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Abstract. We present an algorithm for computing rigorous solutions to a large
class of ordinary differential equations. The main algorithm is based on a partitioning
process and the use of interval arithmetic with directed rounding. As an application,
we prove that the Lorenz equations support a strange attractor, as conjectured by
Edward Lorenz in 1963. This conjecture was recently listed by Steven Smale as one
of several challenging problems for the twenty-first century. We also prove that the
attractor is robust, i.e., it persists under small perturbations of the coefficients in the
underlying differential equations. Furthermore, the flow of the equations admits a
unique SRB measure, whose support coincides with the attractor. The proof is based
on a combination of normal form theory and rigorous computations.

1. Introduction

Here we give a brief description of, and the background to, the problem concerning
the existence of the Lorenz attractor. For precise definitions, we refer the reader to
the Appendix. A rather comprehensive overview of this problem can be found in
Collin Sparrow’s book [23].
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1.1. Background to the Problem

The following nonlinear system of differential equations:

ẋ1 = −σ x1 + σ x2,

ẋ2 = %x1 − x2 − x1x3, (1)

ẋ3 = −βx3 + x1x2,

was introduced in 1963 by Edward Lorenz, see [9]. As a crude model of atmo-
spheric dynamics, these equations led Lorenz to the discovery of sensitive de-
pendence of initial conditions—an essential factor of unpredictability in many
systems. Numerical simulations for an open neighborhood of the classical param-
eter valuesσ = 10, β = 8

3, and% = 28 suggest that almost all points in phase
space tend to a strange attractor—the Lorenz attractor.

We first note that the system (1) (and thus its solution) is invariant under the
transformationS(x1, x2, x3) = (−x1, −x2, x3). This means that any trajectory that
is not itself invariant underSmust have a “twin trajectory”.

For% > 1, there are three fixed points: the origin and the two “twin points”

C± = (±
√

β(% − 1), ±
√

β(% − 1), % − 1).

For the parameter values we are considering,C± have a pair of complex eigenvalues
with positive real part, and one real, negative eigenvalue. The origin is a saddle
point with two negative and one positive eigenvalue satisfying

0 < −λ3 < λ1 < −λ2.

Thus, the stable manifold of the originWs(0) is two-dimensional, and the unstable
manifold of the originWu(0) is one-dimensional.

It is also worth mentioning that the flow contracts volumes at a significant rate.
As the divergence of the vector field is given by

∂ ẋ1

∂x1
+ ∂ ẋ2

∂x2
+ ∂ ẋ3

∂x3
= −(σ + β + 1),

we see that the volume of a solid at timet can be expressed as

V(t) = V(0)e−(σ+β+1)t ≈ V(0)e−13.7t ,

for the classical parameter values. This means that the flow contracts volumes
almost by a factor ofone millionper time unit, which is quite extreme.

There appears to exist a forward invariant open setU containing the origin but
bounded away fromC±. The setU is a torus of genus two, with its holes centered
around the two excluded fixed points. If we letϕ denote the flow of (1), we can
form the maximal invariant set

A =
⋂
t≥0

ϕ(U, t).
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Fig. 1. A part of the unstable manifold of the origin.

Due to the flow being dissipative, the attracting setA must have zero volume.
It must also contain the unstable manifold of the originWu(0), which seems to
spiral aroundC± in a very complicated, nonperiodic fashion, see Figure 1. In
particular,A contains the origin itself, and therefore the flow onA cannot have
a hyperbolic structure. The reason is that fixed points of the vector field generate
discontinuities for the return maps, and as a consequence, the hyperbolic splitting
is not continuous. Apart from this, the attracting set appears to have a strong
hyperbolic structure as described below.

As it was very difficult to extract rigorous information about the attracting setA
from the differential equations themselves, ageometric modelof the Lorenz flow
was introduced by John Guckenheimer in the late 1960s, see [4]. This model has
been extensively studied, and it is well understood today, see, e.g., [5], [25], [23],
[17], [19], [20]. Oddly enough, the original equations introduced by Lorenz have
remained a puzzle. A few computer-assisted proofs, however, have quite recently
been announced, see [3], [6], [12]. These papers deal with subsets ofA which
are not attracting, and therefore only concern a set of trajectories having measure
zero. Despite this, it has always been widely believed that the flow of the Lorenz
equations has the same qualitative behavior as its geometric model.

The geometric model is made up of two pieces: one piece dealing with all
trajectories passing near the origin, and one piece taking care of the global aspects
of the flow. We consider a flow with a fixed point at the origin with eigenvalues just
as the Lorenz flow. We also assume that there exists a unit rectangle6 ⊂ {x3 = 1}
which is transversal to the flow, such that the induced return mapR acts on6 as
illustrated in Figure 2.

Note thatR is not defined on the line0 = 6 ∩ Ws(0): these points tend to the
origin, and never return to6. We will assume thatR(6\0) ⊂ 6, to ensure that the
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Fig. 2. The return map acting on6.

flow has an attracting set with a large basin of attraction. We can now decompose
the return map:R = D ◦ P, whereD is a diffeomorphism corresponding to the
flow outside a unit cube centered at the origin, andP describes the flow inside the
cube. By assuming that the flow is linear in the cube, we can explicitly findP:

P(x1, x2, 1) = (sgn(x1), x2|x1|−λ2/λ1, |x1|−λ3/λ1).

Seeing that−λ3/λ1 < 1 < −λ2/λ1, we have very strong expansion in thex1

direction, and an even stronger contraction in thex2 direction:

lim
|x1|→0

∂ P3

∂x1
= O(|x1||λ3|/λ1−1) and lim

|x1|→0

∂ P2

∂x2
= O(|x1||λ2|/λ1).

The model assumes that the flow outside the cube preserves thex2 direction, i.e.,
that D takes the horizontal lines̀(t) = (±1, t, c) into lines ˜̀(t) = (c̃, t, 1), t ∈
[−1, 1]. This ensures that the contracting direction is preserved, and it also implies
that the first component of the return map is independent ofx2. Therefore, we can
write R = (R1(x1), R2(x1, x2)). Further assumptions are that∂ R2/∂x2 ≤ µ < 1
andR′

1(x1) >
√

2 for all x1, x2 ∈ 6. The return map now has a hyperbolic splitting
Es

x ⊕ Eu
x, with Es

0 = 0, and thestable leaves̃̀(t) foliate 6. Since all points on
a stable leaf share a common future, we may form an equivalence class of such
points. By taking the quotient, we get an interval mapf (note thatf = R1), which
is assumed to satisfy the following conditions:

1. f has a unique singularity at 0 withf (0−) = 1 and f (0+) = −1;
2. f : [−1, 1]\{0} → [−1, 1];
3. f is C1 on [−1, 1]\{0} and f ′(x) >

√
2 for x 6= 0.

This suffices to prove that almost all points in [−1,1] have dense orbits underf .
It is also clear thatf exhibits exponential sensitivity. By pulling the information
back to the original return map, it is possible to prove that the attracting set of
the model flow is a generalized nontrivial hyperbolic attractor (also known as a
singularhyperbolic attractor).
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Before we close this section, let us make some simplifying remarks. By a linear
change of variables, the Lorenz equations can be put in their Jordan normal form
ẋ = Ax + F(x):

ẋ1 = λ1x1 − k1(x1 + x2)x3,

ẋ2 = λ2x2 + k1(x1 + x2)x3, (2)

ẋ3 = λ3x3 + (x1 + x2)(k2x1 + k3x2).

When we want to be very brief, we use the notationẋ = f (x), where f (x) is the
right-hand side of (2). Note that the parametersk1, k2, andk3, and the eigenvalues
λ1, λ2, andλ3 only depend on the parametersσ, β, and% appearing in (1). By
inserting the classical parameter values, we get the following approximate system:

ẋ1 = 11.8x1 − 0.29(x1 + x2)x3,

ẋ2 = −22.8x2 + 0.29(x1 + x2)x3,

ẋ3 = −2.67x3 + (x1 + x2)(2.2x1 − 1.3x2).

From now on, we will always refer to (2) as the Lorenz equations.

1.2. The Main Result

In a recent issue of theMathematical Intelligencerthe Fields medalist Steven
Smale presented a list of challenging problems for the twenty-first century, see
[22]. Problem Number 14 reads as follows:

Is the dynamics of the ordinary differential equations of Lorenz that of the
geometric Lorenz attractor of Williams, Guckenheimer, and Yorke?

A historical remark is perhaps in order here. James Yorke wasnot involved in
the actual work on the geometric attractors. He should, however, be credited for
introducing Lorenz’s original paper to the mathematical community. Apparently,
Yorke had written his name on his copy of the paper, and when he faxed it to
colleagues, his name became associated with the Lorenz attractor. Yorke also
published several papers on the matter, see, e.g., [26].

As an affirmative answer to Smale’s question, we are now ready to state the
sole theorem of this paper:

Main Theorem. For the classical parameter values, the Lorenz equations sup-
port a robust strange attractorA. Furthermore, the flow admits a unique SRB
measureµϕ with supp(µϕ) = A.

In fact, we prove that the attracting set is a singular hyperbolic attractor. Almost
all nearby points separate exponentially fast until they end up on opposite sides of
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the attractor. This means that a tiny blob of initial values rapidly smears out over
the entire attractor, as observed in numerical experiments.

The existence of the SRB measure is equivalent to saying that, for Lebesgue
almost all points in the basin of attractionB(A), and for allh ∈ C0(B(A),R), the
time and space averages coincide

lim
T→∞

1

T

∫ T

0
h(ϕ(x, t)) dt =

∫
h(x) dµϕ,

whereµϕ is anϕ-invariant probability measure.
It is perhaps worth pointing out that the Lorenz attractor does not act quite as

the geometric model predicts. The latter can be reduced to an interval map which
is everywhere expanding. This is not the case for the Lorenz attractor: there are
large regions in3 that are contracted in all directions under the return map. Such
regions, however, are precompensated for by iterates having a large associated
expansion. This corresponds to the interval map being eventually expanding, and
does not lead to any different qualitative long-time behavior.

Apart from this, the Lorenz attractor is just as the geometric model predicts:
it contains the origin, and thus has a very complicated Cantor book structure as
described in [25].

2. Outline of the Approach

In this section, we will briefly describe the main phases of our approach. Basically,
it can be broken down into two main sections: one global part, which involves
rigorous computations, and one local part, which is based on normal form theory.
A more detailed description of all necessary steps will be given in subsequent
sections.

The novelty of the method of proof lies in that, rather than producing a tra-
ditional mathematical proof, we construct an algorithm which, if successfully
executed, proves the existence of the strange attractor. This algorithm is put into
effect via several C++ programs, all of which use interval arithmetic with di-
rected rounding, provided by the PROFIL/BIAS package, [8]. The source codes
and initial data used in the proof are available from the journal’s home page:
http://link.springer-ny.com/link/service/journals/10208/
index.htm .

2.1. Goals

In all attempts to prove Lorenz’s conjecture, one main obstruction has been to
gain useful global information about the flow far away from the origin. Locally,
the evolution of a trajectory near a fixed point can, in principle, be examined in
detail using standard linearization techniques. Outside a small neighborhood of
the fixed point, however, we are usually completely at a loss. This is exactly the
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situation that led Guckenheimer and Williams to construct the geometric Lorenz
flows, which weredefinedto have exactly those global properties that were not
easily attained from the original equations.

The global properties we will prove are the following:

• The return mapR exists, and it is well defined in the sense of the geometric
model.

• There exists a compact subset of the return plane,N ⊂ 6, such thatN\0
is forward invariantunderR, i.e., R(N\0) ⊂ N. This ensures that the flow
has an attracting setA with a large basin of attraction. We can then form a
cross-section of the attracting set:A∩6 = ⋂∞

n=0 Rn(N) = 3. In particular,
3 is an attracting set forR.

• On N, there exists a cone fieldC which is mapped strictly into itself byDR,
i.e., for all x ∈ N, DR(x) · C(x) ⊂ C(R(x)). The cones ofC are centered
along an approximation of3, and each cone has an opening of at least 5◦.

• The tangent vectors inC are eventually expanded under the action ofDR:
there existsC > 0 andλ > 1 such that for allv ∈ C(x), x ∈ N, we have
|DRn(x)v| ≥ Cλn|v|, n ≥ 0. In fact, the expansion is strong enough to ensure
that R is topologically transitive on3. This is equivalent to having a dense
orbit, and therefore proves that3 is an attractor.

We will use these properties to prove that3 (and thusA) carries a singular hyper-
bolic structure.

2.2. Normal Form Theory

As mentioned earlier, some regions of the return plane will flow close to the origin.
These regions consist of all points in a neighborhood of the intersection between
the stable manifold of the origin and the forward invariant set, see Figure 2.

Once a rectangle has flowed close to the origin, we interrupt the computations,
and introduce a close to identity change of coordinates8(ζ) = ζ + ϕ(ζ ). This
change of coordinates will deform the rectangle and its cone field slightly, but in
a controllable way. In the new coordinates, the vector field assumes a carefully
designed normal form, which is virtually linear (although it is crucial that it need not
be completely linear). This permits us to estimate the evolution of the rectangle
and its cone field analytically, and thereby avoid the problem of having to use
computers. When changing back to the original coordinates, we once again deform
the out-going rectangle and its cone field, but still in a controllable fashion.

The change of coordinates is attained by a method developed by H. Poincar´e
which, at first, seems fairly straightforward. Basically, we constructϕ formally
by choosing the desired normal form mentioned above. The question of conver-
gence, however, involves a small divisor problem, and is somewhat nontrivial.
Furthermore—in order to be able to interrupt the computations before the vec-
tor field has become so small that the numerical process breaks down—we need
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convergence on a relatively large neighborhood of the origin. This requires explicit
knowledge of a large number of coefficients ofϕ, and thus forces us to perform
some rather involved induction-based proofs.

2.3. Rigorous Numerics

The trapping regionN consists of two disjoint components,N− and N+, each
made up of several adjacent rectangles belonging to the return planex3 = 27
(= % − 1). We will call these small rectanglesN±

i , and write

N = N− ∪ N+ =
(

n0⋃
i =1

N−
i

)
∪
(

n0⋃
i =1

N+
i

)
.

The two components ofN have the same symmetry as the Lorenz equations, i.e.,
N+

i = S(N−
i ), whereS(x1, x2, x3) = (−x1, −x2, x3). Thanks to this symmetry,

we only have to perform the computations on one component ofN. When it is
not relevant which component we are considering, we omit the± labeling of the
small rectangles.

Dealing with oneNi at a time, we compute a pseudo-path that strictly contains
the flow ofNi . The pseudo-paths are obtained by introducing several intermediate
return planes6(k), which are eitherx1x2-, x1x3-, or x2x3-planes. At each step, the
plane is chosen so that its normal directionei has the same direction as the strongest
component of the flow:| fi (x)| ≥ | f j (x)|, j = 1, 2, 3. The initial rectangleNi

is flowed to the first plane6(1) by using an Euler method with rigorous error
estimates. In the plane6(1), we take the rectangular hull of the largest image of
Ni , giving us a new starting rectangleR(1). This rectangle is then flowed to6(2)

and so on. If a rectangleR(k) has grown too large it is partitioned into smaller
rectangles, which are then treated separately. This whole procedure is repeated
until we return to6 from above, as illustrated in Figure 2. Due to the contracting
forces, the pseudo-return ofNi will consist of many overlapping rectanglesQi, j ,
j = 1, . . . , k(i ), whose union strictly containsR(Ni ).

The use of rectangles significantly simplifies the computations: when flowing
between two intermediate planes6(k), 6(k+1), it is generically the corners ofR(k)

that yield the largest rectangular hullR(k+1) ⊂ 6(k+1). This fact allows us to reduce
the error analysis to small pieces ofR(k), which greatly reduces the local errors.
With only finite precision, however, this property becomes “pseudo-generic”, and
has to be confirmed at every stage. The exceptional cases are treated slightly
differently.

Turning to the question concerning the cone field, we define the field by equip-
ping eachNi with an initial cone. Each cone is represented by the two angles
α−

i , α+
i its boundary vectorsu(0), v(0) make with the positivex1-axis. We then

use similar techniques as just described: when a rectangle has been flowed from
6(k) to 6(k+1), we are provided with a box containing the path of the rectangle.
The algorithm also gives us upper and lower bounds on the flow time involved.
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By solving the nine equations governing the partial derivatives of the flow, we
obtain rigorous bounds on the evolution of the tangent vectors flowing through the
box. By translating the flowed vectors onto the intermediate plane6(k+1), and by
selecting (incorporating the errors) the pair of vectorsu(k+1), v(k+1) making the
largest angleθ(k+1), we ensure that the resulting cone contains all images of tangent
vectors from the initial cone. At the return, each rectangleQi, j is thus equipped
with a cone represented, as above, by two anglesβ−

i, j , β
+
i, j , j = 1, . . . , k(i ).

When computing the minimal expansion in each cone, we start with the widest
pair of vectors,u(k), v(k) at each intermediate plane6(k), as described above. If
θ(k+1) ≤ θ(k), the minimal expansionε(k) is attained on the boundary of the cone,
i.e., ε(k) is the smallest growth factor of the images ofu(k), v(k). If θ(k+1) > θ(k),
however, we must adjust this estimate by a factor which is quadratically close
to unity in θ(k+1). At the return, each rectangleQi, j is thus equipped with an
expansion estimateEi, j = ∏n(i, j )

k=0 ε
(k)
i, j , andEi = minj Ei, j gives an estimate for all

vectors of the cone associated withNi .
One major advantage of our numerical method is that we totally eliminate

the problem of having to control the global effects of rounding errors due to
the computer’s internal floating point representation. This is achieved by using
interval arithmetic with directed rounding. Each object4 subjected to computation
is equipped with a maximal absolute error14, and can thus be represented as a
product of intervals4±14 = [41−141, 41+141]×· · ·×[4n−14n, 4n+14n ].
When performing any operation with such objects, we compute upper bounds on
the images of4i +14i , and lower bounds on the images of4i −14i , i = 1, . . . , n.
This results in a new box̃4±14̃, which strictly contains the exact image of4±14.
To ensure that we have strict inclusion, we use directed rounding on the upper and
lower bounds.

