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Abstract. This paper surveys our recent research on quantum infor-

mation processing by nuclear magnetic resonance (NMR) spectroscopy.

We begin with a geometric introduction to the NMR of an ensemble of

indistinguishable spins, and then show how this geometric interpretation

is contained within an algebra of multispin product operators. This al-

gebra is used throughout the rest of the paper to demonstrate that it

provides a facile framework within which to study quantum information

processing more generally. The implementation of quantum algorithms

by NMR depends upon the availability of special kinds of mixed states,

called pseudo-pure states, and we consider a number of different meth-

ods for preparing these states, along with analyses of how they scale

with the number of spins. The quantum-mechanical nature of processes

involving such macroscopic pseudo-pure states also is a matter of debate,

and in order to discuss this issue in concrete terms we present the results

of NMR experiments which constitute a macroscopic analogue Hardy’s

paradox. Finally, a detailed product operator description is given of re-

cent NMR experiments which demonstrate a three-bit quantum error

correcting code, using field gradients to implement a precisely-known

decoherence model.
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1 Introduction

It has recently proven possible to perform simple quantum computations by

liquid-state NMR spectroscopy [12, 13, 14, 15, 16, 22, 32, 42]. This unprece-

dented level of coherent control promises to be quite useful not only in demon-

strating the validity of many of the basic ideas behind quantum information

processing, but more importantly, in providing researchers in the field with new

physical insights and concrete problems to study. This is particularly true since

the ensemble nature of the systems used for NMR computing differs substan-

tially from the systems previously considered as candidate quantum computers.

The use of ensembles provides tremendous redundancy, which makes computa-

tion with them relatively resistant to errors. It also has the potential to provide

access to a limited form of massive classical parallelism [14], which could for ex-

ample be used to speed up searches with Grover’s algorithm by a constant but

very large factor [9, 24, 36]. The barriers that have been encountered in extend-

ing NMR computing to nontrivial problems further raise interesting questions

regarding the relations between microscopic and macroscopic order, and between

the quantum and classical worlds [23, 43].

NMR computing is also contributing to quantum information processing

through the assimilation of theoretical and experimental NMR techniques. These

techniques have been developed over half a century of intensive research, and

grown so advanced that a recent book on the subject is entitled “Spin Chore-

ography” [21]. It is noteworthy that, due to the scope of its applications, NMR

is now more often studied in chemistry and even biochemistry than it is in

physics and engineering, where it was initially developed. This has had the ef-

fect that a large portion of these techniques have been discovered empirically

and put into the form of intuitive graphical or algebraic rules, rather than devel-

oped mathematically from well-defined principles. Thus the interest which NMR

computing is attracting from the quantum information processing side likewise

has the potential to benefit the field of NMR spectroscopy, particularly through

the application of algorithmic, information theoretic and algebraic techniques.

Finally, NMR has the potential to contribute in significant ways to the de-

velopment of its own mathematics, in the same ways that computers have con-

tributed to the development of recursive function theory, number theory, com-

binatorics and many other areas of mathematics. By performing experiments

which can be interpreted as computations in homomorphic images on the alge-

bras that are naturally associated with NMR spectroscopy, it may be possible to

obtain insights into, or even “proofs” of, algebraic properties that would other-
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wise be inaccessible. To give some idea of its potential computational power, we

point out that the spin dynamics of a crystal of calcium fluoride one millimeter

on a side, which can be highly polarized, superbly controlled and measured in

microscopic detail by NMR techniques [53, 57], is described by an exponential

map in an algebra on about 410
11

physically distinct dimensions.

This paper will survey our recent research on quantum information process-

ing by liquid-state NMR spectroscopy, including some new experiments which

serve to clarify the underlying principles. We begin with a geometric interpreta-

tion of the quantum mechanical states and operators of an ensemble of identical

spin 1/2 particles, both pure and mixed, which provides considerable insight

into NMR. The corresponding geometric algebra is then extended to the product

operator formalism, which is widely used in analyzing NMR experiments, and

which constitutes a facile framework within which to study quantum informa-

tion processing more generally [48]. We proceed to use this formalism to give an

overview of the basic ideas behind ensemble quantum computing by liquid-state

NMR spectroscopy, with emphasis on “pseudo-pure” state preparation and scal-

ing. Next, we consider one way in which quantum correlations can appear to

be present even in weakly polarized spin ensembles, and illustrate this with the

results of NMR experiments which constitute a macroscopic analogue of Hardy’s

paradox [26]. Finally, the utility of NMR and its associated product operator for-

malism as a means of studying decoherence will be demonstrated by an analysis

of our recent experiments with a three-bit quantum error correcting code [15].4

2 The geometry of spin states and operators

NMR spectroscopy is based on the fact that the nuclei in many kinds of atoms

are endowed with an intrinsic angular momentum, the properties of which are

determined by an integer or half-integer quantum number S ≥ 0, called the

nuclear spin. For the purposes of quantum information processing by NMR, it

will suffice to restrict ourselves to spin S = 1/2. In this case, measurement of

the component of the angular momentum along a given axis in space always

yields one of two possible values: ±h̄/2 (where h̄ is Planck’s constant h over 2π).

4 The reader is assumed throughout to be familiar with the basic notions of quantum

information processing, as presented in e.g. Refs. [43, 44, 51, 56]. Excellent detailed

expositions of NMR spectroscopy are also available, see e.g. Refs. [19, 21, 40, 47]. A

more introductory account of our work on ensemble quantum computing by NMR

spectroscopy, directed primarily towards physicists, may be found in Ref. [16].
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According to the principles of quantum mechanics, the quantum state of the

“spin” (nucleus) after such a measurement may be completely characterized by

one of two orthonormal vectors in a two-dimensional Hilbert (complex vector)

space H, with Hermitian (sesquilinear) inner product 〈 ·|· 〉. A rotation of this

axis in physical space induces a transformation in H by an element of the special

unitary group SU(2), which is the two-fold universal covering group of the three-

dimensional Euclidean rotation group SO(3), and the elements of H are called

spinors to emphasize this fact. The Lie algebra basis (Ix, Iy, Iz) of SU(2) (or

SO(3)) corresponding to infinitesmal rotations about three orthogonal axes in

space satisfies the commutation relations

[Ix, Iy] = ıIz , [Iz, Ix] = ıIy , [Iy, Iz] = ıIx , (1)

and the eigenvalues ±1/2 of these three Hermitian (self-adjoint) operators cor-

respond to the possible outcomes of measurements of the angular momentum

(in units of h̄) along the three axes.5

The Hilbert space representation of the kinematics of an isolated spin, how-

ever, is not sufficient to describe the joint state of the macroscopic collections

of spins which are the subject of NMR spectroscopy. A mixed state (as opposed

to the pure state of an isolated spin) is a random ensemble of spins not all in

the same pure state. This “ensemble” could be a thought-construction which

describes our state-of-knowledge of a single spin (as used in J. W. Gibbs’ for-

mulation of statistical thermodynamics), or it could be a very large physical

collection of spins, as in an NMR sample tube. In either case, a probability is

assigned to every possible spinor, which can be interpreted as its frequency of

occurrence in the ensemble (but see Ref. [30] for a Baysian point-of-view). The

Heisenberg uncertainty principle limits what can be known about the ensemble

to the ensemble-average expectation values of the quantum mechanical observ-

ables. This information, in turn, can be encoded into a single operator on H,

called the density operator .

To define this operator mathematically, we first recall the canonical algebra

isomorphism between the endomorphisms End(H) and the tensor product H⊗
H∗ of H with its dual space H∗. Denoting the dual of a vector |ψ 〉 under

the Hermitian inner product of H by 〈ψ |, the composition product in End(H)

5 Detailed explanations of these basic features of the quantum mechanics of spin may

be found in modern textbooks. We would particularly recommend Sakurai [45], for

an introduction to the underlying physics, or the monograph by Biedenharn and

Louck [5], for a complete mathematical development.
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corresponds to a product on H ⊗H∗ which is given on the factorizable tensors

by

(|ϕ 〉 ⊗ 〈ϕ′ |)(|ϑ 〉 ⊗ 〈ϑ′ |) = 〈ϕ′ |ϑ 〉 (|ϕ 〉 ⊗ 〈ϑ′ |) , (2)

and extended to all tensors by linearity. Following common practice, we shall usu-

ally drop the tensor product sign “⊗” and write this dyadic product as |ϕ 〉〈ϑ |.
The restriction of this product to the diagonal, |ψ 〉〈ψ |, linearly spans the (real)

subspace of all Hermitian operators in End(H), and the action of SU(2) on these

products is its usual action on such operators,

|ψ 〉〈ψ | 7→ U |ψ 〉〈ψ | Ũ , (3)

where Ũ ≡ U∼ denotes the Hermitian conjugate (adjoint) of U ∈ SU(2).

Restricting ourselves to an ensemble involving a finite set of states {|ψk 〉}
for ease of presentation, the density operator may now be defined as [7]

ρ ≡ |ψ 〉〈ψ | ≡
∑

k
pk |ψk 〉〈ψk | , (4)

where the pk ≥ 0 are the probabilities of the various states in the ensemble

(
∑

k pk = 1). Because 〈ϕ |ρ |ϕ 〉 =
∑

k pk |〈ϕ |ψk 〉|2 ≥ 0 for any spinor |ϕ 〉,
the density operator is necessarily positive semi-definite. Letting “tr” be the

contraction operation on H ⊗ H∗ (or trace on End(H)), letting A ∈ End(H)

be any Hermitian operator, and using the invariance of the trace under cyclic

permutations, we find that

tr (Aρ) =
∑

k
pk tr (A |ψk 〉〈ψk | ) =

∑

k
pk 〈ψk |A |ψk 〉 . (5)

This proves our claim that all ensemble-average expectation values can be ob-

tained from ρ. Note in particular that tr(ρ) = 1.

