Found. Comput. Math. (2002) 2:53-117

© 2002 SFOCM FOUNDATIONS orF
DOI: 10.10075102080010018 COMPUTATIONAL
MATHEMATICS

‘The Journal of the Society for the F ions of C

A Rigorous ODE Solver and Smale’s 14th Problem

Warwick Tucker

Department of Mathematics
Malott Hall

Cornell University

Ithaca, NY 14853-4201, USA
warwick@math.cornell.edu

Abstract. We present an algorithm for computing rigorous solutions to a large
class of ordinary differential equations. The main algorithm is based on a partitioning
process and the use of interval arithmetic with directed rounding. As an application,
we prove that the Lorenz equations support a strange attractor, as conjectured by
Edward Lorenz in 1963. This conjecture was recently listed by Steven Smale as one
of several challenging problems for the twenty-first century. We also prove that the
attractor is robust, i.e., it persists under small perturbations of the coefficients in the
underlying differential equations. Furthermore, the flow of the equations admits a
unique SRB measure, whose support coincides with the attractor. The proof is based
on a combination of normal form theory and rigorous computations.

1. Introduction

Here we give a brief description of, and the background to, the problem concerning
the existence of the Lorenz attractor. For precise definitions, we refer the reader to
the Appendix. A rather comprehensive overview of this problem can be found in
Collin Sparrow’s book23].
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1.1. Background to the Problem

The following nonlinear system of differential equations:

X1 = —0X1+ oXo,
X2 = 0X1— Xz — X1X3, (1)
X3 = —PX3+ X1Xz,

was introduced in 1963 by Edward Lorenz, s PAs a crude model of atmo-
spheric dynamics, these equations led Lorenz to the discovery of sensitive de-
pendence of initial conditions—an essential factor of unpredictability in many
systems. Numerical simulations for an open neighborhood of the classical param-
eter valuesr = 10,8 = %, andp = 28 suggest that almost all points in phase
space tend to a strange attractdhe-Lorenz attractar

We first note that the system (1) (and thus its solution) is invariant under the
transformatiorS(xy, Xz, X3) = (—X1, —X2, X3). This means that any trajectory that
is not itself invariant unde$ must have a “twin trajectory”.

Foro > 1, there are three fixed points: the origin and the two “twin points”

C*=(xV/Blo—1,+/Blo—1),0- 1.

For the parameter values we are considef@ighave a pair of complex eigenvalues
with positive real part, and one real, negative eigenvalue. The origin is a saddle
point with two negative and one positive eigenvalue satisfying

0< —)»3 < )\.1 < —)\2.

Thus, the stable manifold of the origii*(0) is two-dimensional, and the unstable
manifold of the originW"(0) is one-dimensional.
It is also worth mentioning that the flow contracts volumes at a significant rate.
As the divergence of the vector field is given by
0%y  OXp  0X3
T R T S 1),
8x1+8x2+8x3 @+f+1)

we see that the volume of a solid at titnean be expressed as
V(t) — V(O)ef(a'Jrﬂle)t ~ V(0)9713'7t,

for the classical parameter values. This means that the flow contracts volumes
almost by a factor obne millionper time unit, which is quite extreme.

There appears to exist a forward invariant opertsebntaining the origin but
bounded away fron©*. The sel is a torus of genus two, with its holes centered
around the two excluded fixed points. If we ledenote the flow of (1), we can
form the maximal invariant set

A=(NeWU.b.

t>0
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Fig. 1. A part of the unstable manifold of the origin.

Due to the flow being dissipative, the attracting gemust have zero volume.

It must also contain the unstable manifold of the origifi(0), which seems to
spiral aroundC® in a very complicated, nonperiodic fashion, see Figure 1. In
particular,.A contains the origin itself, and therefore the flow dncannot have

a hyperbolic structure. The reason is that fixed points of the vector field generate
discontinuities for the return maps, and as a consequence, the hyperbolic splitting
is not continuous. Apart from this, the attracting set appears to have a strong
hyperbolic structure as described below.

As it was very difficult to extract rigorous information about the attractingdset
from the differential equations themselvegeometric modedf the Lorenz flow
was introduced by John Guckenheimer in the late 1960s 43€€His model has
been extensively studied, and it is well understood today, see,®,42%, [23],

[17], [19], [20]. Oddly enough, the original equations introduced by Lorenz have
remained a puzzle. A few computer-assisted proofs, however, have quite recently
been announced, se8],[[6], [12]. These papers deal with subsets.4fwhich

are not attracting, and therefore only concern a set of trajectories having measure
zero. Despite this, it has always been widely believed that the flow of the Lorenz
equations has the same qualitative behavior as its geometric model.

The geometric model is made up of two pieces: one piece dealing with all
trajectories passing near the origin, and one piece taking care of the global aspects
of the flow. We consider a flow with a fixed point at the origin with eigenvalues just
as the Lorenz flow. We also assume that there exists a unit reclangléxs = 1}
which is transversal to the flow, such that the induced return Riapts onX as
illustrated in Figure 2.

Note thatR is not defined on the linE = X N W*3(0): these points tend to the
origin, and never return ta. We will assume thaR(Z\I') C £, to ensure that the
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Fig. 2. The return map acting oB.

flow has an attracting set with a large basin of attraction. We can now decompose
the return mapR = D o P, whereD is a diffeomorphism corresponding to the
flow outside a unit cube centered at the origin, &describes the flow inside the
cube. By assuming that the flow is linear in the cube, we can explicitlyRind

P (X1, X2, 1) = (SQN(X1), Xa|Xq| *2/*1, |xq| ~*e/41),

Seeing that-13/11 < 1 < —Xi2/A1, we have very strong expansion in tke
direction, and an even stronger contraction inxheirection:
. 0P3 _ hal/ig—1 . 0P _ 2ol /g

o = O(jxa|*+~h  and A A = O(Ixq|"21/7).
The model assumes that the flow outside the cube preserves divection, i.e.,
that D takes the horizontal line&t) = (+1,t, ) into linesé(t) = (&,t,1),t €
[—1, 1]. This ensures that the contracting direction is preserved, and it also implies
that the first component of the return map is independerg.cfherefore, we can
write R = (Ry(X1), Ra(Xq, X2)). Further assumptions are theR,/ox, < u < 1
andR; (x) > V2 forallxy, X, € . The return map now has a hyperbolic splitting
ES @ EY, with E§ = T, and thestable leaveg(t) foliate . Since all points on
a stable leaf share a common future, we may form an equivalence class of such
points. By taking the quotient, we get an interval nfafnote thatf = R;), which
is assumed to satisfy the following conditions:

1. f has a unigue singularity at 0 with(0~) = 1 and f (0") = —1,
2. f:[-1, 1IN0} = [-1,1];
3. fisClon[-1,1]\{0} and f'(x) > +/2 for x # 0.

This suffices to prove that almost all points ir1,1] have dense orbits undér

It is also clear thaff exhibits exponential sensitivity. By pulling the information
back to the original return map, it is possible to prove that the attracting set of
the model flow is a generalized nontrivial hyperbolic attractor (also known as a
singular hyperbolic attractor).
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Before we close this section, let us make some simplifying remarks. By a linear
change of variables, the Lorenz equations can be put in their Jordan normal form
X = AX+ F(X):

X1 = A1Xg — Ki(Xy + X2)Xs,
Xo = AoXo + K1 (X1 + X2)Xa, (2)
X3 = AsXz + (X1 + X2) (KoX1 + K3Xp).