As long as we do not flow close to a fixed point, the local return maps are well
defined diffeomorphisms, and the computer can handle all calculations. Some
rectangles, however, will approach the origin (which is a fixed point), and then the
computations must be interrupted, as discussed in the previous section.

2.4. Topological Transitivity and SRB Measures

Since the flow of (1) is uniformly volume-contracting and transversal toN, a finite
iterate of the return mapR is area-contracting onN. This property together with
the existence of a forward invariant unstable cone field implies thatR admits an
invariant stable foliation withC1+α leaves, see [18] or [7,§3]. The singular mapf
induced by taking quotients along the stable leaves acts on an intervalI = [−a, a],
and satisfies the following properties:

• The restriction off to [−a, 0)and(0, a] is of classC1+α with f ′(x) ≥ K > 0
for all x 6= 0.

• There existsC > 0, λ > 1, such that( f n)′(x) ≥ Cλn for all n ≥ 0.
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• For any intervalJ ⊂ I there existsn ≥ 0 such thatf n(J) = I , i.e., f is
locally eventually onto.

The last property is not immediate, but can be proved by using Proposition 5.1,
see below.

It follows that f admits a unique finite SRB measureµ f with supp(µ f ) = I .
From this measure it is possible to construct an SRB measureµR with supp(µR) =
3 for the return mapR, and also an SRB measureµϕ for the flow, see [1] or [24].

We will now prove thatf is locally eventually onto: the map is singular at the
origin since0 itself is a stable leaf, and projects to{0}. The discontinuity acts as a
razor blade, and can cut a passing line segment in half. If neither of the two halves
have doubled their lengths before returning to{0}, they could be cut in half again,
and thus we could end up with loads of tiny shreds of the initial segment, all of
which continue to hit{0} until we are left with nothing but a fine dust.

By Proposition 5.1, however, this cannot happen. Any small segment that is
cut over0 will have expanded by more than a factor of 2 before returning to
0. By always selecting the larger half, we get a sequence of longer and longer
segments. This will continue until one of them is mapped totally across afunda-
mental domain. In our particular situation, this means a union of adjacent rectangles
FD = ⋃n2

i =n1
Ni such that no orbit can crossFD without having at least one iterate

in FD. Of course, any set containing a fundamental domain will also do. One such
example is the setF used in Proposition 5.1.

When a segment stretches entirely across a fundamental domain, so will its
projection along the stable leaves. This means that the projection covers an interval
on the form [x, f (x)]. This set is mapped onto the entire intervalI within a finite
number of iterates. It follows thatf is locally eventually onto.

3. Local Theory

In this section we will construct the local change of variables which straightens
out the stable and unstable manifolds, and linearizes the flow on these. We will
also obtain estimates on the change of variables. For convenience, we will often
use the vector notationξ = (ξ1, ξ2, ξ3) combined with the multi-index notation
ξn = ξ

n1
1 ξ

n2
2 ξ

n3
3 .

3.1. Flattening Out the Invariant Manifolds

In order that the stable and unstable manifolds should coincide with the coordinate
planes, it is necessary that these are invariant under the flow. To ensure this, we need
a change of variables which, in a small neighborhood of the origin, transforms the
Lorenz equationṡξ = Aξ + F(ξ) into ζ̇ = Aζ +G(ζ ), whereG = (G1, G2, G3),
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satisfies the following conditions:

G1(0, ζ2, ζ3) = 0 and G2(ζ1, 0, 0) = G3(ζ1, 0, 0) = 0.

In these new coordinates, the unstable manifold coincides with theζ1-axis, and the
stable manifold coincides with theζ2ζ3-plane. However, this will not linearize the
flow on the invariant manifolds. For this, we need to impose the condition

Gi ∈ O(ζ1) ∩O(ζ2, ζ3) (i = 1, 2, 3).

This simply means that if a pointζ is close to theζ1-axis (the unstable manifold) or
theζ2ζ3-plane (the stable manifold), then the perturbationG(ζ ) is linearly small,
i.e.,

min{|ζ1|, max{|ζ2|, |ζ3|}} = O(ε) ⇒ |Gi (ζ )| = O(ε) (i = 1, 2, 3).

However, we will need to do better than this: we actually want to flatten out
the invariant manifolds even more. Flatness of orderp is given by requiring that
G ∈ Op(ζ1) ∩Op(ζ2, ζ3), i.e.,

min{|ζ1|, max{|ζ2|, |ζ3|}} = O(ε) ⇒ |Gi (ζ )| = O(εp) (i = 1, 2, 3).

To be able to talk about smallness, we need a norm to work with. We will work in
a complex neighborhood of the origin, and use the following notations:

|ζ | = max{|ζi |: i = 1, 2, 3}, ‖ f ‖r = sup{| f (ζ )|: |ζ | ≤ r }.
Our Ansatz is to do the calculations with formal vector-valued polynomials. The
following proposition states that we obtain not only a formal change of variables,
but that the formal power series actually converges in a fixed neighborhood of the
origin.

Proposition 3.1. There exists a close to identity change of variablesξ = ζ+ϕ(ζ )

with

‖ϕ‖r ≤ r 2

2
, r ≤ 1,

such that the Lorenz equations, ξ̇ = Aξ + F(ξ), are transformed into the normal
form ζ̇ = Aζ + G(ζ ), where G(ζ ) ∈ O10(ζ1) ∩O10(ζ2, ζ3), and satisfies

‖G‖r ≤ 7 · 10−9 r 20

1 − 3r
, r < 1

3.

Before getting involved in the proof of the proposition, we highlight some
important consequences of the statement.

Lemma 3.2. For anyρ satisfying0 ≤ ρ ≤ 1
2, we have

‖Dϕ‖ρ ≤ 2ρ.
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Proof. We use a classical argument in function theory: Ifh(z) is a regular function
of a complex variablez in the disk|z| ≤ r where it satisfies|h(z)| ≤ M , then for
|z| ≤ ρ < r Cauchy’s integral formula gives

h′(z) = 1

2π i

∫
γ

h(w)

(w − z)2
dw,

where the path of integrationγ can be taken as the circle|w − z| = r − ρ. Since
the circle lies within|w| ≤ r , this leads to the estimate

|h′(z)| ≤ M/(r − ρ), |z| ≤ ρ.

Now, givenw andζ such that|w| = 1 and|ζ | = ρ, we define

h(z) = ϕi (ζ1 + w1z, ζ2 + w2z, ζ3 + w3z).

For|z| ≤ r −ρ, we clearly have|h(z)| ≤ ‖ϕ‖r , and so|h′(z)| ≤ ‖ϕ‖r /(r −ρ−|z|).
In particular, forz = 0, we have|h′(0)| ≤ ‖ϕ‖r /(r − ρ). On the other hand, we
have

|h′(0)| =
∣∣∣∣∣ 3∑

j =1

∂ϕi

∂ζj
(ζ )wj

∣∣∣∣∣ =
3∑

j =1

∣∣∣∣∂ϕi

∂ζj
(ζ )

∣∣∣∣ ,
by takingwj = sgn(∂ϕi /∂ζj (ζ )). Since‖Dϕ‖ρ = max{|Dϕ(ζ )w|: |ζ | ≤ ρ,

|w| = 1}, we immediately have the following estimates of‖Dϕ‖ρ for ρ < r ≤ 1:

‖Dϕ‖ρ ≤ ‖ϕ‖r

r − ρ
≤ r 2

2(r − ρ)
. (3)

It is easy to see that the optimal bound is given by substitutingr for 2ρ. Inserting
this value directly gives the result.

We also get estimates for the norm of the inverse change of variables:

Lemma 3.3. For |ζ | ≤ r < 1
2, the change of variablesξ = ζ + ϕ(ζ ) has a

well-defined inverseζ = ξ + ψ(ξ) in the ball|ξ | ≤ r̃ = r − ‖ϕ‖r satisfying

‖ψ‖r̃ ≤ ‖ϕ‖r , ‖Dψ‖r̃ ≤ ‖Dϕ‖r

1 − ‖Dϕ‖r
.

Proof. Set8(ζ) = ζ + ϕ(ζ ), 9(ξ) = ξ + ψ(ξ), and letD denote the ball
|ζ | ≤ r . By Proposition 3.1, it is clear that8(D) must contain a ball̃D, centered
at the origin, and of radius̃r = r − ‖ϕ‖r , see Figure 3.

Let ζ1, ζ2 ∈ D. Then we have

|8(ζ1) − 8(ζ2)| ≥ |ζ1 − ζ2| − |ϕ(ζ1) − ϕ(ζ2)| ≥ (1 − ‖Dϕ‖r )|ζ1 − ζ2|.
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D

Φ(ζ) = ζ + φ(ζ)

Ψ(ξ) = ξ + ϕ(ξ)

r r

D

~

~

ξ    Ψ(ξ) = ζ

ζ    Φ(ζ) = ξ

Fig. 3. The change of variables and its inverse.

Hence, if‖Dϕ‖r < 1, then8 is injective on the whole of8(D) and, in particular,
on D̃. By Lemma 3.2, we know that‖Dϕ‖r ≤ 2r for all r ≤ 1

2. This proves that
the inverse8 is well defined in the ball|ξ | ≤ r̃ = r − ‖ϕ‖r for r < 1

2.
Combining the two coordinate changes, we immediately arrive at

ψ(ξ) = −ϕ(ξ + ψ(ξ)),

which gives the first estimate of the lemma. Differentiating gives

Dψ(ξ) = −Dϕ(ξ + ψ(ξ))(I + Dψ(ξ)),

which, after solving forDψ(ξ), becomes

Dψ(ξ) = −[ I + Dϕ(ξ + ψ(ξ))]−1Dϕ(ξ + ψ(ξ)).

The second estimate now follows by using the well-known estimate

‖[ I + Dϕ]−1‖r ≤ 1

1 − ‖Dϕ‖r
.

Let us conclude this section by explicitly computing the maximal numerical
values of the coordinate changes that may appear in the program. We will change
coordinates in the cube centered at the origin, and having radius1

10.

Lemma 3.4.

‖ϕ‖1/10 ≤ 1
200 = 0.005, ‖Dϕ‖1/10 ≤ 2

10 = 0.2,

‖ψ‖1/10 < 0.00557281, ‖Dψ‖1/10 < 0.26766109.

Proof. The first line of the lemma follows immediately from Proposition 3.1 and
Lemma 3.2, respectively. The second line requires a little more work. Suppose that
we want to apply the inverse change of variables at the distancer from the origin.
By Lemma 3.3, we must findr ∗ such thatr = r ∗ − ‖ϕ‖r ∗ . Once we knowr ∗, we
can use the formulas

‖ψ‖r ≤ ‖ϕ‖r ∗ , ‖Dψ‖r ≤ ‖Dϕ‖r ∗

1 − ‖Dϕ‖r ∗
,
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to obtain the desired estimates. Solving forr ∗ gives r ∗ = 1 − √
1 − 2r , and

plugging this into the estimates above gives

‖ψ‖r ≤ (r ∗)2

2
= 1 − r − √

1 − 2r ,

‖Dψ‖r ≤ 2r ∗

1 − 2r ∗ = 2(1 − √
1 − 2r )

1 − 2(1 − √
1 − 2r )

.

The numerical values (rounded up) of these estimates forr = 1
10 appear in the

statement.

This lemma tells us several things: when we enter the small cube, we must
increase the radii of the rectangle by the amount 0.005. We also lose 20% of
the cone field information. When we leave the small cube, we must increase
the radii of the outgoing rectangle by the amount 0.00557281, and now we lose
roughly 26.77% of the cone field information. This may seem like a large loss of
information, but thanks to the strong hyperbolicity near the origin, the cones are
very narrow when entering the cube, and therefore the widening due to the change
of coordinates is affordable.

Lemma 3.5. When the almost horizontal vector(1, ε) is distorted by a change
of variablesξ = ζ + h(ζ ), its slope will increase by at most a factor of

1 + ‖Dh‖
1 − ‖Dh‖ .

Proof. The worst case is attained when the vector(1, ε) is mapped to(1 −
‖Dh‖, ε(1 + ‖Dh‖)). This vector has exactly the slope stated in the lemma.

3.2. Proof of Proposition3.1

First, we need to know how the vector field (2) is affected by the close to identity
change of variablesξ = ζ + ϕ(ζ ). We have the following:

ξ̇ = A(ζ + ϕ(ζ )) + F(ζ + ϕ(ζ )) = Aζ + Aϕ(ζ ) + F(ζ + ϕ(ζ )). (4)

On the other hand, we also have

ξ̇ = d

dt
(ζ + ϕ(ζ )) = (I + Dϕ(ζ ))ζ̇ = (I + Dϕ(ζ ))(Aζ + G(ζ ))

= Aζ + Dϕ(ζ )Aζ + G(ζ ) + Dϕ(ζ )G(ζ ). (5)

Comparing the two right-hand sides of (4) and (5) gives

Dϕ(ζ )Aζ − Aϕ(ζ ) = F(ζ + ϕ(ζ )) − Dϕ(ζ )G(ζ ) − G(ζ ). (6)
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For shorthand, we will use the following notation:

L Aϕ(ζ ) = Dϕ(ζ )Aζ − Aϕ(ζ ).

The operatorL A is linear, and it acts on the space of formal vector fields. It leaves
the spaces of homogeneous vector-valued polynomials of any degree invariant.
Looking at (6) on component level, we have

L A,i ϕi (ζ ) = Fi (ζ + ϕ(ζ )) −
3∑

j =1

∂ϕi

∂ζj
(ζ )Gj (ζ ) − Gi (ζ ) (i = 1, 2, 3), (7)

where

L A,i ϕi (ζ ) =
3∑

j =1

∂ϕi

∂ζj
(ζ )λj ζj − λi ϕi (ζ ) (i = 1, 2, 3).

Note that

L A,i (anζ
n) = (n1λ1 + n2λ2 + n3λ3 − λi )an1,n2,n3ζ

n1
1 ζ

n2
2 ζ

n3
3 = (nλ − λi )anζ

n.

The crux is now to chooseϕ so that we haveGi ∈ Op(ζ1) ∩Op(ζ2, ζ3). This
means thatGi (ζ ), must not contain elements on the formζ n = ζ

n1
1 ζ

n2
2 ζ

n3
3 , where

the natural numbersni satisfyn1 < p or n2 + n3 < p. By (7), elements on this
form can only come fromFi (ζ + ϕ(ζ )), and any such term can be canceled by an
appropriate choice ofϕi if the correspondingdivisor (nλ − λi ) does not vanish.
Thus the component functionsϕi (i = 1, 2, 3), need only consist of the undesired
elements just described.

We start by splitting the 3-space of natural numbers into two disjoint sets:
N3 = Up ∪ Vp, where

Vp = {(n1, n2, n3) ∈ N3: n1 < p or n2 + n3 < p}.

Next, we define the following filters, which act on formal vector-valued polyno-
mials: ConsiderH = (H1, H2, H3), where

Hi (ζ ) =
∑

n

ai,nζ
n =

∑
n

ai,n1,n2,n3ζ
n1
1 ζ

n2
2 ζ

n3
3 (i = 1, 2, 3).

Then we define

{Hi (ζ )}Up
=
∑
n∈Up

ai,nζ
n and {Hi (ζ )}Vp

=
∑
n∈Vp

ai,nζ
n.

We extend the definition of these filters so that they act not only on components,
but also on the whole formal vector-valued polynomial:H = {H}Up ⊕ {H}Vp .
Note that{G}Up = G, {G}Vp = 0, {ϕ}Up = 0, {ϕ}Vp = ϕ, and{MG}Vp = 0 for
any (3× 3)-matrix M with formal polynomial entries.
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By filtering (7), we get

L A,i ϕi (ζ ) = {Fi (ζ + ϕ(ζ ))}Vp
(i = 1, 2, 3), (8)

and

Gi (ζ ) = {Fi (ζ + ϕ(ζ ))}Up
−

3∑
j =1

∂ϕi

∂ζj
(ζ )Gj (ζ ) (i = 1, 2, 3). (9)

3.2.1. The Change of Variables. The recursive scheme (8) can be formally solved
by a power series

ϕi (ζ ) =
∞∑

|n|=2

ai,nζ
n (i = 1, 2, 3),

where the coefficients are determined by inserting this expression into (8). The
existence of a solutionϕ is given by comparing both sides of (8): Ifai,nζ

n is a term
of ϕi (ζ ) with |n| = n1 + n2 + n3, the comparison gives

(nλ − λi )ai,n = γ,

whereγ is a polynomial in the coefficients of the terms inϕ1, ϕ2, ϕ3 of degree
less than|n|. Thus the existence is proved if we show that the divisors(nλ − λi )

do not vanish. Asϕ does not contain constant or linear terms, and{ϕ}Vp = ϕ, the
only divisors we need to consider are on the formnλ − λi (i = 1, 2, 3), where
n ∈ Vp and|n| ≥ 2. The following computer-aided lemma proves the existence
of a formal series forϕ.

Lemma 3.6. For any p∈ [2, 10], n ∈ Vp, and|n| ≥ 2, the divisors

nλ − λi (i = 1, 2, 3)

are bounded away from zero. Furthermore, after a finite time of fluctuations, there
exists a sharp lower bound on the modulus of these divisors:

|nλ − λi | ≥ |(p − 1)λ1 + (|n| − (p − 1))λ3 − λi | (i = 1, 2, 3).

This bound is valid when|n| ≥ N (p), whereN (p) = (11p + 6)/2 if p is even,
andN (p) = (11p + 7)/2 if p is odd.

