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9 A note on subtowers and supertowers of

recursive towers of function fields∗

M. Chara†; H. Navarro‡and R.Toledano§

Abstract

In this paper we study the problem of constructing non-trivial
subtowers and supertowers of recursive towers of function fields over
finite fields.

1 Introduction

Let q be a prime power and let F be an algebraic function field of one variable
over a finite field Fq of cardinality q. In [11], Ihara introduced the function

A(q) = lim sup
g→∞

Nq(g)

g
,

where Nq(g) is the maximum number of rational places that a function field
over Fq of genus g can have. This function measures how large the number
of rational places in function fields with respect to their genus can be and it
shows up, for instance, in the so called Tsfasman, Vladut and Zink bound
in coding theory (see, for example, [13, Proposition 8.4.6]). This is a good
motivation to find the exact values of A(q) but nothing is known except that
A(q2) = q − 1.
Because finding the values of A(q) when q is not a square has proven to be
really hard, most efforts are directed to give lower bounds for A(q). One way
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of obtaining non-trivial lower bounds for A(q) is through the construction of
asymptotically good towers of function fields over Fq. Following [13] a tower
is a sequence F = (F0, F1, . . .) of function fields over a fixed finite field Fq,
such that for each n ≥ 0 the extension Fn+1/Fn is finite and separable, Fq

is the full constant field of Fn and the genus g(Fn) of Fn goes to infinity
along with n. If N(Fn) denotes the number of Fq-rational places of Fn, then
the limit λ(F) = limn→∞N(Fn)/g(Fn) exists and it is called the limit of the
tower. Clearly, this limit provides a lower bound for the quantity A(q) and
when λ(F) = A(q) the tower F is called optimal over Fq.
By using only basic results of valuation theory and ramification in Artin-
Schreier extensions, Garcia and Stichtenoth gave in [7] the first example
of an optimal recursive tower of function fields over Fq2 . Recursive means
that all the extensions are defined by the same equation (see Section 2 for
details) and the interest in finding good recursive towers lies in the possibility
of having a concrete description of the geometric Goppa codes attached to
them (see [13]).
One tricky thing when working with these recursive towers is that many
times different equations give rise to the same tower and it is not trivial at
all how to decide if the chosen equation is the best one to work with, in the
sense that this equation may not be the most suitable for the determination
of some invariants in the tower. With this in mind, the concepts of subtowers
and supertowers gain importance. Basically, a subtower E = (E0, E1, . . .) of a
tower F = (F0, F1, . . .) is a tower in which each function field Ei is embedded
in some Fj , for j ≥ i. Equivalently it is also said that F is a supertower of E
and we always have that λ(E) ≥ λ(F). (See Section 3 for precise definitions).
In this regard it is important to recognize when two equations define the
same tower and also if an equation defines a supertower or a subtower of an
already studied tower or an easier one to study. The above definitions can
also be given in the slightly weaker situation of sequences F = (F0, F1, . . .)
of function fields (see Section 2) where the condition g(Fn) → ∞ as n → ∞
is not required.
The aim of this paper is to provide a systematic method to construct recursive
subsequences and supersequences of function fields from recursive sequences
and to check if two apparently different equations give rise to recursive se-
quences where one is a subsequence of the other. This is done in Section 3
and in Theorem 3.3 we prove that our method actually gives rise to a proper
recursive subsequence of a given recursive sequence. An interesting feature
of these results is that they can be easily implemented in a computer so we
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were able to search for many equations defining subsequences.
The paper is organized as follows: in Section 2 we give some basic definitions.
In Section 3 we present our main results, which will be used in Section 4 to
work with different examples using our method. Finally we show in Section 5
an interesting application of our results by finding an optimal quadratic re-
cursive tower E = (E0, E1, . . .) over F4 whose field extensions Ei+1/Ei are
Artin-Schreier extensions but the tower E itself is not recursively defined by
an Artin-Schreier equation.