When we want to be very brief, we use the notatios f (x), where f (x) is the
right-hand side of (2). Note that the parametgrs,, andks, and the eigenvalues

A1, A2, and iz only depend on the parametersg, ande appearing in (1). By
inserting the classical parameter values, we get the following approximate system:

X1 = 11.8x; — 0.29(X1 + X2)X3,
Xo = —22.8%Xy + 0.29(X1 + X2)X3,
X3 = —2.67%3 + (X1 + X2) (2.2%1 — 1.3%0).

From now on, we will always refer to (2) as the Lorenz equations.

1.2. The Main Result

In a recent issue of thathematical Intelligencethe Fields medalist Steven
Smale presented a list of challenging problems for the twenty-first century, see
[22). Problem Number 14 reads as follows:

Is the dynamics of the ordinary differential equations of Lorenz that of the
geometric Lorenz attractor of William&uckenheimeand York&

A historical remark is perhaps in order here. James Yorkensémsvolved in
the actual work on the geometric attractors. He should, however, be credited for
introducing Lorenz’s original paper to the mathematical community. Apparently,
Yorke had written his name on his copy of the paper, and when he faxed it to
colleagues, his name became associated with the Lorenz attractor. Yorke also
published several papers on the matter, see, 4., [

As an affirmative answer to Smale’s question, we are now ready to state the
sole theorem of this paper:

Main Theorem. For the classical parameter valugthe Lorenz equations sup-
port a robust strange attractord. Furthermore the flow admits a unique SRB
measureu, with suppu,) = A.

In fact, we prove that the attracting set is a singular hyperbolic attractor. AlImost
all nearby points separate exponentially fast until they end up on opposite sides of
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the attractor. This means that a tiny blob of initial values rapidly smears out over
the entire attractor, as observed in numerical experiments.

The existence of the SRB measure is equivalent to saying that, for Lebesgue
almost all points in the basin of attracti@{.4), and for allh € C°(B(A4), R), the
time and space averages coincide

. 1 (7
Jim 2 /O npox. ) dt= [ hoodu,.

wherep,, is ang-invariant probability measure.

It is perhaps worth pointing out that the Lorenz attractor does not act quite as
the geometric model predicts. The latter can be reduced to an interval map which
is everywhere expanding. This is not the case for the Lorenz attractor: there are
large regions im\ that are contracted in all directions under the return map. Such
regions, however, are precompensated for by iterates having a large associated
expansion. This corresponds to the interval map being eventually expanding, and
does not lead to any different qualitative long-time behavior.

Apart from this, the Lorenz attractor is just as the geometric model predicts:
it contains the origin, and thus has a very complicated Cantor book structure as
described in25].

2. Outline of the Approach

In this section, we will briefly describe the main phases of our approach. Basically,
it can be broken down into two main sections: one global part, which involves
rigorous computations, and one local part, which is based on normal form theory.
A more detailed description of all necessary steps will be given in subsequent
sections.

The novelty of the method of proof lies in that, rather than producing a tra-
ditional mathematical proof, we construct an algorithm which, if successfully
executed, proves the existence of the strange attractor. This algorithm is put into
effect via several C++ programs, all of which use interval arithmetic with di-
rected rounding, provided by the PROFIL/BIAS packa@?, The source codes
and initial data used in the proof are available from the journal’'s home page:
http://link.springer-ny.com/link/service/journals/10208/
index.htm

2.1. Goals

In all attempts to prove Lorenz’s conjecture, one main obstruction has been to
gain useful global information about the flow far away from the origin. Locally,
the evolution of a trajectory near a fixed point can, in principle, be examined in
detail using standard linearization techniques. Outside a small neighborhood of
the fixed point, however, we are usually completely at a loss. This is exactly the



A Rigorous ODE Solver and Smale’s 14th Problem 59

situation that led Guckenheimer and Williams to construct the geometric Lorenz
flows, which weredefinedto have exactly those global properties that were not
easily attained from the original equations.

The global properties we will prove are the following:

e The return mayR exists, and it is well defined in the sense of the geometric
model.

e There exists a compact subset of the return pldhe; X, such thatN\I"
is forward invariantunderR, i.e., R(N\I') c N. This ensures that the flow
has an attracting set with a large basin of attraction. We can then form a
cross-section of the attracting setN = = (.—, R"(N) = A. In particular,
A is an attracting set foR.

e On N, there exists a cone fieltiwhich is mapped strictly into itself bR,
i.e., forallx € N, DR(x) - €(X) C €(R(x)). The cones of are centered
along an approximation of, and each cone has an opening of at least 5

e The tangent vectors i@ are eventually expanded under the actiorD&t
there exist€C > 0 andA > 1 such that for alb € €(x), x € N, we have
IDR"(x)v| > CA"|v|,n > 0. Infact, the expansion is strong enough to ensure
that R is topologically transitive on\. This is equivalent to having a dense
orbit, and therefore proves thatis an attractor.

We will use these properties to prove thiafand thusA) carries a singular hyper-
bolic structure.

2.2. Normal Form Theory

As mentioned earlier, some regions of the return plane will flow close to the origin.
These regions consist of all points in a neighborhood of the intersection between
the stable manifold of the origin and the forward invariant set, see Figure 2.

Once a rectangle has flowed close to the origin, we interrupt the computations,
and introduce a close to identity change of coordindiés) = ¢ + ¢(¢). This
change of coordinates will deform the rectangle and its cone field slightly, but in
a controllable way. In the new coordinates, the vector field assumes a carefully
designed normal form, which is virtually linear (althoughitis crucial thatit need not
be completely linear). This permits us to estimate the evolution of the rectangle
and its cone field analytically, and thereby avoid the problem of having to use
computers. When changing back to the original coordinates, we once again deform
the out-going rectangle and its cone field, but still in a controllable fashion.

The change of coordinates is attained by a method developed by H. Roincar”
which, at first, seems fairly straightforward. Basically, we constpuébrmally
by choosing the desired normal form mentioned above. The question of conver-
gence, however, involves a small divisor problem, and is somewhat nontrivial.
Furthermore—in order to be able to interrupt the computations before the vec-
tor field has become so small that the numerical process breaks down—we need
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convergence on arelatively large neighborhood of the origin. This requires explicit
knowledge of a large number of coefficientsggfand thus forces us to perform
some rather involved induction-based proofs.

2.3. Rigorous Numerics

The trapping regiorN consists of two disjoint componentls,~ and N+, each
made up of several adjacent rectangles belonging to the return plage27
(= 0 —1). We will call these small rectanglédii, and write

N:N‘UN+=<QNi>U<QNﬁ>.

The two components dfl have the same symmetry as the Lorenz equations, i.e.,
Nﬁ = S(N/), whereS(xy, X2, X3) = (—X1, —X2, X3). Thanks to this symmetry,
we only have to perform the computations on one componeix.divhen it is

not relevant which component we are considering, we omititha&beling of the
small rectangles.

Dealing with oneN; at a time, we compute a pseudo-path that strictly contains
the flow of N;. The pseudo-paths are obtained by introducing several intermediate
return plane ®, which are eithek;x,-, X1 X3-, Or XoX3-planes. At each step, the
plane is chosen so that its normal directghas the same direction as the strongest
component of the flow}fi(x)| > |f;(xX)], ] = 1,2, 3. The initial rectangleN;
is flowed to the first plan&® by using an Euler method with rigorous error
estimates. In the planE™, we take the rectangular hull of the largest image of
N;, giving us a new starting rectangRY. This rectangle is then flowed B?
and so on. If a rectangi®® has grown too large it is partitioned into smaller
rectangles, which are then treated separately. This whole procedure is repeated
until we return tox from above, as illustrated in Figure 2. Due to the contracting
forces, the pseudo-return df will consist of many overlapping rectangl€y ;,

j =1,...,k(i), whose union strictly containR(N;).