Proof. Take|n| large. Sincen ∈ Vp, there are two cases to consider:

(1) n1 < p: This means thatn2 +n3 is large, i.e, the divisornλ−λi is large and
negative. Recalling that the eigenvalues satisfy 0< −λ3 < λ1 < −λ2, we
clearly minimize the divisor’s modulus by choosingn1 = p − 1, n2 = 0,
andn3 = |n| − (p − 1), which gives

|nλ − λi | ≥ |(p − 1)λ1 + (|n| − (p − 1))λ3 − λi | (i = 1, 2, 3).
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(2) n2 + n3 < p: This means thatn1 is large, i.e, the divisornλ − λi is large
and positive. Its modulus is minimized by choosingn1 = |n| − (p − 1),
n2 = p − 1, andn3 = 0, which gives

|nλ − λi | ≥ |(|n| − (p − 1))λ1 + (p − 1)λ2 − λi | (i = 1, 2, 3). (10)

Comparing these two candidates for the smallest divisor, we find that case (1)
yields the optimal lower bound, as stated in the lemma. This completes the proof
of the asymptotic lower bound.

To see when the lower bound becomes valid, we note that the choicei = 2 in
the right-hand side of (10) gives the smallest divisor for|n| large, i.e.,

|nλ − λi | ≥ |(p − 1)λ1 + (|n| − (p − 1))λ3 − λ2| (i = 1, 2, 3).

The expression on the right-hand side has a minimum when its positive part has
roughly the same modulus as its negative part. This occurs when

(p − 1)λ1 + |λ2| ≈ (|n| − (p − 1))|λ3|,

or, equivalently, when

|n| ≈ 1

|λ3| ((p − 1)(λ1 + |λ3|) + |λ2|).

By defining

N (p) =
⌈

1

|λ3| ((p − 1)(λ1 + |λ3|) + |λ2|)
⌉

,

wheredxe = min{k: k ∈ N, k ≥ x}, we haveN (p) = (11p + 6)/2 if p is even,
andN (p) = (11p+ 7)/2 if p is odd forp ∈ [2, 10], as stated in the lemma. That
this is the appropriate choice forN (p) whenp ∈ [2, 10] (for p ≥ 11 it is not) can
be checked by explicit calculations.

Finally, to show that the low-order divisors are nonzero, we note that there are
only a finite number of them that we have to check. This can be done by explicit
calculations carried out on a computer, and gives the desired result. In Table 1,
we list the values ofÄ(k) = mini =1,2,3 min{|λn − λi |: |n| = k, n ∈ V10}. This
required the computation of 19,386 divisors. The C++ programsmalldiv.cc
handles all necessary computations. All floating point operations are performed in
interval arithmetic with directed rounding (see Section 4.2) which guarantees the
correctness of the given lower bounds.

Remark. For a givenp, the nonvanishing of the divisors is an open condition.
Thus the lemma is valid for an open neighborhood of the classical parameter values
of the Lorenz equations.
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Table 1. The smallest absolute values of low-order divisors forp = 10.

Ä(2) > 2.6667 Ä(3) > 3.4944 Ä(4) > 0.8277 Ä(5) > 1.8389

Ä(6) > 1.1611 Ä(7) > 1.5056 Ä(8) > 1.0112 Ä(9) > 1.1723

Ä(10) > 0.6779 Ä(11) > 0.1835 Ä(12) > 0.3446 Ä(13) > 0.1498

Ä(14) > 0.0112 Ä(15) > 0.4832 Ä(16) > 0.9776 Ä(17) > 0.8165

Ä(18) > 1.1947 Ä(19) > 1.1498 Ä(20) > 0.8614 Ä(21) > 0.3670

Ä(22) > 0.5280 Ä(23) > 0.6891 Ä(24) > 0.1947 Ä(25) > 0.3558

Ä(26) > 0.1386 Ä(27) > 0.6330 Ä(28) > 0.4720 Ä(29) > 0.9663

Ä(30) > 0.8053 Ä(31) > 1.2997 Ä(32) > 1.3670 Ä(33) > 1.6330

Ä(34) > 1.0337 Ä(35) > 0.5393 Ä(36) > 0.7003 Ä(37) > 0.2059

Ä(38) > 2.7941 Ä(39) > 0.1274 Ä(40) > 2.5393 Ä(41) > 0.4607

Ä(42) > 0.9551 Ä(43) > 1.7115 Ä(44) > 1.2885 Ä(45) > 1.3782

Ä(46) > 1.6218 Ä(47) > 1.0449 Ä(48) > 3.7115 Ä(49) > 2.4495

Ä(50) > 0.2172 Ä(51) > 2.7828 Ä(52) > 0.1162 Ä(53) > 2.5505

Ä(54) > 5.2172 Ä(55) > 6.6106 Ä(56) > 3.9439 Ä(57) > 1.2772

Ä(58) > 1.3894 Ä(59) > 4.0561 Ä(60) > 6.7228 Ä(61) > 9.3895

Remark. The lemma gives an asymptotic estimate on the growth of the modulus
of the smallest divisors. For large|n|, we have|nλ − λi | ∼ |n||λ3| ≈ 8|n|/3.

Now that we know that the formal power series forϕ defined by (8) exists, we
want to show that it also actually converges. We follow [21], and use the methods
of majorants. If

f (ζ ) =
∑

n

an1,n2,n3ζ
n1
1 ζ

n2
2 ζ

n3
3 , g(ζ ) =

∑
n

bn1,n2,n3ζ
n1
1 ζ

n2
2 ζ

n3
3 ,

are two formal power series,g is said to be a majorant off , which we denote
f ≺ g, if

|an1,n2,n3| ≤ bn1,n2,n3

for all the coefficients. Note that the coefficients ofg must be real and nonnegative,
which implies thatf must have at least as large a radius of convergence asg. We
will also use the notation

[ f (ζ )]k =
∑
|n|=k

an1,n2,n3ζ
n1
1 ζ

n2
2 ζ

n3
3 .

Now suppose that we find a functioñF : C3 → C such thatFi ≺ F̃ (i = 1, 2, 3)

and, together with (8), consider the majorant system

L̃ Aϕi (ζ ) = {F̃(ζ + ϕ(ζ ))}Vp (i = 1, 2, 3), (11)
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whereL̃ A(ζ n) = 2(n)ζ n and2: N3 → R is defined by2(n) = mini =1,2,3 |nλ −
λi |. This can again be solved formally by a power series

ϕi (ζ ) =
∞∑

|n|=2

bi,nζ
n, (12)

and it is clear thatϕi is a majorant ofϕi . Furthermore, since the right-hand side of
(11) is independent ofi , we haveϕ1 = ϕ2 = ϕ3 = ϕ̃. If we setζ1 = ζ2 = ζ3 = ζ ,
and find a functionF̂ : C → C such thatF̃(ζ, ζ, ζ ) ≺ F̂(ζ ), we may, together
with (11), consider the majorant system

L̂ Aψ(ζ ) = F̂(ζ + ψ(ζ )), (13)

whereL̂ A(ζ k) = Ä(k)ζ k andÄ: N → R is defined byÄ(k) = min{2(n): |n| =
k, n ∈ Vp}. Again, this can be solved formally by a power series

ψ(ζ ) =
∞∑

k=2

ckζ
k, (14)

and it is clear that̃ϕ(ζ, ζ, ζ ) ≺ ψ(ζ ). Note that this implies that‖ϕ‖r ≤ ψ(r ) in
the region of convergence. Thus it suffices to prove the convergence ofψ .

Recall that the nonlinear part of the Lorenz equations is given by

F(ζ ) =

 −k1ζ1ζ3 − k1ζ2ζ3

k1ζ1ζ3 + k1ζ2ζ3

k2ζ
2
1 + (k2 + k3)ζ1ζ2 + k3ζ

2
2

 ≈

 −0.29ζ1ζ3 − 0.29ζ2ζ3

0.29ζ1ζ3 + 0.29ζ2ζ3

2.2ζ 2
1 + 0.9ζ1ζ2 − 1.3ζ 2

2

 .

Thus if we set

F̃(ζ ) = k2ζ
2
1 + (k2 + k3)ζ1ζ2 + k1ζ1ζ3 − k3ζ

2
2 + k1ζ2ζ3,

we clearly haveFi ≺ F̃ (i = 1, 2, 3). Using the exceptional fact thatF only
contains quadratic terms, we can find a particularly simple majorant ofF̃(ζ, ζ, ζ ):

F̃(ζ, ζ, ζ ) = k2ζ
2 + (k2 + k3)ζ

2 + k1ζ
2 − k3ζ

2 + k2ζ
2 ≺ 5ζ 2 = F̂(ζ ).

Combining this with (13) and (14), we get the following recursive scheme for the
coefficients ofψ(r ):

cmr m = 5

Ä(m)

(r +
m−1∑
k=2

ckr
k

)2


m

(m = 2, 3, . . .). (15)

Unfortunately, by Lemma 3.6, we have no uniform estimates onÄ(m) for m <

N (p). This is due to low-order resonances between the eigenvalues, and therefore
we must calculate these divisors explicitly. We did this already in the proof of
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Lemma 3.6, and found that the smallest modulus of such a divisor was|λ1+13λ3−
λ2| ≈ 0.0112. This divisor appears already forp = 2, and it remains minimizing
for all p ∈ [2, 10]. Using this as a crude estimate onÄ(m) for m < N (p) results
in very poor bounds on the coefficients ofψ , and thus gives a very small radius of
convergence. This problem can be avoided by postponing the use of the recursive
scheme (15) untilm ≥ N (p). We can achieve this if we can estimate the leading
coefficients ofψ by other means. This will produce a smaller function (which we
still call ψ), than had we used only (15), but the important fact is that it will still
majorize theϕi ’s.

The way we will proceed is to compute explicitlyai,n (i = 1, 2, 3) for |n| =
2, . . . , n1 by using (8). This is possible by Lemma 3.6. Then, if we define the
leading coefficients ofϕ by bn = maxi =1,2,3 |ai,n| for |n| = 2, . . . , n1, we clearly
have[ϕi (ζ )] j ≺ [ϕ(ζ )] j (i = 1, 2, 3) for j = 2, . . . , n1. Continuing, we may
define the leading coefficients ofψ by

cj =
∑
|n|= j

bn =
∑
|n|= j

max
i =1,2,3

|ai,n| ( j = 2, . . . , n1).

Naturally, we then have [ϕ(r, r, r )] j = [ψ(r )] j (= cj ) for j = 2, . . . , n1. Now
assume that we fix a positive integern0 and find two positive constantsC and
M such that the following induction assumption holds:cj ≤ CMj for j = n0 +
1, . . . , 2n0, . . . , n1, wheren1 ≥ N (p). We then want to prove thatcj ≤ CMj for
all j > n1. This we do by induction: by definingc1 = 1, the recursive scheme
(15) gives

cn1+1r
n1+1 = 5

Ä(n1 + 1)

( n1∑
k=1

ckr
k

)2


n1+1

= 5

Ä(n1 + 1)

(
n1∑

k=1

ckcn1+1−k

)
r n1+1,

so the coefficients ofψ satisfy

cn1+1 = 5

Ä(n1 + 1)

(
n0∑

k=1

ckcn1+1−k +
n1−n0∑

k=n0+1

ckcn1+1−k +
n1∑

k=n1+1−n0

ckcn1+1−k

)

= 5

Ä(n1 + 1)

(
2

n0∑
k=1

ckcn1+1−k +
n1−n0∑

k=n0+1

ckcn1+1−k

)
.

Although we know nothing about then0 first coefficients, we know thatcj ≤ CMj

for j = n0 + 1, . . . , n1 by the induction hypothesis. Using this gives

cn1+1 ≤ 5

Ä(n1 + 1)

(
2

n0∑
k=1

ckCMn1+1−k +
n1−n0∑

k=n0+1

C2Mn1+1

)
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= 5

Ä(n1 + 1)

(
2

n0∑
k=1

ck M−k + (n1 − 2n0)C

)
CMn1+1.

Since we chosen1 large enough for the lower bound ofÄ(n1+1) (see Lemma 3.6)
to be valid, we have

cn1+1 ≤
5

(
2

n0∑
k=1

ck M−k + (n1 − 2n0)C

)
|(p − 1)λ1 + (n1 + 1 − (p − 1))λ3 − λ2|CMn1+1, (16)

which, forn1 large, gives the asymptotic estimate

cn1+1 ∼ 5C

|λ3|CMn1+1.

From this it follows that, in order to prove the induction step, we must choose
C ≤ |λ3|/5 ≈ 8

15 (C ≤ 1
2 works nicely for an open neighborhood of the classical

parameter values). Then, if we taken1 sufficiently large, we will have completed
the induction step.

The following computer-aided lemma1 proves the induction hypothesis needed
in the above argument, and gives an estimate on the sum appearing in (16).

Lemma 3.7. For p ∈ [2, 10], we have the estimates

cj < 5 · 10−6( 5
9) j ( j = 11, . . . , 70) and

10∑
j =1

cj (
5
9)− j < 3.54.

Furthermore,N (p) < 70 for p ∈ [2, 10].

Proof. A computer program that computes the coefficientsai,n, and then cal-
culates the sumscj = ∑

|n|= j maxi =1,2,3 |ai,n| was constructed, seecoeff.cc .
Again, all floating point operations are performed in interval arithmetic with di-
rected rounding (see Section 4.2) which guarantees the correctness of the given
upper bounds. Thanks to the simple form of the nonlinear terms appearing in the
Lorenz equations, the program only needs to handle two sums and two products.
If we define8(ζ) = ζ + ϕ(ζ ), the two sums we need to compute are of the type

S1 = [81(ζ ) + 82(ζ )]n and S2 = [k281(ζ ) + k382(ζ )]n,

and the two products are of the type

P1 = [(81(ζ ) + 82(ζ ))83(ζ )]n and

P2 = [(81(ζ ) + 82(ζ ))(k281(ζ ) + k382(ζ ))]n.

1 The reader may be interested in knowing that verifying this induction hypothesis requires knowl-
edge of the first 186,576 coefficients ofϕ.
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Table 2. The leading coefficients ofψ .

c2 < 4.372e-01 c3 < 4.320e-02 c4 < 4.928e-03

c5 < 5.702e-04 c6 < 7.196e-05 c7 < 1.095e-05

c8 < 2.249e-06 c9 < 3.761e-07 c10 < 7.073e-08

c11 < 7.458e-09 c12 < 1.091e-09 c13 < 1.221e-10

c14 < 1.549e-11 c15 < 1.950e-12 c16 < 2.849e-13

c17 < 5.197e-14 c18 < 8.166e-15 c19 < 1.342e-15

c20 < 1.520e-16 c21 < 1.894e-17 c22 < 2.016e-18

c23 < 1.484e-19 c24 < 1.626e-20 c25 < 1.533e-21

c26 < 1.383e-22 c27 < 1.632e-23 c28 < 1.522e-24

c29 < 2.457e-25 c30 < 2.118e-26 c31 < 2.952e-27

c32 < 3.418e-28 c33 < 3.513e-29 c34 < 3.177e-30

c35 < 3.107e-31 c36 < 2.775e-32 c37 < 2.241e-33

c38 < 1.701e-34 c39 < 1.227e-35 c40 < 9.372e-37

c41 < 6.903e-38 c42 < 5.016e-39 c43 < 3.378e-40

c44 < 2.713e-41 c45 < 2.265e-42 c46 < 2.109e-43

c47 < 1.936e-44 c48 < 1.868e-45 c49 < 1.734e-46

c50 < 1.511e-47 c51 < 1.217e-48 c52 < 9.286e-50

c53 < 6.715e-51 c54 < 4.711e-52 c55 < 3.300e-53

c56 < 2.311e-54 c57 < 1.542e-55 c58 < 1.052e-56

c59 < 7.838e-58 c60 < 5.701e-59 c61 < 4.452e-60

c62 < 3.834e-61 c63 < 3.422e-62 c64 < 3.180e-63

c65 < 2.873e-64 c66 < 2.498e-65 c67 < 2.121e-66

c68 < 1.759e-67 c69 < 1.419e-68 c70 < 1.109e-69

The results are presented in Table 2, and it is simple to check that the coefficients
cj satisfy the conditions in the lemma. Since, forp ∈ [2, 10],N (p) ≤ 58, the
final statement in the lemma is verified.

If we assign the constantsn0, C, andM the same values as in this lemma, it is
plain to see that the expression appearing in (16) is decreasing inn1 for n1 ≥ 70.
Thus, ifc71 satisfies the desired estimate, all coefficients of higher order will too.
Considering the worst case,p = 10, we have

c71 ≤ 5(2 · 3.54+ 5(70− 20) · 10−6)

|(10− 1)λ1 + (71− (10− 1))λ3 − λ2|CM71

≤ 5(7.08+ 2.5 · 10−4)

|9λ1 + 62λ3 − λ2| CM71 ≤ 0.982CM71,
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which completes the induction. Hence, forr < 9
5, we arrive at

ψ(r ) ≤
10∑

j =2

cj r
j +

∞∑
j =11

CMj r j ≤ r 2
10∑

j =2

cj r
j −2 + 5 · 10−6

∞∑
j =11

(
5r

9

) j

≤ r 2
10∑

j =2

cj r
j −2 + 5 · 10−6

(
5r

9

)2 ∞∑
j =9

(
5r

9

) j

≤ r 2
10∑

j =2

cj r
j −2 + 5 · 10−6

(
5

9

)2

r 2 (5r/9)9

1 − 5r/9

≤ r 2
10∑

j =2

cj r
j −2 + 1.4 · 10−5 r 2

9 − 5r
.

As we will restrict our attention to the caser < 1, we can replace the estimate on
ψ(r ) by

ψ(r ) ≤
(

10∑
j =2

cj + 1.4 · 10−5

9 − 5

)
r 2 ≤ r 2

2
.

This completes the proof of the first part of Proposition 3.1.