2 Basic definitions

Following [9] and [13] by a recursive sequence of function fields over Fq we
mean a sequence of function fields F = (F0, F1, . . .) over Fq, a sequence
{xi}

∞
i=0 of transcendental elements over Fq and a bivariate polynomial

H ∈ Fq[S, T ] ,

such that

1. F0 = Fq(x0),

2. Fi+1 = Fi(xi+1) where H(xi, xi+1) = 0 for i ≥ 0, and

3. the polynomial H(xi, T ) ∈ Fi[T ] is separable for i ≥ 0.

Notice that from this definition we have that each field extension Fi+1/Fi is
finite (because [Fi+1 : Fi] ≤ degT (H(xi, T ))) and separable. Also

Fi = Fq(x0, . . . , xi) for i ≥ 0 ,

so that
F0 = Fq(x0) ⊆ F1 ⊆ . . . Fi ⊆ Fi+1 ⊆ . . .

We shall say that a recursive sequence of function fields is non-trivial if
[Fi+1 : Fi] ≥ 2 for every i ≥ 0, in other words Fi ( Fi+1.
If F is a non-trivial recursive sequence such that the genus g(Fi) → ∞ as i →
∞ and Fq is algebraically closed in each Fi we shall say that F = (F0, F1, . . .)
is a recursive tower of function fields over Fq. As stated in [13], it suffices to
have that g(Fi) ≥ 2 for some index i ≥ 1 in order to have that g(Fi) → ∞
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as i → ∞ . When Fq is algebraically closed in each Fi it is customary to say
that Fq is the full field of constants of each Fi.
The following definitions are important when dealing with the asymptotic
behaviour of a tower. Let F = (F0, F1, . . .) be a tower (not necessarily
recursive) of function fields over a finite field Fq. Let N(Fi) be the number
of rational places of Fi. The splitting rate ν(F) and the genus γ(F) of F
over F0 are defined, respectively, as

ν(F) : = lim
i→∞

N(Fi)

[Fi : F0]
, γ(F) : = lim

i→∞

g(Fi)

[Fi : F0]
.

The limit λ(F) of the tower F is defined as

λ(F) : = lim
i→∞

N(Fi)

g(Fi)
.

It can be seen that all the above limits exist and that A(q) ≥ λ(F) ≥ 0
(see [13, Chapter 7]). The tower F is called asymptotically good (over Fq)
if λ(F) > 0 (in particular F is called asymptotically optimal over Fq if
λ(F) = A(q)). Otherwise F is called asymptotically bad.
If a tower F = (F0, F1, . . .) of function fields over Fq is recursively defined by
a polynomial of the form

H(S, T ) := a1(T )b2(S)− a2(T )b1(S), (1)

where a1, a2, b1, b2 ∈ Fq[T ] are polynomials such that

gcd(a1, a2) = gcd(b1, b2) = 1,

and
[Fi+1 : Fi] = degT H,

we shall say that F is an (a, b)-recursive tower of function fields over Fq in
order to make reference to the rational functions

a(T ) :=
a1(T )

a2(T )
and b(S) :=

b1(S)

b2(S)
,

defining the sequence. A tower recursively defined by an equation with mixed
variables is a recursive tower which is not an (a, b)-tower.
Of course not any choice of rational functions a, b ∈ Fq(T ) will give rise to
a recursive tower over Fq. For example, it was shown in [12] that absolutely
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irreducible and symmetric polynomials1 H ∈ Fq[S, T ] do not give rise to
towers if the extension Fq(x, y)/Fq(x) is Galois where H(x, y) = 0 and x is
transcendental over Fq. They actually proved that, under the above condi-
tions, if Fi+1 = Fi(xi+1) where H(xi, xi+1) = 0 for i ≥ 0 then Fi ⊆ F1 for all
i ≥ 1.
We now introduce a special family of equations defining sequences of function
fields over a finite field Fq which will be used in the last section.

