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ESTIMATES FOR POLYNOMIAL ROOTS
by

Maurice Mignotte and Doru Stefanescu

Abstract: Given a complex polynomial, we obtain estimates for the lower bounds of the roots
outside the unit circle. Our main tool is the method of Dandelin—Graeffe, which can be used directly
for polynomials with distinct absolute values of the roots. In the general case the arguments of the
powers of the roots must be controlled, and we achieve this by two methods: a theorem of Dirichlet,
and an argument on recursive linear sequences.

Introduction

Let F((X) = E?:o a; X" be a nonzero polynomial over C and suppose that aq,...,aq € C are
its roots, with

] > - > Jae] > 1= Jagp] = - = o] > o] > -+ > Jaal > 0.

In order to obtain a lower bound strictly larger than 1 for |a;| we consider the family of poly-
nomials F,, € C[X] defined by

Fo(X) = Res(F(Y),Y" = X) = Y a{ x4,

+=0

We observe that the roots of F,, are the nth powers of the roots of F, so the polynomials F, are
exactly the polynomials considered in the general case of the Dandelin—-Graeffe method [Householder].
We next obtain an asymptotic formula for |a; - - - agl|, for 1 < k < d, as a function of the coefficients
of the polynomials F,,. This formula is then used to derive a lower bound greater than 1 for the
absolute values of the roots outside the unit circle.

Another estimate is obtained as a function of the measure of the polynomial '. Both estimates allow
giving upper bounds for the roots inside the unit circle, and applications include inequalities on the
height and the length of polynomial divisors.

1. The first estimate

A1l. Application of Dirichlet’s theorem

Lemma 1.1. Let $1,...,5, € C be such that |f1| = ---=|5,| = p > 0 and let
Sp =07 +---+ 5.

There exist infinitely many integers ¢ such that |Sy| > rp?/~/2.
Proof:
Let B; = pe?™?i. We have



r
|Sn| — pn . |62n7ri¢>r| . ‘2627”'9]' ’

j=1

with Hj = ¢j — qf)r.

Let us first prove that there exists such an integer ¢. By the theorem of Dirichlet [Schmidt], for a
given integer @), there exists ¢ > 1 such that

1
¢ < Q" and ||q9j||<§ forall 1<j<r,

where ||z|| = ming,ez |2 — m|.

This gives the result: for example, for Q@ = 4 we have R(e!™%%) > 1/4/2 forall 1 < j < r. So
we obtain S, > rp"/V/2.

Now we choose 1 such that max||¢f;|| > 1/Q1. Our argument gives some integer ¢;. Clearly

g1 > q. Then we choose @2, we get g2 > g1 and so on. 0
Proposition 1.2. Let T,, =% +-- -+ +7941 +---+7y, where y1, ... ,vq4 are complex numbers
and

ml=-=lwl> vl > 2 |l

|TL

There exist infinitely many n € N such that |T,| > szW v

Proof:

Put S, =47 + -+ 797, We have |37, + -+ 74 < (d —r)|yr41]" and it follows that
|| > |Sn| = (d = )[4

For obtaining the result, by Lemma 1.1 it is sufficient to have

|TL

() ()i < 2')”7

for infinitely many n.

Because |ﬁjrl | > 1, there exists ng such that
n 24/2(d —
7 > \/_( ) for all n > ng,
Tr+1 r
so (*) is fulfilled for all n > ng. Hence the result. 0

Theorem 1.3. With the notation in Proposition 1.2 we have

limsup [7,["" = |y| = max{|y;|; 1 <j <d}.

n— o0

Proof:

We have
TV = g7+ g < dY



therefore

(1) lim sup |T,]"" < |y,

n— 00

On the other hand, by Proposition 1.2, we have

r 1/n
Tn > . (—) for infinitely many n.
T > Iml N y many

Since limn_mo(r/Q\/i)l/” =1, we have

|1/n

(2) lim sup |Tn > |l
n—0o0

Inequalities (1) and (2) prove the result. 0

Proposition 1.4. With the notation of the introduction, we have

lagay - - ag| = 1imsup|a,(€n)|1/n forall 1 <k <d.
n— 00

Proof:

