial of degree 2g, usually called Px (¢). Then
1 1 PX(t)
Zx(t) = M([X]) = M(1+[RH(X)]4L) = M (1 "XODA(L) = —— Px (¢ =
() = M(X]) = MR COML) = MOMR CODML) = PO = = ot

The motive [h;(X)] and its zeta function/polynomial appear in many additional computations of
motives of geometrical structures associated to the curve X. For instance the motive of the Jacobian
of X is

29
[Jac(X)] = > N([r'(X)]) = Px(1)
i=0

On the other hand, the elements A'([h'(X)]) have certain relations among them, which can be

deduced from the following functional equation due to Kapranov | | (see also [ D).
1
Zx (| — | = L1792 297 (t
x <]Lt> x(1)

In particular, the following properties hold
(1) For all i > 2g, \([p}(X)]) = 0.
(2) For all g < i < 2g,
N([PH (X)) = LA~ ([n (X))
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Let us write
a;(X) =X (X)) i=1....9
if X is clear from the context, we will omit it and simply write a; = a;(X).Then

Px(t) =1+ ay(X)t + aa(X)t* + ... + ag(X)t9 + Lag_1t9 + ... + LI La 1?91 + L9429

It is therefore straightforward to see that any algebraic expression in the A-terms A¥([X]) can be
expanded as a polynomial in aj,as = A?(ay),... ,ag = X(a1) and L. There is, nevertheless, a key
difference in working with expressions involving A-operations on [X] and on a;(X). The dimension
of [X] in (Ko(CMx), \) is infinite, whereas the dimension of a;(X) is finite (2g). Thus, expressions
involving arbitrary large numbers of A\ operations on X are always equivalent to polynomials in the
same fixed number of variables ay,...,a4 and L. Using Theorem 3.7, we can extend this intuitive

argument to further arbitrary expressions spanned by curves in Ky (CMk).

Theorem 4.1. Let X1,...,X,, be smooth projective algebraic curves over a field K of characteristic
0 of respective genra gi,...,gn. Let (L, [X1],...,[Xp]) be any Lx_rings-term in the sub-(X\,o,)-
ring of Ko(CMxk) spanned by the curves and the Lefschetz object. Then there exists an integral
polynomial P, € Z[L,a11,...,01,4,---,0ng,] such that
(p(L, [Xl], vy [Xn]) = PSD(L,CLl(Xl), . ,agl(Xl), e ,CLgn(Xn))
Proof. Expressing [X;] = 14a1(X)+L, we can rewrite ¢ as some expression ¢’ in a3 (X1),...,a1(Xy)
@(Lv [X1]7 R [XTL]) = @(Lv 1+ al(Xl) + L) ol al(Xn) + L) = (’p/(L’ al(X1)7 s 7a1(XTL))
Let (do,d1,...,d,) = depth(¢'). Then Theorem 3.7 implies that there exists a polynomial
Pﬁg\/ € Z[x(d()v---ydn)]
such that

(4.1) L, a1(X1), ... a1(Xp)) = Py(ANL), ..., AP (L), A (a1 (X)), ..., A% (a1 (X))

Nevertheless, we know the following relations.

o (L) =1LF vk

® )\k(al(a:,)) = Qg V1 < k < g;

o M(ay (X)) = Lk_gagg_k(Xi) Vg; < k < 2g;
o M(a1(X;) =0 Vk>2g

Thus, all the generators in the right hand side of the equality (4.1) are always algebraically generated
by L and ag(X;) for 1 < k < g;. Substituting the corresponding algebraic relations at the right
hand side of (4.1), we obtain the desired polynomial P,. O

Finally, with some little adaptations, Algorithm 1 can be used to compute the polynomial P,
from the previous Theorem.
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Algorithm 2 Simplification algorithm for motivic expressions