Before showing how this applies to NMR spectroscopy, we wish to introduce

an important geometric interpretation of the spin 1/2 density operator, and in-

deed of the entire operator algebra. As operators, the angular momentum com-

ponents transform under SU(2) by conjugation, i.e. Iw 7→ UIwŨ (w ∈ {x, y, z}).
Thus U and −U induce the same transformation, so that conjugation consti-

tutes a transitive group action of SO(3) on the real linear space 〈 Ix, Iy, Iz 〉. It
follows that this space is naturally regarded as a three-dimensional Euclidean

vector space. Note further that 〈1, Ix, Iy, Iz 〉 equals the four-dimensional space

of Hermitian operators on H, where 1 is the identity on H which we will hence-

forth identify with the scalar identity 1. This shows that any density operator

can be uniquely expanded as the sum of a scalar and a vector :

ρ = 1
2 tr(ρ) + tr(Ix ρ) 2Ix + tr(Iy ρ) 2Iy + tr(Iz ρ) 2Iz ≡ 1

2 (1 + P ) (6)
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We call P the polarization vector , since its length P ≡ ‖P ‖ ≤ 1 (the polariza-

tion) is a measure of the overall degree of alignment of the spins in the ensemble

along P . The positive semi-definiteness of ρ implies P ≤ 1, and if P = 1, the

density operator describes a (ensemble of spins in the same) pure state up to an

overall phase factor. In this latter case the density operator can be written as

ρ = |ψ 〉〈ψ | for some spinor |ψ 〉, and hence is idempotent (equal to its square).

This vectorial interpretation of two-state quantum systems became widely known

through the work of Feynman, Vernon and Helwarth [20], although it is inherent

in the phenomenological equations for NMR first proposed by F. Bloch [6] (see

below).

To extend this geometric interpretation to the entire algebra generated by

〈1, Ix, Iy, Iz 〉, we regard the composition product of angular momentum opera-

tors as an associative bilinear product of vectors. We shall call this the geometric

vector product . Since the eigenvalues of the (S = 1/2) angular momentum op-

erators are ±1/2, the eigenvalues of their squares are both 1/4, from which it

follows that (2Ix)
2 = (2Iy)

2 = (2Iz)
2 = 1. In accord with the isotropy of space,

moreover,

(UIwŨ)2 = U(Iw)
2Ũ = 1/4 (7)

for all U ∈ SU(2) and w ∈ {x, y, z}, which together with the bilinearity of the

product implies that the square of any vector is equal (relative to the orthonor-

mal basis (2Ix, 2Iy, 2Iz)) to its length squared. Via the law of cosines, we can

now show that the symmetric part of the geometric product of any two vectors

is their usual Euclidean inner product:

A ·B = 1
2

(

‖A‖2 + ‖B‖2 − ‖A−B‖2
)

= 1
2

(

A2 +B2 − (A−B)2
)

= 1
2 (AB +BA)

(8)

The commutation relations in Eq. (1), on the other hand, show that the anti-

symmetric part is equal (up to a factor of −ı) to the usual vector cross product:

A×B = − ı
2 [A,B] = − ı

2 (AB −BA) ≡ −ı(A ∧B) (9)

We call the antisymmetric part A ∧ B = ı(A × B) the outer product of A

and B, and note that it is geometrically distinct from vectors because inversion

in the origin does not change it. Such things have been called “axial vectors”,

although we prefer the older and more descriptive term bivector . On writing

the geometric product as the sum of its symmetric and antisymmetric parts,

AB = A ·B +A ∧B, we see that perpendicular pairs of vectors anticommute.

It follows that the three basis bivectors ı2Ix, ı2Iy and ı2Iz also anticommute.
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These square to −1 rather than 1, however, and thus can be identified with

the usual quaternion units [1]. Finally, the unit pseudo-scalar 8IxIyIz likewise

squares to −1, which together with the fact that it commutes with the basis

vectors and hence everything in the algebra enables it to be identified with the

unit imaginary ı itself [25].

This algebra is often called the Clifford algebra of a three-dimensional Eu-

clidean vector space, although we shall use the term geometric algebra here

(which W. K. Clifford himself used). Such an algebra is canonically associated

with any metric vector space, and provides a natural algebraic encoding of the ge-

ometric properties of that space. The fact that the three-dimensional Euclidean

version can be defined starting from the well-known properties of the spin 1/2

angular momentum operators indicates that a large part of quantum mechanics

is really just an unfamiliar (but extremely elegant and facile [27, 29]) means

of doing Euclidean geometry. Geometric algebra has more recently been exten-

sively advocated and used to demystify quantum physics by a number of groups

[4, 17, 28, 38]. Of particular interest are recent proposals to use the geometric

algebra of a direct sum of copies of Minkowski space-time to obtain a relativistic

multiparticle theory, from which all the nonrelativistic theory used in this paper

falls out naturally as a quotient subalgebra [18].

We are now ready to describe the simplest possible NMR experiment. The

time-independent Schrodinger equation is

ıh̄ | ψ̇ 〉 = H |ψ 〉 , (10)

where the Hamiltonian H is the generator of motion and the “dot” denotes the

time derivative. This implies that the density operator evolves according to the

Liouville-von Neumann equation:

ıh̄ ρ̇ = ıh̄
∑

k pk

(

| ψ̇k 〉〈ψk |+ |ψk 〉〈 ψ̇k |
)

=
∑

k pk

(

H|ψk 〉〈ψk | − |ψk 〉〈ψk |H
)

= [H,ρ ]
(11)

The dominant Hamiltonian in NMR is the Zeeman interaction of the magnetic

dipoles of the spins (which is parallel to their angular momentum vectors) with

a constant applied magnetic field B0. This Zeeman Hamiltonian is given by

HZ = − 1
2γh̄B0, where γ is a proportionality constant called the gyromagnetic

ratio, which together with the above gives the Bloch equation [6]:

Ṗ = ρ̇ = −ı 12γ [ρ,B0 ] = γ P ×B0 (12)

The solution to this equation is ρ(t) = Uρ(0) Ũ with U = exp(−ıtHZ), which

is a time-dependent rotation of the polarization vector about the magnetic field
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with a constant angular velocity ω0 ≡ γh̄ ‖B0‖. This “classical” picture is an

example of Ehrenfest’s theorem, and is analogous to the precession of a gyroscope

in a gravitational field.

Throughout this paper we adopt the universal convention that the magnetic

field is along the z-axis: B0 = B02Iz. The component of the net precessing

magnetic moment of the spins in the transverse xy-plane generates a complex-

valued radio-frequency electrical signal proportional to tr((Ix + ıIy)ρ(t)) =

2Ix · P (t) + ı2Iy · P (t), whose Fourier transform is an NMR spectrum con-

taining a peak at the precession frequency of each distinct kind of spin present

in the sample. This has the important consequence that in NMR we measure the

expectation values of the observables directly, which is due in turn to the fact

that we are measuring the sum of the responses of the spins over the ensemble.

These measurements yield negligible information on the quantum state of the

individual spins in the ensemble and hence are nonperturbing, in that they do

not appreciably change the state of the ensemble as a whole. Such weak mea-

surements contrast starkly with the strong measurements usually considered in

quantum mechanics, where determining the component of a spin along an axis

yields one of two possible values and “collapses” it into the corresponding ba-

sis state, so that only one classical bit of information can be obtained [43, 45].

A discussion of the computational implications of weak measurements may be

found in Ref. [14].

The natural (minimum energy) orientation of the spins’ dipoles in a magnetic

field is parallel to the field, and thus to obtain a precessing magnetic dipole it is

necessary to rotate the polarization vector P away from the field axis 2Iz. This

is done by applying an additional, rotating magnetic field B1 of magnitude B1 in

the xy-plane perpendicular to the static field B0, which gives the time-dependent

Hamiltonian

H = HZ +HRF = −γh̄ (B0Iz +B1(cos(ωt)Ix + sin(ωt)Iy)) . (13)

The effect of such a rotating field is most easily determined by transforming

everything into a frame which rotates along with it, in which the Hamiltonian

becomes time-independent:

ρ′ = e−ıωtIzρ eıωtIz , H ′ = e−ıωtIzHeıωtIz = HZ + γh̄B1Ix (14)

Then the Bloch equation itself is transformed as follows:

Ṗ ′ = −ıωIzP
′ + e−ıωtIzṖ eıωtIz + P ′ıωIz

= P ′ × (H ′ − ωIz)
(15)
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Thus if ω equals the natural precession frequency of the spins ω0 = γh̄B0, the

Zeeman Hamiltonian H ′
Z = HZ = ω0Iz cancels out. In this frame, the spins

turn about a (rotating) axis perpendicular to B′
1 at a rate ω1 = γh̄B1, so that if

the polarization vector starts out along z, it is in the xy-plane where it produces

the maximum signal after a time t = π/(2ω1). Henceforth, all our coordinate

frames will be rotating at the transmitter frequency unless otherwise mentioned.

3 The product operator formalism

Thus far we have restricted our presentation to ensembles consisting of indistin-

guishable nuclear spins. The power of NMR spectroscopy as a means of chemical

analysis, however, depends on the fact that the different nuclei in a molecule gen-

erally have distinct electronic environments, which affect the applied magnetic

field at each nucleus. As a result, they precess at slightly different frequencies

and give rise to resolvable “peaks” in the resulting spectrum. This is also one

of the reasons why NMR provides a facile approach to quantum information

processing, since it permits each chemical equivalence class of spins in the en-

semble to be treated as a separate “qubit”. In this section we will describe an

extension of the density operator to multispin systems, using a basis which is a

direct generalization of the “scalar + vector” basis given above for a single spin.

We then illustrate this so-called product operator formalism [8, 19, 48, 50, 54]

by describing how quantum information processing can be done on an ensemble

of multispin molecules, using the internal Hamiltonian of liquid-state NMR. For

the sake of simplicity we shall assume throughout that the ensemble is in a pure

state, i.e. that the joint state of the spins in every molecule is identical. The next

section is devoted to the complications involved in extending this approach to

the highly mixed states which are available in practice.