We consider the polynomial F,. Since of, ... o are the roots of F,,, we have

(3) afV = (-1)Fal” 3 (i)

i1,k
Let Iy = oy, - - -, where I = (iq,---,4g). We consider U, = > ;II}. Because |a;---ax| > |f]
for all 7, by Theorem 1.3 we have

limsup|Un|1/n = |ay - agl.
n— 00

By (3) we obtain

lim sup |al(€n)/aén)|1/n = |ay - agl.
n—0o0
Since |aén)|1/n = |ag| we have |agay - - - ax| = limsup, _, o, |(1[(€n)|1/n. 0
Theorem 1.5. For 1 <k < d, we have
limsup, _, |a,(€n)|1/n
|ak| = = (n) |1/n"
limsup,,_, o |ak_1|
Proof:
By Proposition 1.4 we obtain
lagay - - - gl lim sup,,_, o |a§€n)|
|ak|:|aa o |: . (n)
0 k-1 limsup,, _, o |ak_1
0

Previous approaches for obtaining upper bounds for |a; - - - ax| and |ax| were derived by W. Specht]]
[Specht] and M. Mignotte [Mignotte]. From the inequalities of W. Specht it is easy to deduce the
next two results.



Proposition 1.6. For alln e N;n> 1 and k € N, 1 < k < d, we have
lag - ar| < (|ao|" + k max |a§»n)|)) "
1<j<d

Proof:
If we apply the inequalities of W. Specht [Specht] to the polynomial F,, we get
jof 0| < lag” |+ kH(F),

where H(F),) is the largest absolute value of the coefficients. Hence the statement. O

Proposition 1.7. Foralln e N;n> 1 and k € N, 1 < k < d, we have

o --ax] < (L4+k) B, ol < (L+K)V5 B,
where f, = max{|a}"/ag |, |a§" fa3|'/%, ... |a{")/a5|*/ ).
Proof:
We observe that the result was proved by W. Specht [Specht] for n = 1 and ag = 1 and we apply
this case to the polynomial (1/ag) F,. 0
Remarks:

1) The results of W. Specht have no siginificance for those k such that |a; - ag| < 1.

2) The coefficients of F,, grow with n, so H(F,) and 3, become too large.

3) The smallest index ¢ for which |a¢| > 1 can be computed using the Schur-Cohn algorithm which
is rather expensive, see [Henrici] and [Marden]. However, for guessing ¢, the following results will be
useful, and this is cheaper.

Corollary 1.8. There exists ng € N such that for all n > ng, for all j with maxh|a2n)| = |a§»n)

have

we

t<j<s.

Corollary 1.9. If F' has no roots on the unit circle, then t is the unique j for which maxy |a§1")| is
realized for large enough n.

Proof:
In this case t = s in Corollary 1.8. 0

We remind that the measure M(«) of an algebraic number « is the measure of any minimal
polynomial P of a over Z, i.e.

M(a) = M(P) = 1e(P) T] max{1]zl},

where lc (P) denotes the leading coefficient of P and z1, - - -, z, are the roots of P. The next result
allows us to compute the indices ¢ and s.



Proposition 1.10.

i) For all j,t < j <'s, we have
M(F) = laoas - -aj| > |agas - - - ay

ifu<toru>s.

ii) We have
M(F) = limsup|a;n)|1/n = limsup{max|a;n)|l/n}.
n n J
Proof:
i) By the definition of the measure,
M(F) = |agay - -t = |agay - - -] .
We note that
lag - rae| = ag-aj] = |y o] forall <5<,
whereas |a1 - - -ay| > |y -+ -yl for any v < ¢t and any u > s.
ii) We observe that M(F') = |aga; - - - ;| and apply Proposition 1.4 for & = ¢. Then we use i. 0
Remark: Empirically we always got
lim inf {j; max|a2n)| = |a§»n)|} =t, lim sup {7; max|a2n)| = |a;n)|} =s,

but we are unable so far to prove these relations.
A2. An argument of linear recursive sequences

The drawback of the previous subsection is the occurence of “limsup” in the statements. Using
a simple argument of linear algebra, we can obtain similar statements with some “limit”. This is an
important advantage for the computational approach of the problem.