1: procedure MOTIVE-SIMP(p,X1,...,X,)
2 Rewrite p(L, [X1], ..., [Xn]) = ¢'(L,a1(X1),...,a1(Xy))
3 Compute (dg,ds, ... ,d,) = depth(¢')
4: for each curve X; do
5: for each k£ < d; do
6 Compute recursively U, j, = Piz\k(al(Xi)) = N"(ai, - @ig;s Laig—1,- - - , L9 a; 1, 090, . ..
7 Noz,l(Xi) = \I’i,a
8 end for
9: for each o, 8, af < d;, 2 <3< g; do
10: Compute pq g(X;) = P12\a(ag(Xi))) = L;p(\:[/i7a+17 Uiat2,-- 5 Viatp)
11: end for
12: end for
13: Scan ¢’ and substitute
Yr(w) — ApplyPsi(w, k, {fia,5(Xi)})
LiP(ApplyPsi(w, 1, {tta,s(Xi)}), - . ., APPLyPsi(w, k, {a,s(X:)})) if w # a1(X1),. .., a1(Xp)
Qi k ifw=a1(X;), k<g
/\k(w) — Lk_giai,ggi_k if w=a1(X;), g <k<2g
L if w= al(XZ-), k= QQZ'
0 ifw= al(XZ-), k> QQZ'

o*(w) = Ly, (ApplyPsi(w, 1, {tta,5(Xi)}); .- -, ApplyPsi(w, k, {1ta,6(Xi)})
to get ¢. > Polynomials Ly, L;”, N¥ are pre-computed using recurrences from Propositions
2.5, 2.6 and formulas from Corollaries 2.7 and 2.8.
14: Execute ¢ and expand the resulting rational polynomial
15: end procedure
16: function ApPPLYPSI(¢,k,{1ta,p(2:)})
17: Substitute L by LF in ¢

18: for each curve X; do

19: for j=1,...,¢9;, do

20: Substitute a; ; by ug ;(X;) in ¢
21: end for

22: end for

23: end function

Theorem 4.2. For each Ly _yings-term ¢(L, [X1],...,[Xy]) spanned by motves of curves X1,..., X,
and the Lefschetz object L, Algorithm 2 computes the polynomial P, from Theorem 4.1.

Proof. Tt follows directly from Theorem 3.8, using a; 1 = a1(X;) as generators x; of ¢’, once we take
into account that variables a; ;, with k > g; are not algebraically free anymore, but rather given in
terms of a;1,...,a;4, and LL as

Lk_giaiggi_k if g, <k <2¢
Lo if k= 292'
0 if k> 2g;
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5. COMPUTATIONAL VERIFICATION OF A CONJECTURAL FORMULA FOR THE MOTIVES OF
MODULI SPACES OF TWISTED HIGGS BUNDLES AND LIE ALGEBROID CONNECTIONS

Let X be a smooth complex projective curve of genus g > 2. Let L be line bundle on X of degree
dr, = deg(L) and suppose that d;, = 2g — 2 + p with p > 0. An L-twisted Higgs bundle on X is a
vector bundle F together with an homomorphism

p:FE—FEQL

called Higgs field. An L-twisted Higgs bundle (E, ¢) is called semistable if for all subbundles F* C F
such that ¢(F) C F ® L we have

deg(F) _ deg(E)
rk(F) — rk(FE)

Let M (r,d) denote the moduli space of semistable L-twisted Higgs bundles of rank r and degree
don X (cf. | D).

As an application of the previous methodology, we will compute explicit simplified formulas for
the motives of some moduli spaces of rank 2 and rank 3 L-twisted Higgs bundles on X as integer
polynomials in the motives a1, ..., a4 and the Lefschetz motive L., where

a; = N'(h' (X))

and we will use this to verify computationally that some conjectural formulas from Mozgovoy
[ ] about the motive of the moduli space of L-twisted Higgs bundles hold, at least for low
rank, genus and degree.

More explicitly, we will apply the proposed algorithm to the following formulas from | ,
Corollary 7.7] obtained through the Bialynicki-Birula decomposition of the variety.

Theorem 5.1 ( | , Corollary 7.7]). (1) Forr =1
ML(X,1,d)] = [Jac(X) x H(X,LY)] = L4179 Py (1)
(2) Forr =2,if (2,d) =1,

[ 4dz +4—dg (PX(l)PX(]L) — ILgPX(l)2>
(L—1)(L2 —1)
|5
+ L3220 py(q) Z A=2ditdr (X)),
di=1

ML(X,2,d)] =
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(3) Forr =3, if (3,d) =1,
LgdL +9—9gPX (1)
(L —1)(L2 —1)%(L3 — 1)
— L2711+ L)2Px (1)Px (L) + Px (L) Px (L?))
d
L7dL+5_5gPX(1)2 \-%—i_TLJ
-1 X

IML(X,3,d)] = <IL39—1(1 + L+ L2)Py(1)?