The use of rectangles significantly simplifies the computations: when flowing
between two intermediate planB$?, = *+D | it is generically the corners ®®
that yield the largest rectangular h®I**V ¢ =&+ Thisfactallows us to reduce
the error analysis to small pieces®Bf¥, which greatly reduces the local errors.
With only finite precision, however, this property becomes “pseudo-generic”, and
has to be confirmed at every stage. The exceptional cases are treated slightly
differently.

Turning to the question concerning the cone field, we define the field by equip-
ping eachN; with an initial cone. Each cone is represented by the two angles
o, o its boundary vectorsi©®, v@ make with the positives;-axis. We then
use similar techniques as just described: when a rectangle has been flowed from
»® to =*+D we are provided with a box containing the path of the rectangle.
The algorithm also gives us upper and lower bounds on the flow time involved.
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By solving the nine equations governing the partial derivatives of the flow, we
obtain rigorous bounds on the evolution of the tangent vectors flowing through the
box. By translating the flowed vectors onto the intermediate pite”, and by
selecting (incorporating the errors) the pair of vectafs™?, v**1 making the
largest anglé k1 we ensure that the resulting cone contains allimages of tangent
vectors from the initial cone. At the return, each rectar@ig is thus equipped
with a cone represented, as above, by two ang‘(@sﬁifj, =1 ... k().

When computing the minimal expansion in each cone, we start with the widest
pair of vectorsu®, v® at each intermediate plare®, as described above. If
0*k+D < p®  the minimal expansioa® is attained on the boundary of the cone,
i.e.,e® is the smallest growth factor of the imagesudf, v®. If g&k+D ~ gk,
however, we must adjust this estimate by a factor which is quadratically close
to unity in 6**+1 . At the return, each rectangl®; ; is thus equipped with an
expansion estimat® ; = [To'g’ e{ﬁ), and&; = min; & ; gives an estimate for all
vectors of the cone associated with.

One major advantage of our numerical method is that we totally eliminate
the problem of having to control the global effects of rounding errors due to
the computer’s internal floating point representation. This is achieved by using
interval arithmetic with directed rounding. Each obj&cubjected to computation
is equipped with a maximal absolute eredg, and can thus be represented as a
productofinterval€+ Az = [E1—Ag,, E1+Ag]x - X[EBn—Agzg,, Ent+Ag,]

When performing any operation with such objects, we compute upper bounds on
the images oE; + Ag,, and lower bounds onthe imagesfyf—Ag,,i = 1,...,n.
Thisresultsinanew boiiAé, which strictly contains the exactimage®iAz.

To ensure that we have strict inclusion, we use directed rounding on the upper and
lower bounds.

As long as we do not flow close to a fixed point, the local return maps are well
defined diffeomorphisms, and the computer can handle all calculations. Some
rectangles, however, will approach the origin (which is a fixed point), and then the
computations must be interrupted, as discussed in the previous section.

2.4. Topological Transitivity and SRB Measures

Since the flow of (1) is uniformly volume-contracting and transversal ta finite
iterate of the return map is area-contracting oNl. This property together with
the existence of a forward invariant unstable cone field impliesRhadmits an
invariant stable foliation witlC1** leaves, se€l[g] or [7, §3]. The singular mag
induced by taking quotients along the stable leaves acts on an integvgt-a, aj,
and satisfies the following properties:

e The restriction off to[—a, 0) and(0, a]is of classC*™* with f'(x) > K > 0
forall x #£ 0.
e There exist > 0,1 > 1, such that f")’'(x) > CA" for alln > 0.
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e For any intervall C | there exist:n > 0 such thatf"(J) = 1, i.e., f is
locally eventually onto

The last property is not immediate, but can be proved by using Proposition 5.1,
see below.

It follows that f admits a unique finite SRB measyre with suppus) = 1.

From this measure it is possible to construct an SRB measuvéth supur) =
A for the return magR, and also an SRB measuyug for the flow, see ] or [24].

We will now prove thatf is locally eventually onto: the map is singular at the
origin sincerl itself is a stable leaf, and projects{i®. The discontinuity acts as a
razor blade, and can cut a passing line segment in half. If neither of the two halves
have doubled their lengths before returning@y they could be cut in half again,
and thus we could end up with loads of tiny shreds of the initial segment, all of
which continue to hi{0} until we are left with nothing but a fine dust.

By Proposition 5.1, however, this cannot happen. Any small segment that is
cut overI” will have expanded by more than a factor of 2 before returning to
I'. By always selecting the larger half, we get a sequence of longer and longer
segments. This will continue until one of them is mapped totally acrdsada-
mental domainin our particular situation, this means a union of adjacent rectangles
Fp = Ui”inl N; such that no orbit can cro$% without having at least one iterate
in Fp. Of course, any set containing a fundamental domain will also do. One such
example is the sdt used in Proposition 5.1.

When a segment stretches entirely across a fundamental domain, so will its
projection along the stable leaves. This means that the projection covers an interval
on the form Kk, f (x)]. This set is mapped onto the entire interVatithin a finite
number of iterates. It follows thait is locally eventually onto.

3. Local Theory

In this section we will construct the local change of variables which straightens

out the stable and unstable manifolds, and linearizes the flow on these. We will
also obtain estimates on the change of variables. For convenience, we will often
use the vector notatioh = (&1, &, £3) combined with the multi-index notation

§" = 1.

3.1. Flattening Out the Invariant Manifolds

In order that the stable and unstable manifolds should coincide with the coordinate
planes, itis necessary thatthese are invariant under the flow. To ensure this, we need
a change of variables which, in a small neighborhood of the origin, transforms the
Lorenz equations = At + F(£) into; = Az +G(¢), whereG = (Gy, Gy, Ga),
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satisfies the following conditions:
G1(0,¢2,83) =0 and G2(¢1,0,0) = G3(41,0,0) = 0.

In these new coordinates, the unstable manifold coincides with theis, and the
stable manifold coincides with thgcs-plane. However, this will not linearize the
flow on the invariant manifolds. For this, we need to impose the condition

Gi [S O({l) N O(;Z» 43) (I = 11 2» 3)

This simply means that if a poigtis close to the;-axis (the unstable manifold) or
the ¢,z3-plane (the stable manifold), then the perturbat@®() is linearly small,
ie.,

min{|z1], maxX{|cal, 1531} = Oe) = GO =0@)  (=1223).

However, we will need to do better than this: we actually want to flatten out
the invariant manifolds even more. Flatness of ondés given by requiring that
G € OP(¢1) N OP(82, ¢a), e,

min{|¢1], max{|¢al, s} = Oe) = [Gi©)=0E")  (=123).

To be able to talk about smallness, we need a norm to work with. We will work in
a complex neighborhood of the origin, and use the following notations:

lg] =maxX|gl: i =123} Il = supl fF@)I: 121 <r}.

Our Ansatz is to do the calculations with formal vector-valued polynomials. The
following proposition states that we obtain not only a formal change of variables,
but that the formal power series actually converges in a fixed neighborhood of the
origin.

Proposition 3.1. There exists a close to identity change of variajles ¢ +¢(¢)
with
r2
lellr < o r<1,

such that the Lorenz equatigris= At + F(£), are transformed into the normal
form¢ = Az + G(¢), where Q¢) € 019) N O¥(¢z,, £3), and satisfies
20

G|, <7-10°°
Gy < T3

Wl

Before getting involved in the proof of the proposition, we highlight some
important consequences of the statement.

Lemma 3.2. For anyp satisfyingd < p < 1, we have

IDell, < 2p.
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Proof. We use aclassical argumentin function theori(H) is a regular function
of a complex variable in the disk|z| < r where it satisfiesh(z)| < M, then for
|z| < p <r Cauchy’s integral formula gives

L1 [ hw)
h(z)_Zni/y(w—z)Zdw’

where the path of integration can be taken as the circle@ — z| =r — p. Since
the circle lies withinw| < r, this leads to the estimate

I (@)| < M/(r - p), 2| < p.
Now, givenw and¢ such thaiw| = 1 and|¢| = p, we define
h(2) = @i (&1 + w1z, &2 + w2z, {3 + w32).