Proposition 1.11. Let P € C[X], h = deg(P) and (uy), (vn) be linear recursive sequences admit-
ting the polynomial P as characteristic polynomial, where (u,) has exact order h. Then, there exists
a constant C' > 0 such that

|'Un| S C max{|un|, |un+1|a ) |un+h—1|}a Vn eN.

Proof:

The hypothesis on (u,) implies that the sequences (un), (4nt1), ---,(untnr—1) generate the space
of the linear recursive sequences with characteristic polynomial P. Hence, there exist cq, ¢1, ...
c¢p—1 € C such that

)
Up = CoUp + ClUp41 + -+ Ch—1Unfh—1 -

5



Taking C = 2?2_01 |ei] we get the desired inequality. 0

Theorem 1.12. Let T, =47 + 5 + --- + v}, where y1, ¥2, ... ,7a are distinct complex numbers
and

Iyl > Jy2l >0 > |yl
Then
. 1/n
il = Jim (max{|Tal, [Togal, - Tarasl})
n— o0

Proof:
We apply Proposition 1.11 with u, =T, v, =7, h = d and

P =109

The fact that the v;’s are all distinct implies that 7}, is of exact order d. We infer that there exists
C > 0 with

21 < C max {[Tal, [Tosal,. o, Tugacal}, Vo €N,
which gives
ol < tim inf(max (1T, .. Togacs))
The inequality
l > timsup(max ([Tl Tosal, - [Tagaca 1)
follows from the beginning of the proof of Theorem 1.3. Hence the result 0

Proposition 1.13. With the notation of the introduction, for all 1 < k < d, we have

. 1
loag - o = nlgrolo (max{kan,Vka,...,Vk7n+u(k)_1}) /n

where Vi, = |a§€m)|/|aém)|, u(k) = <d> .

k
Proof:
We observe that Uy m = > (@, -+ -, )" is the sum of the k—products of roots of the polynomial
Fpp and Uy = (=1)* a,im)/aém). Then we apply Proposition 1.11. O

Corollary 1.14. We have

limy, s o (max{ Vk,na Vk,n-l-l; B Vk,n+u(k)—1})1/n

|ak| = 1 N
limp 00 (Max{Vi—1,n, Vectn41, - Vo1 ntu(k—1)—1}) /n

The following result allows us to obtain another evaluation for the absolute values of the roots.

6



Lemma 1.15. Let (u,) be a sequence of positive real numbers for which there exists a positive

integer h such that (max{un, Ungly - un+h}) L/n tends to a nonzero limity when n tends to infinity.
11

Then the sequence (max{uy, iy, TTLL::—-};L}) tends also to v when n tends to infinity.

Proof:

Put 1 = min{1,~/2}, 2 = max{1,2~} and

1
1/" n+1 n+h

1
vy, = (max{un, Upt1, - - un+h}) w, = max{usy, urth, o u n+h}
Then, for n > ny we have
71 < wy < 2.

Thus, there exists ng € N such that, for n > ng and for any p, with n < p < n+ h, we have

—p—n

1
— n pn
= up - Up S e T

=h
2

Sy |

u
which shows immediately that
lim sup w, < 7.

On the other direction, let m be such that u,, = w]}, then

1 m—mn _ A

2
Wn > UF > Un U T > U Yy

from which we easily deduce that
liminf w, > ~.

Hence the result. 0

Proposition 1.16. With the notation from Corollary 1.13, we have

. 1 1 1
lay - ag| = nli}H;o (maX{VkV{Ln, Vké(:i ), e

Variunor )

and
1/n y,1/(n+1 1/(n+u(k)-1
limy, - oo (max{ V, k{L Vi {L(‘i'l );"'; Lk/n(+u( () )1 )})

1/n Vl/(n+1) Vl/ ntu(k—1) })

hmn—>00<max{v 1 Ve—1n410 " VE—1 ntu(k— 1 1

|ovg|

Remark: Corollay 1.16 is more convenient than Corollaries 1.13 and 1.14 for the estimation of the
absolute values of the roots.

Note that Corollary 1.16 gives also another formula for estimating the measure of a polynomial. We
have

M(F) = Tim (max{V,}", V05 vl R Om DY)

N0 n+l t,n+tu(t)



2. The second estimate

Now we will use the measure and an argument a la Liouville.