<Ld1+g)\_2d1+dL (IX]+ L2 — A2hHde ([ XL + 1))

d _
]L7 L+5 59PX(1) Z <Ld1+g—1)\—2d1+dL+1([X] + LQ) . )\_2d1+dL+1([X]L + 1))
L—-1

dr, [(1+dr—a)/2]
+ LGdL+3_3gP)((1) Z Z )\—d1+d2+dL([X]))\l—d1—2d2+dL([X])
di=1 dz:max{—dL—l—dl,l—dl}

and the following conjectural formula from | , Corollary 3| (in the rewritten form presented
in | , Conjecture 7.12]) obtained as a solution for the motivic ADHM recursion formula.

Conjecture 5.2. | , Conjecture 3|, [ , Theorem 1.1 and Theorem 4.6], | , Conjec-
ture 7.12] For each integer n > 1, let

= 3 [ (—teO-OLI A=)+ 7, (L)),
AEP, sed()N)

Define H,(t) for v > 1 as follows

> H,(t) 1—t)(1—]Lt)PLog<Z7—L )

r>1 n>0
=(1-t)1-Lt)> “—zz)j [ <1 +)° ”Hn(t)T”ﬂ
§>1 n>1
k—l—l k
= (1—1t)(1 - Lt) ZZ (Z% TJ”) :
§>1 k>1 n>1

Where P,, denotes the set of partitions of n, considered as decreasing sequences of integers X =
(A > X > > N, > 0) with S8\ =n, and for each X € Py,

d(\) = {(i,5) € Z°[1 <4, 1 < j < Ao},

and the operator PLog in the formula is the Plethystic logarithm for the Adams operations associated
to the opposite structure o, defined as

PLog(A Z M Yy [log(A)].
j>1

Then H,(t) is a polynomial in t and

r(r+1)

[Ma, (r,d)] = (~1)P"L 0D+ (1),
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Algorithm 2 has been applied to the previous formulas from Theorem 5.1 and Conjecture 5.2 to
obtain the following simplified motivic polynomials

BB pADHM
Py Pory € Z[L,ay,. .., a]

representing the respective formulas for each genus g > 2, rank » > 2 and p > 0 in the sense of
Theorem 3.7. As these polynomials are integral polynomials in a small set of variables, they could
be compared computationally in a direct way, and the following was verified.

Theorem 5.3. Let X be a smooth complex projective curve of genus g. Then

BB _ pADHM
Pg7/r7p - Pg7/r7p

if the following conditions hold

e 2<g<l1l,
o 1 <r <3
e d is coprime with r and
e 1 <p<20 (aka 29g—1<—dp <29+ 18).
In particular, as | , Corollary 7.7] together with Theorems 3.7 and 3.8 prove that
[ML(T7 d)] = Pgl?fp(lﬂ hl (X)7 oo 7)‘g(h1(X)))

then this shows that Mozgovoy’s Conjecture 5.2 holds if such conditions are satisfied.

Remark 5.4. As a consequence of | , Theorem 6.7], the resulting polynomials Pg%{?p = Pﬁ}?ﬁM

also compute the motives for the corresponding moduli spaces of Lie algebroid connections in rank
2 and 3.

6. ANNEX: MOTIVES OF THE MODULI SPACE OF TWISTED HIGGS BUNDLES IN LOW GENUS

This annex contains some examples of simplified polynomial formulas for the motives of the
moduli space of L-twisted Higgs bundles of rank at most 3, with deg(L) =29 —2+pand p > 0
in low genus. These formulas have been obtained applying the proposed Algorithm 2 to Mozovoy’s

Conjectural formula 5.2. The polynomials Py, , = Pﬁ}?ﬁM = Pg%{?p depend on a,, = \"([h!(X)]) and

the Lefschetz motive L. The resulting polynomial has then been factorized to improved readability.
Please notice that the equations from Theorem 5.1 imply straightforwardly that the motives of the
moduli spaces are multiples of

29
Px (1) = [Jac(X)] = ZA"(hl(X)) =l+a+a+...+ay+Lag_1+...+L9  ay + LY
n=0

This can be observed in all the computed cases.

As these formulas have been computed from Conjecture 5.2, they were, in general, just con-
jectural, but, as stated in Theorem 5.3, they have been computationally verified for 1 < p < 20
showing that they agree with the equations from Theorem 5.1.