As usual in quantum information processing [51, 56], we choose a computa-

tional basis (| 0 〉, | 1 〉) for the Hilbert space H of each spin that corresponds to

the eigenvectors of its Iz operator, i.e. to alignment of the spin with (up) and

against (down) a magnetic field B0 along the z axis. Relative to this basis, a

superposition c0| 0 〉 + c1| 1 〉 (c0, c1 6= 0 complex with |c0|2 + |c1|2 = 1) is any

state with transverse (xy) components. The Hilbert space needed to describe the

kinematics of a system consisting of N distinguishable spins (not an ensemble)

is the N -fold tensor product of their constituent Hilbert spaces [43, 45]. The

induced basis in this (2N )-dimensional space is

|κ1 〉 ⊗ |κ2 〉 ⊗ · · · ⊗ |κN 〉 ≡ |κ1κ2 . . . κN 〉 ≡ | k 〉 , (16)
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where κn ∈ {0, 1} (n = 1, . . . , N) is the binary expansion of the integer k ∈
{0, . . . , 2N − 1}. Because of the canonical isomorphism

End(H)⊗ End(H) ≈ End(H⊗H) (17)

together with our previous isomorphism End(H) ≈ H ⊗ H∗, this implies that

the density operators for an ensemble of N -spin molecules are all contained in

the N -fold tensor product space

(H⊗ · · · ⊗ H)⊗ (H∗ ⊗ · · · ⊗ H∗) ≈ (H⊗H∗)⊗ · · · ⊗ (H⊗H∗) . (18)

It follows that a basis for the algebra of N -spin operators is

| k 〉〈 ℓ | = |κ1 κ2 . . . κN 〉〈λ1 λ2 . . . λN |

= (|κ1 〉〈λ1 |)⊗ (|κ2 〉〈λ2 |)⊗ · · · ⊗ (|κN 〉〈λN |) ,
(19)

where κn, λn ∈ {0, 1} (n = 1, . . . , N) are binary expansions of the integers k, ℓ ∈
{0, . . . , 2N − 1}. This basis, however, does not consist of Hermitian operators,

and although the dyadic products |ψ 〉〈ψ | (|ψ 〉 ∈ H⊗ · · ·⊗H) do span the real

subspace of all Hermitian operators, the restriction of the basis in Eq. (19) to

the diagonal does not.

An algebra basis which has the advantage of also being a linear basis for the

subspace of Hermitian operators is known as the product operator basis . It is

induced by the one-spin basis (1, Ix, Iy, Iz), and consists simply of the tensor

products of the angular momentum operators of the individual spins. In the case

of two spins, this basis has sixteen elements:

1⊗ 1 1⊗ Ix 1⊗ Iy 1⊗ Iz

Ix ⊗ 1 Ix ⊗ Ix Ix ⊗ Iy Ix ⊗ Iz

Iy ⊗ 1 Iy ⊗ Ix Iy ⊗ Iy Iy ⊗ Iz

Iz ⊗ 1 Iz ⊗ Ix Iz ⊗ Iy Iz ⊗ Iz

(20)

As before, a notation which eliminates the need for repetitive “⊗” symbols is

preferred. This is obtained by using superscripts for the spin indices in the op-

erators

Inw ≡ 1⊗ · · · ⊗ 1⊗ Iw ⊗ 1⊗ · · · ⊗ 1 (21)

(Iw in the n-th place, n = 1, . . . , N , w ∈ {x, y, z}), and noting that by the mixed

product formula between the operator composition and tensor products:

Imu Inv = 1⊗ · · · ⊗ Iu ⊗ 1⊗ · · · ⊗ 1⊗ Iv ⊗ · · · ⊗ 1 = InvI
m
u (22)
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(Iu in the m-th place, Iv in the n-th, m,n = 1, . . . , N with m < n, and u, v ∈
{x, y, z}). In the following, we will again identify the identity operator 1⊗· · ·⊗1

with the scalar identity 1. We will also be using the operator norm ‖Inw‖2 ≡
〈 (Inw)2 〉 = (Inw)

2 = 1/4 obtained from the scalar part, rather than the more

usual Frobenius norm ‖Inw‖2F = tr((Inw)
2) = 2N−2 on End(H), because the former

is independent of N . The normalization of our basis to ‖Inw‖ = 1/2 rather than

1 will be seen to have both advantages and disadvantages, but the convention is

well-established in NMR.

Just as with an ensemble consisting of a single type of spin, a pure state

may be characterized by the idempotence of its density operator: ρ2 = ρ. The

scalar part of the density operator is 〈ρ 〉 = 2−Ntr(ρ) = 2−N , and if we write

an arbitrary density operator ρ ≡ |ψ 〉〈ψ | in diagonal form as

ρ = U

(

∑2N−1

k=0
pk | k 〉〈 k |

)

Ũ (23)

(0 ≤ pk ≤ 1,
∑

k pk = 1) for some U ∈ SU(2N ), we see that the idempotence of

ρ is equivalent to 〈ρ2 〉 = 2−N , i.e. pℓ = 1 for some ℓ ∈ {0, . . . , 2N − 1}. This
shows that the density operator of a pure state is in fact a primitive idempotent.

Without loss of generality we may take ℓ = 0, so that ρ = U | 00 . . .0 〉〈 00 . . . 0 |Ũ .

If we expand | 0 〉〈 0 | in the product operator basis, we obtain E+ ≡ 1
2 (1 + 2Iz),

and similarly for | 1 〉〈 1 | = E− ≡ 1
2 (1− 2Iz). Thus we can also write the density

operator of a pure state as

ρ = U
(

E1
+E

2
+ · · ·EN

+

)

Ũ , (24)

where the superscript on the idempotent E+ is the spin index as before. More

generally, the set of all density operators consists of the closed convex cone of

positive semi-definite operators in the Hermitian subspace of End(H⊗ · · · ⊗H),

and the density operators of pure states are the extreme rays of this cone.

We now consider the form of the Hamiltonian which is operative among

the spins of an ensemble of molecules in the liquid state (with which we are

exclusively concerned in this paper), again using the product operator formalism.

First, there is the Zeeman Hamiltonian previously given for a single spin, i.e.

HZ ≡ −ω1
0I

1
z − · · · − ωN0 INz (25)

with ωn0 = h̄γn(1 − σn)B0, where γ
n the gyromagnetic ratio of the n-th spin

and 0 ≤ σn ≤ 1 is the chemical shift due to the (usually small) influence of

the electronic environment of the spins on their precession frequencies. This

11



Hamiltonian is easily seen to be diagonal in the computational basis | k 〉 (k =

0, . . . , 2N − 1), with eigenvalues (±ω1
0 ± · · · ± ωN0 )/2.

Second, there is an exchange interaction known as the J or scalar coupling,

which is proportional to the inner product of the spins’ polarization vectors,

namely

HJ =
∑

m,n
2πJmn

(

Imx Inx + Imy Iny + Imz Inz
)

, (26)

where Jmn is the coupling strength in Hertz. This interaction is mediated by

the electrons in the chemical bonds between atoms, and is usually negligible for

atoms separated by more than three bonds. Standard perturbation theory [45]

shows that the eigenvalues of the total Hamiltonian H = HZ +HJ are given to

first order by the diagonal elements of

H ′ = HZ +H ′
J ≡ HZ + 2π

∑

m,n
JmnImz Inz , (27)

whereas the eigenvectors are given to first order by:

| ℓ 〉′ = | ℓ 〉+ 2π
∑

m,n
Jmn

∑

k 6=ℓ

〈 k | Imx Inx + Imy Iny + Imz Inz | ℓ 〉
〈 ℓ |HZ | ℓ 〉 − 〈 k |HZ | k 〉

| k 〉 (28)

The numerator of each term in the summations is nonzero only if κp = λp for

p 6= m,n and κm = (1 − λn), in which case it is πJmn, while the denominators

of the corresponding terms are ωm0 − ωn0 . It follows that the eigenvectors are

negligibly perturbed so long as the frequency differences are much larger than

the scalar couplings, i.e. |ωm0 − ωn0 | ≫ π|Jmn|. We shall be making this weak

coupling approximation throughout.

Another, potentially quite large term in the molecular spin Hamiltonian is a

through-space interaction between the spins’ magnetic dipoles. Because of the

rapid motions of the molecules in a liquid, however, these interactions are aver-

aged to zero much more quickly than they can have any net effect. The effective

absence of this interaction nevertheless has the important consequence that the

spins in different molecules do not interact , and hence cannot be correlated with

one another.6 As a result, the density operator of the entire sample ̺ (which

describes an abstract Gibbs ensemble obtained by tracing over the spins’ envi-

ronment) can be factorized into a product of density operators for the individual

molecules, i.e.

̺ = ̺1 · · ·̺M = ρ1 ⊗ · · · ⊗ ρM , (29)

6 More precisely, the spins do not interact to an excellent, but first-order, approxi-

mation; second-order effects do exist and are a source of spin-spin relaxation (aka

decoherence).
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where ̺m ≡ 1⊗ · · · ⊗ ρm ⊗ · · · ⊗ 1. In a pure liquid (or if we are looking at just

one component of a solution), all the molecules are equivalent so that all these

density operators are the same. It follows that we can work with the partial

trace over all but any one of the molecules, which is called the reduced density

operator ρ ≡ ρ1 = · · · = ρM . Since this operates on a space of dimension 2N

where N is now the number of spins in a single molecule, rather than 2MN where

M ∼ 1020 is the number of molecules in the sample, this is a very considerable

simplification. It also means that in liquid-state NMR we are working with a

physical ensemble (the sample), rather than a purely abstract Gibbs ensemble.

Finally, there is the interaction of the spins with a transverse RF (radio-

frequency) field, which we described in the last section. Whenever weak coupling

is valid, we can apply this field in a single “pulse”, tuned to the precession

frequency of the k-th spin (say), which is short enough that we may neglect the

evolution of the spins due to scalar coupling while it lasts. This effects a unitary

transformation of the form

e−ıθI
n

x = 1− ı
(

θ
2

)

2Inx − 1
2

(

θ
2

)2
+ ı

6

(

θ
2

)3
2Inx + · · ·

= cos
(

θ
2

)

− ı sin
(

θ
2

)

2I1
x ,

(30)

which corresponds to a right-hand rotation of the k-th spin by an angle θ about

the x axis in the rotating frame. Using a pulse with a broad frequency range, it is

also possible (in fact easier) to apply such a rotation to all the spins in parallel.

We will now indicate how RF pulses, in combination with the innate Hamil-

tonian of the spins, enable us to implement standard quantum logic gates in a

manner similar to that considered by computer scientists studying universality

in quantum computation [3]. The simplest such gate is the NOT operation on

the e.g. first spin, which simply rotates it by π; combining the above formula

with the basic geometric algebra relations IxIz = −IzIx and (2Ix)
2 = 1, we

obtain

e−ıπI
1
x E1

+e
ıπI1

x = (−2ıI1
x)E

1
+(2ıI

1
x) = 1

2 (1 + 8I1
xI

1
zI

1
x)

= 1
2 (1− 8I1

xI
1
xI

1
z ) = 1

2 (1− 2I1
z ) = E1

−

(31)

The c-NOT (controlled-NOT) gate, on the other hand, is a π rotation of e.g.

the first spin conditional on the polarization of a second. Using the relation

E2
±E

2
∓ = 0, we can easily show that

(−2ıI1
xE

2
− +E2

+)(E
1
ǫE

2
±)(2ıI

1
xE

2
− +E2

+) = E1
±ǫE

2
± (32)

(ǫ ∈ {±}). The phase factor ı multiplying I1
x complicates the action of the c-

NOT on a superposition, but can be eliminated by a phase shift conditional on

13



the second spin. Using E2
− +E2

+ = 1, this phase-corrected c-NOT gate is given

by S1|2 ≡

2I1
xE

2
− +E2

+ = (−ıE2
− +E2

+)(2ıI
1
xE

2
− +E2

+)

=
(

1 + (e−ı
π

2 − 1)E2
−

)(

1 + (eıπI
1
x − 1)E2

−

)

= e−ı
π

2
E

2
−eıπI

1
xE

2
− = e−ı

π

2
(1−2I1

x )E
2
− ,

(33)

and hence the idempotents En
± also give us an algebraic description of the c-

NOT gate, in addition to the density operators of pure states. It is well-known

that single spin rotations, together with the c-NOT, are sufficient to implement

any quantum logic gate [3].