Proposition 2.1. Let F = (F0, F1, . . .) be a recursive sequence of function
fields defined over a finite field Fq by the equation

ym + f(x)ym−1 + · · ·+ f(x)m−1y + h(x) = 0 (2)

where m is a power of the characteristic p of Fq, f and h are the following
rational functions

f(T ) =
T − γ

αT − β
, h(T ) =

(T − γ)j

h1(T )
− γ,

with h1(T ) ∈ Fq[T ], α, β,∈ Fq and γ ∈ F∗
m, j is a fixed positive integer such

that 1 < j ≤ m, and T − γ is coprime with (αT − β)h1(T ). Then the simple
zero Pγ of x0 − γ in F0 is totally ramified in the sequence. In particular all
the extensions Fi+1/Fi have degree m and Fq is the full constant field of Fi

for every i ≥ 0.

Proof. Notice that y 6= f(x) in (2) so that by multiplying (2) by y− f(x) we
can rewrite (2) as

ym+1 + (h(x)− f(x)m)y = h(x)f(x) (3)

Thus we have a sequence {xi}
∞
i=0 of transcendental elements over Fq such

that Fi+1 = Fi(xi+1) where xi+1 is a root of

φ(T ) = Tm+1 + (h(xi)− f(xi)
m)T − h(xi)f(xi) ∈ Fi[T ],

where xi+1 6= f(xi) for all i ≥ 0.
Assume now that P is a simple zero of xi − γ in Fi and let Q be a place
of Fi+1 lying over P . We will prove that Q|P is totally ramified in Fi+1/Fi.

1This means that H is irreducible over an algebraic closure of Fq and that H(S, T ) =
H(T, S).
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For simplicity we write y = xi+1 and x = xi. Then the extension Fi+1/Fi is
defined by the equation

ym+1 + (h(x)− f(x)m)y = h(x)f(x),

and we claim that

(i) νP (h(x)f(x)) = 1,

(ii) νP (h(x) + γ) = j and

(iii) νP (f(x)) = 1.

To see this notice that from our hypothesis h1(T ) = (T − γ)h2(T ) + c where
h2 ∈ Fq[T ] and c ∈ F∗

q. Then νP (h1(x)) = 0 and (ii) follows. We also have
that νP (h(x)) = 0. Now νP (f(x)) = 1 because P is a simple zero of x − γ
and if α 6= 0 we write αx − β = α(x − γ + γ − β/α) with γ − β/α 6= 0 by
hypothesis. Thus (ii) and (iii) follow.
Therefore from (3) we deduce that

νQ(y) + νQ(y
m + h(x)− f(x)m) = e(Q|P ).

Let us see now that νQ(y) = 0: if νQ(y) < 0 then we have that

νQ(y
m + h(x)− f(x)m) = mνQ(y),

because νQ(h(x)− f(x)m) = 0 by (iii) and (ii) above and this implies that

(m+ 1)νQ(y) = νQ(y) + νQ(y
m + h(x)− f(x)m) = e(Q|P ),

which is a contradiction. Similarly if νQ(y) > 0 then we have that

νQ(f(x)
iym−i) = iνQ(f(x)) + (m− i)νQ(y) > 0,

for each 0 ≤ i ≤ m− 1. Now from (2), since νQ(h(x)) = 0, we see that

mνQ(y) = νQ(−f(x)ym−1 − f(x)2ym−2 − · · · − f(x)m−1y − h(x)) = 0,

which is again a contradiction.
Thus νQ(y) = 0 and then νQ(f(x)

iym−i) = ie(Q|P ) for 1 ≤ i ≤ m. Also,
since γ ∈ F∗

m we have

(y − γ)m = −f(x)ym−1 − f(x)2ym−2 − · · · − f(x)m−1y − (h(x) + γ)

so that
mνQ(y − γ) = e(Q|P ).