Pyiy =L (L + a1 L+ay +as +1)
Pyyp=ILP" (LP+ a1 L + ag L+ a1 + az + a3 + 1)
Pi1,=L"" (I v+ a1 L* + aa L* + a3 L+ a1 + az + a3 +as + 1)
Pyoy = LT (L +a1L+ai+ax+1) (2L +ar+az + Lay+ L?a; +2L° + L + L' + 2)

Prpo=L"(L"4+a1L+ay+ay+1) 2L+2a14+ax+2Lay+Lag+ L?a; + L a; +2L* + 2 L?
+ LY+ L% +2)
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Pros=L"(L"+aiL+a+as+1) (2L+2a1+2as+3La +Lax+2L%a; + L% az + L a4
+ L% +3L*+2L% + 2L + L° + L® + 3)

Pyos=L"(L’+a1L+a+az+1) 3L+3a1+2a2+4La;+2Lay+3L% a1+ L az +2L% o
+ L%+ L'a1+ LPa; +3L° +3L% + 2L +2L° + LS + L7 + 3)

Pys1 =LY (L*+a1L+a+az+1) (L"+ L0+ L%a; +3L° +2L% + 4L + 4L ay + L7 ay
+ 7L+ 15012 +8L5ay + LOay + 9L + LP a2 +12L0°ay +4L°ay +14L° +3 L% ay?
+L%aas+18L%a; +5L%as + 15 L + 5 L3 1> + 2 L% a1 a9 + 22 L% a1 + 9 L3 as + 18 L3
+6L%a1? +4L%a1a9+24L% a1 +10L%as + 15 L2 + 6 Lay> + 5L aj as + 18 La; + L ay?

+ 10 L ay —|—12L+3a12—|—4a1 as +9aq +a22+6a2—|—6)

Pyso=L" (L’ +a1 L+ai+as+1) (LM +LP+L%a +3L2 +2L" a1 +4L" +4L" a1 + L ay
+ 7L+ L2012 +8L%a; + L2as +9L° + LBy + 12108 a1 + 4 LB as + 15 L8 + 3 L7 ;2
+L7a1as+19L7 a1 +5L as + 18 LT + 5L a2 + 2 L% ay as + 28 LS ay + 10 LS ay + 25 LS
+8L° a1’ +4L%a1as +38L%° a1 +13L%as + 28 L° + 13 L  ay®> + 7L ayas + 44 L a4

+ L2 +19L%as + 32 L4 +16 L2 a1 + 12 L% a1 aa + 50 L2 ag + L3 as® + 21 L3 as + 29 L3
+17L%a1? +15 L% a1as+44 L% a1 +3L% a® + 23 L% as + 27 L% + 15 L a2 + 16 L ay as

+32Lay +4Las* +17Las + 16 L+ 6a1> +9a; az + 16a; + 3as® + 124y + 10)

Pygs=L" (L’ +a1 L+a;+ap+1) (L+ LY+ L% ay +3L" +2L" ay +4 L +4L% a1 + L ay
+7LB 4+ L2 a2 +8 L2 a1+ L2 ap+9 L2+ L 0 +12 LY ag+4 LM ap+15 LM +3 L1042
+L%a1as+19L0 a1 +5 L0 as+18 L +5 L% a1 +2 L ay as +28 L? a1 + 10 L° ay + 27 L°

+8L%a12+4L%a1 a2 +40 L% aq +13 L% as + 33 L8 + 13 L7 > + TL 7 ayas + 54 L7 a4
+L7a® +21 L7 as +43 L7 +190%a12 +12L%ay aa + T1 L8 ay + L8 ay® + 26 LS ay + 48 LS
+27L%a;2 +18 L% ayas +82L° a1 + 3 L% a2 + 36 L% ay + 55 L° + 34 LY a1 + 27 L* a4 as
+92L% +4L%a? +40 L  ag + 53 L  + 38 L3 a2 + 34 L3 ay as + 91 L3 ay + 7 L3 ay?
+45L3 as+51 L3 +38 L% a1 +38 L% a1 as+ 78 L? a1 +9 L? as? +41 L? ay +41 L2 +28 L a; 2
+33Laras+55Lai+9Las” +31 Las+25L+10a1®+16 a1 az+25 a1 +6 az® +20 az + 15)