The c-NOT can be implemented in NMR by combining single spin rotations

with the conditional rotations induced by (weak) scalar coupling 2πJ12I1
zI

2
z

[16, 22, 31]. Recalling that in the discrete SO(3) subgroup of rotations by π/2,

e−ı
π

2
I
1
y eı

π

2
I
1
z = eı

π

2
I
1
z eı

π

2
I
1
x , (34)

we can expand the above propagator as follows:

S1|2 = e−ı
π

2
(1−2I1

x )E
2
−

= e−ı
π

2
I
1
y e−ıπE

1
−E

2
− eı

π

2
I
1
y

=
√−ı e−ıπ2 I

1
y eı

π

2
(I1

z +I
2
z ) e−ıπI

1
z I

2
z eı

π

2
I
1
y

=
√
−ı eıπ2 (I1

z +I
2
z ) eı

π

2
I
1
x e−ıπI

1
z I

2
z eı

π

2
I
1
y

(35)

Since the overall phase of the transformation has no effect on the density oper-

ator, it follows that the c-NOT gate S1|2 can be implemented by an NMR pulse

sequence, wherein each pulse and delay corresponds to the indicated “effective”

Hamiltonian in temporal order:

[−π
2 I

1
y ] → [πI1

zI
2
z ] → [−π

2 I
1
x ] → [−π

2 (I
1
z + I2

z )]

⇔ exp
(

π
2 (I

1
z + I2

z )
)

exp
(

π
2 I

1
x

)

exp
(

−πI1
zI

2
z

)

exp
(

π
2 I

1
y

)

(36)

In practice, the effective Hamiltonian [πI1
zI

2
z ] is obtained by applying a π-pulse

to both spins in the middle and at the end of a 1/(2J12) evolution period, to

“refocus” their Zeeman evolution [16]. The [−π
2 I

1
y ] and [−π

2 I
1
x ] Hamiltonians are

implemented by RF pulses as above, while the [−π
2 (I

1
z + I2

z )] transformation is

most easily implemented by letting one spin evolve while applying a π-pulse to

the other, then vice versa, and finally realigning the transmitter’s phase with

the spins’.

14



The “readout” procedure needed to determine the result of an NMR compu-

tation differs somewhat that usually considered in quantum computing [51, 56].

The most important difference is of course the fact that in conventional NMR

one can only make weak (nonperturbing) measurements of the observables, as

previously described. As likwise described above, these observables are the x and

y components Inx and Iny of the dipolar magnetization due to each spin in a ro-

tating frame defined by the transmitter frequency. The products of the angular

momentum components of different spins (e.g. I1
xI

2
y), however, do not produce a

net magnetic dipole and hence cannot be detected directly. Thus we are limited

to one-spin observables, as is usually assumed in quantum computation. The un-

observable degrees of freedom may also be characterized in the basis | k 〉〈 ℓ | as
having a coherence order |〈 k | Iz | k 〉− 〈 ℓ | Iz | ℓ 〉| 6= 1, where Iz ≡ I1

z + · · ·+ INz

is the total angular momentum along z [16, 19, 21, 40, 47].

According to the usual phase conventions of NMR, the Fourier transform of

the x-magnetization of e.g. the first spin, I1
x , yields an absorptive peak shape,

while I1
y produces a dispersive shape, both centered on its precession frequency

ω1
0 . If the first spin is coupled to e.g. the second, its signal is modulated by

cos(πJ12t) yielding a spectrum containing two peaks separated by the coupling

constant J12 [16]. An effective exception to the unobservability of the products

are those of the form I1
xI

2
z (or I1

yI
2
z ), which (when J12 6= 0) evolve under scalar

coupling into one-spin terms. Using the facts that 4I1
zI

2
z and 4I1

xI
2
z anticommute

while (4I1
zI

2
z )

2
= 1, we can show this as follows:

e−ıtπJ
124I1

z I
2
z

(

4I1
xI

2
z

)

= e−ıt2πJ
12

I
1
z I

2
z

(

4I1
xI

2
z

)

eıt2πJ
12

I
1
z I

2
z

=
(

cos(πJ12t)− ı4I1
zI

2
z sin(πJ

12t)
) (

4I1
xI

2
z

)

= cos(πJ12t) 4I1
xI

2
z + sin(πJ12t) 2I1

y

(37)

Because the signal is now sinusoidally modulated by the coupling, for a single

pair of coupled spins this results in a pair of antiphase peaks with opposite signs,

as opposed to the inphase peaks described for I1
x and I1

y above. These antiphase

peaks may likewise be absorptive (I1
xI

2
z ) or dispersive (I

1
yI

2
z ), respectively. Figure

1 shows examples of all these possibilities for a pair of two coupled spins.

More generally, if the n-th spin is coupled to M others, its signal is split into

2M peaks at frequencies of (ωn0 /π± Jm1n ± · · · ± JmMn)/2, one for each combi-

nation of “up” and “down” states for the M spins to which it is coupled. If the

transverse magnetization is due to a π/2 rotation of a spin polarized along z as

before, then the heights of these peaks are proportional to the probability differ-

ences between pairs of states |κm1 . . . κn . . . κmM 〉 ↔ |κm1 . . . (1− κn) . . . κmM 〉
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Inphase
Absorptive

Inphase
Dispersive

Antiphase
Absorptive

Antiphase
Dispersive

Fig. 1. Plots of NMR spectra for a weakly coupled two-spin molecule (amplitude versus

frequency). The left-hand plot is for the spin state I1
x +I2

y , which gives a pair of inphase

absorptive peaks for spin 1 (left) and a pair of inphase dispersive peaks for spin 2

(right). The right-hand plot is for the spin state I1
xI

2
z + I1

z I
2
y , which gives a pair of

antiphase absorptive peaks for spin 1 (left) and a pair of antiphase dispersive peaks for

spin 2 (right). By fitting the peak shapes in such spectra after various π/2 rotations

of the individual spins, one obtains sufficient information to uniquely reconstruct the

complete density operator.

separated by flips of that spin. To show this, we restrict ourselves to two spins

for ease of presentation, and consider a general diagonal density operator of the

form

ρzz = p0| 00 〉〈 00 |+ p1| 01 〉〈 01 |+ p2| 10 〉〈 10 |+ p3| 11 〉〈 11 |
= 1

4 + 1
2 (p0 + p1 − p2 − p3)I

1
z +

1
2 (p0 − p1 + p2 − p3)I

2
z

+(p0 − p1 − p2 + p3)I
1
zI

2
z ,

(38)

where pk denotes the probability that a molecule is in the state | k 〉. Rotating
this to

ρxz ≡ e−ıπI
1
y ρzze

ıπI1
y

= 1
4 + 1

2 (p0 + p1 − p2 − p3)I
1
x +

1
2 (p0 − p1 + p2 − p3)I

2
z

+(p0 − p1 − p2 + p3)I
1
xI

2
z

(39)
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and computing the signal in the Zeeman frame yields

tr
(

e−ıt2πJ
12

I
1
z I

2
z ρxz e

ıt2πJ12
I
1
z I

2
z (I1

x + ıI1
y)
)

= 1
2

(

(p0 + p1 − p2 − p3) cos(πJ
12t)

+ (p0 − p1 − p2 + p3) ı sin(πJ
12t)

)

= 1
2e
ıπJ12t(p0 − p2) +

1
2e

−ıπJ12t(p1 − p3) ,

(40)

thus showing that the peaks at ω1
0 ± πJ12 have amplitudes proportional to the

probability differences as claimed.

In closing, we mention that although vector interpretations of single quantum

inphase (I1
x) and antiphase (I1

xI
2
z ) states are available (and widely used in NMR

[21]), no satisfactory geometric interpretation of general product states is known.

The development of an intuitive model for the geometry determined by the action

of SU(2N) on the product operators thus stands as an open problem in the field.

There are two reasons why the problem is nontrivial. The first is the well-known

the existence of correlated states, whose density operators cannot be factorized;

in the case of a pure state, these states are also called entangled [43]. We shall

consider such states further in Section 5. The second, much less widely recognized

reason is that there is but one imaginary unit for all the spins, so that in the

tensor product of their geometric algebras the unit pseudo-scalars 8Inx I
n
y I

n
z must

be identified by taking an appropriate quotient [48]. This is a form of implicit

correlation which is always present even in otherwise factorizable states. Further

discussion of this issue may be found in Refs. [17, 18].

4 Pseudo-pure state preparation and scaling

Liquid state NMR must be done at temperatures far above the differences be-

tween the spin Hamiltonian’s energy levels (eigenvalues). The ensemble’s spin

state thus represents a compromise between the constant force of the applied

magnetic field and the forces of the random fields induced by the thermal mo-

tions of spins in other molecules. Thus pure states are not available, so that the

underlying ensemble is not uniquely determined by its density operator. This

would seem to make NMR useless as a means of performing deterministic com-

putations, but in fact a class of mixed states has been found for which a state

vector is (up to an overall phase) canonically associated with the density op-

erator. This section is devoted to describing the properties and preparation of
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such pseudo-pure states , with emphasis on the computationally important issue

of how they scale with the number of spins N .

According to the principles of quantum statistical mechanics [7], the den-

sity operator ρeq for an ensemble of N -spin molecules at thermal equilibrium

is given by the Boltzman operator determined by their common Hamiltonian,

exp(−H/kBT ), divided by the corresponding partition function Zeq =

tr(exp(−H/kBT )) (where kB is Boltzman’s constant). The Hamiltonian H is

well-approximated by its dominant Zeeman term HZ = −ω1
0I

1
z − · · · − ωN0 INz .