Therefore Q|P is totally ramified in Fi+1/Fi and we also see that Q is a
simple zero of y−γ in Fi+1. Since Pγ is a simple zero of x0−γ in the rational
function field F0, the result follows from an inductive argument.
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3 Constructing subsequences and supersequences

Let F = (F0, F1, . . .) be a sequence of function fields over Fq. A sequence
E = (E0, E1, . . .) of function fields over Fq is called subsequence if for each
i ≥ 0 there exists an index j = j(i) and an embedding ϕi : Ei → Fj over Fq.
If, in addition, ϕi(Ei) ( Fj for infinitely many i ≥ 0 we shall say that E is
a proper subsequence of F . Moreover if the sequences F = (F0, F1, . . .) and
E = (E0, E1, . . .) are actually towers of function fields it is said that either E
is a subtower of F or that F is a supertower of E .

From now on we will always assume that a rational function a ∈ Fq(T ) is
given in its lowest terms, i.e. there are two coprime polynomials a1, a2 ∈
Fq[T ] such that a = a1/a2. In this case we define the degree of a ∈ Fq(T ) as
deg(a) := max{deg(a1), deg(a2)}.

We prove next a preliminary result which will be important for our method
to construct a recursive subsequence from a given (a, b)-recursive sequence
F .

Proposition 3.1. Let F = (F0, F1, . . .) and E = (E0, E1, . . .) be non-trivial
recursive sequences of function fields over Fq defined respectively by the equa-
tions

f(xi, xi+1) = 0 and h(yi, yi+1) = 0

where f(X, Y ) and h(X, Y ) are bivariate polynomials with coefficients in Fq

and {xi}i≥0 and {yi}i≥0 are sequences of transcendental elements over Fq.
For each i ≥ 0, let us assume that

degY h ≤ [Fi+1 : Fi]

and that yi = g(xi) with g(T ) = g1(T )/g2(T ) ∈ Fq(T ) a rational function of
degree bigger than one. Then Ei ( Fi for every i ≥ 0, i.e., E is a proper
subsequence of F .

Proof. Since yi = g(xi), Ei = Fq(y0, . . . , yi) and Fi = Fq(x0, . . . , xi) we have
that Ei ⊆ Fi for every i ≥ 0. On the other hand, we can assume without loss
of generality, that the degree of the rational function g(T ) is deg g = deg g1.
For each index i ≥ 0, let us consider the polynomial

ϕi(T ) = g1(T )− g2(T )yi ∈ Ei[T ].
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It is clear that the element xi is a root of the polynomial ϕi(T ) for each
i ≥ 0. Since E0 = Fq(y0) and F0 = Fq(x0) then (see Section 14.9 of [6])
[F0 : E0] = deg g > 1. Now let di = [Fi : Ei]. Then we have

di+1[Ei+1 : Ei] = di[Fi+1 : Fi].

We will show by induction that di > 1 for i ≥ 1. If d1 = 1, then

[E1 : E0] = d0[F1 : F0] = deg g[F1 : F0].

By hypothesis, we have that [E1 : E0] ≤ degY h ≤ [F1 : F0] and therefore

deg g[F1 : F0] = [E1 : E0] ≤ [F1 : F0],

and so deg g ≤ 1 which is a contradiction. Suppose now that di > 1 and that
di+1 = 1. Then,

di[Fi+1 : Fi] = [Ei+1 : Ei] ≤ degY h ≤ [Fi+1 : Fi]

and thus di ≤ 1 which is a contradiction. Therefore Ei ( Fi for each i ≥ 0,
i.e., E is a proper subsequence of F .

Remark 3.2. From the proof of the previous theorem, we have that

deg g = [F0 : E0] and [Fi : Ei] ≥ deg g,

for each i ≥ 1. Moreover, equality [Fi : Ei] = deg g holds for every i ≥ 0 if
the equality [Ei+1 : Ei] = degY h = [Fi+1 : Fi] is assumed.

Now we are in a position to prove the main result of this section.