For|z| <r—p,weclearly havgh(2)| < |l¢llr,andsdh’(2)| < ll¢ll;/(r —p—|z]).
In particular, forz = 0, we haveh/(0)| < |l¢|l;/(r — p). On the other hand, we
have

3

i
—(Owj
j; ilq J

by takingw; = sgndei/d¢j(¢)). Since|Dy|, = max|De(Q)w|: [¢| < p,
|lw| = 1}, we immediately have the following estimates|@¢||, for p <1 < 1:

Ih'(0)] =

N
=> o O

=1

2
r
el _

r—p 20t —p)

IDell, < 3

It is easy to see that the optimal bound is given by substitutifog 2p. Inserting
this value directly gives the result. O

We also get estimates for the norm of the inverse change of variables:

Lemma3.3. For|¢| <r < % the change of variables = ¢ + ¢(¢) has a
well-defined inverse = & + ¢ (&§) inthe ball || < =r — ||g||, satisfying

D],
Il < lgle, DYl < ——o—.
' ' "= 1—|Dgll

Proof.  Set®(¢) = ¢ + ¢(¢), ¥(§) = & + ¥ (§), and letD denote the ball
|z| < r. By Proposition 3.1, it is clear that(D) must contain a balD, centered
at the origin, and of radius =r — ||¢||;, See Figure 3.

Let ¢y, ¢o € D. Then we have

[P (81) — @(&2)| = 61 — L2l — l@(81) — @(82)| = (1 — IDellr)]51 — L2l
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o) =¢
L Tha
o=l

/ AN

/ r \ /; F )

( \ \ \;\(& /

' D ] xy\‘;\

\\\ //,/ \ N
E=W(E) =¢

Fig. 3. The change of variables and its inverse.

Hence, if| Dy||; < 1, thend is injective on the whole ob (D) and, in particular,

on D. By Lemma 3.2, we know thatDe|, < 2r forallr < % This proves that

the inversed is well defined inthe ballg| <7 =r — |¢|; forr < %

Combining the two coordinate changes, we immediately arrive at

V() =—pE +v(©)),
which gives the first estimate of the lemma. Differentiating gives

Dy () = —De(E + v (6) (1 + Dy (),
which, after solving foD v (¢), becomes

Dy (§) = —[1 + Do(§ + ¥ (§)] Dy + v ().
The second estimate now follows by using the well-known estimate

1
Il + De] iy < —— . O
"= 1Dyl

Let us conclude this section by explicitly computing the maximal numerical
values of the coordinate changes that may appear in the program. We will change
coordinates in the cube centered at the origin, and having rsfsiius

Lemma 3.4.
l@ll0 < 565 = 0.005 ID@lly10 < & = 0.2,
¥ l20 < 0.00557281 DY 120 < 0.26766109

Proof. The first line of the lemma follows immediately from Proposition 3.1 and
Lemma 3.2, respectively. The second line requires a little more work. Suppose that
we want to apply the inverse change of variables at the distafroen the origin.

By Lemma 3.3, we must find* such that =r* — ||¢||;~. Once we know *, we

can use the formulas

Dl
I ile < lleles, DYy < 75—
Al @lir Al 1— Dyl
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to obtain the desired estimates. Solving férgivesr* = 1 — /1 —2r, and
plugging this into the estimates above gives

(r*)Z
i < > =1-r—+/1-2r,

2r* 21—-V1-2r)
IDY Il < - = :
1—2r 1-2(1—-J1=2r)
The numerical values (rounded up) of these estimates ﬁerl—lo appear in the
statement. O

A

This lemma tells us several things: when we enter the small cube, we must
increase the radii of the rectangle by the amoufDB. We also lose 20% of
the cone field information. When we leave the small cube, we must increase
the radii of the outgoing rectangle by the amour@i@%57281, and now we lose
roughly 26.77% of the cone field information. This may seem like a large loss of
information, but thanks to the strong hyperbolicity near the origin, the cones are
very narrow when entering the cube, and therefore the widening due to the change
of coordinates is affordable.

Lemma 3.5. When the almost horizontal vect(t, ¢) is distorted by a change
of variablest = ¢ + h(¢), its slope will increase by at most a factor of

14 |IDhl
1—|Dh|’

Proof. The worst case is attained when the vedtbre) is mapped to(1 —
IDh], e(1 + |IDh])). This vector has exactly the slope stated in the lemmal
3.2. Proof of Propositior3.1

First, we need to know how the vector field (2) is affected by the close to identity
change of variables = ¢ + ¢(¢). We have the following:

E=AC+ 9N +FC+9@) =Al+Ap0) +FC +9(). 4

On the other hand, we also have

§

%(é +¢(0) = (I + De(2)¢ = (I + Dp(0))(AL + G(2))

= AL + Do(0) AL + G(2) + De(£)G(?). 5)
Comparing the two right-hand sides of (4) and (5) gives

De(0) AL — Ap(¢) = F (¢ +¢(¢)) — De(0)G() — G(©). (6)
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For shorthand, we will use the following notation:

Lag(¢) = Do) AL — Ap(2).

The operatoL , is linear, and it acts on the space of formal vector fields. It leaves
the spaces of homogeneous vector-valued polynomials of any degree invariant.
Looking at (6) on component level, we have

3
AP; .
LA,upi@):Fi@+¢<:>)—Za—‘§<;>ej<c>—ei<c> i=123), (7
J

j=1

where
Laigi(Q) = Za;, OrG —rigi@)  (=123).
Note that
Lai(@¢™) = (N1A1 + N2Az + N3dz — Ai)@n,nns 8y 857050 = (DA — Aan "

The crux is now to choosg so that we havé&; € OP(¢1) N OP(&,, ¢3). This
means thaG; (¢), must not contain elements on the fogth= ¢;"¢,%¢5°, where
the natural numbens; satisfyn; < p orn, + n3 < p. By (7), elements on this
form can only come fronf; (¢ + ¢(¢)), and any such term can be canceled by an
appropriate choice af; if the correspondinglivisor (nA — ;) does not vanish.
Thus the component functiogs (i = 1, 2, 3), need only consist of the undesired
elements just described.

We start by splitting the 3-space of natural numbers into two disjoint sets:
N3 = Up U Vp,, where

Vp = {(n1, N2, n3) € N* ng < porny+ngz < p}.

Next, we define the following filters, which act on formal vector-valued polyno-
mials: ConsideH = (Hq, H, H3), where

Hi@) =) ant"=) @i (=123).
n n

Then we define

(Hi@ly, =Y an” and  {H@l, =) an"

neU, nevp

We extend the definition of these filters so that they act not only on components,
but also on the whole formal vector-valued polynomidl:= {H}y, @ {H}v,.

Note that{G}y, = G, {G}v, = 0, {¢}y, = 0, {¢}v, = ¢, and{MG}y, = 0 for

any (3x 3)-matrix M with formal polynomial entries.
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By filtering (7), we get
Laiwi(©) ={R (& + e}y, (i=123), ®)
and

o

3
GI(O) = (R + @Dy, = 3 5]
J

=1

©OGj) (=123. (9

3.2.1. The Change of Variables The recursive scheme (8) can be formally solved
by a power series

gi@) =Y an" (i=123),
Inj=2
where the coefficients are determined by inserting this expression into (8). The
existence of a solutiop is given by comparing both sides of (8)afn¢" is aterm
of ¢; (¢) with |n| = n; + n, + n3, the comparison gives

(MA —A)an =y,

wherey is a polynomial in the coefficients of the termsgn, ¢,, @3 of degree
less thann|. Thus the existence is proved if we show that the divignis— A;)

do not vanish. A does not contain constant or linear terms, anjd;, = ¢, the
only divisors we need to consider are on the farim— A; (i = 1, 2, 3), where

n e Vyand|n| > 2. The following computer-aided lemma proves the existence
of a formal series fop.