Given the gyromagnetic ratios of nuclear spins and the strongest available mag-

netic fields, we have ‖HZ‖/(kBT ) ∼ 10−5 at the temperatures needed for liquid-

state NMR, so that a linear approximation is quite accurate:

ρeq ≈ 1−HZ/kBT

tr(1−HZ/kBT )
=

1−HZ/kBT

2N
(41)

In homonuclear (i.e. single spin isotope) systems, one can assume that ωn0 ≡
h̄B0(1 − σn)γn ≈ h̄B0γ is constant for all n. Since the amplitude of an NMR

signal is also proportional to imprecisely known factors determined by the spec-

trometer setup, ωn0 /(kBT ) is usually set to unity when analyzing a homonuclear

experiment (or to the ratios of each γn with minm(γm) otherwise). The parti-

tion function 2−N is likewise constant for any given system, but because of our

interest in scaling we shall always include it explicitly in this section.

It is important to observe that, because the angular momentum components

observed by NMR have no scalar part (i.e. are traceless), the scalar part (identity

component) of the density operator 2−N does not contribute to the signal. It also

does not evolve under unitary transformations, and hence NMR spectroscopists

usually forget about it altogether— even though it comprises the vast majority of

the norm of the density operator. In these terms, the equilibrium density operator

of a two-spin system, and its matrix representation in the usual computational

basis, is

ρ̂eq = 1
4 (I

1
z + I2

z ) = 1
4 (| 00 〉〈 00 | − | 11 〉〈 11 |)

↔ 1
4 Diag(1, 0, 0,−1) ≡ 1

4











1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1











,
(42)

where the “hat” on ρeq signifies its traceless part.

In contrast, the density operator of two spins in their pseudo-pure ground
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(assuming γ > 0 as usual) state is

ρ̂00 ≡ ± 1
6 (I

1
z + I2

z + 2I1
zI

2
z ) = ± 1

3

(

E1
+E

2
+ − 1

4

)

= ± 1
3

(

| 00 〉〈 00 | − 1
4

)

↔ ± 1
12 Diag(3,−1,−1,−1) .

(43)

The overall sign depends on whether we have a population excess or deficit in

the ground state; for consistency, we shall generally assume the former. Observe

that a unitary transformation of the density operator induces a transformation

of the corresponding state vector just as it does for true pure states, since

Uρ̂00 Ũ = 1
3

(

(U | 00 〉) (U | 00 〉)∼ − 1
4

)

. (44)

Similarly, because the NMR observables A = Inx , I
n
y are traceless, the ensemble-

average expectation value relative to a pseudo-pure density operator yields the

ordinary expectation value versus the corresponding state vector:

tr(A ρ̂00) = 1
3

(

tr(A| 00 〉〈 00 |)− 1
4 tr(A)

)

= 1
3 〈 00 |A| 00 〉 (45)

The general form of a pseudo-pure density operator is

ρ̂ψ = N/2

2N−1

(

|ψ 〉〈ψ | − 2−N
)

, (46)

where |ψ 〉 is a normalized N -spin state vector, and the prefactor has been cho-

sen so as to keep the maximum eigenvalue ‖ρ̂ψ‖2 equal to that of the N -spin

equilibrium density operator.

Even though we have defined them to have the same maximum eigenvalue,

for N > 1 the remaining eigenvalues of ρ̂eq and ρ̂ψ differ, and hence there is no

unitary transformation taking one to the other. There are nevertheless a number

of nonunitary processes by which one can prepare pseudo-pure states. The most

direct is to generate a spatially varying distribution of states across the sample,

such that the ensemble average is pseudo-pure. This can be done by using a

field gradient along the z-axis to create a position-dependent phase shift whose

average is zero, thereby in effect setting the transverse (xy) components of the

density operator to zero.7 For example, it is readily shown that the sequence

[π4 (I
1
x + I2

x)] → [πI1
zI

2
z ] → [−π

6 (I
1
y + I2

y)] (47)

applied to the two-spin equilibrium state ρ̂eq yields

2−
5
2

(√
3
(

E1
+E

2
+ − 1

4 − I1
xI

2
x

)

− I1
xE

2
− −E1

−I
2
x

)

, (48)

7 In the homonuclear case, the zero-quantum coherences are not rapidly dephased by

a z-gradient, so a slightly more complicated procedure is necessary.
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which is reduced by a z-gradient to (3/32)
1
2 (E1

+E
2
+ − 1/4). Further RF and

gradient pulse sequences which convert the equilibrium state of two and three

spin systems to pseudo-pure states may be found in Ref. [16].

An alterative proposed by E. Knill et al. [34] is to “time-average” the results

of several separate experiments. In the simple case of a two spin system, the

average of the three states

ρ̂123 ≡ 1
4 (I

1
z + I2

z ) ↔ 1
4 Diag(1, 0, 0,−1)

ρ̂231 ≡ 1
4 (I

1
z + 2I1

zI
2
z ) ↔ 1

4 Diag(1, 0,−1, 0)

ρ̂312 ≡ 1
4 (2I

1
zI

2
z + I2

z ) ↔ 1
4 Diag(1,−1, 0, 0)

(49)

is the pseudo-pure state

1
3 (ρ̂123 + ρ̂231 + ρ̂312) = 1

12 (2I
1
z + 2I2

z + 4I1
zI

2
z )

↔ 1
12 Diag(3,−1,−1,−1) .

(50)

More generally, one can obtain the same results that one would get on a pseudo-

pure state by averaging the results of the experiments over all 2N − 1 cyclic

permutations of the nonground state populations of the equilibrium density op-

erator. Although this naive approach is not efficient, Knill et al. have shown that

one can average over smaller groups in time O(N3) with much the same effect.

A fundamentally different approach, first proposed by Stoll, Vega & Vaughan

[52] and subsequently adapted to NMR computing by Gershenfeld & Chuang

[22], involves working with subpopulations of molecules distinguished by the

states of additional ancilla spins. Gershenfeld and Chuang [12] have given an

example of a two-spin conditional pseudo-pure state (as we call it), which is

obtained by row/column permutation of the diagonal equilibrium density matrix

Diag(3, 1, 1,−1, 1,−1,−1,−3)/16 of a three-spin system including one ancilla,

namely
1
16 Diag(3,−1,−1,−1,−3, 1, 1, 1)

↔ 1
16 (2I

1
z (2I

2
z + 2I3

z + 4I2
zI

3
z ))

= 1
4 (E

1
+ −E1

−)(E
2
+E

3
+ − 1

4 ) .

(51)

The last form makes it clear that in the subpopulation with the first spin “up”,

which is labeled by E1
+, and in the subpopulation with it “down”, which is

labeled by E1
−, spins 2 and 3 are in the pseudo-pure state E2

+E
3
+ − 1/4. Since

the spectrum of spins 2 and 3 is antiphase with respect to the ancilla spin 1,

one can select the subpopulations just by keeping only either positive or negative

peaks. Although the situation is considerably more complicated with more spins,
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Gershenfeld and Chuang have shown that conditional pure states can be obtained

(with some loss of signal) using as few as O(log(N)) ancillae.

An alternative to conditional pure states, which we call relative pseudo-pure

states , can be obtained via the partial trace operation (in NMR, decoupling

[19, 21, 40, 47]), rather than peak selection as above. For example, a two-spin

relative pseudo-pure state is given by the partial trace over the ancilla spins 1

& 2 in
1
32 Diag(4, 2, 2, 0, 2, 0,−2, 0, 0,−2, 0, 2, 0,−2,−2,−4)

↔ 1
16

(

E1
+E

2
+(E

3
+ +E4

+) +E1
+E

2
−(E

3
+E

4
+ −E3

−E
4
+)

+ E1
−E

2
+(E

3
−E

4
− −E3

+E
4
−)−E1

−E
2
−(E

3
− +E4

−)
)

,

(52)

which is again a permutation of the diagonal elements of ρ̂eq. This can be seen

by adding up the 4× 4 blocks of the matrix, obtaining Diag(6,−2,−2,−2)/32.

Alternatively, since the partial trace in the product operator formalism corre-

sponds to simply eliminating those terms depending on either spins 1 or 2 and

multiplying the remaining terms by 4 [48], we need only add up the multipliers

of E1
+E

2
+, . . . ,E

1
−E

2
−, which yields

1
16 ((1 +E3

+ −E3
−)(1 +E4

+ −E4
−)− 1)

= 1
4

(

E3
+E

4
+ − 1

4

)

↔ 1
32 Diag(6,−2,−2,−2) .

(53)

We now consider briefly how the SNR (signal-to-noise ratio) of these meth-

ods of creating pseudo-pure states scales with the number of spins N . It has

been argued that since the equilibrium population of the ground state falls off

exponentially with the number of spins, and all these methods are aimed in some

fashion at isolating the signal from the ground state population, the SNR of all

these methods must likewise decline exponentially with N [55]. Although this

argument carries considerable weight, we shall see that the number and variety

of the available methods renders the actual situation rather more complex. The

standard to which the signal strength must be compared is that of a single spin

in its equilibrium state, namely

ρ̂eq = 1
2I

1
z = 1

4 (| 0 〉〈 0 | − | 1 〉〈 1 |) . (54)

The maximum eigenvalue ‖ρ̂eq‖2 = 1/4 is what we will use as the standard

signal strength for spins of like gyromagnetic ratio (as assumed throughout).

We shall therefore calculate the SNR of a pseudo-pure state by transforming it

to the corresponding ground state | 0 · · · 0 〉〈 0 · · · 0 | − 2−N (if need be), taking

the partial trace over all but one of the spins, and multiplying the maximum

eigenvalue of the result by 4.
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Fig. 2. Negative base ten logarithm of the polarization P as a function of the loga-

rithm of the ratio of the energy level spacing to kBT for a one (solid), four (dash),

sixteen (dash-dot) and sixty-four (dot) spin pseudo-pure state obtained by cyclic

averaging. For protons in a standard 500 MHz spectrometer at room temperature,

E/(kBT ) ≈ P ∼ 10−5 at equilibrium.

The maximum eigenvalue of the partial trace over all but one of the spins in

a pseudo-pure state obtained by cyclic averaging, as in Eq. (50), is easily seen

to be N/(4(2N − 1)), which decays almost exponentially with the number of

spins N . There is an additional factor of
√
2N − 1 which comes from averaging

over 2N − 1 experiments, and gives a net SNR of N/(4
√
2N − 1) for the average.