Proposition 2.1. If o and § are nonconjugate algebraic numbers, we have
o= B > 287" M(a) ™" M(B)™",

where M denotes the measure, m = deg(a), n = deg(f).

Proof:

We suppose that a;, ..., a,, are the conjugates of a and 4, ..., 8, are the conjugates of 5. We may
suppose that a = ay and § = ;.

Let N = albl? Hm»(ai — B;), with ag = lc(P), by = lc(Q), where P is a minimal polynomial of
a over Z and @ is a minimal polynomial of 5 over Z. Observe that N € N, N # 0, so |N| > 1.

We have
1< Jaol|™ - [bo|™ |a — B - H |evi — aj]
(1,3)#(1,1)
< laol™ - Jbo|™ [a =TT (2 maxjau]} max{|;1})
(1,3)#(1,1)
< Ja = 8121 M(a)" M(8)",
which gives the desired estimation. O

Proposition 2.2. If a and [ are conjugate algebraic numbers, we have

gl > 2=

|a_ M(a)l_m¢

where m = deg(a).
Proof:
Let N = Discr(«). We have N > 1 and assuming @3 = « and § = as we obtain

) 21_ m 71;—1

1< ao|™ " oy — asf - H loy — aj] < a— B “M(a)™!

(4,5)2(1,2)
1<J

which is the desired inequality. 0

Now we can find a lower bound for |a;| > 1 with respect to the measure of F'.

8



Theorem 2.3. We have

424 M(F)~! if a; €ER,
lae| >

V14 21-dd-DM(F)=2d  if o, ¢ R.

Proof:
We distinguish two cases: a; is real or not.

Suppose @ = oy € R. We have |a;| > 1 and we take 8 = 1. Note that a; is not conjugate with
B=1,n=1and M(1) = 1. By Proposition 2.1 we have

|y — 1] > 217% . M(a)™!
Because M(az) < M(F') we obtain

o] > 142874 M(F)

If a; & R we consider o = a0y = |a¢|? which is a real number. We observe that deg(a) < d(d—1)
and M(a) < M(a;)?? < M(F)?4. By the previous case we get

‘|at|2 _1‘ > 21_d(d_1)~M(a)_1 > 21—d(d—1)M(F)_2d.

We deduce that

|CYt| > \/1+21—d(d—1)M(F)—2d’

which ends the proof. 0

Corollary 2.4. We have

v

|eve]

V14 21-da=1) N ()24,

Proof:
We observe that

min{l+21_d~M \/1-1-21 d(d-1) . } \/1+21 d(d—1) M(F) 2d
0

Our results allow us to give also an upper bound for the absolute values of the roots inside the unit
circle.

Proposition 2.5. We have

—1/2
los 1] < (1+21_d(d_1) 'M(F)_Zd) :

where a;41 Is the root of maximal absolute value inside the unit circle. 0

9



3. Applications

Theorem 3.1. Let F = P(Q be a nontrivial factorization of F' over C and suppose that F' has no
roots on the unit circle. If M > 1 is a lower bound for the absolute values of the roots outside the
unit circle, 0 < K < 1 is an upper bound for those inside this circle, d = deg(F') and t is the number
of roots of F' outside the unit circle, we have

(M = 1)* (1 - K)** H(P)H(Q) < H(F)?.

Proof:

We suppose that the roots of P are {a;; ¢ € I} and those of ) are {a;; j € J}, where (I,J) is a
partition of {1,2,..., d}. By an inequality of M. Mignotte [Mignotte], we have

1(P) - [T|loy1= 1] < 0(P),
1(Q) - TT[lesl = 1] < ()

We obtain .
HPY Q) - I [lowl = 1] < m(r)?.
k=1

From the hypotheses we know that s = ¢, where s is defined as in the introduction. Then we observe
that

¢ d
H‘lak|_1‘ > (M—l)t and H ‘lakl_l‘ > (1_[{)d—t’
k=1 h=t+1

which gives the result. O

Remark: If the polynomial F' has no roots on the unit circle (i.e. s =), Theorem 3.1 gives an upper
bound for min{H(P),H(Q)}. By the Schur-Cohn criterion (cf. [Marden], p. 198) there are known
sufficient conditions for F' not to have roots on the circle |z| = 1. These conditions use determinant
sequences.