Lemma3.6. Forany pe [2,10],n € V,, and|n| > 2, the divisors
nA — Aj (i=1223)

are bounded away from zemurthermore after a finite time of fluctuationshere
exists a sharp lower bound on the modulus of these divisors

N —2i| = [(P— DAz + (In| — (P — 1)Az — Ail (i=1223).
This bound is valid whem| > A/ (p), whereN (p) = (11p + 6)/2if p is even
andN(p) = (11p + 7)/2if p is odd
Proof. Take|n| large. Sincen € V), there are two cases to consider:

(1) n; < p: This means that, + nz is large, i.e, the divisoni — 2; is large and
negative. Recalling that the eigenvalues satisty 8-13 < A1 < —A,, we
clearly minimize the divisor's modulus by choosing= p—1,n, = 0,
andnz = [n| — (p — 1), which gives

INA =4l = [(p—Dir+(nf—(p— Az — 4]  (=1223).
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(2) nz + ng < p: This means than, is large, i.e, the divisoni — A; is large
and positive. Its modulus is minimized by choosimg= |n| — (p — 1),
n, = p — 1, andnz = 0, which gives

M =4l = (n| = (P—D)r1+ (P—Drz— 4| (1 =123). (10

Comparing these two candidates for the smallest divisor, we find that case (1)
yields the optimal lower bound, as stated in the lemma. This completes the proof
of the asymptotic lower bound.

To see when the lower bound becomes valid, we note that the dheic2in
the right-hand side of (10) gives the smallest divisor|fgiarge, i.e.,

InA — il = [(p— DAz + (In| — (P — D)2z — A2 (i=1223).

The expression on the right-hand side has a minimum when its positive part has
roughly the same modulus as its negative part. This occurs when

(P—=DArr+ 122l = (In] — (p — D)IAs],

or, equivalently, when

1
N[~ —((p— D1+ [A3]) + [A2]).
| 23]

By defining

1
N(p) = [m((p =D+ s + I/\zl)—‘ ,
where[x] = min(k:k € N, k > x}, we have\N'(p) = (11p + 6)/2 if p is even,
andN(p) = (11p+7)/2if pis odd forp € [2, 10], as stated in the lemma. That
this is the appropriate choice f&f(p) whenp € [2, 10] (for p > 11 itis not) can

be checked by explicit calculations.

Finally, to show that the low-order divisors are nonzero, we note that there are
only a finite number of them that we have to check. This can be done by explicit
calculations carried out on a computer, and gives the desired result. In Table 1,
we list the values of2(k) = minj—_y23min{|]An — A;|:|n| = Kk, n € Vj0}. This
required the computation of 19,386 divisors. The C++ progsamalldiv.cc
handles all necessary computations. All floating point operations are performed in
interval arithmetic with directed rounding (see Section 4.2) which guarantees the
correctness of the given lower bounds. O

Remark. For a givenp, the nonvanishing of the divisors is an open condition.
Thus the lemma is valid for an open neighborhood of the classical parameter values
of the Lorenz equations.
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Table 1. The smallest absolute values of low-order divisorsges 10.

Q(2) > 2.6667

Q(6) > 1.1611
Q(10) > 0.6779
Q(14) > 0.0112
Q(18) > 1.1947
Q(22) > 0.5280
Q(26) > 0.1386
Q(30) > 0.8053
Q(34) > 1.0337
Q(39) > 2.7941
Q(42) > 0.9551
Q(46) > 1.6218
Q(50) > 0.2172
Q(54) > 5.2172
Q(58 > 1.3894

Q(3) > 3.4944

Q(7) > 1.5056
Q(11) > 0.1835
Q(15) > 0.4832
Q(19) > 1.1498
Q(23) > 0.6891
Q(27) > 0.6330
Q(31) > 1.2997
Q(35) > 0.5393
Q(39 > 0.1274
Q43 > 1.7115
Q(47) > 1.0449
Q(51) > 2.7828
Q(55) > 6.6106
Q(59) > 4.0561

Q(4) > 0.8277

Q(8) > 1.0112
Q(12) > 0.3446
Q(16) > 0.9776
Q(20) > 0.8614
Q(24) > 0.1947
Q(28) > 0.4720
Q(32 > 1.3670
Q(36) > 0.7003
Q(40) > 2.5393
Q(44) > 1.2885
Q(48) > 3.7115
Q(52) > 0.1162
Q(56) > 3.9439
Q(60) > 6.7228

Q(5) > 1.8389

Q9 > 1.1723
Q(13 > 0.1498
Q(17) > 0.8165
Q(21) > 0.3670
Q(25 > 0.3558
Q(29 > 0.9663
(33 > 1.6330
Q(37) > 0.2059
Q(41) > 0.4607
Q(45 > 1.3782
Q(49) > 2.4495
Q(53) > 2.5505
Q(57) > 1.2772
Q(61) > 9.3895

Remark. Thelemma gives an asymptotic estimate on the growth of the modulus
of the smallest divisors. For large|, we havelnA — Aj| ~ |n||A3| ~ 8|n|/3.

Now that we know that the formal power series §odefined by (8) exists, we
want to show that it also actually converges. We foll@4][ and use the methods
of majorants. If

f(é’) = Zan1,n2,n3§]l_11§2nzg‘§37 g({:) = Z bnl,nz,n3§;1§;2§§3,

are two formal power serieg is said to be a majorant of, which we denote
f <g,if

|an1,n2,n3| S bnl,nz,ng

for all the coefficients. Note that the coefficientgyohust be real and nonnegative,
which implies thatf must have at least as large a radius of convergenge\ade
will also use the notation

[ f (()]k = Z an1,nz,n3§flé‘2nz§;3‘

|n|=k

Now suppose that we find a functidft C3 — C suchthatf, < F (i = 1,2, 3)
and, together with (8), consider the majorant system

Lagi () ={FC +9@))}v, (=1203), (11)
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whereL A(¢™) = ©(n)¢" and®: N3 — R is defined by (n) = Mini—123 [NA —
Ail. This can again be solved formally by a power series

¢i() =Y bing", 12

In=2

and itis clear thap; is a majorant ofy;. Furthermore since the right-hand side of
(11) is independent of we havep; = 2 = g3 = ¢. Ifwe setfy = {, = {3 = ¢,
and find a functionF: C — C such thatF(;“ £, 0) < F(), we may, together
with (11), consider the majorant system

Lav(©) = FC + v (), (13
wherel a(¢%) = Q(k)¢k andQ: N — R is defined by (k) = min{®(n): |n| =
k, n € V}. Again, this can be solved formally by a power series

V() =Y ok, (14)
k=2

and itis clear thap(z, ¢, ¢) < ¥ (¢). Note that this implies thdty||, < ¥ (r) in
the region of convergence. Thus it suffices to prove the convergenke of
Recall that the nonlinear part of the Lorenz equations is given by

—k18183 — ke&ot3 —0.290143 — 0.2%2¢43
F@) = Kig1¢3 + K18283 ~ | 0.29183 + 0.29%2¢3
kagZ + (ko + ka)¢182 + kgt 2 2202 + 09010, — 1.3¢2

Thus if we set

F(£) = kot? + (Ko + Ka) 2182 + K118z — KatZ 4 Kaata,

we clearly havel; < F (i = 1,2, 3). Using the exceptional fact tha only
contains quadratic terms, we can find a particularly simple majorantaqfe, ¢):

F(, 8, 0) = kat? 4 (ko 4 ka) g% 4 kag? — ket + kot? < 522 = F(2).