The exponential time requirements of cyclic averaging will nonetheless force one

to average over smaller groups, with consequently smaller improvements in the

SNR. In any case, the SNR declines superpolynomially with N . Figure 2 shows

how the signal strength changes as a function of the ratio of the energy level

spacing to kBT , relative to the signal in a perfectly polarized sample, when the

pseudo-pure state is obtained by cyclic averaging, for varying numbers of spins.

Because of the many possible variations on the ideas and the difficulty of

analyzing all of them, it is not practical to present simple formulae for the SNR

of the other methods of preparing pseudo-pure states. Further complexity is
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added to the situation by the ability to combine the various methods above. A

number of such combinations are given in Knill et al. [34], along with bounds

on the SNR for each. In our laboratory we are developing a new method, again

based on field gradients, which enables the sample to be divided into discrete

volumes and separate unitary transformations to be applied to each. In principle,

this permits multiple experiments to be performed, and their results added, in a

single experiment, thereby performing an average over multiple experiments in

constant time. This new method could also be used in a variety of combinations

with existing methods.

It is nevertheless encouraging to observe that the SNR of the two-spin condi-

tional and relative pseudo-pure states given in Eqs. (51) and (52) is 1/2 in both

cases; this is exactly the decline in the ground state population of a two-spin

system compared to a one-spin. In Eq. (51), we attain this “theoretical limit” be-

cause the expansion of the density operator consists of a single term conditioned

on the state of a single ancilla; it is not possible to do as well with more spins. In

Eq. (52), however, it is because such permutations are able to concentrate polar-

ization in a subset of the spins. We have found this makes it possible to derive

a two-spin pseudo-pure state from a six-spin equilibrium state with no loss of

SNR, whereas a simplistic ground-state population argument implies we should

lose at least 1/2. This may be seen by adding up the rows in the rearrangement

of ρ̂eq shown in Eq. (55) below, which corresponds taking the traces of the four

16× 16 blocks along the diagonal, and yields Diag(48,−16,−16,−16).

Diag ( 6, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −2, −2, −2, −2, −4, −4,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −2, −2, −2, −2, −4, −4,

2, 2, 2, 2, 2, 2, −2, −2, −2, −2, −2, −2, −2, −4, −4, −6 )

(55)

The partial trace over one of the two remaining spins then gives Diag(32,−32),

which when divided by 128 (twice the partition function) yields 1
2Iz as claimed.

A general algorithm has recently been given by Schulman & Vazirani [46]

whereby one can “distill” an M -spin relative pure state from an ensemble of

molecules each containing N spins. Starting from a uniform polarization of P ,

this algorithm yields M perfectly polarized spins providing M/N ∼ O(P 2), a

result anticipated by earlier work in NMR which showed that the polarization of a

single spin can be enhanced by at most a factorO(
√
N) [49]. Unfortunately, given

that P ≈ 10−5 for protons at equilibrium in a standard 500 MHz spectrometer,

a molecule with of order 1010 spins would be needed to prepare a perfectly

polarized state on a single spin — which is in a pseudo-pure state at equilibrium!
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The importance of Schulman and Vazirani’s algorithm thus lies in the fact that

it shows that there is sufficient order in a typical NMR sample of 1020 spins at

room temperatures to make it at least theoretically possible to perform quantum

computations on of order 1010 spins.

One might hope that a more tractable algorithm, in terms of the absolute re-

sources required, could be found by requiring only that it produce a pseudo-pure

state with bounded SNR from the high-temperature equilibrium state. Since in

the high-temperature approximation the largest element of the density matrix

decays exponentially with the number of spins, it is clear that any such an

algorithm must go beyond that approximation. Even so, given that Schulman

and Vazirani’s algorithm is currently far beyond our ability to implement physi-

cally, it seems unlikely that a practical breakthrough will be obtained by purely

algorithmic means. Fortunately, physical methods of “refrigerating” the spins

are available, for example optical pumping [41]. These are presently confined to

very simple systems, but such a source of polarization could in principle be used

in conjunction with polarization transfer techniques to produce (pseudo-)pure

states on large numbers of spins. Even at the low polarizations we can con-

veniently access, however, NMR has proved itself to be a powerful means of

exploring quantum dynamics in Hilbert spaces of substantial size. To illustrate

this, we will now present the results of NMR experiments which constitute a

macroscopic analogue of a quantum mechanical test for quantum correlations

that are inconsistent with the existence of “hidden variables”.

5 Macroscopic analogues of quantum correlations

Given the success of the purely classical Bloch equations (and their multispin

extensions) in describing liquid-state NMR phenomena [19, 21, 40, 47], it is

perhaps surprising that experiments can be performed whose mathematical de-

scription, at least, is formally identical to that of experiments which are believed

to demonstrate uniquely “quantum” phenomena. For example, Seth Lloyd has

recently proposed that the nonclassical correlations in (Mermin’s version of)

the GHZ state can be validated using NMR [37]. His approach involves using a

fourth “observer” spin to perform a nondemolition measurement on the three

spins in a GHZ state (or a pseudo-pure analogue thereof). Here we shall describe

experiments which demonstrate another, rather different way in which we can

“emulate” quantum phenomena with liquid-state NMR. In reading this account,
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it should be kept in mind that although pseudo-pure states do provide a faith-

ful representation of the transformations of pure states within the highly mixed

states that are available in liquid-state NMR, their physical interpretation dif-

fers significantly from that of true pure states. Hence, as discussed in greater

detail at the end of this section (and also in Ref. [11]), our results should not

be taken to resolve any foundational issues in quantum mechanics [43]. They

demonstrate, nonetheless, a degree of coherent control sufficient to enable such

issues to be addressed, if these same transformations and measurements were

applied to a true pure state.

The approach taken here was inspired by an educational paper published

a few years ago, in which T. F. Jordan has shown that the contradictions with

hidden variables implied by violations of Bell’s inequalities as well as by the GHZ

and Hardy’s paradox can be derived entirely by consideration of the expectation

values of product operators, rather than by observations on single spins [33]. This

shows that, in principle, it is not necessary to use nondemolition measurements

with an observer spin in order to perform experiments which demonstrate these

contradictions by NMR; it can be done directly from observations on ensembles

of the spins of interest, providing at least they are in a (pseudo-)pure state.

In a companion paper to Jordan’s, N. D. Mermin points out that in real-life

experiments it is nevertheless not possible to perform the measurements, either

of single spins nor (by implication) of expectation values, with sufficient precision

to establish the “perfect” (total) correlations on which “EPR” arguments against

the existence of hidden variables are based [39]. In that same paper, however,

Mermin shows that Hardy’s paradox is a special case of the Clauser-Horne form

of Bell’s inequality. This enables Hardy’s paradox [10, 26] to be extended to

an open set in the Hilbert space of only two spins, to which sufficiently precise

experimental data can confine us.

In the following, we present the results of NMR experiments which implement

the specific example of Hardy’s paradox presented by Mermin in an Appendix

to his paper [39]. Let us map the “red” and “green” eigenstates | 1G 〉 and | 1R 〉
of Mermin’s measurement 1 to the spin states | 0 〉 and | 1 〉, respectively. It will
be clearer here to relabel this measurement as “A”, and to use |αG 〉 ≡ | 0 〉
and |αR 〉 ≡ | 1 〉 as synonyms for its eigenbasis. Correspondingly, we will relabel

Mermin’s measurement 2 as “B”, and denote its the eigenbasis by

|βG 〉 ≡
√

3
5 | 0 〉 −

√

2
5 | 1 〉 and |βR 〉 ≡

√

2
5 | 0 〉+

√

3
5 | 1 〉 . (56)

Then the state which Mermin has shown leads to a near-maximum violation of
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Bell’s inequality while also providing an example of Hardy’s paradox is

|ψ 〉 ≡ 1
2 | 00 〉+

√

3
8 | 01 〉+

√

3
8 | 10 〉 . (57)

To translate this into the context of NMR, we first note that the observable

whose expectation value is the probability that measurement A yields the state

|αG 〉 is given by A ≡ E+ = 1
2 (1 + 2Iz) (we drop the usual spin index because

the measurements A & B are assumed the same for both spins). Similarly the

observable which gives the probability that measurement B yields |βG 〉 is

B ≡ |βG 〉〈βG | = 3
5 | 0 〉〈 0 |+ 2

5 | 1 〉〈 1 | −
√

6
25 (| 0 〉〈 1 |+ | 1 〉〈 0 |)

= 1
2 + 1

5Iz −
√

24
25Ix .

(58)

In addition, the density operator (including the identity) of Mermin’s state is

Ψ ≡ |ψ 〉〈ψ | = 1
4 + 1

8

(

I1
z + I2

z

)

− 1
2I

1
zI

2
z

+
√

3
8

(

I1
x(1 + 2I2

z ) + (1 + 2I1
z )I

2
x

)

+ 3
4

(

I1
xI

2
x + I1

yI
2
y

)

.

(59)

The state | 01 〉 is obviously related to | 00 〉 by a rotation of spin 2, while | 00 〉
can likewise be rotated to | 10 〉, but without affecting | 01 〉, by a conditional

rotation of spin 1. We shall denote these by

P (φ) ≡ e−ıφI
2
y and Q(θ) ≡ e−ıθI

1
yE

2
+ , (60)

respectively. They act consecutively on the ground state to yield

〈 00 |P̃ (φ)Q̃(θ) = [ cos(θ/2) cos(φ/2), sin(θ/2) cos(φ/2), sin(φ/2), 0 ] , (61)

which is easily verified to equal 〈ψ | = [1/2,
√

3/8,
√

3/8, 0] when

φ = 2 arctan(
√

3/5) and θ = 2 arctan(
√

3/2) . (62)

Using the product operator techniques presented in section 3, these transforma-

tions are readily implemented by NMR pulse sequences.

The next thing to notice is that if we take expectation values with the usual

idempotents E1
+E

2
+, . . . ,E

1
−E

2
−, we get

1
4 = 4

〈

ΨE1
+E

2
+

〉

≡ 4
〈

ΨA1A2
〉

3
8 = 4

〈

ΨE1
+E

2
−

〉

≡ 4
〈

ΨA1(1−A2)
〉

3
8 = 4

〈

ΨE1
−E

2
+

〉

≡ 4
〈

Ψ(1 −A1)A2
〉

0 = 4
〈

ΨE1
−E

2
−

〉

≡ 4
〈

Ψ(1 −A1)(1 −A2)
〉

.