Theorem 3.3 (The method). Let F = (F0, F1, . . .) be a non-trivial (a,b)-
sequence of function fields over Fq. Let us assume that A(T ), B(T ), g(T ),
s(T ) ∈ Fq(T ) are rational functions such that

A ◦ g = s ◦ a and B ◦ g = s ◦ b. (4)

Then the sequence E = (E0, E1, . . .) recursively defined by E0 = Fq(g(x0))
and Ei+1 = Ei(g(xi+1)), with A(g(xi+1)) = B(g(xi)), is a recursive (A,B)-
subsequence of F . If E is a non-trivial sequence and for every i ≥ 0 we have
that

degA ≤ [Fi+1 : Fi]

then E is a proper subsequence of F .
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Proof. Let {xi}
∞
i=0 be a sequence of transcendental elements over Fq such

that a(xi+1) = b(xi) for each i ≥ 0. Then, {g(xi)}
∞
i=0 is a sequence of

transcendental elements over Fq and we have that

A(g(xi+1)) = s(a(xi+1)) = s(b(xi)) = B(g(xi)).

It is clear that Ei ⊆ Fi for each i ≥ 0 so that E is a subsequence of F .
Now if E is non-trivial and degA ≤ [Fi+1 : Fi] then, for every i ≥ 0,

[Ei+1 : Ei] ≤ degA ≤ [Fi+1 : Fi],

and by Proposition 3.1 we have that E is a proper subsequence of F as
desired.

Remark 3.4. From the last part of the proof of Theorem 3.3 we have that

[Fi : Ei] = deg g,

for every i ≥ 0 if degA = [Fi+1 : Fi] for every i ≥ 0.

Remark 3.5. Notice that condition degA ≤ [Fi+1 : Fi] in Theorem 3.3 can
be replaced by [Ei+1 : Ei] ≤ [Fi+1 : Fi] if degA > [Fi+1 : Fi].

Remark 3.6. If F is an (a, b)-tower and there is a (A,B)-subtower E and
functions g and s such that the conditions in Theorem 3.3 hold, then for any
rational function

f(T ) =
aT + b

cT + d
with a, b, c, d ∈ Fq and ad− cb 6= 0

we also have that the functions A◦f , B◦f , f−1◦g and s satisfy the conditions
in Theorem 3.3. Therefore if we define

G0 = Fq(f
−1(g(x0))) and Gi+1 = Gi(f

−1(g(xi+1))) for i ≥ 0

then we obtain an (A ◦ f, B ◦ f)-subtower G = (G0, G1, . . .) of function fields
over Fq of F . Actually, E and G are the same tower (See [4, Equation (2.3)]).
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4 Examples

We will show next that many subtowers studied in the literature can be
obtained using our method presented in Theorem 3.3. First we list some well
known recursive towers.

1) (Bezerra and Garcia [1]) The equation

y − 1

yq
=

xq − 1

x
(5)

defines an asymptotically optimal tower F0 over the field Fq2 .

2) (Garcia, Stichtenoth [8]) The equation

yq + y =
xq

xq−1 + 1
(6)

defines an asymptotically optimal tower F1 over the field Fq2 .

3) (Bassa et al. [2]) The equation

(yq − y)q−1 + 1 = −
xq(q−1)

(xq−1 − 1)q−1
, (7)

defines an asymptotically good tower F2 over the field Fq3.

4) (Bezerra et al. [3]) The equation

1− y

yq
=

xq + x− 1

x
, (8)

defines an asymptotically good tower F3 over the field Fq3.

5) (Caro, Garcia [5]) The equation

yq+1 + y =
x+ 1

xq+1
, (9)

defines an asymptotically good tower F4 over the field Fq3.

6) (Garcia et al. [10]) Let q = p2n where p is an odd prime. The equation of
Kummer type

y2 =
x2 + 1

2x
(10)

defines an asymptotically good tower F5 over Fq.
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7) (Garcia et al. [10]) The equation of Kummer type

y2 =
x2

x− 1
,

defines an asymptotically good tower F6 over F9.