Combining this with (13) and (14), we get the following recursive scheme for the
coefficients ofy (r):

2
Gl ™ Q(m) |:<r +chr ) j| (m=2,3,...). (15)

Unfortunately, by Lemma 3.6, we have no uniform estimate§2gm) for m <
N(p). This is due to low-order resonances between the eigenvalues, and therefore
we must calculate these divisors explicitly. We did this already in the proof of
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Lemma 3.6, and found that the smallest modulus of such a divisgbwas 3x3 —
Az| & 0.0112. This divisor appears already for= 2, and it remains minimizing
for all p € [2, 10]. Using this as a crude estimate @Qiim) for m < N'(p) results
in very poor bounds on the coefficientsyf and thus gives a very small radius of
convergence. This problem can be avoided by postponing the use of the recursive
scheme (15) untin > N'(p). We can achieve this if we can estimate the leading
coefficients ofyr by other means. This will produce a smaller function (which we
still call ), than had we used only (15), but the important fact is that it will still
majorize thep;’s

The way we will proceed is to compute explicidy, (i = 1, 2, 3) for |[n| =
2,...,n1 by using (8). This is possible by Lemma 3.6. Then, if we define the
leading coefficients op by b, = max_123|a n| for [n| =2, ..., ny, we clearly
have[gi (9)]; < [e@)]; (1 = 1,2,3) for j = 2,...,n;. Continuing, we may
define the leading coefficients ¢f by

c,=2bn_2 max|a.n| (j=2...,n.

Inl=j Inl=]

Naturally, we then haveg(r,r,r)]; = [v()]; (= ¢) for j = 2,...,n:. Now
assume that we fix a positive integay and find two positive constants and
M such that the following induction assumption holds:< CMi for j = ng +
1,...,2no,...,Nn1, wheren; > N(p). We then want to prove thaf < CM! for
all j > ny. This we do by induction: by defining; = 1, the recursive scheme

(15) gives
2
n+1 _
a1l = Q(n1+1) [(Z o ) }
ni+1

5 &
- C.C _ rn1+1’
Q(nl T 1) (kX_; kn;+1 k)

so the coefficients of satisfy

N1—Ng
C = C C CkC
N+l Q(n1+1) (Z kCny+1-k + Z kCny+1-k + Z kCny+1- k)

k=np+1 k=n;+1—-ng
5 No N1—No
= ——|2) CCrr1k+ CkCny+1—k | -
QM +1) kZ; ' k:nXD;-l '

Although we know nothing about th® first coefficients, we know thaj < CMmi
for j =ng+1,...,ng by the induction hypothesis. Using this gives

5 i 1-k A 2 1
C < —- |2 E c. CMM+1- E CZMMt
"= am+p \TE +

k=np+1
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5

No
=——  [2Y a«M ¥+ (n; — 2np)C | CM™HL,
Q(n1+1)<;k + (ny o))

Since we chosp; large enough for the lower bound@f(n; + 1) (see Lemma 3.6)
to be valid, we have

No
5 <2Z M+ (ng — 2n0)C)
Cnpst < — CMM+, (16)
[(p—Drr+ (M +1—(p—1)rz— Az

which, forn; large, gives the asymptotic estimate

Cny41 ™~ £CMnl+l~
A3l

From this it follows that, in order to prove the induction step, we must choose
C < |A3l/B~ % C< % works nicely for an open neighborhood of the classical
parameter values). Then, if we take sufficiently large, we will have completed
the induction step.

The following computer-aided lemrharoves the induction hypothesis needed
in the above argument, and gives an estimate on the sum appearing in (16).

Lemma 3.7. For p € [2, 10], we have the estimates
¢ <5-1053%)) (j=11...,70 and ch(g)*l <354
=1
Furthermore N (p) < 70for p € [2, 10].

Proof. A computer program that computes the coefficiemts and then cal-
culates the sumg; = Z|n|=j max_1.23 & n| was constructed, semeff.cc

Again, all floating point operations are performed in interval arithmetic with di-
rected rounding (see Section 4.2) which guarantees the correctness of the given
upper bounds. Thanks to the simple form of the nonlinear terms appearing in the
Lorenz equations, the program only needs to handle two sums and two products.
If we define®(¢) = ¢ + ¢(¢), the two sums we need to compute are of the type

S = [®1(¢) + P2(¢)]n and S = [ke®1(8) + ka®2(8)]ns
and the two products are of the type

Pr = [(@1(0) + P2(¢) P3({)]n and
Py = [(P1(5) + P2(0)) (kaP1(8) + ksP2(5))]n.

1 The reader may be interested in knowing that verifying this induction hypothesis requires knowl-
edge of the first 186,576 coefficientsq@f
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Table 2.

The leading coefficients af.

Cy < 4.372e-01
Ccs < 5.702e-04
Cg < 2.249e-06
C11 < 7.458e-09
C14 < 1.549e-11
c17 < 5.197e-14
Cz0 < 1.520e-16
Cz3 < 1.484e-19
Co6 < 1.383e-22
Cp9 < 2.457e-25
C32 < 3.418e-28
C35 < 3.107e-31
C3g < 1.701e-34
Ca1 < 6.903e-38
Ca4 < 2.713e-41
C47 < 1.936e-44
cso < 1.511e-47
Cs3 < 6.715e-51
Csp < 2.311e-54
Csg < 7.838e-58
Ce2 < 3.834e-61
Ces < 2.873e-64
Ceg < 1.759e-67

c3 < 4.320e-02
Ccg < 7.196e-05
Co < 3.761e-07
c12 < 1.091e-09
C15 < 1.950e-12
C18 < 8.166e-15
Cp1 < 1.894e-17
Cp4 < 1.626€-20
Cp7 < 1.632e-23
C30 < 2.118e-26
C33 < 3.513e-29
C3p < 2.775e-32
C3g < 1.227e-35
C42 < 5.016e-39
C45 < 2.265e-42
C4g < 1.868e-45
Cs1 < 1.217e-48
Cs4 < 4.711e-52
Cs7 < 1.542e-55
Cs0 < 5.701e-59
Ce3 < 3.422e-62
Ce6 < 2.498e-65
Cs9 < 1.419e-68

C4 < 4.928e-03
c7 < 1.095e-05
C10 < 7.073e-08
c13 < 1.221e-10
C16 < 2.849e-13
C19 < 1.342e-15
Cp2 < 2.016e-18
Cz5 < 1.533e-21
Cpg < 1.522e-24
C31 < 2.952e-27
C34 < 3.177e-30
C37 < 2.241e-33
Ca0 < 9.372e-37
Ca3 < 3.378e-40
Cy6 < 2.109e-43
Cq9 < 1.734e-46
Cs2 < 9.286e-50
Cs5 < 3.300e-53
Csg < 1.052e-56
Cp1 < 4.452e-60
Cpq < 3.180e-63
Cp7 < 2.121e-66
c70 < 1.109e-69

W. Tucker

The results are presented in Table 2, and it is simple to check that the coefficients
¢ satisfy the conditions in the lemma. Since, fore [2, 10], N'(p) < 58, the
final statement in the lemma is verified. O

If we assign the constantg, C, andM the same values as in this lemma, it is
plain to see that the expression appearing in (16) is decreasmdadm n; > 70.
Thus, ifcy; satisfies the desired estimate, all coefficients of higher order will too.
Considering the worst casp,= 10, we have

5(2-3.54+ 5(70— 20) - 10°9) oM™
[(10— DAs 4+ (71— (10— 1))Az — Ay
5(7.08+25-107%)
|9A1 4+ 6243 — A5

Cr1 =

CM"! < 0.982cM",
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which completes the induction. Hence, fok g, we arrive at

Y(r) < chr'+ZCMJr' <rZZc,r' 24+5. 1062( >
j=11 j=11
j
< 2ZcrI 245. 10r‘5<5r) Z(S—r>
j=2 9 i=9 9
5r /9)°
<r?) ¢gri7?+5.10° r2(
= JZ; + 9 1-50/9
10 2
<12y ¢ri24+14.10° )
= Z’ + 9—5r

=2

As we will restrict our attention to the case< 1, we can replace the estimate on

¥ (r) by
10 5 2
Ip(r)<<2:0l 14 1(T>r2<%.