3.2.2. The Normal Form. Now, we turn our attention to the existence and size
of the normal formG(ζ ). Recall thatG is defined recursively by

Gi (ζ ) = {Fi (ζ + ϕ(ζ ))}Up
−

3∑
j =1

∂ϕi

∂ζj
(ζ )Gj (ζ ) (i = 1, 2, 3). (17)

The existence of a formal solution is immediate as we have no divisors whatsoever.
Turning to the question of convergence, we use similar majorization techniques
as in the previous section. We arrive at the estimate‖G‖r ≤ Ĝ(r ), by considering
the following majorant systems together with (17):

G̃(ζ ) = {F̃(ζ + ϕ(ζ ))}Up +
3∑

j =1

∂ϕ̃

∂ζj
(ζ )G̃j (ζ )

(recall thatϕ = (ϕ̃, ϕ̃, ϕ̃) and compare with (11)), and

[Ĝ(r )]n = [ F̂(r + ψ(r )) + 3ψ ′(r )Ĝ(r )]n

= [5(r + ψ(r ))2 + 3ψ ′(r )Ĝ(r )]n (n ≥ 2p), (18)

compare with (13). By the last equation, it is clear thatĜ does not contain terms
of degree less than 2p, and that its lowest order term is given by

[Ĝ(r )]2p = [5(r + ψ(r ))2]2p. (19)
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As in the previous section, the recursive equation forĜ can be solved formally
by a power series

Ĝ(r ) =
∞∑

k=20

ĝkr
k,

and we will prove, by induction, that the coefficients ofĜ satisfyĝn ≤ DKn, where
we can take the constantsD = 2 · 10−18 andK = 3. This will then immediately
give

‖G‖r ≤ Ĝ(r ) ≤ 2 · 10−18
∞∑

k=20

(3r )k ≤ 2 · 10−18 (3r )20

1 − 3r
≤ 7 · 10−9 r 20

1 − 3r
,

which will complete the proof of Proposition 3.1.

Starting with (19), and using the computed numerical values of{cj }19
1 , we have

(recall that we definedc1 = 1)

ĝ20r
20 = [Ĝ(r )]20 ≤ [5(r + ψ(r ))2]20 = 5

19∑
j =1

cj c20− j r
20 ≤ 3 · 10−13r 20,

which clearly satisfies our induction hypothesis, as 3· 10−13 < 2 · 10−18 · 320 =
DK20. We now proceed with the induction step: assume that we have proved that
ĝj ≤ DKk for j = 20, . . . , n. Then, by (18), we have

ĝn+1 = 5
n∑

j =1

cj cn+1− j + 3
n−18∑
j =2

jcj ĝn+2− j = 61 + 62,

where

61 ≤ 5

(
2

10∑
j =1

cj M
− j + (n − 20)C

)
CMn+1

≤
[

5

(
2

10∑
j =1

cj M
− j + (n − 20)C

)
C

D

(
M

K

)n+1
]

DKn+1

≤
[

5(7.08+ (n − 20) · 5 · 10−6)
5 · 10−6

2 · 10−18

(
5

27

)n+1
]

DKn+1

≤ 0.0369DKn+1,

and

62 ≤ 3D

(
10∑

j =2

jcj K
n+2− j + C

n−18∑
j =11

j M j K n+2− j

)
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≤
[

3

(
10∑

j =2

jcj K
1− j + CM

∞∑
j =11

j

(
M

K

) j −1
)]

DKn+1

≤
[

3

(
0.31+ 25

9
· 10−6 ·

(
5

27

)10 11− 50/27

(1 − 5/27)2

)]
DKn+1

≤ 3(0.31+ 2 · 10−12)DKn+1.

Summing up, gives the following estimate:

ĝn+1 ≤ 0.97DKn+1,

which proves the induction step. This completes the final part of Proposi-
tion 3.1.

3.3. The Dynamics Inside the Cube

In this section, we will show that the normal form flow,ψ(ζ, t), i.e., the solution to
the equationṡζ = Aζ + G(ζ ), whereG is as in Proposition 3.1, acts much like its
linear counterpart used in the geometric model of the Lorenz flow. The geometric
model uses the linearity near the origin to obtain estimates on trajectories passing
near the origin. These estimates, however, are not valid for the original Lorenz
flow without an analog of the change of variables described in Proposition 3.1.
Finding an analytic change of variables which completely linearizes the Lorenz
equations in a neighborhood of the origin poses two major difficulties:

• As we must remove all nonlinear terms of the vector field, we will encounter
all possible divisors, having modulus|nλ − λi |, wheren ∈ N3 and|n| ≥ 2.
These are of course not bounded away from zero, so unless we impose a Dio-
phantine condition2 on the eigenvalues, the linearizing change of variables
will not converge. Even if we manage to get a positive radius of convergence,
it is likely that the radius is too small to be of any practical use.

• Although the set of all eigenvalues satisfying any Diophantine condition
has full measure, the set of resonant eigenvalues3 is everywhere dense. As
resonant eigenvalues produce vanishing divisors, we must exclude a dense
set of parameters to avoid this situation. In doing so, we lose the robustness
of our statements.

This is why we bring the Lorenz equations into a carefully selected normal
form instead of the linear one. The price we have to pay is that it is a little more

2 We say that the eigenvaluesλ = (λ1, λ2, λ3) satisfy a Diophantine condition of type(κ, τ ) if
there exists positiveκ, τ such that fori = 1, 2, 3, we have|nλ − λi | ≥ κ|n|−τ for all n ∈ N3 with
|n| ≥ 2.

3 We say that the eigenvaluesλ = (λ1, λ2, λ3) are resonant if there exists ani ∈ {1, 2, 3} such that
|nλ − λi | = 0 for somen ∈ N3 with |n| ≥ 2.
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difficult to gain estimates on the normal form flow. On the other hand, once we
have these estimates, we may effectively link them to the original Lorenz flow
by using Proposition 3.1. As mentioned in the outline, we will make the change
of coordinates when a trajectory hits the lid of a small cube centered around the
origin. Inside the cube, we use our estimates on the normal form flow to find the
exit point of the trajectory. We then change back to the original coordinates and
carry on with the numerical computations.

3.4. The Linear Flow

To begin with, we will extract the properties of the linear flow that really are used in
the geometric model of the Lorenz flow. Letϕ(ζ, t) denote the flow of the linearized
Lorenz equationṡζ = Aζ . These can be solved explicitly:ϕ(ζ, t) = eAtζ , i.e.,
ϕi (ζ, t) = eλi tζi (i = 1, 2, 3). Consider a small cube centered at the origin, with
radiusr , and take a trajectory starting from the interior of the cube, say at the point
ζ , with |ζ1| 6= 0. Since the eigenvalues satisfy 0< −λ3 < λ1 < −λ2, it is plain to
see that the trajectory exits the cube whenϕ1(ζ, t) = sgn(ζ1)r . Solving for the exit
time τe(ζ ) givesτe(ζ ) = 1/λ1 logr/|ζ1|. Note that limζ1→0 τe(ζ ) = ∞. This is
one of the reasons why numeric calculations break down near the origin. Inserting
τe in the other coordinate functions gives the location of the exit

ϕ(ζ, τe(ζ )) = (sgn(ζ1)r, ζ2(|ζ1|/r )−λ2/λ1, r (|ζ1|/r )−λ3/λ1). (20)

Since−λ2/λ1 ≈ 1.93 and−λ3/λ1 ≈ 0.225, a line segment lying in theζ2 direction
will be strongly contracted, whereas a line segment lying in theζ1 direction will
have expanded on its exit. An explicit calculation gives

ϕ2(ζ, t)

ϕ3(ζ, t)
= ζ2

r
e(λ2−λ3)t .

Therefore, sinceλ2 − λ3 < 0, the lid of the cube will exit as two cusp-shaped
regions (in Figure 4 one of the cusps is illustrated). In the cube, theζ1ζ3-plane acts
as a separatrix, and all trajectories approach this exponentially fast.

We are also interested in the evolution of tangent vectors following a trajectory
inside the cube. Sinceϕ(ζ, t) = eAtζ , it is clear thatDϕ(ζ, t) = eAt. Hence we
have

Dϕ(ζ, τe(ζ )) =

(|ζ1|/r )−1 0 0

0 (|ζ1|/r )−λ2/λ1 0

0 0 (|ζ1|/r )−λ3/λ1

 .

Any three-dimensional cone field centered arounde1 = (1, 0, 0) is taken into itself
underDϕ. This is due to the fearsome hyperbolicity (expansion and contraction)
Dϕ exhibits near the origin. This property and (20), which gives rise to the cusps,
are the two features used in the geometric models.
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Fig. 4. The linear flow inside the cube forζ1 > 0.

3.5. The Normal Form Flow

Our main objective now is to show that the normal form flow and the linear
flow have very similar behavior. Although we use a cube having radius1

10 in the
computer program, we do all estimates for a radius of1

4. This allows for a slight
deformation of the cube as we change coordinates, see Lemma 3.4. We will need
the following estimate onG:

Lemma 3.8. In the cube{ζ : |ζ | ≤ 1
4}, we have

|G(ζ )| ≤ 3 · 10−8|ζ1|10 max{|ζ2|10, |ζ3|10}.

Proof. Recall that we arranged forG(ζ ) ∈ O10(ζ1) ∩ O10(ζ2, ζ3). This means
that for any termgi,nζ

n of Gi , there exist̃n ∈ N3 andk ∈ [0, 10] such that we can
factor the term as

gi,nζ
n = gi,nζ

10
1 ζ 10−k

2 ζ k
3 ζ ñ. (21)

The estimate onG in Proposition 3.1 implies that|G(ζ )| ≤ 3 · 10−8|ζ |20 for
|ζ | ≤ 1

4, but we also have some additional information: since the estimate was
obtained by using majorants, it is also valid for the majorants themselves. The
estimate is naturally valid for all smaller majorants ofG than the ones we used
and, in particular, for the smallest majorants ofG. Let

Gi (ζ ) =
∑
n1≥10

n2+n3≥10

gi,nζ
n, m(ζ ) =

∑
n1≥10

n2+n3≥10

mnζ
n, and

M(r ) =
∑
k≥20

Mkr
k,

wheremn = maxi =1,2,3 |gi,n|, andMk = ∑
|n|=k mn. Then clearlyGi ≺ m ≺ M ,

and the functionsm andM are the smallest majorants ofG on their corresponding
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levels. By levels we mean the following: we may viewG as a functionG: C3 →
C3. The first level majorantm can be viewed as a functionm: C3 → C, and
the second level majorantM can be viewed as a functionM : C → C. Thus the
majorants not only provide bounds, they also successively reduce the dimension
of the domain and range of the original functionG. Bothm andM are the smallest
functions, on their respective levels, that majorizeG.

Now, setω = |ζ1| max{|ζ2|, |ζ3|}, and suppose that|ζ | ≤ 1
4 = r . We have

|Gi (ζ )| =

∣∣∣∣∣∣∣
∑
n1≥10

n2+n3≥10

gi,nζ
n

∣∣∣∣∣∣∣ ≤
∑
n1≥10

n2+n3≥10

|gi,n||ζ1|n1|ζ2|n2|ζ3|n3

≤
∑
n1≥10

n2+n3≥10

mn|ζ1|n1|ζ2|n2|ζ3|n3 ≤
∑
n1≥10

n2+n3≥10

mn|ζ1|n1(max{|ζ2|, |ζ3|})n2+n3

≤ |ζ1|10(max{|ζ2|, |ζ3|})10
∑
n1≥10

n2+n3≥10

mn|ζ1|n1−10(max{|ζ2|, |ζ3|})n2+n3−10

≤ ω10
∑
n1≥10

n2+n3≥10

mn(max{|ζ1|, |ζ2|, |ζ3|})n1+n2+n3−20

= ω10
∑
n1≥10

n2+n3≥10

mn|ζ ||n|−20 ≤ ω10
∑
k≥20

(∑
|n|=k

mn

)
r k−20

= ω10
∑
k≥20

Mkr
k−20 = ω10r −20

∑
k≥20

Mkr
k ≤ ω10r −20 · 3 · 10−8r 20

= 3 · 10−8ω10,

which completes the proof.

3.5.1. C0-Properties. Starting with the topological properties, we will examine
how the orbits of the linear and normal form flows differ. Using Lemma 3.8, we
shall first prove that the modulus of theζ1-component of the normal form flow is
monotonically increasing.

Lemma 3.9. In the cube{ζ : |ζ | ≤ r }, where r ≤ 1
4, we have

(λ1 − κ)ψ1(ζ, t) ≤ ψ̇1(ζ, t) ≤ (λ1 + κ)ψ1(ζ, t)

and

|ζ1|e(λ1−κ)t ≤ |ψ1(ζ, t)| ≤ |ζ1|e(λ1+κ)t ,

whereκ = 2 · 10−19.



A Rigorous ODE Solver and Smale’s 14th Problem 81

Proof. We just have to check the differential equation for theζ1-component of
the normal form flow:ψ̇1(ζ, t) = λ1ψ1(ζ, t) + G1(ψ(ζ, t)). By Lemma 3.8,

|ψ̇1(ζ, t) − λ1ψ1(ζ, t)| = |G1(ψ(ζ, t))|
≤ 3 · 10−8|ψ1(ζ, t)|10 max{|ψ2(ζ, t)|10, |ψ3(ζ, t)|10}
≤ 3 · 10−8 · 4−10|ψ1(ζ, t)|10 ≤ 3 · 10−8 · 4−19|ψ1(ζ, t)|.

Settingκ = 2 · 10−19 > 3 · 10−8 · 4−19 completes the proof.

Next, we prove that theζ3-component of the normal form flow dominates the
ζ2-component.

Lemma 3.10. For all trajectories starting from the lid of the cube{ζ : |ζ | ≤ r },
where r ≤ 1

4, we haveψ3(ζ, t) ≥ |ψ2(ζ, t)|. These estimates hold throughout the
cube.

Proof. The differential equations forψ2 andψ3 can be expressed as differential
inequalities

|ψ̇2(ζ, t) − λ2ψ2(ζ, t)| = |G2(ψ(ζ, t))|
≤ 3 · 10−8 · 4−10 max{|ψ2(ζ, t)|10, |ψ3(ζ, t)|10},

|ψ̇3(ζ, t) − λ3ψ3(ζ, t)| = |G3(ψ(ζ, t))|
≤ 3 · 10−8 · 4−10 max{|ψ2(ζ, t)|10, |ψ3(ζ, t)|10}.

Initially, we have1
4 = ψ3(ζ, 0) ≥ |ψ2(ζ, 0)|, and by the differential inequalities it

is clear that, ifψ3(ζ, 0) = |ψ2(ζ, 0)|, then|ψ2(ζ, t)| decreases faster thanψ3(ζ, t),
sinceλ2 < λ3 < 0. So suppose that after some timet∗ we haveψ3(ζ, t∗) =
|ψ2(ζ, t∗)|. Then we can rewrite the differential inequalities as

|ψ̇2(t
∗, ζ ) − λ2ψ2(t

∗, ζ )| ≤ 3 · 10−8 · 4−10|ψ2(t
∗, ζ )|10 ≤ κ|ψ2(t

∗, ζ )|,
|ψ̇3(t

∗, ζ ) − λ3ψ3(t
∗, ζ )| ≤ 3 · 10−8 · 4−10|ψ3(t

∗, ζ )|10 ≤ κ|ψ3(t
∗, ζ )|,

and, again,|ψ2(t∗, ζ )|decreases faster thanψ3(t∗, ζ ). Hence,ψ3(ζ, t) ≥ |ψ2(ζ, t)|
throughout the whole cube.

It is now easy to show that theζ3-component of the flow is monotonically
decreasing:

Lemma 3.11. For all trajectories starting from the lid of the cube{ζ : |ζ | ≤ r },
where r ≤ 1

4, we have

(λ3 − κ)ψ3(ζ, t) ≤ ψ̇3(ζ, t) ≤ (λ3 + κ)ψ3(ζ, t)



82 W. Tucker

and

re(λ3−κ)t ≤ ψ3(ζ, t) ≤ re(λ3+κ)t ,

whereκ = 2 · 10−19.

Proof. Using Lemma 3.10, we just copy the proof of Lemma 3.9 by changing
the roles ofψ1(ζ, t) andψ3(ζ, t).

Now, given an initial point in the lid of the cube{ζ : |ζ | ≤ r } we know that
|ψ1(ζ, t)| is increasing, whereasψ3(ζ, t) is decreasing and majorizing|ψ2(ζ, t)|.
Sinceλ1 > |λ3|, we also know that|ψ1(ζ, t)| increases faster thanψ3(ζ, t) de-
creases. Therefore, it is clear that the orbit exits the cube through one of the sides
{ζ : |ζ1| = r, |ζ2|, |ζ3| ≤ r }. A trivial calculation enables us to control the exit time
of the normal form flow:

Lemma 3.12. For all trajectories starting from the lid of the cube{ζ : |ζ | ≤ r },
where r ≤ 1

4, the normal form flow exits the cube at timeτe(ζ ), where

1

λ1 + κ
log

r

|ζ1| ≤ τe(ζ ) ≤ 1

λ1 − κ
log

r

|ζ1| ,

andκ = 2 · 10−19.

Proof. We just have to solve|ψ1(ζ, τe)| = r for τe. Using Lemma 3.9, we get

|ζ1|e(λ1−κ)τe ≤ r ≤ |ζ1|e(λ1+κ)τe,

which immediately gives the desired result.

Note that we have limζ1→0 τe(ζ ) = ∞, just as in the linear case.
Turning to theζ2-component of the normal form flow, we have the following

differential inequality:

|ψ̇2(ζ, t) − λ2ψ2(ζ, t)| ≤ 3 · 10−8 · r 10|ψ3(ζ, t)|10

for all trajectories starting from the lid of the cube{ζ : |ζ | ≤ r }. This does not imply
that|ψ2(ζ, t)| decreases exponentially, so there is a slight discrepancy between the
normal form and linear flows in this sense. However, just as in the linear case, there
exists a surface acting as a separatrix. It is a slight deformation of theζ1ζ3-plane,
and all orbits tend to this separatrix exponentially fast. The important property
of both the normal form and linear flows is that the quotient of theζ2- andζ3-
components tends to zero exponentially fast with respect to the exit time. This
gives rise to the nice cusp-shaped image of the cube’s lid, as illustrated in Figure 4.
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Lemma 3.13. For all trajectories starting from the lid of the cube{ζ : |ζ | ≤ r },
where r ≤ 1

4, we have

(ζ2 − κr (1 − e−3t ))eλ2t ≤ ψ2(ζ, t) ≤ (ζ2 + κr (1 − e−3t ))eλ2t ,

whereκ = 2 · 10−19. These estimates hold throughout the cube.