(63)
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These correspond to the diagonal of the density matrix in the usual Iz basis,

diag(Ψ ) = [ 14 ,
3
8 ,

3
8 , 0] (A on 1, A on 2) , (64)

which contains the probabilities of the four possible outcomes of performing

measurement A on both spins (as shown).

The product operator form of B immediately makes clear that measurement

B is just a measurement of the magnetization of the spin along an axis inclined

at an angle of ζ ≡ arctan(
√
24) = π − θ to the z-axis in the xz-plane. Letting

R ≡ exp(−ıζIy), it follows that the probability that measurement B on spin 1

yields “G” (i.e. |βG 〉) is

4〈ΨB1 〉 = 4〈ΨR̃1A1R1 〉 = 4〈R1ΨR̃1A1 〉 . (65)

with a similar expression for spin 2. More generally, the probabilities of the

outcomes of the other combinations of measurements are given by the diagonals

of the transformed density matrices:

diag
(

R2ΨR̃2) = [0, 58 ,
9
40 ,

3
20 ] (A on 1, B on 2)

diag
(

R1ΨR̃1
)

= [0, 9
40 ,

5
8 ,

3
20 ] (B on 1, A on 2)

diag
(

R1R2ΨR̃2R̃1
)

= [ 9
100 ,

27
200 ,

27
200 ,

16
25 ] (B on 1, B on 2)

(66)

For compactness, let us denote these probabilities by Ψ ijkl , where i, j ∈ {A,B} are

the measurements and k, l ∈ {G,R} are the corresponding outcomes, e.g. ΨAB
GR =

4〈ΨA1(1 −B2) 〉.
We may translate Mermin’s proof [39] that these probabilities are incompat-

ible with hidden variables associated with the individual spins into this context

as follows: First, since ΨAB
GG = ΨBA

GG = 0, in any molecule wherein one of the spins

is parallel to the z-axis the other must be antiparallel to the axis of measure-

ment B and vice versa. Hence, since ΨBB
GG is nonzero, in some molecules (9%, to

be precise) both spins must be antiparallel to the z-axis. But this contradicts

the fact that ΨAA
RR = 0. More generally, Mermin has shown that

ΨBB
GG ≤ ΨAB

GG + ΨAA
RR + ΨBA

GG (67)

is an example of the Clauser-Horne form of Bell’s inequality [43]. Hence to dis-

prove the existence of such one-particle hidden variables it would be sufficient

to determine these probabilities to ±2% or so.

At this point we encounter a significant complication, which is that the

“strong” (von Neumann) measurements assumed in their analyses by Jordan

and Mermin cannot be implemented by NMR; we can only perform “weak”
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Fig. 3. The pairs of 13C-labeled chloroform (CHCℓ3) spectra (carbon left, proton right)

obtained by performing the four combinations of measurements ACAH, ACBH, BCAH and

BCBH on the pseudo-pure form of Mermin’s state Ψ . The spectra have been normalized

by the height of the peak of the corresponding spin in the pseudo-pure ground state,

and the horizontal axis is in kHz. The transitions of the peaks, from left to right, are

| 0C0H 〉 ↔ | 1C0H 〉, | 0C1H 〉 ↔ | 1C1H 〉, | 0C0H 〉 ↔ | 0C1H 〉, | 1C0H 〉 ↔ | 1C1H 〉.

Probabilities of Outcomes G & R for the Measurements

A & B (Carbon, Proton) Demonstrating Hardy’s Paradox,

as Derived from the Chloroform NMR Spectra in Fig. 3

Measurements (G,G) (G,R) (R,G) (R,R) Residuals

(AC,AH) 0.253 0.380 0.366 0.001 0.008

(AC,BH) 0.029 0.609 0.217 0.145 0.018

(BC,AH) −0.002 0.230 0.614 0.159 0.005

(BC,BH) 0.097 0.125 0.156 0.622 0.021
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(nonperturbing) measurements of the probability differences between states con-

nected by single spin flips [16]. This is done by applying a magnetic field gradient

along the z-axis, which (as previously described) dephases any transverse com-

ponents in the density operator. Thereafter, a pair of “soft” π/2 readout pulses,

each tuned to the frequency of just one of the two spins, produces a pair of

spectra each with two peaks whose heights are proportional to the probability

differences between pairs of states connected by flips of that spin. The factor

relating the peak heights to the corresponding differences in the probabilities of

the states can be determined from spectra collected on the pseudo-pure ground

state, after which it is straightforward to convert the differences into the corre-

sponding absolute probabilities by linear least squares, subject to the constraint

that their sum is unity. We shall encounter field gradients again in the next sec-

tion, when we show how they can also be used to implement precisely controlled

decoherence models.

Thus the overall experiment consists of collecting ten spectra, as follows:

1. Prepare the state Ψ , by first preparing the pseudo-pure ground state | 00 〉
using one of the previously described methods, and then transforming it by

Q(θ)P (φ).

2. Use a selective radio-frequency pulse to apply the rotation R to those spins

on which measurement B is to be performed.

3. Use a z-gradient to dephase the transverse components of the resulting den-

sity operator.

4. Apply a readout pulse to one of the spins, and collect the corresponding

spectrum; repeat steps 1 – 3 and then do the same for the other spin.

5. Repeat steps 1 - 4 for each of the four combinations of measurements AA,

AB, BA and BB on the two spins.

6. Collect two additional amplitude calibration spectra by applying soft readout

pulses to each spin in the pseudo-pure ground state.

These experiments were performed on a Bruker 400 MHz spectrometer using the

two spin 1
2 nuclei in 13C-labeled chloroform.

The spectra obtained from steps 1 – 5 of this experiment are shown in Fig. 3.

The probabilities derived from these peak heights, and the residual (square-root

of the sum of squares of the deviations of the data points from the corresponding

fit) associated with each, are shown in the table below. It follows that Bell’s
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inequality is violated by

ΨAB
GG + ΨAA

RR + ΨBA
GG − ΨBB

GG

= 0.029 + 0.001− 0.002− 0.097 = −0.069 .
(68)

A rigorous error analysis is not possible, because the dominant errors in NMR

spectra (e.g. RF field inhomogeneity) are not statistical. If we nevertheless take

the mean RMS residual (half the total residuals shown in the table) of 0.0065

as an estimate of the errors and assume they are independent between spectra,

the expected error in the sum of these four numbers is only 0.013, so that this

violation of Bell’s inequality appears significant.

Nonetheless, as stressed in a recent preprint by Braunstein, Caves, Jozsa, Lin-

den, Popescu and Schack [11], such experiments on weakly polarized pseudo-pure

states cannot actually disprove the existence of “hidden variables” associated

with the spins of the individual molecules. This is because the vast majority of

a weakly polarized density operator is contained in its identity component, and

there are many different ensembles of uncorrelated spin states whose net density

operator is the identity. Hence the noise from the identity component dominates

the statistics of observations on the ensemble, which are therefore consistent with

microscopic interpretations in which only uncorrelated states are present with

nonzero probability. Indeed, if one were to pull the molecules out the pseudo-

pure sample used in the above experiments one at a time, break them apart,

and perform the measurements A and B with a Stern-Gerlach apparatus, the

frequencies of the four combinations of outcomes would all be very close to 1/4,

and would not violate Bell’s inequality. Thus, our apparent violation vanishes

when the whole ensemble is taken into consideration.

To see more precisely why the above experiments fail to disprove the existence

of hidden variables, we first note that a pure state | ξ 〉〈 ξ | is canonically asso-

ciated with any given pseudo-pure density operator ρ = (1 − δ)/2N + δ | ξ 〉〈 ξ |,
which is distinguished mathematically by the fact that | ξ 〉 is the eigenvector

corresponding to its sole nondegenerate eigenvalue. We further recall (see Eq.

(44)) that the traceless part of the pseudo-pure density operator ρ transforms

identically to that of the corresponding pure state | ξ 〉〈 ξ | under unitary opera-

tions, while the identity component transforms trivially, and also that ρ produces

exactly the same NMR spectrum as would | ξ 〉〈 ξ | up to its overall amplitude

(since the identity component of any density operator does not contribute to

the signals observed by NMR). Thus the unitary dynamics of the observables in

NMR experiments on pseudo-pure states are, for all practical intents and pur-
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poses, indistinguishable from the same experiments on a (smaller) ensemble in

the corresponding pure state | ξ 〉〈 ξ |.
It follows that NMR experiments on pseudo-pure states are necessarily con-

sistent with (though not proof of the reality of) a microscopic interpretation

of the ensemble in which those molecules contributing to the observations are

all in the same pure state | ξ 〉〈 ξ |, while the remaining (and large majority of

the) molecules are in completely random states with a net density operator of

1/2N . In deriving a violation of Bell’s inequality from our measurements above,

we required that the fractions of molecules in the four diagonal states sum to

unity, so that they could be identified with the probabilities of those states in an

unidentified subensemble in the pure state |ψ 〉〈ψ |. Implicitly, therefore, this mi-

croscopic interpretation of the ensemble was assumed in deriving the violation.

As explained above, however, the large identity component in the corresponding

pseudo-pure density operator guarantees that many other ensembles could be

found with the same net density operator, so that a microscopic interpretation

in terms of a single well-defined subensemble in the pure state |ψ 〉〈ψ | is not

physically justified. In fact, the fundamental limits on the amount of information

that can be extracted on an unknown quantum state even by strong measure-

ments prevents us from ever knowing if any molecules of our pseudo-pure sample

exist in or near the corresponding pure state |ψ 〉〈ψ | at all [43]. It is for this rea-
son that our apparent violation of Bell’s inequality fails to disprove the existence

of hidden variables.

This ambiguity in the microscopic interpretation of liquid-state NMR exper-

iments not-with-standing, quantum physics indicates that a psuedo-pure spin

state, subjected to the same electromagnetic fields as a true pure state, will

undergo the same unitary transformation. In addition, applying a z-gradient to

an NMR ensemble renders unobservable the same transverse phase information

that would be destroyed on performing strong measurements along the z-axis

on all the spins in the ensemble. Finally, existing experiments relying upon true

pure states and strong measurements provide direct evidence against hidden

variable theories (see e.g. Ref. [2, 10]). Given this background knowledge of the

underlying physics, our experiments indirectly imply that the pure state |ψ 〉〈ψ |
would violate Bell’s inequality. More generally, the ambiguity in the microscopic

interpretation of liquid-state NMR experiments in no way detracts from their

utility as a means of studying the dynamics of information contained in either

pseudo-pure or (by inference) true pure states, even in significantly more com-

plex spin systems that would be difficult to study by other means. To further

emphasize this fact, we will now describe NMR experiments we have performed
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which demonstrate quantum error correction using pseudo-pure states.