Pyga=L% (L*+a1 L+a;+ag+1) (L°+LY+L%ay +3L"%+2L" a1 +4 L +4L"% a1+ L' ay
+ 7L+ LY 0> +8LY% a1 + LY as +9LY + LY a2 + 120" a4y + 4 L™ 0y + 15 L1
+3LBa >+ L%a1as+19L%a; + 5L ap + 18 L + 5 L2 012 + 2L % a4y as + 28 L2 o
+10L%ay +27L2 + 8 LM a2 + 4L ayas + 40 LY ay + 13 L' ay + 33 LM + 13 110 g2
+7L%aa9+54L% a + L ay?2 + 21 L% a4y + 46 L'° + 1910 a1 + 12 L% ag ag + TA L a4
+L%a9® +26L%as + 55 L% + 27T L8 a1® + 18 L¥ ay ag + 96 L¥ aq + 3 L8 as? + 39 L8 ay
+70L8 4+38L7 a2 +27L a1 as+ 120 L7 a3 + 4 L7 ax® + 47 L7 as + 78 L7 + 51 L% 0y 2
+38L%a1a9+140L%a; + 7TL%as® +62 LS ay + 88 LS + 62 L° a2 + 52 L% a1 as + 158 L° a;
+9L5a2 +70L%ag +89L° + 71 L a2 + 64 LY ay as + 162 LY a1 + 14 L* ax® + 79 L* ay
+90L* + 75 L3 a2 + 73 L3 a1 as + 156 L2 aq + 17 L3 ag® + 78 L3 ag + 78 L? + 67 L? ay?
+71L%a1as + 128 L% a; + 18 L% ap® + 71 L% ay + 64 L2 + 45 La 2 + 56 Laj as + 84 L ay
+16 Las* +49Las +36 L + 15a1° + 25a1 as + 36 a1 + 10as” + 30az + 21)

Ps 51 = (L3—|—CL1 L2—|—CL2 L+CL1+CL2+CL3+1) (3L—|—2a1+2a2+a3+2La1+2La2+La3+2L2 al
+L%as+2L% + L3ay + L* a1 + LPa; + 3L% + 3L% + 2L +2L° + LS + L7 + 3)
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P29 =" (L3+CL1L2+CL2L+CL1 +CL2—|—CL3—|—1) (3L+3CL1 +2a9+2a3+2La; +3Las+ Las

+3L%a1+2L%as+2L%a; + LPas+ LPas+ 2L  ay+ L as+ LPa; + LSa; + 3 L2 +31L3
+3LY +2L° +2L5 + L7+ L® + 3)

Pyos=L"(L*+a1L*+asL+a+as+az+1) (3L+3a1+3as+2a3+3Lay+4Lay+2Lay
+3L%a; +3L%ay+3L%; + L?as+2L%as +2L% a1+ L3 a5+ L  ag + 2 L% a1 + L7 ay
+ L%+ LTa; +3L* +4L° + 3L +3L° +2L° +2L7 + L8+ L? +4)

Pyoa=L" (L’ +a; L> +asL+ay+as+az+1) (AL +4a1+3as+3az+3La; +5Lay
+2Las3+5L%a; +4L%as+3L%a; +2L%a3+3L%ay +3L%a1 + L3as + 2 L% ay
+2L%a; + L'ag + LPag+2L%a + LPas+ L7ay + L¥ay + 3102 +4L3 +4L" +31°
+3L0+ 2L+ 218 + L7+ LY +4)