Proof. Using the second part of Lemma 3.11, we can rewrite the differential
inequality forψ̇2(ζ, t) as

|ψ̇2(ζ, t) − λ2ψ2(ζ, t)| ≤ 3 · 10−8 · 4−19re10(λ3+κ)t ≤ κre10(λ3+κ)t .

A straightforward calculation yields the following bounds onψ2(ζ, t):

|ψ2(ζ, t) − ζ2eλ2t | ≤ κr (eλ2t − e10(λ3+κ)t )

||λ2| + 10(λ3 + κ)| ≤ κr (1 − e−3t )eλ2t ,

using the fact that 10(λ3 + κ) − λ2 < −3.

Combining this lemma with the second part of Lemma 3.11 gives∣∣∣∣ψ2(ζ, t)

ψ3(ζ, t)

∣∣∣∣ ≤ |ζ2| + κr (1 − e−3t )

re(λ3−κ)t
eλ2t ≤ (1 + κ)e(λ2−λ3+κ)t ,

which proves that the lid of the cube will exit as two cusp-shaped regions.

Remark. Had we flattened out the invariant manifolds to an orderp < 9, the
situation would be slightly different: We would then havep(λ3 + κ) − λ2 > 0,
which would result in a blunter cusp.

Combining and summarizing the results of this section, we achieve very tight
bounds on the trajectories leaving the cube.

Lemma 3.14. For all trajectories starting from the lid of the cube{ζ : |ζ | ≤ r },
where r ≤ 1

4, we have the following interval-valued enclosures:

ψ2(ζ, τe(ζ )) ∈ [ζ2]

( |ζ1|
r

)|[λ2]|/[λ1]

, ψ3(ζ, τe(ζ )) ∈ r

( |ζ1|
r

)|[λ3]|/[λ1]

,

where[λi ] = [λi − κ, λi + κ], [ζ2] = [ζ2 − κ, ζ2 + κ], andκ = 2 · 10−19.

For a precise definition of interval-valued enclosures, see Sections 4.2 and 4.3.
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3.5.2. C1-Properties. We will now prove that, in our small cube, the normal
form flow expands and contracts tangent vectors at almost the same rate as the
linear flow does. The first variational equations for the normal form flow are

d

dt
Dψ(ζ, t) = ADψ(ζ, t) + DG(ψ(ζ, t))Dψ(ζ, t), Dψ(ζ, 0) = I ,

and the solution is formally given by

Dψ(ζ, t) = eAt Dψ(ζ, 0) +
∫ t

0
eA(t−s)DG(ψ(ζ, s))Dψ(ζ, s) ds.

We will prove the following lemma, which states thatDψ is virtually linear:

Lemma 3.15. For all trajectories starting from the lid of the cube{ζ : |ζ | ≤ r },
where r ≤ 1

4, we have∣∣∣∣∂ψi

∂ζj
(ζ, t) − ∂ϕi

∂ζj
(ζ, t)

∣∣∣∣ ≤ κe[9(λ3+κ)+λj ]t (i, j = 1, 2, 3),

whereκ = 2 · 10−19. These estimates hold throughout the cube.

Remark. The key point is that 9(λ3+κ)+λj is negative. This means that the error
decreases as the exit-time increases, i.e., as we take|ζ1| small. This is expected
seeing how we constructedG: the perturbation of the linearized equations is small
enough to dampen out completely the bad effects due to having to spend a long
time near the origin.

Proof. SinceDψ(ζ, 0) = Dϕ(ζ, 0) = I , the inequality is trivially true for small
t , say fort ∈ [0, t∗]. We will prove that we can taket∗ = τe(ζ ), which will prove
the lemma. Fort ∈ [0, t∗], we have

|Dψ(ζ, t) − Dϕ(ζ, t)| =
∣∣∣∣∫ t

0
eA(t−s)DG(ψ(ζ, s))Dψ(ζ, s) ds

∣∣∣∣ (22)

≤
∫ t

0
|eA(t−s)DG(ψ(ζ, s))Dϕ(ζ, s)| ds

+
∫ t

0
|eA(t−s)DG(ψ(ζ, s))(Dψ(ζ, s) − Dϕ(ζ, s))| ds.

By using the facts thatA is diagonal andDϕ(ζ, s) = eAs, a simple calculation
gives that

|{eA(t−s)DG(ζ )eAs}i j | = eλi (t−s)eλj s

∣∣∣∣∂Gi

∂ζj
(ζ )

∣∣∣∣ (i, j = 1, 2, 3).
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If we setE(ζ, t) = Dψ(ζ, t)−Dϕ(ζ, t), we can treat each matrix entry separately:
For i, j = 1, 2, 3, we have

|Ei j (ζ, t)| ≤
∫ t

0
eλi (t−s)eλj s

∣∣∣∣∂Gi

∂ζj
(ψ(ζ, s))

∣∣∣∣ ds

+
∫ t

0
eλi (t−s)

3∑
k=1

∣∣∣∣∂Gi

∂ζk
(ψ(ζ, s))Ekj (ζ, s)

∣∣∣∣ ds.

To carry on further, it is clear that we need some estimates on the partial deriva-
tives ofG.

Lemma 3.16. In the cube{ζ : |ζ | ≤ 1
4}, we have∣∣∣∣∂Gi

∂ζj
(ζ )

∣∣∣∣ ≤ 9 · 10−8|ζ1|9 max{|ζ2|9, |ζ3|9}.

Proof. By Proposition 3.1, the functionsGi (i = 1, 2, 3) can be extended to a
ball inC3 such that they are analytic in each of the three variablesζi (i = 1, 2, 3).
Furthermore, for|ζ | ≤ 3

10, the functions satisfy

|Gi (ζ )| ≤ 7 · 10−9|ζ |20

1 − 9
10

= 7 · 10−8|ζ |20,

and the argument used in the proof of Lemma 3.2 shows that, in the complex ball
|ζ | ≤ 1

4, we have the estimate∣∣∣∣∂Gi

∂ζj
(ζ )

∣∣∣∣ ≤ 7 · 10−8|ζ |20

3
10 − 1

4

= 1.4 · 10−6|ζ |20 < 9 · 10−8|ζ |18 (i, j = 1, 2, 3). (23)

Since we arranged forG(ζ ) ∈ O10(ζ1) ∩ O10(ζ2, ζ3), we know that terms of the
partial derivatives ofGi belong toO9(ζ1) ∩O9(ζ2, ζ3). Thus, for any termgi,nζ

n

of a partial derivative ofGi , there exists̃n ∈ N3 andk ∈ [0, 9] such that we can
factor the term as

gi,nζ
n = gi,nζ

9
1 ζ 9−k

2 ζ k
3 ζ ñ. (24)

Applying the methods used in the proof of Lemma 3.8, combined with the estimate
(23), gives the desired result.

From the previous section, we know that|ψ2(ζ, t)| ≤ ψ3(ζ, t) for all trajectories
starting from the lid of the cube. Using this with Lemmas 3.9 and 3.11, gives∣∣∣∣∂Gi

∂ζj
(ψ(ζ, t))

∣∣∣∣ ≤ 9 · 10−8|ψ1(ζ, t)ψ3(ζ, t)|9 ≤ 4 · 10−13|ζ1|9e9(λ1+λ3+2κ)t .
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We are now prepared to continue our estimates. We will use the facts that|ζ1e(λ1+κ)t |
≤ r ≤ 1

4 and|Ekj (ζ, s)| ≤ κe[9(λ3+κ)+λj ]s ≤ κeλj s. For i, j = 1, 2, 3, we have

|Ei j (ζ, t)| ≤
∫ t

0
eλi (t−s)eλj s

∣∣∣∣∂Gi

∂ζj
(ψ(ζ, s))

∣∣∣∣ ds

+
∫ t

0
eλi (t−s)

3∑
k=1

∣∣∣∣∂Gi

∂ζk
(ψ(ζ, s))

∣∣∣∣ κeλj s ds

≤ 4 · 10−13|ζ1|9(1 + 3κ)eλi t
∫ t

0
e[9(λ1+λ3+2κ)+λj −λi ]s ds

= 4 · 10−13|ζ1|9(1 + 3κ)eλi t

[
e[9(λ1+λ3+2κ)+λj −λi ]s

9(λ1 + λ3 + 2κ) + λj − λi

]t

0

≤ 4 · 10−13|ζ1|9(1 + 3κ)

9(λ1 + λ3) + λ2 − λ1
e[9(λ1+λ3+2κ)+λj ]t

≤ 4 · 10−13(1 + 3κ)

47
|ζ1e(λ1+κ)t |9e[9(λ3+κ)+λj ]t

≤ 4 · 10−13(1 + 3κ)

47 · 49
e[9(λ3+κ)+λj ]t ≤ κe[9(λ3+κ)+λj ]t ,

for κ = 2 · 10−19. This completes the proof, since all estimates are valid in the
cube.

4. Rigorous Numerics—Details

We will now outline the main underlying algorithms used to compute the return
map of the Lorenz flow. These algorithms are extremely general, and apply to
virtually any vector field in any dimension. We should, however, point out that
the algorithms used for following the cone fields have only been developed for
two-dimensional cones.

The real implementations of the algorithms differ slightly from what will be
presented below. This is because the program code has been optimized to minimize
the number of floating point operations, and an exact listing would be both tedious
and confusing. Nonetheless, the underlying mathematical reasoning is the same,
and any interested reader can study the actual source code which is available at
http://link.springer-ny.com/link/service/journals/10208/
index.htm .

Recall that the algorithms described below are usedoutsidethe small cube
centered at the origin. Whenever a trajectory hits the lid of the cube, the program
computes the image of the trajectory leaving the cube (see Section 4.9) before
resuming the main algorithm. This “cube-part” of the program is strictly three-
dimensional, and relies heavily on the computations performed in Section 3. A
higher-dimensional saddle fixed point would certainly increase the complexity of
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the computations performed in Section 3, but should in principle not introduce
any additional difficulties. Regardless of the dimension, these computations are
performed a priori, and the necessary constants are hand coded into the program.
Thus this part of the code depends on the particular vector field at hand, as opposed
to the part that computes the enclosures of the actual trajectories and the partial
derivatives along them.

4.1. Ordinary Differential Equations

As a model problem, we will consider the general initial-value problem

ẋ = f (x), x(0) = x(0), (25)

where f ∈ C1(Rn,Rn). We will denote the solution of (25) byϕ(x, t), with
ϕ(x, 0) = x(0). For real-valued functions, this setting is classical and much studied
in standard textbooks on ordinary differential equations. It is, however, not difficult
to find situations where having a whole set of initial values is natural. Indeed, any
model of a physical system always has some uncertainty concerning the measured
initial values. Furthermore, we are seldom sure of the exact appearance of the
vector field modeling our system. The natural thing to do is to enclose the initial
valuex0 in a box [x0] whose side lengths reflect the maximal error made in the
measurements of the initial data, and to replacef in (25) by a functionF , whose
components are interval-valued and contain the values off . The problem we then
face is to find the solution of the following system:

ẋ ∈ F([x]), x(0) ∈ [x(0)], (26)

Our objective is to compute a set that is guaranteed to contain all the solutions
of (26) with respect to some given stopping condition. Before presenting such
algorithms solving (26), we will outline the basics of interval arithmetic.

4.2. Interval Arithmetic

In this section, we will briefly describe the fundamentals of interval arithmetic.
For a concise reference on this topic, see [14], [15].

LetIRdenote the set of all closed intervals of the real line. For any element [a] ∈
IR, we adapt the notation [a] = [a, a]. If ¯ is one of the operators+, −, ×, ÷,
we define arithmetic operations on elements ofIR by

[a] ¯ [b] = {a ¯ b: a ∈ [a], b ∈ [b]},

except that [a] ÷ [b] is undefined if 0∈ [b]. Working exclusively with closed
intervals, we can describe the resulting interval in terms of the endpoints of
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the operands

[a] + [b] = [a + b, a + b],

[a] − [b] = [a − b, a − b],

[a] × [b] = [min{ab, ab, ab, ab}, max{ab, ab, ab, ab}],
[a] ÷ [b] = [a] × [1/b, 1/b] if 0 /∈ [b].

For practical implementations, speed is important. Therefore, it is customary to
break the formula for multiplication into nine cases (depending on the signs of the
endpoints), where only one case involves more than two multiplications. Moreover,
when computing with finite precision, the formula for division can be modified for
improved accuracy, and directed rounding must be taken into account, see, e.g.,
[2], [14], [15].

It follows immediately from the definitions that addition and multiplication are
both associative and commutative. The distributive law, however, doesnotalways
hold. As an example, we have

[−1, 1]([−1, 0] + [3, 4]) = [−1, 1][2, 4] = [−4, 4],

whereas

[−1, 1][−1, 0] + [−1, 1][3, 4] = [−1, 1] + [−4, 4] = [−5, 5].

This unusual property is important to keep in mind when representing functions as
part of a program. Interval arithmetic satisfies a weaker rule than the distributive
law, which we shall refer to assubdistributivity:

[a]([b] + [c]) ⊆ [a][b] + [a][c].

Another key feature of interval arithmetic is that it isinclusion monotonic, i.e., if
[a] ⊆ [a′] and [b] ⊆ [b′], then

[a] ¯ [b] ⊆ [a′] ¯ [b′],

where we demand that 0/∈ [b′] for division. This is the single most important
property of interval arithmetic, it allows us to prove open conditions in a robust way.

We can turnIR into a metric space by equipping it with the Hausdorff distance

d([a], [b]) = max{|a − b|, |a − b|}.
For dealing with higher-dimensional problems, we define the arithmetic operations
to be carried out component-wise. We then talk about aninterval vectoror, more
simply, abox. The metric on the spaceIRn is defined by

d([a], [b]) = max
1≤i ≤n

{d([ai ], [bi ])}.

Matrix operations are defined analogously to the real case.
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When implementing interval arithmetic on a computer, we no longer work
over the spaceR, but ratherF—the floating points of the computer. This is a
finite set, and thus so is the set of all intervals with floating point endpointsIF.
When performing arithmetic on intervals inFwe must round the resulting interval
outward to guarantee inclusion of the true result. This is because, fixing the setF,
the sum of two floating points may not be a floating point. The same holds for the
other arithmetic operations. As an example, adding two intervals, [a], [b] ∈ IF,
becomes

[a] + [b] = [↓ a + b ↓, ↑ a + b ↑],

where↓ x ↓ is the largest floating point inF that is strictly less thanx (calledx
rounded down), and↑ x ↑ is the smallest floating point inF that is strictly greater
thanx (calledx rounded up). This type of arithmetic is called interval arithmetic
with directed rounding.

4.3. Interval-Valued Functions

Consider a functionf : Rn → Rn. Given a box [a] we define therangeof f over
[a] by

R( f ; [a]) = { f (x): x ∈ [a]}.
As mentioned earlier, it is often desirable in applications to exchange the function
f for an interval extension F.

Definition 4.1. A function F : IRn → IRn is an interval extension off : Rn →
Rn if, for all boxes [x] ∈ IRn, we haveR( f ; [x]) ⊆ F([x]).

It should be noted that many interval extensions are possible for a real-valued
function f . As an example, givenf (x, y) = 2x−πy, bothF1(x, y) = [1.99, 2.01]
x−[3.14, 3.15]y andF2(x, y) = [1.9, 2.1]x−[3.1, 3.2]y are interval extensions of
f . From now on, any expression of the formf ([x]) should always be interpreted
to be an interval extension off evaluated in interval arithmetic. When we are
interested in the range of (theRn-valued) f over [x], we explicitly state so.

If we fix a representation off (which we also denotef ), and evaluate it in
interval arithmetic, we always have

R( f ; [a]) ⊆ f ([a]),

due to the inclusion monotonic property. From this property, it also follows that
by splitting the box [a] into smaller pieces [a0], . . . , [an], we have

R( f ; [a]) ⊆
n⋃

i =0

f ([ai ]) ⊆ f ([a]).

It is clear that, by splitting [a] into many small pieces, we can approximate the
true range off over [a] with any desired accuracy. If, however,f is differentiable,
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then there are better ways to approximate the range off : let m([a]) denote the
midpoint of [a]. By the Mean Value Theorem, we have the following relation:

R( f ; [a]) ⊆ fMV ([a]) := f (m([a])) + D f ([a])([a] − m([a])).

Let ‖[a]‖ denote the maximal diameter of [a]. It is easy to show that

d(R( f ; [a]), f ([a])) = O(‖[a]‖),

whereas

d(R( f ; [a]), fMV ([a])) = O(‖[a]‖2).

It is obvious that the latter version is preferred, seeing that we have a quadratically
small error. This assumes, however, that we only deal with intervals of small
widths. The most fundamental part of our algorithm—the partitioning process—
guarantees that this indeed will be the case, and thus allows us to attain a quadratic
approximation of the vector field rangeR( f ; [a]).

For computer applications, we consider interval extensionsF : IFn → IFn, and
perform all operations with directed rounding.