Example 4.1. In 2004 Bezerra and Garcia proved in [1] that the tower
F0 = (E0, E1, . . .) is a subtower of the tower F1 = (F0, F1, . . .).
Actually, the (A,B)-tower F0 is a proper subtower of the (a, b)-tower F1 as
can be seen from Theorem 3.3. Let us consider

g(T ) =
1

T q−1 + 1
and s(T ) = −T q−1.

Since

a(T ) = T q+T, b(T ) = −
T q

T q−1 + 1
, A(T ) =

T − 1

T q
and B(T ) =

T q − 1

T
,

then it is easy to check that

A ◦ g = s ◦ a and B ◦ g = s ◦ b.

Moreover, degA = [Ei+1 : Ei] = q = [Fi+1 : Fi] = deg a and therefore
[Fi : Ei] = deg g = q − 1 and F0 is a proper subtower of F1.

Example 4.2. In this example we show that F3 is a subtower of F2. The
tower F2 = (F0, F1, . . .) is an (a, b)-tower where

a(T ) = (T q − T )q−1 + 1 and b(T ) =
T q(q−1)

(T q−1 − 1)q−1

and satisfy [F1 : F0] = q(q − 1) and [Fi+1 : Fi] = q for all i ≥ 1. The tower
F3 = (H0, H1, . . .) is an (A,B)-tower with

A(T ) =
1− T

T q
and B(T ) =

T q + T − 1

T
·

In this case [Hi+1 : Hi] = q for all i ≥ 0. Let us consider g(T ) = − 1
T q−1−1

and s(T ) = −T + 1 then

A ◦ g = s ◦ a and B ◦ g = s ◦ b,

11



and degA = [Hi+1 : Hi] = q. From Theorem 3.3 we have that F3 is a proper
subtower of F2 over Fq3.
Notice that in this case

[F0 : H0] = q − 1 and [Fi : Hi] = (q − 1)2 for i ≥ 1.

Thus, each Fi+1 is actually the composition field of the fields Fi and Hi+1.

Example 4.3. In this example we show that the (A,B)-tower F4 = (G0, G1, . . .)
where

A(T ) = T q+1 + T and B(T ) =
T + 1

T q+1
·

and [Gi+1 : Gi] = q for all i ≥ 0 is a subtower of F3 = (H0, H1, . . .) of the
previous example. It is not hard to check that conditions in Theorem 3.3
hold if we choose

g(T ) =
T q + T − 1

1− T
and s(T ) =

1− T

T
+

(

1− T

T

)q+1

.

Example 4.4. Let q = p2n where p is an odd prime. The equation of
Kummer type

y2 =
x2 + 1

2x
, (11)

defines the (a, b)-recursive tower F5 of function fields over Fq. In this case

Fi+i = Fi(xi+1) with x2
i+1 =

x2
i + 1

2xi

for i ≥ 0 ,

and we have that a(T ) = T 2 and b(T ) = (T 2 + 1)/2T .
Now if g(T ) = 2T 2, s(T ) = 4T 4, A(T ) = T 2 and B(T ) = (T + 2)2/2T then
it is easy to check that

A ◦ g = s ◦ a and B ◦ g = s ◦ b,

so that the equation

y2 =
(x+ 2)2

2x
,

defines an (A,B)-recursive proper subsequence E = (E0, E1, . . .) of F5 over
Fq. In fact, E is actually a proper subtower of F5 over Fq. This subtower
was also obtained in [12] using a method due to Elkies.
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Example 4.5. Now we want to determinate whether the tower F6 over F9

recursively defined by

y2 =
x2

x− 1
,

has any relationship with some of the already known asymptotically good
towers over F9. We perform a computational search of possible functions
g(T ) and s(T ) described in our method of Theorem 3.3 with A(T ) = T 2,
B(T ) = T 2/(T − 1) and some known (a, b)-tower over F9. As a result we
have that using