If F € R[X] there exist more direct conditions to have s = t. For example, if F' and its reciprocal
F* are coprime, F' has no roots on the unit circle.

Corollary 3.2. We have

where B € {By, By} with

i (n)
By = —25Pnooo 2" By = \/1+21—d(d—1) - M(F)~2d,

: (n) ]’
limsup,, _, |at_1|

10



Proof:

We apply Theorems 1.5, 2.3 and Proposition 2.5. Then in Theorem 3.1. we can take M = B; and
K =By forany j =12 0

Further we obtain an evaluation for |a;| in function of the length and measure of the polynomial
F'. We remind that the length of F' is

L(F) = lao| +far][ + -+ |adl.-

Lemma 3.3. Suppose that P € C[X]\C and let Q(X) = (X —a)P(X), a € C\{0}. If |o| > 1, we

have

(laf = DL(P) < L(Q)-

Proof:
Assume that m = deg(P) > 1 and let

m d+1
PX)=YaX',  QX)=> bX'.
i=0 i=0

We have
b; =a;_1 —aa; foralli=0,...,d+1,

with a_1 = ag4+1 = 0. Therefore

and by summation we get

i
ota;, = — E oﬂ_lbj.
j=0

It follows that

1 1
i < - . |b — | oo 6]
|O{| |C|_|OZ|Z |0|+|a|2_1 |1|+ +| |
hence
L~ g 1
ol L(P) < — T 1(Q) < — 1(Q).
lof lof
Therefore
(laf =1) - L(P) < L(Q)
0
Corollary 3.4. Let F' be a polynomial over C such that F(0) # 0 and let ay, ..., ag be its roots,
where

lai| > - > o] > 1 > Jagpa] > - > Jag].

11



We have

where P(X) = . Thus
(X) (X —a1) (X —ay)
(lae| = 1)" - L(P) < L(F)
Proof:
Obvious induction. 0

Proposition 3.5. We have

L(F) )1/t
lao| (14 |ag| M(F)=1)/

| < 1+(

Proof:
We use the previous notation. Let by = lc(P) and bg—: = P(0). Because

F(X)=aoX?+ -+ a1 X +ag = (X —a1) - (X — ) P(X)

= (X'~ (4. o)X T (D) ) (bo X A bgy),
we observe that by = ag and |bg—+| M(F') = |agaq|. By the previous corollary, we have
(lee| = 1) - L(P) < L(F).
Since L(P) > |bo| + [ba—t| = |ao| + |agaq| M(F)~! it follows that

t L(F)
= laol (1 + |aal M(F)=1)

(le = 1)

which proves the statement. 0

Remark: Using the reciprocal polynomial of ', Proposition 3.5 gives also a lower bound for |as41].
Using the polynomials F,, we get:

Corollary 3.6. For all n > 1, we have

1/n
N L(Fn) 1/t
ol = (1+<|ao|n<1+|a2">|M<Fn)-l>) ) '

12




4. Examples

We consider the polynomials:
Pr=z>—3z+1
Py=2%—32* 46224+ 1222 — 2z — 1
Pi=a2"4+28 -6+ 2%+ 22 -3 +2
Py=920 — 122"+ 82 + 11
Ps =z +22% + 422 + 52 + 2

4.1. Products of roots

We compute the estimates for the absolute values of the products of k£ roots using Proposition 1.4,
Proposition 1.6 (W. Specht) and Corollary 1.16.

F k Prop 1.4 Prop 1.6 (n=8) Cor 1.16
Py 1 2.059767 2.879464 2.059767
Py 2 2.879385 3.140036 2.884499
Py 3 1.000000 3.303271 1.000000
Py 1 3.593041 12.003618 3.593041
Py 2 10.594434 13.090039 10.599896
P, 3 12.003559 13.770583 12.004757
Py 4 3.949090 14.274788 3.949090
Py 1 1.539351 5.831802 3.078702
Py 2 2.913727 6.359624 5.827455
Py 3 2.684445 6.690258 5.368890
P, 1 1.050908 16.933503 1.284443
Py 2 1.098612 18.458756 1.342748
Py 3 1.225112 19.415833 1.496186
Py 4 1.382391 20.125396 1.689589
Py 5 1.421513 20.693827 1.737405
Py 6 1.453814 21.170294 1.776884
Py 7 1.423304 21.581765 1.739594
Ps 1 1.323257 3.463119 1.328016
Ps 2 1.688622 3.776546 1.705553
Ps 3 2.110073 3.972883 2.130057
Ps 4 2.631219 4.118347 2.654690
Ps 5 2.997226 4.234835 2.966073
Ps 6 3.411606 4.332455 3.311505
Ps 7 3.639600 4.416746 3.343063
Ps 8 3.878782 4.491086 3.371435
Ps 9 4.025778 4.557696 3.358011