4.4. The Euler Method for a Time-t Map

The solution of (25) is formally given by

ϕ(x, t (k+1)) = ϕ(x, t (k)) +
∫ t (k+1)

t (k)

f (ϕ(x, s)) ds, (27)

whereϕ(x, t (0)) = x(0). Approximating the integrand in (27) byf (ϕ(x, t (k))), we
arrive at the classical Euler method, which gives the iterative scheme

x(k+1) = x(k) + 1t (k) f (x(k)), k ≥ 0,

for an approximate solution to (25), i.e.,x(k) ≈ ϕ(x, t (k)). Here we have used the
notation1t (k) = t (k+1) − t (k). The error we are making is in assuming that the
vector field f is constant over each time step. With interval arithmetic this can be
overcome by using the following algorithm:

Algorithm 1. For k ≥ 0 do the following:

1. Enclose the computed solution at step k in a box: [x(k)] ⊂ [ x̃(k)].
2. Compute a time step1t (k) such that[x(k)] + 1t (k) f ([ x̃(k)]) ⊆ [ x̃(k)].
3. If t (k) + 1t (k) > T , set1t (k) = T − t (k).
4. Set[x(k+1)] = [x(k)] + 1t (k) f ([ x̃(k)]), and t(k+1) = t (k) + 1t (k).
5. If t (k+1) = T , break.
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This algorithm produces a box-valued solution that is guaranteed to contain the
true solution of the time-t map, i.e.,ϕ([x(0)], t (k)) ⊆ [x(k)]. As promised above, it
also covers the case when the initial value is a solid box, rather than simply being
a point. The reason why this method works is that, instead of evaluating the vector
field at a single pointx(k), we evaluate over a whole box which is constructed to
contain all trajectories between [x(k)] and [x(k+1)].

Of course, this algorithm is too simple to produce useful results in most cases.
Indeed, note that the successive enclosures [x(k)] are increasing in width, even if
the actual imagesϕ([x(0)], t (k)) of the initial box are uniformly shrinking in size.
Also, we have not indicated how to construct the widened box [x̃(k)]. This can be
quite delicate, and if not dealt with carefully, may produce gross overestimates
of the true imagesϕ([x(0)], t (k)). Finally, it is not obvious that time steps1t (k),
uniformly bounded away from zero, can be attained at every step. This requires a
few additional conditions on the vector field. All of these issues are properly dealt
with in the following sections.

4.5. The Euler Method for a Distance-d Map

There are, however, many situations when we are more interested in how far we
have flowed the initial values rather than how much time has passed. In dynamical
systems, the main example is the study of Poincar´e maps, which play a crucial role
in determining the dynamics of many systems. In a local setting, a Poincar´e map
P can be thought of as a map between two very close codimension-one surfaces,
P: 6(k) → 6(k+1). For simplicity, we will always demand that the sides of the
surfaces be parallel to the coordinate axes. Then, if the two surfaces are at a distance
d from each other, we call the (local) Poincar´e map a distance-d map.

In what follows, we will restrict out attention to the casen = 3, as is the case for
the Lorenz equations. Note, however, that the methods described can be extended
to any finite dimension. With our restriction, we will now study maps between
rectangles and/or planes. Since we only consider planes that are cross-products of
the coordinate axes, there are exactly three planes through each point (thex1x2-,
x1x3-, andx2x3-planes).

Given any pointx ∈ R3 that is not a fixed point of the vector field, there is
always at least one plane that is transversal to the flow at the pointx. We will always
choose the plane whose normal vector corresponds to the component of the vector
field having the largest modulus. In other words, if| f j (x)| = max{| fi (x)|: i =
1, . . . , 3}, then we select the plane whose unit normal isej . By abuse of notation,
this direction will often be referred to as thetransversal direction. The remaining
directions will be called thenontransversal directions.

For the sake of concreteness, let us now assume thatf3(x) is negative and has
the largest modulus. Then there exists a rectangleR(k) = [x1] × [x2] × {x(k)

3 }
containingx so that f3(x) is negative onR(k). Geometrically, this means that the
flow is passing through the rectangle from above. By continuity, the flow will pass
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Fig. 5. Finding the rectangular hull of a propagated surface.

through a plane6(k+1) = {x: x3 = x(k+1)
3 } situated slightly beneathR(k). The two

questions we now pose are the following:

(1) How do we determine the distanced to be travelled?
(2) How do we estimate the rectangular hullR(k+1) of the flow ofR(k) passing

through6(k+1)?

The problems are illustrated in Figure 5.
If we denote the flow byϕ(x, t), we may define a local Poincar´e map5: R(k) →

6(k+1) by

5(x) = (51(x), 52(x)) = (ϕ1(x, τ (x)), ϕ2(x, τ (x))),

whereτ(x) is the solution toϕ3(x, τ (x)) = x(k+1)
3 . We will sometimes viewx(k+1)

3

and x(k)
3 as being fixed, and consider the Poincar´e map to be a function of two

variables.
The first problem now is to find bounds on the various flow times. In order to

this, we must restrict the flow to a compact set connectingR(k) and6(k+1). The
simplest way to do this is to define a boxB as follows:

(1) stretch the sides ofR(k) by a factorγ > 1, and call the new rectangle
R̃(k) = [ x̃1] × [ x̃2] × {x(k)

3 };
(2) setB = R̃(k) × [x(k+1)

3 , x(k)
3 ] where|x(k+1)

3 − x(k)
3 | = d.

Our hope is to be able to flow the rectangleR(k) all the way down to the bottom
of box B whilst staying completely insideB. For an arbitrary distanced, this is
unfortunately not always possible. It is, however, clear that givenR(k) andB, there
exists a positive distanced′ for which the distance-d′ map is well defined. Before
we demonstrate this, we will introduce some auxiliary interval functions

Abs([a]) = {|x|: x ∈ [a]},
Mag([a]) = max{x: x ∈ Abs([a])},
Mig([a]) = min{x: x ∈ Abs([a])}.

Note that the function Abs is interval-valued, whereas Mag and Mig are real-valued.
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Returning to the distance-d map, we first compute the minimal flow time for
the nontransversal coordinates

1t = min
i =1,2

{t > 0: [R(k)
i ] + t fi (B) 6⊂ [Bi ]}. (28)

This is the first time the image ofR(k) can possibly intersect a nontransversal side
of the cubeB. Next, we see how far the rectangle flows in the transversal direction
during this time, with the restriction that we may not flow further than distanced:

d′ = min{d, 1t · Mig( f3(B))}. (29)

If d′ = d, the rectangle flows all the way down to the bottom of boxB without
touching the sides ofB. If this is not the case, we define a smaller cubeB′ by
trimming B in the transversal direction

B′ = [B1] × [B2] × [x(k)
3 − d′, x(k)

3 ].

This ensures that, when we repeat the procedure above using the trimmed boxB′,
we will flow all the way down to its bottom. Note that this redefines6(k+1).

Recall thatR̃(k) was constructed by stretching the sides ofR(k) by a constant
factorγ . From a computational point of view, this is not optimal. Instead, we may
now trim R̃(k) (and thusB′) by defining

[B′′
i ] = [R(k)

i ] + [0, 1t ] · fi (B′) (i = 1, 2),

[B′′
3 ] = [B′

3].

If we now evaluate overB′′, we get a tight bound on the flow times for the distance-
d′ map fromR(k):

[t ] = d′

Abs( f3(B′′))
. (30)

Finally, plugging the flow times into the Euler step gives a rigorous bound on the
image ofR(k) under the distance-d′ map

5i (R(k)) ⊆ [R(k+1)
i ] := [R(k)

i ] + [t ] · fi (B′′) (i = 1, 2). (31)

By composing several distance-d maps, we may flow an initial rectangle until the
vector field shifts its dominating direction.

We can guarantee that the successive step sizesd′ do not approach zero under
very mild conditions:

(1) the sizes of the flow boxesB must be uniformly bounded from above;
(2) the flow boxesB must be uniformly bounded away from fixed points of the

vector field;
(3) the vector field evaluations must be finite.
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Fig. 6. Restricting the computations: (a) the generic case, (b) the nongeneric case.

These conditions ensure that the minimal flow time given by (28) is uniformly
“large”, and that the transversal component of the vector field enclosure does not
contain a zero, which would gived′ = 0 in (29). We ensure condition (1) holds by
imposing afixed scale, which is described in Section 4.6. Condition (2) is taken
care of by interrupting the computations whenever we come too close to the origin.
The other two fixed points of the system are never approached, which the program
checks for before computing ad′-step. Finally, condition (3) is valid since the
vector field is finite in any compact region of phase space.

4.5.1. Fine-Tuning the Euler Method. There is, however, one major flaw in the
Euler method: even if the true solution set is shrinking, the computed boxesR(k)

are always nondecreasing ink. This is because we always have the equality‖[a] +
[b]‖ = ‖[a]‖+‖[b]‖ for any two intervals [a] and [b]. The problem is that we are
using interval arithmetic on far too large a scale in (31). We will now show how
to eliminate this problem.

Generically, the trajectories maximizing the rectangular hull ofR(k+1) originate
from the corners{p(i )}4

i =1 ofR(k) as illustrated in Figure 5. This happens when the
partial derivatives of5 are nonzero inR(k). There are, however, rare occasions
when this is not the case: sometimes a mixed derivative(5i )

′
xj

(i 6= j ) may vanish
(the fact that the nonmixed derivatives are always positive is confirmed by the
computer program). If, say, 0∈ (51)

′
x2

(R(k)), we must consider the whole line

segment connecting4 p(4) andp(1) in order to estimate the upper bound of [R(k+1)
1 ],

see Figure 6(b). Assuming the generic case for now, the maximizing trajectories
are confined to small boxes contained in subboxes with lids centered on the corners
ofR(k), and extending down to6(k+1), see Figure 6(a).

Given a cornerp ofR(k), we define its associated flow boxBp by

[Bc
i ] = pi + [0, t] fi (B′′) (i = 1, 2),

[Bc
3] = [B′′

3 ]. (32)

4 We label the corners as quadrants.
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Π

Fig. 7. The image may now contract in some directions.

Recall that [t ] = [t, t] are the flow times derived in the previous section. By
definition, the trajectory connectingp and5(p) is contained inBp. Using this
flow box, we can compute tighter bounds on the flow times associated to the initial
point p:

[t p] = d′

Abs( f3(Bp))
. (33)

As before, this gives an enclosure of the distance-d′ map of p:

5i (p) ⊆ [Sp
i ] := pi + [t p] · fi (Bp) (i = 1, 2), (34)

and by taking the convex hull (denoted byt) of the components ofSp over all
corners, we get an enclosure of the image ofR(k):

5i (R(k)) ⊆ [R(k+1)
i ] :=

⊔
p

[Sp
i ] (i = 1, 2). (35)

The main reward is that now the image ofR(k) is free to contract in any direction,
see Figure 7.

Now considering the case when one or several mixed derivatives vanish, we
may repeat the procedure outlined above by substituting some of the corners with
appropriate line segments. This results in larger flow boxes, and therefore gives a
somewhat less tight bound on the image ofR(k).

4.5.2. Computing the Partial Derivatives. We will now provide an algorithm
for computing enclosures of the partial derivatives of the local Poincar´e map
5: R(k) → 6(k+1) as defined in the previous sections.

Consider the partial derivatives of5:

∂5i

∂xj
(x) = ∂

∂xj
[ϕi (x, τ (x))] = ∂ϕi

∂xj
(x, τ (x)) + ∂τ

∂xj
(x)

dϕi

dt
(x, τ (x))

= ∂ϕi

∂xj
(x, τ (x)) + ∂τ

∂xj
(x) fi (ϕ(x, τ (x)))

= ∂ϕi

∂xj
(x, τ (x)) + ∂τ

∂xj
(x) fi (5(x)) (i, j = 1, 2, 3). (36)
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The partial derivatives ofτ(x) are obtained by noting that one5i (x) is constant.
Continuing our example (i.e., assuming that we still are flowing betweenx1x2-
planes), we have that53(x) is constant, i.e,

0 = ∂53

∂xj
(x) = ∂ϕ3

∂xj
(x, τ (x)) + ∂τ

∂xj
(x) f3(5(x)) ( j = 1, 2, 3),

and solving for∂τ/∂xj yields

∂τ

∂xj
(x) = −[ f3(5(x))]−1∂ϕ3

∂xj
(x, τ (x)) ( j = 1, 2, 3).

Inserting this expression into (36) gives

∂5i

∂xj
(x) = ∂ϕi

∂xj
(x, τ (x)) − ∂ϕ3

∂xj
(x, τ (x))

fi (5(x))

f3(5(x))
(i, j = 1, 2, 3). (37)

Note that the components withi = 3 vanish, just as we desired.
Since we already have an estimate on5(x), we can easily estimate the right-

most factor in (37). The partial derivatives of the flow require some work, though.
First, we need the differential equations for the partial derivatives. These are
attained simply by differentiating the equations for the flow,(d/dt)ϕi (x, t) =
fi (ϕ(x, t)) (i = 1, 2, 3), and changing the order of differentiation. On component
level, this gives

d

dt

∂ϕi

∂xj
(x, t) =

3∑
k=1

∂ fi
∂xk

(ϕ(x, t))
∂ϕk

∂xj
(x, t) (i, j = 1, 2, 3),

or, in matrix form,(d/dt)Dϕ(x, t) = Df (ϕ(x, t))Dϕ(x, t), with the initial condi-
tion Dϕ(x, 0) = I , whereI is the identity matrix. This translates into the following
integral formula:

Dϕ(x, t) = I +
∫ t

0
Df (ϕ(x, s))Dϕ(x, s) ds. (38)

We will now state a simple lemma used to compute the enclosure ofDϕ(x, t).

Lemma 4.2. Let A be an n× n interval matrix containing zero, i.e., 0 ∈ [ Ai, j ]
for i, j = 1, . . . , n. If I − 1

2 A is invertible, then the exponential of A satisfies

eA ⊆ I + [ I − 1
2 A]−1A.

Proof. By Taylor’s formula, we know that

eA =
∞∑

k=0

Ak

k!
= I + A + A2

2!
+ A3

3!
+ · · · .
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Now, for any interval [a] with 0 ∈ [a], it is clear that [a]/k! ⊆ [a]/2k−1 for all
k ≥ 1, seeing thatk! ≥ 2k−1. Note that it is crucial that the interval [a] contains
zero for this condition to hold. Another fact we will use is that ifB is an interval
matrix containing zero, then 0∈ Bk for all k ≥ 1. Therefore it follows that
Ak/k! ⊆ Ak/2k−1 for all k ≥ 1, so we have

eA ⊆ I +A+ A2

21
+ A3

22
+· · · = I +

∞∑
k=1

Ak

2k−1
= I +2

∞∑
k=1

(
A

2

)k

= I +[ I −1

2
A]−1A,

which concludes the proof.

We are now ready to compute the enclosure ofDϕ(x, t).

Lemma 4.3. Define A(t) = [0, t ] · Df (B′′), and let1 be the interval matrix
defined by

1 = Df (B′′) · (I + [ I − 1
2 A(t)]−1 · A(t)).

Then the solution to(38)satisfies Dϕ(x, s) ⊆ I +s1 for all (x, s) ∈ R(k) × [0, t ].

Proof. By the construction in the previous section, we know thatϕ(x, s) ⊆ B′′ for
all (x, s) ∈ R(k) × [0, t ]. Therefore, we have the following differential inclusion:

d

dt
Dϕ(x, t) ∈ Df (B′′)Dϕ(x, t). (39)

SinceDf (B′′) is a constant interval matrix, we can enclose the solution of (39) by
taking the exponential

Dϕ(x, t) ∈ etDf (B′′) ⊆ e[0,t ]·Df (B′′).

Since the interval matrixA(t) = [0, t ]·Df (B′′)obviously contains zero, Lemma 4.2
applies, and so

Dϕ(x, s) ∈ eA(t) ⊆ I + [ I − 1
2 A(t)]−1 · A(t), (40)

for all (x, s) ∈ R(k) × [0, t ]. We will now use this enclosure ofDϕ(x, t), together
with the enclosure ofDf (ϕ(x, s)), in the right-hand side of (38). This gives

Dϕ(x, t) ∈ I +
∫ t

0
Df (B′′)(I + [ I − 1

2 A(t)]−1 · A(t)) ds

⊆ I + t · Df (B′′)(I + [ I − 1
2 A(t)]−1 · A(t)), (41)

which completes the proof.

Note that we may intersect the right-hand sides of (40) and (41) to get a (pos-
sibly) tighter enclosure since they are both valid enclosures ofDϕ(x, t).
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Fig. 8. (a) The wrapping effect, and (b) how to overcome it.

Returning to the partial derivatives of5 given by (37), we now have enclosures
of all appearing elements, which gives the following estimates:

∂5i

∂xj
(R(k)) ⊆ Dϕi, j (R(k), [t ])− Dϕ3, j (R(k), [t ])

fi (R(k+1))

f3(R(k+1))
(i, j = 1, 2, 3).

Here, the flow times [t ] are given by (30), and all appearing elements are interval-
valued. Note that since (in our example) we are flowing between twox1x2-planes,
we are only interested in the four partial derivatives indexed byi, j = 1, 2.

4.6. Partitioning

Although the method outlined in Section 4.5.1 may increase the accuracy on a
local level, we are still left with a global problem: If the flow of the system under
consideration rotates boxes, the strongest expanding (or least contracting) direc-
tion will contaminateall other directions. By this, we mean that the computed
enclosuresR(k) will expand in all directions, although the true solution may con-
tract in several directions. This phenomenon is often referred to as thewrapping
effect, see Figure 8(a).

Fortunately, we can reduce the wrapping effect by enforcing afixed scale: if an
element of any intermediate solution set (including the initial set) attains a width
larger than a predetermined constantmax size , it is bisected along the directions
that are too wide. Thus, the computed solution set will be made up of several
small boxes, all having widths less thanmax size . If the system has contracting
directions, these will now show up in the solution set. This is due to the fact
that elements squeeze together in the contracting directions, which results in an
overlapping effect, as illustrated in Figure 8(b). The global error is now comparable
to max size , and the contamination is greatly reduced. The following pseudo-
code outlines an implementation of the algorithm just described:

Algorithm 2.
Initialize Stack with a box[x]
while Stack is not empty{

Get a box[x] from Stack
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if [x] is too large{
Bisect[x] in all directions that are wider thanmax size
Put the partitioned boxes inStack

}
else{

if [x] satisfies the stopping condition
Put [x] in OutStack

else
Compute[x′], the propagation of[x], using your favorite algorithm

Put [x′] in Stack
}

}
OutputOutStack

The concept of partitioning along the flow is probably the most fundamental idea
in the entire program. Although the rectangles produced by our previous algorithms
may expand in both directions, we can force their returns to be confined to a thin
strip by partitioning often. The partitioning process just described is self-adaptive:
there is no need to know in advance where the expansion is strong, or in what
directions it may act. Each partitioned rectangle feels the pull in the attractor’s
normal direction (that is why we call it an attractor), and is therefore forced to
center itself along the attractor. This results in a considerable overlapping, and is
precisely why we can see contraction in one direction at the return, see Figure 8(b).
Also, as mentioned earlier, we can attain quadratically close approximations of
the interval-valued vector fieldf by choosingmax size small.