Pys1=L" (L’ +a1 L +asL+a1+as+az+1) (LY +L® + L' a; + 3L +2L'%ay +4L'°
+A4LYP a + LY as + 7L + LY a2 + 7L ar + LM a0 + 9L + LB a2 + 11 LBy
+4LBas+ LB as + 14 L2 + 302 0> + L2 a1 a0+ 16 L2 ay + 6 L' 2 ag + L a3 + 17 L2
+4LMa? + 2L a1ao+24 L ag + 11 L as + 3L ag +24 LY + 7L a2 +4 L% a a9
+L10a1 a3—|—32L10a1 —|—16L10a2—|—5L10a3+30L10+9L9a12—|—8L9a1a2+L9a1a3
+44L%a1 + L% as® +25 L% as + 8 L% a3+ 38 L° + 15 L8 a2 + 12 L8 ayas + 4 L2 a1 a3
+56L%ay + LB ax® +34L%as +12 L% a3 +45 L8 + 18 LT ay> + 19 L7 ayas + 5 L7 ay a3
+70L7 a1 +3L as* + LT agaz +47L  ag + 18 LT a3 + 53 L7 + 25 L% ay® + 28 L a4 ay
+10L%a; a3 +80 L% a1 +5L%as? +2 L% asag + 59 L8 ag + 23 L8 ag + 57 L8 + 28 L a2
+38L%a1as +13L% a1 a3+ 90 L5 ay + 8 L° as® + 4 L5 ag as + 69 L° as + 30 L° a3 + 60 L°
+32L% 2 +44L a1 as +19L a1 a3+ 89 L  ay + 13 L% ap® + T LY agaz + 76 L ay
+ L'az? +35L%a3 + 58 L + 29 L% a2 + 50 L3 a1 ag + 21 L3 ay az + 85 L a1 + 16 L2 ay?
+12L%aga3 + 76 L2 ag + L2 a3® +36 L3 a3 + 51 L3 + 27 L% ay® + 44 L% ay as + 23 L ay a3
+67L%ay; +17L% ap> + 15 L% ayaz + 64 L> ay + 3 L% az®> + 33 L% a3 + 39 L? 4+ 16 L a, >
+32Lajas+17Lajas+45Lay +15Lay®> + 16 Lagas +47 Lay + 4 Las® + 28 Las
+30L+10a1® + 16a1 az + 12a1 ag + 25a1 + 6a2® + 9ag az + 20 az + 3as® + 15a3 + 15)
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Pyso=L" (L +a1 L’ +asL+a1 +as+az+1) (L2 +L* + L*a; +3L%* +2L% ay +4L"

+4L%a + L ay+ T + LV a® + 7L a1 + L' aa + 9L + L% a2 + 11 L% o4
+4L% a9+ L%a3 +14 L% +3LY a2 + LY a1 a0 + 16 LY ay + 6 LY ay + L a3 + 17 LY
+4L% a2+ 2L a1a9+ 240 a1 + 11 L ag + 3L ag + 24 L + TLB a2 + 4 L3 aq a9
+LBa1a3+32L8 a1 +16 L% as + 5L a3 + 30 L1 + 9 L2 a2 + 8 L% 4y as + L% 4y a3
+44 L% a1 + L% 02 +25 L% a9+ 8 L% a3 +39 L2 + 15 L' a2 + 12 L a1 ag + 4 L' ay a3

+57L a; + LM as® + 34 LY ay + 12 L ag + 48 L' + 18 L0 012 + 19 L0 a4 ay
+5L%aa34+ 750" a; +3L" as® + L% asag + 48 L% ay + 18 L% a3 + 59 L0 + 27 L9 a2
+28L%a1as +10L°% ay a3 + 92 L% a1 + 5 L% ax®> + 2 L% asas + 63 L% ag + 24 L° ag + 68 L°
+33L%a12+40L% a1 as + 13 L% aj as + 112 L8 a; + 8 L3 ax? + 4 L8 agas + 81 LB ay
+33L8a3+ 78 L2 +43L a1 +54 L ajas +21 L aja3+ 126 L7 a1 + 13 L7 ay®> + 7 L7 ag as
+99L as+ L as® +41 L7 a3+ 85 L7 + 48 LS 012 + 71 L8 aq as + 26 LS aq a3 + 140 LS a4
+19L%a9® +12L%as a3+ 113 L% ag + L8 a3® + 50 L ag + 88 L® + 55 L% 412 + 82 L% aq as
+36L°%aj a3+ 142 L% a1 + 27 L5 as® + 18 L agas + 124 L% ay + 3 L% as® + 57 L% a3 + 87 L°
+53L%a12+92L% a1 as +40 LY ajag + 139 LY ay + 34 L* ay® + 27 L* ag ag + 127 L* as
+4L%a3? 461 LY a3 +81 L  +51 L3 a1 + 91 L3 ay as + 45 L3 a1 a3 + 122 L aq + 38 L3 s>
+34L3ara3+115 L3 ag +TL% a3® +58 L3 a3 + 69 L3 + 41 L2 a2 + 78 L? a1 as + 41 L% ay a3

+94L%a; +38L%as? +38L%asas+94 L% as + 9L%as®> + 51 L% as + 51 L? 4+ 25 L ay 2

+55Lajas+31Lajas+60La; +28Lay®> +33Lasas+638Las+9Las®+39La;g
+36 L+ 15a1% +25a1 az +20 a1 a3 + 36 a1 + 10as? + 16 az az + 30 az + 6.az? + 24 a3 + 21)
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