13



Note that for P, Theorem 1.5 and Corollary 1.16 gives |az| ~ 1.4004. In this case the real value
of |as| is close to 1.532.

Remark: The estimates of W. Specht seem to be less precise. In the column from the previous table
corresponding to Proposition 1.6 we considered n = 8, which is very small. However, we noticed
that n = 12 (for example) gives almost the same precision. The following table lists the output for
polynomials P;, P, and Py.

r k Prop 1.6 (n=8) Prop 1.6 (n=12)
Py 1 2.879464 2.879385
Py 2 3.140036 3.050602
Py 3 3.303271 3.155439
Py 1 12.003618 12.003556
Py 2 13.090039 12.717325
P, 3 13.770583 13.154369
P 4 14.274788 13.473536
Py 1 16.933503 15.695898
Py 2 18.458756 16.628349
Py 3 19.415833 17.199499
Py 4 20.125396 17.616659
P, 5 20.693827 17.947216
Py 6 21.170294 18.221914
Py 7 21.581765 18.457154

However, if n is too large H(Fn)lfn may become too big. For example, taking F' = P,, we found

H(Fy6)'/16 ~ 17.22.

The pari function ‘polroots’ gives the following absolute values of the roots of Py:

0.852010180589533060180985777
0.852010180589533060180985777
0.973421094178498415369030701
0.973421094178498415369030701
1.025507677664610779264720220
1.025507677664610779264720220
1.138445451646462560098875152
1.138445451646462560098875152
1.141769422327605252088522524
1.141769422327605252088522524

The matrix of absolute values of Py =

14



4.2. Bounds for |o

We use the estimates given by Theorem 1.5, Corollary 1.16, Corollary 2.4 and Proposition 3.5.

For many polynomials Theorem 2.3 and its corollary give values for |a;| which are extremely
close to 1. In the table we consider log(K —1)/log(1071), where K is the estimate given in Corollary
2.4. Working in pari with a realprecision of 72 digits, we obtained:

F Theorem 2.3
P 1.00000021419600373055611078056378338402006294701230459484440013731467839
Ps 1.00000000000000000000749843805588107743091487412004176130365899144697621
P, 1.00000000000000000000000000000000000000000000000000000000032164769806879

The usual 28 digits pari realprecision gives, for example, the estimate 1.00000000000000000000000000
for K(P4) which is not satisfactory.

We chose ¢ according to the lower bounds for the absolute values of products of roots given in
the column with output by Corollary 1.16.

r t Th 1.5 Cor 1.16 Cor 2.4 lo(F) |Prop 3.5 (n=8)
P 2 1.400400 1.400400 6.669188 1.704011
Ps 3 1.133006 1.132535 20.125029 2.320128
Py 6 1.022723 1.022723 57.492619 1.153398
Ps 2 1.892828 1.889433 27.875414 1.892828
Ps 8 1.065716 1.008486 51.670409 1.149588

Remark: Note that for the polynomial Py we have ¢ = 6. Using the Corollary 1.16 and the
Proposition 3.5 we obtain 1.0227 < |ag| < 1.153. More precision in the left hand side can be

obtained using a larger n. On the other hand the function ‘polroots’ from the pari package gives
|ag| ~ 1.025.

Remark: Theorem 1.5 and Corollary 1.16 give very close results.

The next table compares the results given by Proposition 3.5 for n = 8 and n = 12.

r t Prop 3.5 (n=8) |Prop 3.5 (n=12)
P 2 1.704011 1.697580
Ps 3 2.320128 2.302526
Py 6 1.153398 1.110241
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