Again, using the conditions mentioned at the end of Section 4.4, we ensure
that the number of partitioned elements remains finite. Indeed, since the vector
field is finite and bounded away from zero, both the return time and the expansion
along the flow are finite. Thus an initial rectangle can only expand by so much
during its return, and therefore only a finite number of partitionings are required.
Of course, if the vector field was extremely small (or our floating point system
extremely coarse), the effects of the directed rounding might dominate over the
actual expansion due to the vector field. In this case, only the successful termination
of the program would verify that a finite number of partitionings was required.

4.7. Switching the Transversal Direction

Once we have found rigorous bounds on the image ofR(k), we can restart the
whole procedure withR(k+1) as the initial rectangle. This can be repeated as
long as the vector field does not vanish in the direction that we are flowing (the
transversal direction). If we stay away from fixed points, there will always be at
least one component of the vector field that is nonzero. Therefore, if the transversal
component of the vector field becomes small, we switch to planes whose normal
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vector corresponds to the strongest component of the vector field. We do this by a
transition procedure described below. Having switched the transversal direction,
we can continue to flow the surface using the methods described in the previous
sections. By switching between various planes when appropriate, we can follow the
initial surface a whole lap up to its complete return to the global Poincar´e section
6. As mentioned above, the only exception to this rule is when a trajectory comes
close to a fixed point. As we will not be performing any numerical computations
near a fixed point, we may disregard this particular situation.

Let us continue our example from the previous sections. Suppose that we have
followed the initial rectangleR(0) ⊂ 6 by composing several distance-d maps,
and suppose that we, at stagek, have

Mig( f1(R(k))) ≥ C · Mag( f3(R(k))), (42)

for someC > 1. Without loss of generality, we may assume thatf1 is positive
onR(k). This means that the flow is turning to the right. SupposeR(k) = [x1] ×
[x2] ×{x3}. Instead of flowing to a plane6(k+1) situated slightly beneathR(k), we
flow to 6(k+1) = {x: x1 = x1}. Just as before, we first must construct a flow box
B which contains all trajectories fromR(k) to 6(k+1). Let 1x1 = x1 − x1, and set

B = [x1] × [x2 − 1x1, x2 + 1x1] × [x3 − 1x1, x3].

This is a candidate for the flow box, but we must confirm that no trajectory leaks
out of B except through6(k+1). An easy way of checking this is simply to compute
the range of the vector field overB, and then compare the components. If

Mig( f1(B)) ≥ Mag( fi (R(k))) (i = 2, 3), (43)

then no initial point inR(k) is displaced by more than1x1 in any direction, and
thusB qualifies as a flow box. If, however, (43) does not hold, we partitionR(k)

into smaller pieces and start the switching procedure all over with each piece
individually. Since the constant appearing in (42) is strictly larger than one, this
procedure will succeed sooner or later.

Given a flow boxB, we start by computing its associated flow times [t ]: the
largest flow time is given byt = 1x1/ Mig( f1(B)), and since some points ofR(k)

are also points of6(k+1), the smallest flow timet is zero. We can now construct a
(possibly) tighter flow boxB′:

[B′
1] = [B1],

[B′
i ] = [R(k)

i ] + [t ] · fi (B) (i = 2, 3).

Computing the range off over B′ gives a tighter enclosure of the flow times [t ]
and, finally, we get bounds on the image ofR(k):

[R(k+1)
1 ] = {x1}, (44)

[R(k+1)
i ] = [R(k)

i ] + [t ] · fi (B′) (i = 2, 3).
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4.8. Cone Field Propagation and Expansion Estimates

Now that we can rigorously compute the propagation of a rectangle traveling along
the flow, we want to compute the evolution of tangent vectors associated to the
rectangle.5 To be more specific, each rectangleR(k) is equipped with a coneC(k)

spanned between two unit vectorsu(k) andv(k):

C
(k) = {w(k)(t): w(k)(t) = u(k) cost + v(k) sint, t ∈ [0, π/2]}.

Our aim is twofold:

(1) we want to compute an enclosureC(k+1) of the image ofC(k) underD5;
(2) we want to estimate the amount elements ofC(k) are expanded/contracted

underD5.

Starting with (1), we use the enclosures derived in Section 4.5.2 and compute

ũ(k+1) = D5(R(k))u(k) and ṽ(k+1) = D5(R(k))v(k).

Note that the components ofũ(k+1) andṽ(k+1) are interval-valued. We simply define
C(k+1) to be the hull ofũ(k+1) cost + ṽ(k+1) sint wheret ∈ [0, π/2].

Turning to the second point, let

[ε(k+1)
prel ] = |ũ(k+1)| t |ṽ(k+1)|

be a preliminary estimate on the expansion of vectorsw(k)(t) flowing fromR(k) to
R(k+1). Here| · | denotes the Euclidean norm onR2. Also, letθ(k) denote the angle
between the boundary vectorsu(k) andv(k), and let [̃θ(k+1)] denote the set of angles
between the interval vectors̃u(k+1) andṽ(k+1). Since we have not considered the
interior vectors, we must correct the preliminary expansion estimate by the factor

[ fc] =
√√√√({1} t 1 + cos [θ̃ (k+1)]

1 + cosθ(k)

)
.

To see where this correcting factor comes from, we first note that, fort ∈ [0, π/2],
we have

|w(k)(t)|2 = |u(k)|2 cos2 t + |v(k)|2 sin2 t + 2〈u(k), v(k)〉 sint cost

= 1 + 2 sint cost cosθ(k),

and

|w̃(k+1)(t)|2 = |ũ(k+1)|2 cos2 t + |ṽ(k+1)|2 sin2 t + 2〈ũ(k+1), ṽ(k+1)〉 sint cost

5 The algorithms that will be outlined in this section have only been implemented in three di-
mensions. Thus, we will restrict our discussion to cones that are two-dimensional, which makes life
somewhat easier.
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⊆ |ũ(k+1)|2 cos2 t + |ṽ(k+1)|2 sin2 t

+2|ũ(k+1)||ṽ(k+1)| sint cost cos [θ̃ (k+1)]

⊆ [ε(k+1)
prel ]2(1 + 2 sint cost cos [θ̃ (k+1)]).

Therefore, we clearly have( |w̃(k+1)(t)|
|w(k)(t)|

)2

⊆ [ε(k+1)
prel ]2 1 + 2 sint cost cos [θ̃ (k+1)]

1 + 2 sint cost cosθ(k)

⊆ (ε
(k+1)
prel )2

(
{1} t 1 + cos [θ̃ (k+1)]

1 + cosθ(k)

)
.

Before continuing to the next plane, we multiply the expansion estimate with the
previous one, taking the correcting factor into account,

[ε(k+1)] = [ε(k+1)
prel ] · [ fc] · [ε(k)].

Initially, we take [ε(0)] = {1}.
Due to the partitioning process, an initial rectangleR(0) returns to6 as many

overlapping rectangles{Ri }n
i =1 whose union strictly contains the exact return of

R(0). By the procedure just described, each one of these rectangles is equipped
with an expansion estimate [εi ] = ∏n(i )

k=0[ε(k)
i ]. By taking the hull [E ] = ⊔

i [εi ],
it is clear that any vector of the initial cone associated withR(0) is expanded by
some factore ∈ [E ].

4.9. Handling Cube Entries

Let us deal finally with the trajectories passing close to the fixed point at the origin.
The sole purpose of Section 3 was to allow us to interrupt the numeric computations
whenever a rectangleR(k) comes close to the origin. To be more precise, we center
a cube of radius1

10 at the origin, and we interrupt the computations if a rectangle
hits the lid of the cube. At this stage, the rectangles are small compared to the lid of
the cube, and therefore we need not interrupt the computations for partial hits. If,
however, the rectangle is completely within the boundary of the lid, we change to
the normal form coordinates. This will distort the rectangle and its tangent vectors
as described in Lemma 3.4, and the discussion following it. Once we have taken
the distortion into account, we may assume that the flow is totally linear in the
cube. Indeed, the maximal error this assumption yields is of the same size asκ,
and can thus be considered as taken into account via the distortion.6 Thus we can
explicitly compute where the rectangle exits the cube, and also how the tangent
vectors are affected.

6 Recall thatκ was used in the estimates on the normal flow. Its value is 2· 10−19.
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Fig. 9. (a) Splitting along the stable manifold, (b) no splitting.

Fig. 10. The five stages of passing through the cube: (a) hit the cube completely, (b) distort via change
of coordinates, (c) compute the exit, (d) distort via inverse change of coordinates, and (e) flow the box
into a codimension-one surface.

There are two different ways that a rectangle can pass through the cube. If the
distorted rectangle intersects the stable manifold of the origin (which is thex2x3-
plane), it is split along the line of intersection, and exits the cube in two directions.
Otherwise the rectangle flows out in one piece, see Figure 9.

Now we are ready to switch back to the original coordinates. Once again, the
computed exit rectangle(s) and the associated tangent vectors will be distorted
as described in Lemma 3.4. The distortion widens the rectangle in all directions,
making it a solid box. Since our algorithms are tuned for flowing codimension-one
surfaces (e.g., rectangles inR3) we therefore flatten out the box by flowing it to
its out-most side, see Figure 10. After having completed these outlined steps, we
can resume the numeric computations as described in the previous sections.

5. The RODES Program

The RODES (Rigorous ODE Solver) program is a highly adaptive, multiprocessor
program. As we pointed out earlier, the computations are performed in interval
arithmetic with directed rounding when necessary. This functionality is provided
by the PROFIL/BIAS package (see [8]) which is supported on all architectures
utilized in the proof. The program was executed on 20 machines working in parallel.
Data was passed between the processes via a common text file. All floating point
numbers were passed with 17 digits of precision, which converts exactly according



104 W. Tucker

to the IEEE standard. The computers employed for the task were a variety of
SUN Sparc stations, with models ranging from LX, Sparc 4 to Ultra 1. The total
computational time in this setting was about 100 hours. Other setups with fewer
computers equipped with stronger processors have been performed with similar
results. In the sections to come, we will give an overview of the program’s global
structure and the computations carried out.

5.1. Fundamental Classes and Computational Structure

Let us begin by explaining how we represent data in the program. First, we select
our return plane6. In our case, it was chosen to be6 = {x ∈ R3: x3 = 27}. This
is the usual choice for the classical parameter values(σ, β, %) = (10, 8

3, 28). Note
that the plane{x ∈ R3: x3 = % − 1} contains the two symmetric fixed pointsC±

mentioned in Section 1.1. Next, we restrict the class ofadmissibleinitial rectangles
to the ones that are representable in the following form:

R(0) = 2−P ∗ [u − 1, u + 1] × [v − 1, v + 1] (u, v, P ∈ Z).

We are now assuming that all rectangles lie in the plane6. Not only does this
allow us to represent initial rectangles in a very compact way:R(0) ∼ 〈u, v, P〉,
we also have a very restricted number of rectangles (grids) to deal with later, when
we will be following orbits under the return map.

The valueP = 8 is used for the computations at hand. Also, we exclusively use
odd integers for the grid coordinatesu andv. This makes the admissible rectangles
nonoverlapping.

Once an initial rectangle has entered the program it is converted to a degenerate
box which, in turn, is represented as the cross product of three intervals, one of
them having zero diameter. Every initial box comes equipped with a cone, which
is represented as the two angles its boundary vectors make with the positivex1-
axis. The initial box and cone are parts of a larger structure called aparcel. A
parcel contains all the information we need to perform the flowing procedures
described in Section 4. The parcel structure (which really is a C++ class) contains
the following elements:

class parcel
{

BOX box; // The coordinates of all the
// variables.

INTERVAL angles; // The boundary angles of the cone.
INTERVAL expansion; // The enclosure of the expansion.
short trvl; // The transversal coordinate:

// 1,...,DIM.
short sign; // The sign of the flow : - 1 or + 1.
INTERVAL time; // The "flow time" variable.
short message; // Any message that needs to be

// passed on.
};
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Once all the elements of the parcel are defined, the variablemax size is given
an appropriate value, depending on the location of the initial rectangle. Recall
that this variable determines the maximal diameter a box may attain before being
partitioned into small pieces.

Next, we set the global stopping conditions. These make sure that we flow the
initial parcel all the way back to6 as illustrated in Figure 2. This information
is stored in the variableglob stop param . We are now all set to call the core
function described in Section 4 that computes the return of the initial parcel:

Flow The Parcel(current pcl, Return List, glob stop param,

max size);

Here,Return List is a whole collection of parcels representing the return of the
initial parcel.

5.2. The Initial Data

Let us recall our candidate for the trapping regionN. This set consists of two
disjoint branches,N− andN+, each made up of admissible rectangles belonging
to the return plane6. We will call these small rectanglesN±

i , and write

N = N− ∪ N+ =
(

n0⋃
i =1

N−
i

)
∪
(

n0⋃
i =1

N+
i

)
.

The two branches ofN have the same symmetry as the Lorenz equations, i.e.,
N+

i = S(N−
i ), whereS(x1, x2, x3) = (−x1, −x2, x3). Thanks to this symmetry,

we only have to perform the computations on one branch ofN. When it is not
relevant which branch we are considering, we sometimes omit the± labeling of
the small rectangles. For quantifying the hyperbolic properties of the return map,
each initial rectangleNi comes with a coneC([αi ]), where we use the notation

C([α]) = {v ∈ R2: v∠(0, 1) mod 180∈ [α]}.
Initially, the candidate for the trapping regionN consists of just one seed element,
situated in the upper branch. It is represented as〈u, v, P〉 = 〈1255, 727, 8〉, and
its associated cone is spanned between the angles 0 and 10 (degrees). In the next
section, we shall see how the program modifiesN by gradually adding elements to
it. The cones are also subject to modification as the program adds more elements
to the the trapping region.

5.3. Forward Invariance

As described in Section 4, the program computesC0 andC1 information about the
return of the rectangles. TheC0 information gives us rigorous bounds on the entire
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orbit of an initial rectangle. In particular, given anyNi , the program produces a set
of overlapping rectangles{Qi, j }k(i )

j =1 whose union strictly contains the return ofNi :

R(Ni ) ⊂
k(i )⋃
j =1

Qi, j .

Note that, although we demand that the initial rectangles are admissible, the rect-
anglesQi, j are generally not. By simply adding any admissible rectangle that has
nonzero intersection with one of theQi, j ’s, and which is already not a member of
N, we ensure thatR(Ni \0) ⊂ N. When we have gone through the whole list of
elements ofN, and no more elements need to be added, we clearly have proved
that R(N\0) ⊂ N, and thus that the return map is well defined (in the sense of
the geometric model) on the whole trapping regionN.

Turning to the cone field, recall that each initial rectangleNi comes with a cone
C([αi ]). TheC1 information provides us withk(i ) new conesC([βi, j ]) associated
with the returnsQi, j , j = 1, . . . , k(i ). If a Qi, j intersects an elementNk not
already belonging toN, we simply addNk to N and equip it with the cone of
Qi, j , i.e.,C([βi, j ]). If, on the other hand,Qi, j intersects an elementNk already
belonging toN, then we check ifC([βi, j ]) ⊆ C([αk]). If this is the case, we do
not need to take any action. If, however,C([βi, j ]) * C([αk]), we must widen the
cone associated withNk so that it contains the hull of both cones. If, furthermore,
theC0 andC1 information forNk has already been computed, we must recompute
this information forNk with its wider cone.

Again, when we have gone through the whole list of elements ofN, and no
more elements need to be added or recomputed, we clearly have proved that

R(Ni ) ∩ Nk 6= ∅ ⇒ DR(Ni ) · C([αi ]) ⊂ C([αk]).

Since this inclusion holds for all elements ofN, we have proved the existence of a
forward invariant cone field. This condition was satisfied withn0 = 7260 for our
initial seed.

A short remark is in order here: Since most elements ofN have several preim-
ages, it is highly unlikely that we wouldnot have to recompute due to the cone
being widened. Therefore, when a new element is added toN, we modify its asso-
ciated cone and make it wider than strictly necessary. To be more precise, we first
widen the cone by a factor of 1.5. If the cone opening is still less than 5 degrees,
we widen it to an opening of 5 degrees. If an already existing element needs to
be recomputed due to cone overflow, we also take the new cone to be wider than
strictly necessary.

5.4. Expansion Estimates

We now turn to the question of expansion. As described in Section 4.8, the compu-
tations carried out to prove forward invariance also provide us with an enclosure
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of the expansion of tangent vectors belonging to the initial cone: eachQi, j is
associated with an interval [εi, j ] containing the range of the expansion a vector
starting withinC([αi ]) can be subjected to. As we are primarily concerned with
theminimalexpansion a vector may have, we simply take

Ei = min{εi, j : j = 1, . . . , k(i )}

to be the minimal expansion estimate associated with all tangent vectors inC([αi ]).
Each element of the trapping region will also have a correspondingpreexpansion

estimateE (−1)
i (which isnot the reciprocal ofEi ). This is defined as follows:

E (−1)
k = min{εi, j : Qi, j ∩ Nk 6= ∅}.

Note that the returning elementsQi, j are to be taken over all intersecting images
R(Ni ) ∩ Nk 6= ∅. Just as in the section above, this estimate will thus be modified
during the computations of the trapping region.