a(T ) = T 2, b(T ) =
(T + 2)2

2T
, g(T ) = T 2 + 1 and s(T ) = (T + 1)2 ,

equation (4) is satisfied and also Theorem 3.3 holds.
Therefore the tower F6 is actually a subtower of the tower E in the previous
example and therefore is also a subtower of F5.
Notice that the tower F6 was studied in [10] but it was not mentioned that
F6 is a subtower of E and F5 over F9. Moreover, performing the change of
variables x1 = 1/x and y1 = 1/y we get the Fermat type tower recursively
defined by

y21 = x1(1− x1).

Therefore this example was not new.

5 An optimal recursive quadratic tower over

F4 with mixed variables.

Let us consider now the additive polynomial φ = T 2 + (x + 1)T over the
rational function field F4(x). The aim of this section is to show in a simple
way that the polynomial φ gives rise to an asymptotically optimal tower E
over F4 whose function field extensions are Artin-Schreier extensions. We
will prove it by showing that the tower F1 over F4 presented in the previous
section is a supertower for E using Theorem (3.3).
Let E = (E0, E1, . . .) be the sequence recursively defined over F4 by the
equation with mixed variables φ(y) = x2, i.e.

y2 + (x+ 1)y = x2. (12)
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This equation defines a non-trivial sequence of function fields because we
are in the hypothesis of Proposition 2.1 with γ = 1, α = 0, β = 1 and the
polynomials

f(T ) = T + 1 and h(T ) = T 2 = (T + 1)2 + 1.

Therefore the simple zero P1 of x0 + 1 in the rational function field E0 =
F4(x0) is totally ramified in E so that F4 is the full field of constant of each
field Ei and every extension Ei+1/Ei has degree 2.
Notice that each extension Ei+1/Ei is an Artin-Schreier extension defined by
the equation

z2 + z =
x2
i

x2
i + 1

, (13)

where z = xi+1/(xi + 1). However the sequence E is not recursively defined
by (13) because z is in terms of xi and xi+1. From Kummer’s theorem and
the theory of Artin-Schreier extensions (see Chapter 3 of [13]) it is easily
seen that P1 is the only place of E0 ramified in E1, the zero P0 and the pole
P∞ of x0 in E0 split completely into a simple zero of x1 and a simple zero of
x1+1 in E1 and the genus of E1 = F4(x0, x1) is zero. By applying repeatedly
Kummer’s theorem, we see from (12) that for i ≥ 0 there is a simple zero of
xi in Ei which splits into a simple zero of xi+1 and a simple zero of xi+1 + 1
in Ei+1. From the proof of Proposition 2.1 we have that this simple zero of
xi+1 +1 in Ei+1 is totally ramified in Ej for j > i+1 and from the theory of
Artin-Schreier extensions we have that the corresponding different exponents
are 2. With all of this and Hurwitz’s genus formula it is easy to verify that
the genus E3 is at least 3 so that E is tower of function fields over F4 (it is
also a tower over F2).
Now we will prove that E is an optimal tower over F4 by finding an optimal
supertower using Theorem 3.3. In this case, we have that

A(T ) = T 3 + T and B(T ) = T 3 + T 2

and let us consider the functions

a(T ) = T 2 + T, b(T ) =
T 2

T + 1
, g(T ) =

T 2 + T

T 2 + T + 1
and s(T ) =

T

(T + 1)3
.

Then

A(g(T )) =
T 2 + T

T 6 + T 5 + T 3 + T + 1
= s(a(T )),
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and

B(g(T )) =
T 4 + T 2

T 6 + T 5 + T 3 + T + 1
= s(b(T )).

so that the equation

y2 + y =
x2

x+ 1
,

defines a recursive tower which is a supertower for E . But the above equation
is the optimal tower F1 defined by (6) over F4 and thus the optimality of E
over F4 follows.
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