6 Quantum error correction by NMR spectroscopy

The error correcting code we have chosen to illustrate by NMR is well-known in

the field [35], and uses two ancilla (labeled 2 & 3) to encode the state of a data

spin (labeled 1). Letting S2|1 and S3|1 be c-NOT’s, and R123
90 ≡ exp(−ıπ2 (I

1
y +

I2
y + I3

y)), the encoding operation proceeds as follows:

(α| 0 〉+ β| 1 〉)| 00 〉/
√
2

S
2|1

−→S
3|1

−→R
123
90−→ α|+++ 〉+ β| −−−〉

(

where | ±±±〉 ≡ (| 0 〉 ± | 1 〉)(| 0 〉 ± | 1 〉)(| 0 〉 ± | 1 〉)/
√
8
)

(69)

Decoding consists of applying the inverse operations in the reverse order, which

acts on the states obtained by single sign-flip errors as follows:

α|++−〉+ β| −−+ 〉
R

123
−90−→ S

3|1

−→S
2|1

−→ (α| 0 〉+ β| 1 〉)| 01 〉/
√
2

α|+−+ 〉+ β| −+−〉
R

123
−90−→ S

3|1

−→S
2|1

−→ (α| 0 〉+ β| 1 〉)| 10 〉/
√
2

α| −++ 〉+ β|+−−〉
R

123
−90−→ S

3|1

−→S
2|1

−→ (α| 1 〉+ β| 0 〉)| 11 〉/
√
2

(70)

It follows that a Toffoli gate T 1|23, which flips the data spin conditional on the

ancillae being in the state | 11 〉, will correct a sign-flip error in the data spin and

leave it alone otherwise, even if an error occurs in the ancillae.

In practice, errors in quantum computers are not expected to be single sign-

flips, but rather small random phase errors which cumulatively result in decoher-

ence. Nevertheless, we can show that the ability to correct sign-flips implies the

ability to cancel the effect of such phase errors to first order. Random phase er-

rors correspond to the propagator exp(−ı(χ1I1
z+χ

2I2
z+χ

3I3
z )), where χ

1, χ2, χ3

are random variables, which acts to first order on the encoded state as:

exp(−ı(χ1I1
z + χ2I2

z + χ3I3
z ) (α|+++ 〉+ β| −−−〉)

≈ (α|+++ 〉+ β| −−−〉)− ıχ1 (α| −++ 〉+ β|+−−〉)
− ıχ2 (α|+−+ 〉+ β| −+−〉)− ıχ3 (α|++−〉+ β| −−+ 〉)

(71)

Since decoding and the error-correcting Toffoli gate are likewise linear, it follows

that the first-order effects of phase errors are cancelled as claimed. Note this

argument makes no assumptions concerning the correlations among the errors!
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Experimental results demonstrating these expectations have recently been

published [15]. In the following, we shall present a more detailed explanation

of how the error correction works using the product operator formalism, along

with selected experimental data illustrating and validating this explanation. We

shall assume that the data spin is in one of the states 1 (unpolarized), I1
x , I

1
y or

I1
z . Although these are mixed states, each consists of an incoherent sum of pure

states, e.g. 2I1
z = | 0 〉〈 0 | − | 1 〉〈 1 |, so if error correction works on these pure

states, by linearity it will also work on the mixtures (and vice versa). In these

terms, a complete set of initial states ρA for error correction are:

E2
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3
+
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xE

2
+E

3
+

I1
yE

2
+E

3
+
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zE
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3
+


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




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
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









≡ ρ1
AE

2
+E

3
+ = ρA (72)

The corresponding states ρB to which they are mapped by encoding are:

ρB ≡


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2
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1
4 (I

1
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x) + I1

xI
2
xI

3
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(73)

We note the last three states in Eq. (72) can be prepared (with a 50% loss of

polarization) from the average of twice Eq. (51) with

1
16 Diag(3, 1, 1, 1,−3,−1,−1,−1)

↔ 1
16 (I

1
z (3 + 2I2

z + 2I3
z + 4I2

zI
3
z ))

= 1
4 (E

1
+ −E1

−)(E
2
+E

3
+ + 1

2 ) .

(74)

In liquid-state NMR, decoherence occurs principally through the randomly

fluctuating external magnetic fields Bkz along the z-axis at each spin k. The effect

of these fields is most simply described in the spherical product operator basis

1, Ikz and Ik± ≡ Ikx ± ıIky , as opposed to the Cartesian basis used up to now.

The products of these basis elements can be shown [19] to decay exponentially

at rates proportional to the mean-square field (Bkz )
2 for Ik± (as well as Ik±I

ℓ
z,
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Fig. 4. Experimental NMR data illustrating the decay of each of the product operators

I1
z , 2I

1
zI

2
z , 2I

1
z I

3
z , 4I

1
zI

2
z I

3
z , as functions of the time allowed for gradient diffusion (see

text), together with the least-squares fits to their logarithms. The single and triple

quantum coherences in 4I1
z I

2
z I

3
z , (negative curves) have been plotted and fit separately.

The sum of these data and of the fits are also shown (topmost curve), which illustrates

that error correction cancels the decay of the encoded state to first order as expected.

Ik±I
ℓ
zI
m
z ), and to

(Bkz −Bℓz)
2 for Ik+I

ℓ
− & Ik−I

ℓ
+,

(Bkz +Bℓz)
2 for Ik+I

ℓ
+ & Ik−I

ℓ
−,

(Bkz +Bℓz −Bmz )2 for Ik+I
ℓ
+I

m
− & Ik−I

ℓ
−I

m
+ , etc.,

and (Bkz +Bℓz +Bmz )2 for Ik+I
ℓ
+I

m
+ & Ik−I

ℓ
−I

m
− .

(75)

These products are referred to as single (SQC1: Ik±), zero (ZQC: Ik±I
ℓ
∓), dou-

ble (DQC: Ik±I
ℓ
±), three-spin single (SQC3: Ik±I

ℓ
±I

m
∓ , etc.) and triple (TQC:

Ik±I
ℓ
±I

m
± ) quantum coherences, respectively.

We shall consider two extreme forms of decoherence. In the first, the fields at

the different spins are uncorrelated, and hence the random variables χk can be

assumed to be identically distributed and independent. In the second, they are
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assumed to be totally correlated. By Eq. (75), the relative rates of decoherence

in these two cases are:

ZQC SQC1 SQC3 DQC TQC

Uncorrelated: 2 1 3 2 3

Totally Correlated: 0 1 1 4 9

(76)

Decomposing ρB into a spherical basis, multiplying by decaying exponentials

with the above rates normalized by the SQC1 decay rate τ , and returning to the

Cartesian basis gives
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in the uncorrelated case, and

ρC ≡
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in the totally correlated case. The decoding operation converts this to
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in the uncorrelated case, and
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in the totally correlated case. This is clearly getting a little messy, and it gets

much worse after the Toffoli gate! Therefore, we shall only present the partial

trace over the ancillae after applying the Toffoli, which is

ρ1
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in the uncorrelated case, and
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in the correlated. The slope of these curves at t = 0 is zero in all cases, as

expected.

In order to demonstrate these results by NMR solution-state spectroscopy,

a precise implementation of the above decoherence models is needed. This was

achieved by combining gradient methods with molecular diffusion. In these meth-

ods, a magnetic field gradient is created along the z-axis; as previously described,

this dephases the transverse (xy) magnetization. More precisely, a field gradient

causes the transverse magnetization to precess at rates which depend linearly

on its z-coordinate, thereby winding it into a spiral about the z-axis whose av-

erage transverse magnetization is essentially zero. The gradient is turned off for

a given time interval t, during which diffusion of the molecules along z blurs the

spiral. The gradient is then reversed, causing the magnetization to refocus and

so create an “echo”. Because those molecules which have moved now precess

at a different rate, their magnetization is not refocussed, so the magnitude of

the echo decays exponentially with t. Because all the spins in each molecule are

subject to the same change in field, this constitutes a true implementation of

the totally correlated model. By using refocusing π-pulses between gradients, it

is also possible to dephase each spin separately, thereby implementing the un-

correlated model. At this time, however, we have collected and processed data

only for the ρ1
A = I1

z state with the totally correlated model.

Although it is possible to prepare the state I1
zE

2
+E

3
+ as noted above, we have

chosen to illustrate the above analysis by preparing the states I1
z , 2I

1
zI

2
z , 2I

1
zI

3
z

and 4I1
zI

2
zI

3
z in four separate experiments, each using sixteen different decoher-

ence times t. Because the SQC and TQC contributing to 4I1
zI

2
zI

3
z refocussed at

different times, this further enabled us to follow their evolutions separately. The

results of these experiments are plotted against the time t in Figure 4, along

with the corresponding logarithmic fits. It may be seen that the sum of the data

and of the fits thereto (also shown) do indeed exhibit a near-zero initial slope,

in accord with the above calculations. Our published report [15] includes the re-

sults of further experiments (performed by E. Knill and R. Laflamme) with the

natural and far more complicated decoherence processes that occur in solution.

37



These are more difficult to interpret, but are nevertheless consistent with the

state preservation expected from error correction. Additional experiments and

more detailed calculations are in progress.

While a method of inhibiting decoherence (T2 relaxation) during NMR pulse

sequences would be highly desirable, there are strong reasons to doubt that

quantum error correction will be useful in this regard. First, the ancillae must

be placed in a pseudo-pure state, which as we have shown above entails a loss

of 50% of the signal for each “data” spin; this is more than is recovered by error

correction. In addition, the ancillae must be returned to a pseudo-pure state

uncorrelated with the state of the data spin(s), or else “fresh” ancillae in such a

state must be continuously available, in order to inhibit decoherence over an ap-

preciable period of time by the repeated correction of errors. Nevertheless, we feel

that the basic idea underlying error correction of preparing multiple quantum

coherences, allowing them to decohere, and then mixing them so as to determine

their relative rates of relaxation, may be of considerable use in NMR studies of

the statistics of molecular motion. This in turn is one of the most important ap-

plications of NMR spectroscopy. Conversely, whereas NMR spectroscopists have

previously used their methods solely to unravel the secrets of naturally occurring

systems, it now appears possible to use these same methods to engineer artifi-

cial systems in which the basic principles of quantum information processing, in

particular the emergence of the classical world through decoherence [23], can be

studied in unprecedented detail.
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