Much to our surprise, we found regions inN which were contracted in all
directions underR. In view of the geometric model, which is everywhere expanding
in the unstable cones, this was not anticipated. We prove, however, that all tangent
vectors within the cone field areeventuallyexpanded underDR. More precisely,
given any orbitx0, x1, . . ., wherexj = Rj (x0), we can divide it into nonoverlapping
pieces [x0, . . . , xk0], [xk0+1, . . . , xk1], . . . where all but the first piece accumulate
an expansion factor greater than 2.79. The fact that this number is greater than 2
is relevant when proving transitivity of the attracting set, see Section 2.4. We also
show thatki +1 − ki ≤ 31, which gives a very crude lower estimate of the positive
Lyapunov exponent ofR:

lim inf
n→∞

1

n
log(min{|DRn(x)v|: v ∈ C, |v| = 1}) ≥ 31

√
2.79 > 1.033.

5.4.1. Getting Oriented. Before we prove these facts, let us pause for a moment,
and consider Figure 12. We will use this illustration as a dynamic road map. First,
note that3 consists of two main branches (upper and lower). Next, note that each
branch is split in two by the line0 = Ws(0) ∩ 6. This gives us four naturally
defined regions, and we will refer to these asA1, . . . , A4, where the labeling is
analogous to that of quadrants. The dynamics ofR is now easy to describe: any
trajectory starting inA1 tends to the left, and entersA2 after a finite number of
iterates. A trajectory starting inA2, however, must immediately go to eitherA3

or A4. Using the symmetry of the Lorenz equations, we end up with the diagram
illustrated in Figure 11.

Of course, we are deliberately ignoring the preimages of0. These points have
a finite number of iterates before hitting0 and vanishing.

Let us now resume our discussion about the contracting regions. There is one
such region in eachAi , and they are situated as follows: inA1, the right-most part
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A

A A

A4

12

3

Fig. 11. The simplified dynamics of the return mapR.

Fig. 12. An approximation of3 with the most contracting directions for one iterate ofR. The (almost)
straight line cutting across the two branches of3 is the intersection between the stable manifold of the
origin and the return plane. Note the close tangencies between the extreme tips of the attractor and the
contracting directions. The bounding box is [−6, 6] × [−6, 6] × {27}.
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(x1 > 2.820) is contracting. The strongest contraction7 occurs to the far right, and
is roughly a factor of 0.6804. All trajectories travel to the left inA1, and thereby
tend to the expanding region ofA1. The contracting region inA2 is situated to
the left (x1 < −0.5937), and the strongest contraction is no less than by a factor
of 0.1186. This is quite a strong contraction rate, mostly due to the small angle
between the attractor and the stable direction, see Figure 12. As always, these
numbers should not be taken as absolute facts: they only reflect the outcome of
our computations. Indeed, with higher accuracy, it is possible to get the expansion
estimates for the region mentioned inA1 to be almost one. The left-most region
mentioned inA2, however, does not seem to rise much when the accuracy is
increased. This is expected, as there is nothing we can do about the close tangency
present.

As the geometric model assumes that the attractor is virtually perpendicular
to the stable directions, the problem of close tangencies is never discussed in the
literature. It is, however, a serious obstruction that must be overcome to prove that
there exists an expanding direction. Indeed, by increasing the parameterr slightly,
the attractor appears to become tangent to the stable directions, and then there is
no hope of saving the robust persistence of the attractor, see [11] and [10].

We are saved by the fact that orbits entering the outer-most parts ofA2 or A4

have just been very close to the fixed point. Recall that the expansion is very
large (unbounded, in fact) in a neighborhood of the origin. Thus, before we enter
a strongly contracting region, we have hopefully already precompensated for the
coming contraction. We prove that this indeed is the case by confirming that the
productE (−1)

i Ei is always large.

5.4.2. Forward Iterates and Accumulated Expansion. Let us begin this section
by introducing some notation: Let [R](Ni ) denote the computed return ofNi , and
let 〈R〉(Ni ) denote the set of admissible rectangles ofN that intersect [R](Ni ),
i.e.,

[R](Ni ) =
k(i )⋃
j =1

Qi, j and 〈R〉(Ni ) = {Nk: Nk ∩ [R](Ni ) 6= ∅}.

Note that〈R〉 takes the set of admissible rectangles into itself. Therefore, we may
consider higher iterates,〈R2〉, 〈R3〉, . . ., by defining

〈Rn〉(Ni ) = 〈R〉(〈Rn−1〉(Ni )),

where〈R0〉(Ni ) = Ni . Thus, for any initial pointx0 ∈ Ni , we haveRk(x0) ∈
〈Rk〉(Ni ) for k = 0, 1 . . .. With each iterate, we can now also associate a lower
expansion estimate

E (k)
i = min{Ej : Nj ∈ 〈Rk〉(Ni )}.

7 When we talk about contraction and expansion rates, we always mean the rates restricted to the
unstable cone field.



110 W. Tucker

Therefore any tangent vectorv ∈ C([αi ]) following the orbit of an initial point
x0 ∈ Ni will satisfy

|DRn(x0)v| ≥ |v|
n−1∏
k=0

E (k)
i .

We will now prove that the expansion along orbits inN grows exponentially
with the number of iterates. First, we will coarsen the set of admissible rectangles
making up the trapping regionN. This is done by considering one branch ofN
at a time, and grouping all rectangles that have the sameu value into one larger
rectangle. This makes the setN very similar to a one-dimensional set, which
clarifies much of the arguments to come. We keep the same notation by also
denoting these new (and larger) elements ofN by N±

i .
SinceN is a trapping region with a forward invariant cone field, it is foliated by

stable leaves. Let̀be any leaf of the foliation, and consider the set of points inN
between (and including)̀and its image under the return mapR(`). We call such
a set afundamental domainfor R. An important property of such a set is that an
orbit cannot cross a fundamental domain without having an iterate in it. Of course
this property also holds for any set containing a fundamental domain.

We will produce a setF such that the following proposition holds:

Proposition 5.1. There exists a set F⊂ N satisfying:

(1) F contains a fundamental domain;
(2) F contains the leaves0 ∩ N;
(3) any orbit with x0 ∈ F ,eventually leaving F,satisfies for every return xn ∈ F :

min{|DRn(x0)v|: v ∈ C} > 2|v|;

(4) any orbit completely contained in F satisfies

min{|DRn(x0)v|: v ∈ C} > (
√

2)n|v|.

In particular, statement (3) is true for thefirst return toF . Therefore, a small
line segment must more than double its length between two consecutive slicings
over0 = 6 ∩ Ws(0).

Once more, our claims will be proved by a computer program,expansion.cc .
The underlying algorithm can be described as follows:

Algorithm 3.
Enter F
SetF̃ = 〈R〉(F) ∩ (N\F)

For each Ni ∈ F̃ {
Setacc exp = E (−1)

i
Insert Ni in Stack
while Stack is not empty{

For each Nk in Stack {
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if Nk ∈ F {
if acc exp > 2

Remove Nk from Stack
else

Signal an error
}

}
Setlocal exp = min{Ej : Nj ∈ Stack }
SetStack = 〈R〉(Stack )

Setacc exp = local exp ∗ acc exp
}

}

Note that we start computing orbits from a setF̃ which is the image ofF minus
any overlaps withF itself. This is a technical trick motivated by the fact that
the preexpansion estimates inF̃ are much better than the corresponding forward
estimates inF .

The reason we may “trim” away the overlapping elementsF ∩〈R〉(F) is seen as
follows: these points will either eventually leave the setF or remain inF forever.
In the first case, we use the fact that the expansion inF is greater than one. This
is verified by the program by checking that min{Ei : Ni ∈ F} > 1. Therefore we
may consider these points to be taken care of by the main algorithm. In the second
case, we simply verify that the points satisfy min{|DR2(x0)v|: v ∈ C} > 2|v|.
This is done by the program by checking that allNi ∈ F with 〈R〉(N±

i )∩ N∓
i 6= ∅

satisfyEi >
√

2.
The program also verifies thatF really contains a fundamental domain. This is

easily done by checking that the the right-most boundary elementN+
i of the upper

branch part ofF , calledF+, is mapped intoF+. Therefore, sinceF+ is a union
of adjacent rectangles, any element to the right ofN+

i must also have an iterate in
F+.

Finally, the fact that the program does not signal an error proves that all points
that leaveF have accumulated an expansion factor of at least 2 on their first return
to F . The fact that the program terminates proves that all points that leaveF really
do return toF .

The program was executed withF+ selected to be the union of all rectangles
with u values in [−128, 512]. This corresponds to the set of rectangles inN+

whosex1 coordinates belong to [− 1
2, 2]. The smallest accumulated expansion for

orbits returning toF was found to be 2.7914; the smallest expansion factor for
orbits confined toF was found to be 1.7526; the minimal expansion inF was
found to be 1.06792. Furthermore, the longest number of iterates spent outside
F was found to be 30. The time required for these computations was a couple of
minutes on averyslow computer.

This completes the proof of Proposition 5.1, and also provides us with an algo-
rithm for dividing an orbit into nonoverlapping pieces [x0, . . . , xk0], [xk0+1, . . . ,

xk1], . . . where all but the first piece accumulate an expansion factor greater than 2.
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A. Chaos Theory for Pedestrians

In this section we will outline some basic definitions used in the theory of dynamical
systems. The presentation is based mainly on [16], [18], and [24].

A.1. Hyperbolicity

Consider aCk diffeomorphism (k ≥ 1) of a compact manifold to itself,f : M →
M . Theforward orbitof a pointp ∈ M under f is the set{ f i (p)}∞i =0, where f i is
f composed with itselfi times. A pointp is aperiodic point of period kprovided
f k(p) = p and f i (p) 6= p for 0 < i < k. If p has period one, we call it afixed
point of f . We say thatp is a hyperbolic fixed pointof f if f (p) = p and if
Df p has no eigenvalues on the unit circle. According to standard results in spectral
theory, there then exists a splitting of the tangent spaceTpM = Es

p ⊕ Eu
p, where

the invariant subspacesEs
p andEu

p correspond to the spectrum inside and outside
the unit circle, respectively. This means that we can find constantsσ ∈ (0, 1) and
C > 0 such that for alln ∈ N:

‖Df n
p|Es

p‖ ≤ Cσ n and ‖Df −n
p |Eu

p‖ ≤ Cσ n

for some Riemannian norm‖ · ‖ on TpM . The subspacesEs
p andEu

p are called the
stableandunstable subspacesfor the fixed pointp. Given a hyperbolic fixed point
p, we define its stable and unstable manifolds

Ws(p) =
{

x ∈ M : lim
i →∞

f i (x) = p

}
,

Wu(p) =
{

x ∈ M : lim
i →∞

f −i (x) = p

}
.

These sets are injectively immersedCk submanifolds ofM , and have the same
dimensions as their corresponding linear subspaces.

We can extend these definitions to the case whenp is a periodic point of period
k simply by replacingf by f k. Also, we can extend the notion of a hyperbolic
fixed point to a whole set.

Consider a compact set3 ⊂ M which is invariant underf , i.e., f (3) = 3.
We say that3 is ahyperbolic setfor f if there exists a splittingTx M = Es

x ⊕ Eu
x

for eachx ∈ 3, such that:

1. Es
x andEu

x vary continuously withx;
2. the splitting is invariant, i.e.,Df x · Es

x = Es
f (x) andDf x · Eu

x = Eu
f (x);

3. there are constantsσ ∈ (0, 1) andC > 0 such that for alln ∈ N:

‖Df n
x|Es

x‖ ≤ Cσ n and ‖Df −n
x |Eu

x‖ ≤ Cσ n.
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A.2. Robustness

In practice, it is impossible to find explicitly the invariant set3, not to mention
the splittingT3M = Es ⊕ Eu, except in the most trivial cases. Fortunately, we
shall soon see that hyperbolicity is a robust property, and one can thus make do
with pretty crude approximations of both3 and the subbundles of the splitting.
By robust, we mean that the defining hypotheses are open in theC1-topology.

A compact regionN ⊂ M is called atrapping regionfor f provided f (N) ⊂
N◦, whereN◦ denotes the interior ofN. Given such a set, we can construct the
maximal invariant setof N:

3 =
∞⋂

i =0

f i (N).

It is clear that any other invariant set inN must be a proper subset of3. Seeing
that the sequence{ f i (N)}∞i =0 is nested, we can approximate3 by considering high
iterates ofN. Any property valid in an open neighborhood of3 will then also hold
for f k(N) if we takek sufficiently large. Seeing that the image of a trapping region
is also a trapping region, we may assume thatk = 1 by takingN close to3.

Let TN M = Fs ⊕ Fu be a continuous splitting approximatingEs ⊕ Eu. Given
α ≥ 0 we define thestableandunstable cone fields

Cs
x(α) = {v1 + v2 ∈ Fs

x ⊕ Fu
x: |v2| ≤ α|v1|},

Cu
x (α) = {v1 + v2 ∈ Fs

x ⊕ Fu
x: |v2| ≥ α|v1|}.

The following theorem provides a practical way of proving that a set is hyper-
bolic:

Theorem A.1. Let N be a trapping region for a C1 diffeomorphism f. Suppose
that there exists a continuous splitting TN M = Fs⊕Fu,and that there are constants
α ≥ 0, C > 0, andσ > 1 so that

Df −1
x · Cs

x(α) ⊂ Cs
f −1(x)

(α) and Dfx · Cu
x (α) ⊂ Cu

f (x)(α)

and

‖Df −n
x |Cs

x(α)‖ ≥ Cσ n and ‖Df n
x|Cu

x (α)‖ ≥ Cσ n

for every x∈ N. Then3 = ⋂∞
i =0 f i (N) is hyperbolic for f.

It is clear that the hypotheses of this theorem are open in theC1-topology, which
proves that hyperbolicity is a robust property. In particular, ifg is C1 close to f ,
then3g = ⋂∞

i =0 gi (N) is hyperbolic forg.
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Fig. 13. An attracting set which is not an attractor.

A.3. Strange Attractors

We will fix the following notation:8 A compact, invariant set3 f is calledattracting
if there exists an open neighborhoodU of 3 f such that

⋂∞
i =0 f i (U ) = 3 f . The

largest suchU is called the basin of attraction for3 f , and is denotedB(3 f ). In
particular, the maximal invariant set of any trapping region is an attracting set.
Even so, it may be the case that most points inB(3 f ) tend to a much smaller
subset of3 f . As an example, consider the diffeomorphism with a phase portrait,
as illustrated in Figure 13.

Although the whole intervalI between the two filled fixed points is attracting
with B(I ) = R2, it is clear that most orbits tend to either one of the extreme points
of I .

In order to avoid this kind of situation we restrict our attention to a subset
of the attracting sets. Anattractor is an attracting set which contains a dense
orbit: 3 f = ⋃∞

i =0 f i (x) for somex ∈ 3 f . This means that3 f is minimal in
the sense that no proper subset of3 f is attracting. Clearly, the attracting setI in
our example is not an attractor whereas the two extreme fixed points are. There
is, however, nothing “chaotic” about the asymptotic behavior of points tending to
these attractors, and the situation is therefore dynamically uninteresting.

From this point of view we would like to be able to distinguish attractors
exhibiting interesting dynamical properties from those which do not. For this
purpose, an attractor is calledstrangeif for almost all pairs of different points in
B(3 f ), their forward orbits eventually separate by at least a constantδ (depending
only on3 f ). Here, almost all pairs means with probability one inB(3 f )× B(3 f )

with respect to Lebesgue measure. These attractors are sometimes calledchaoticor
sensitiveseeing that, no matter how accurately we measure the initial conditions,
we will eventually accumulate an error of sizeδ.

Sometimes, we can also say something about the speed at which nearby orbits
separate. Indeed, if an attractor3 f is hyperbolic with a nontrivial unstable tangent
bundle, we clearly have exponential divergence of almost all nearby orbits. Such

8 The reader should be aware of that there are several different notions of a strange attractor, see
[13]. We choose to use very strong (but natural) requirements seeing that the Lorenz attractor satisfies
almost all existing definitions of a strange attractor.
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Σ

Fig. 14. The surface6 and two trajectories.

an attractor is callednontrivial hyperbolicand, apart from being strange, it is also
robust.

A.4. Flows and Their Return Maps

We will now describe a useful relation between discrete-time (maps) and continuous-
time (flows) dynamical systems. Consider the system of ordinary differential equa-
tions

ẋ = v(x), (45)

wherex ∈ M and where the vector fieldv is a Cr function,v: M → TM. Let
ϕ(x, t) denote the flow of (45), i.e.,

d

dt
ϕ(x, t) = v(ϕ(x, t)),

and suppose that the system (45) has a periodic solution of periodT > 0, containing
the pointx0, i.e.,ϕ(x0, T + t) = ϕ(x0, t) for all t ∈ R. Suppose that dim(M) = n,
and let6 be an(n − 1)-dimensional surface transverse to the vector field atx0,
see Figure 14. By this, we mean that〈v(x0)〉 ⊕ Tx06 = Tx0 M . Then we can find
an open setU ⊂ 6 containingx0 such that for allx ∈ U , there exists aτ(x) close
to T such thatϕ(x, τ (x)) ∈ 6.

The pointϕ(x, τ (x)) is called thefirst return of x, and the mapR which
associates a point with its first return is called thereturn map: R(x) = ϕ(x, τ (x)).
Note that, by construction, we haveτ(x0) = T and R(x0) = x0. Thus a fixed
point of R corresponds to a periodic orbit of (45), and a periodic point of periodk
corresponds to a periodic orbit of (45) piercing6 k times before closing.

The following theorem states that the return map is as smooth as the vector
field:

Theorem A.2. Under these conditions, and for sufficiently small U, the return
map is a Cr diffeomorphism of U onto a subset of6.
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This means that the partial derivatives ofR are well defined. Once we have
the return map and its derivative, we can employ the machinery described in the
previous sections: we say that a periodic orbit of (45),γ , is hyperbolic if any
member in6 ∩ γ is a hyperbolic periodic point for return mapR. Likewise, we
say that a setA, which is flow-invariant, is hyperbolic if its intersection with6
is a hyperbolic set for theR. All definitions concerning attractors can be carried
over to flows by substitutingf i , i ∈ N for ϕ(·, t), t ≥ 0.
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