This completes the proof of the first part of Proposition 3.1.
3.2.2. The Normal Form Now, we turn our attention to the existence and size
of the normal formG(¢). Recall thatG is defined recursively by

3

Gi(0) = (R + ¢y, — Za; ©Gj©) (=123. 1D
J

The existence of a formal solution is immediate as we have no divisors whatsoever.
Turning to the question of convergence, we use similar majorization techniques
as in the previous section. We arrive at the estinj&@g < G(r), by considering

the following majorant systems together with (17):

G(©) = {FE + 9}y, + Z ﬁme i)
]
(recall thaty = (¢, ¢, ¢) and compare with (11)), and
[G]n = [F + v (1) + 3¢’ ()GM]n
= [Br +y ()’ +3y' OGN, (n=2p), (18)

compare with (13). By the last equation, it is clear tBatioes not contain terms
of degree less than® and that its lowest order term is given by

[G(N]2p = B + ¥ (1))?]2p. (19
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As in the previous section, the recursive equatiorGaran be solved formally
by a power series

Gy =Y Gk,
k=20
and we will prove, by induction, that the coefficient€®$atisfyg, < DK", where

we can take the constanis = 2- 1078 andK = 3. This will then immediately
give

A 18 S k 18(3r)20 9 r20
Glr =G(r)<2-10° I)<2.10"°——<7-10° ,
IGI: = G(r) < k:zzo( ) < 1 S -
which will complete the proof of Proposition 3.1. O

Starting with (19), and using the computed numerical valuesj(}lj‘g, we have
(recall that we defined; = 1)

19
Goor ° = [G(N]20 <[5 + ¥ (r)a0=5)  ¢jco jr*° <3-10 %%,
j=1

which clearly satisfies our induction hypothesis, as68 1% < 2.10°18. 320 =
DK?%, We now proceed with the induction step: assume that we have proved that
g; < DKXfor j =20,...,n. Then, by (18), we have

n n—-18
Oh+1=5) CChp1-j+3 iCiOnyo—j = X1+ X,
j=1 j=2
where
10 )
2155(2 c,-M—l+(n—20)c>c|\/|“+1
j=1
10 n+1
. C /M
< |52 ¢MT+mn-20C|=(— DK"+1
= [s{z3am v 5 (%)
5.10% /5\"
< |5(7.084+(n—20)-5-10——_ [ = DK"1
< [saoms 02051092207 (5)
< 0.036DK"+1,
and

j=2 j=11

10 n—-18
¥, < 3D (ch,-KWi +C ) jMJ’K”+21>
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[3 <§: oK 4 MY <%>Jl>] DK™

IA

j=2 j=11

25 5\ 11— 50/27
31+=.10°%. (=) =——=)|DK™!
[3 (03 +g 10 (27) (1—5/27)2”

3(0.31+ 2- 10 ?)DK"1,

IA

IA

Summing up, gives the following estimate:
Gns1 < 0.97DK™,

which proves the induction step. This completes the final part of Proposi-
tion 3.1. O

3.3. The Dynamics Inside the Cube

In this section, we will show that the normal form floyw(¢, t), i.e., the solution to

the equations = A + G(¢), whereG is as in Proposition 3.1, acts much like its
linear counterpart used in the geometric model of the Lorenz flow. The geometric
model uses the linearity near the origin to obtain estimates on trajectories passing
near the origin. These estimates, however, are not valid for the original Lorenz
flow without an analog of the change of variables described in Proposition 3.1.
Finding an analytic change of variables which completely linearizes the Lorenz
equations in a neighborhood of the origin poses two major difficulties:

¢ As we must remove all nonlinear terms of the vector field, we will encounter
all possible divisors, having modulyisx — %; |, wheren € N and|n| > 2.

These are of course not bounded away from zero, so unless we impose a Dio-
phantine conditiohon the eigenvalues, the linearizing change of variables
will not converge. Even if we manage to get a positive radius of convergence,
it is likely that the radius is too small to be of any practical use.

o Although the set of all eigenvalues satisfying any Diophantine condition
has full measure, the set of resonant eigenvdlisseverywhere dense. As
resonant eigenvalues produce vanishing divisors, we must exclude a dense
set of parameters to avoid this situation. In doing so, we lose the robustness
of our statements.

This is why we bring the Lorenz equations into a carefully selected normal
form instead of the linear one. The price we have to pay is that it is a little more

2 We say that the eigenvalu@s= (i1, A2, A3) satisfy a Diophantine condition of type, 7) if
there exists positive, T such that foi = 1, 2, 3, we havelni — A;| > «|n|~7 for all n € N2 with
n| > 2.

3 We say that the eigenvalugs= (1, A2, A3) are resonant if there exists ag {1, 2, 3} such that
Inx — Ai| = O for somen € N3 with |n| > 2.
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difficult to gain estimates on the normal form flow. On the other hand, once we

have these estimates, we may effectively link them to the original Lorenz flow

by using Proposition 3.1. As mentioned in the outline, we will make the change

of coordinates when a trajectory hits the lid of a small cube centered around the
origin. Inside the cube, we use our estimates on the normal form flow to find the
exit point of the trajectory. We then change back to the original coordinates and
carry on with the numerical computations.

3.4. The Linear Flow

To begin with, we will extract the properties of the linear flow that really are used in
the geometric model of the Lorenz flow. Lz, t) denote the flow of the linearized
Lorenz equationg = A¢. These can be solved explicitly(¢, t) = e?lz, i.e.,

ei(¢, 1) = et (i = 1,2, 3). Consider a small cube centered at the origin, with
radiusr, and take a trajectory starting from the interior of the cube, say at the point
¢, with [¢1] # 0. Since the eigenvalues satisfy<0—A3 < A1 < —X», itis plain to

see that the trajectory exits the cube wie(t, t) = sgn¢1)r. Solving for the exit

time ze(¢) giveste(¢) = 1/xqlogr/|¢1|. Note that lim, o 7e(¢) = oo. This is

one of the reasons why numeric calculations break down near the origin. Inserting
e iNn the other coordinate functions gives the location of the exit

9(Z, Te(£)) = (SN, La(Cal/r) 72/ 1 (1gal/r) /™). (20

Since—X,/A1 ~ 1.93and—13/11 ~ 0.225, aline segmentlying in thlig direction
will be strongly contracted, whereas a line segment lying inzghdirection will
have expanded on its exit. An explicit calculation gives

@2(¢, 1) _ ge(xz—mt
e3(0, ) 1 '

Therefore, since., — A3 < 0, the lid of the cube will exit as two cusp-shaped
regions (in Figure 4 one of the cusps is illustrated). In the cube; theplane acts
as a separatrix, and all trajectories approach this exponentially fast.

We are also interested in the evolution of tangent vectors following a trajectory
inside the cube. Sinag(z, t) = e?¢, it is clear thatDe(z, t) = e*l. Hence we
have

(gal/r)~* 0 0
DpC. @) =] 0  (al/r)7s 0
0 0 (16al/r) e/

Any three-dimensional cone field centered aroemng: (1, 0, 0) is taken into itself
underDg. This is due to the fearsome hyperbolicity (expansion and contraction)
D¢ exhibits near the origin. This property and (20), which gives rise to the cusps,
are the two features used in the geometric models.
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&

Fig. 4. The linear flow inside the cube fgi > 0.

3.5. The Normal Form Flow

Our main objective now is to show that the normal form flow and the linear
flow have very similar behavior. Although we use a cube having raﬁims the
computer program, we do all estimates for a radiu%.oThis allows for a slight
deformation of the cube as we change coordinates, see Lemma 3.4. We will need
the following estimate of®:

Lemma 3.8. Inthe cube¢: [¢] < 7}, we have

IG(0)| < 3107811 max(| &I, 1¢3/*0).

Proof. Recall that we arranged f@(¢) € O¥(¢1) N O(¢&y, £3). This means
that for any terng; ,¢" of G;, there existi € N® andk < [0, 10] such that we can
factor the term as

Gnt" = Gingiog O ek 1)

The estimate orGG in Proposition 3.1 implies thaiG(¢)| < 3 - 1078|¢|? for

lz] < %, but we also have some additional information: since the estimate was
obtained by using majorants, it is also valid for the majorants themselves. The
estimate is naturally valid for all smaller majorants®@fthan the ones we used

and, in particular, for the smallest majorantdaflLet

Gi() = Y gn" m@= ) my"  and

n1>10 ny>10
np+ngz=10 np+n3=10

M) = Z MyrX,

k>20

wherem, = maX—-123|0i.nl, andMy = Z‘m:k my. Then clearlyG; < m < M,
and the functionsnandM are the smallest majorants@fon their corresponding
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levels. By levels we mean the following: we may viénas a functiorG: C3 —
C3. The first level majoranin can be viewed as a function: C* — C, and
the second level majora can be viewed as a functia: C — C. Thus the
majorants not only provide bounds, they also successively reduce the dimension
of the domain and range of the original functi@nBothm andM are the smallest
functions, on their respective levels, that majoi@&e

Now, setw = |¢1] maX{|¢2|, |¢3]}, and suppose th§| < % =r.We have

GOl =| > Gnl" = Y 1ginllgal™ el gs™

n1>10 n;>10
ny+nz3=10 np+n3>10
< >0 mala™el®i™ < Y malal™max(|z. [galh)
n;>10 n1>10
ny+n3=10 ny+n3=10
10 10 -10 -10
< |l max(|zzl, 12a1H™° D" malea|™ T (max(|zal. |galh)™
n1>10
np+n3=10
10 —-20
< o' > mamax|zl. |l gal)mT

n;>10
np+n3>10

— 0 Z ma|¢ |20 < wloz <Z mn> pk=20

m=10 k>20 \|n|=k
ny+n3>10

— wlo Z Mkrk—zo — wlor —-20 Z Mkrk < a)lol’ -20 | 3. lo—sr 20
k>20 k>20

= 3.10 %,

which completes the proof. O
3.5.1. CO-Properties  Starting with the topological properties, we will examine
how the orbits of the linear and normal form flows differ. Using Lemma 3.8, we

shall first prove that the modulus of tge-.component of the normal form flow is
monotonically increasing.

Lemma 3.9. Inthe cubg¢: |¢] <r}, wherer< i, we have

(= Y18, ) <Y, 1) < Qg+ )YPa(E, 1)
and

2] €M7 < [P (g, 1)) < |gg €M

wherex = 2-10719,
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Proof.  We just have to check the differential equation for thecomponent of
the normal form flowx/1 (¢, t) = Ay1(¢, 1) + G1(¥ (¢, t)). By Lemma 3.8,

1YL, 1) — Ay (g, b))

IG1 (¥ (¢, 1))
3107 8y1(¢, DI max{|y2(¢, 1)1, [¥s(g, DI
3-10°%- 47y (¢, 1) < 3- 1078 47y (¢, 1))

IA

IA

Settingk = 2-1071° > 3.10°8. 471° completes the proof. O

Next, we prove that thes-component of the normal form flow dominates the
{2-component.

Lemma 3.10. For all trajectories starting from the lid of the culde: |¢] <r},
where r < %, we havey3(z,t) > |¥2(Z, t)|. These estimates hold throughout the
cube

Proof. The differential equations faf, andy/; can be expressed as differential
inequalities

[r2(¢, 1) — Aaa (L, D] = [Ga(¥ (£, 1)

< 3-10°%- 47 max{|y2(¢, VI, [yac, 1)),
[¥3(¢, 1) — Aa¥ra(C, V)] = [Ga(¥ (L, 1)

< 3-10°% - 47 max{|y2(¢, O, [ya(c, H)[*9).

Initially, we have%1 = ¥3(¢, 0) > |¥2(¢, 0), and by the differential inequalities it
is clear that, ify3(¢, 0) = |y2(¢, 0)], then|yo(¢, t)| decreases faster tharn(¢, t),
sincei, < Az < 0. So suppose that after some titfewe haveys(¢, t*) =
[¥2(2, t*)]. Then we can rewrite the differential inequalities as

[a(t*, ©) — Aaa(t*, O)| < 3-10°8. 47 y(t*, O™ < x|y (t™, O)I,
[Pra(t*, ©) — As¥ra(t™, ©) < 31078 47yt )™ < k|ya(t™, O,

and, againjy,(t*, ¢)| decreases fasterthgg(t*, ¢). Henceyrs(¢, t) > [¥2(Z, 1)]
throughout the whole cube. O

IA

IA

It is now easy to show that thi-component of the flow is monotonically
decreasing:

Lemma 3.11. For all trajectories starting from the lid of the culde: 7] <r},
where r < %, we have

(3 — )Y3(E, 1) < ¥r3(¢, 1) < (kg +6)Y3(E, 1)
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and
re?s Ot < yra(g, t) < retston,

wherex = 2-10719,

Proof. Using Lemma 3.10, we just copy the proof of Lemma 3.9 by changing
the roles ofyr1 (¢, t) andys(¢, t). O

Now, given an initial point in the lid of the cubfg: |¢| < r} we know that
|[¥1(¢, )| is increasing, whereags(¢, t) is decreasing and majorizing, (¢, t)|.
Sincei; > |A3|, we also know thaty1 (¢, t)| increases faster thaps(¢, t) de-
creases. Therefore, it is clear that the orbit exits the cube through one of the sides
{¢: 121l =1, 122], 1¢3] < r}. Atrivial calculation enables us to control the exit time
of the normal form flow:

Lemma 3.12. For all trajectories starting from the lid of the culde: |¢| <r},
wherer < %1, the normal form flow exits the cube at timé&¢), where

1 r
log— <1, <
R T R vy

log '
¢l
andx = 2-10°19.

Proof. We just have to solva)i(¢, te)| = r for 7e. Using Lemma 3.9, we get
|C1e® % <1 < |g]e O,

which immediately gives the desired result. O

Note that we have lig_.q 7e(¢) = oo, just as in the linear case.
Turning to the,-component of the normal form flow, we have the following
differential inequality:

[U2(L, 1) — Aata(g, )] < 3- 1078 r10ys(¢, t)|1°

for all trajectories starting from the lid of the cufge |£| < r}. This does notimply
that|y2(¢, t)| decreases exponentially, so there is a slight discrepancy between the
normal form and linear flows in this sense. However, just as in the linear case, there
exists a surface acting as a separatrix. It is a slight deformation @f ¢hlane,

and all orbits tend to this separatrix exponentially fast. The important property
of both the normal form and linear flows is that the quotient of gheand ¢3-
components tends to zero exponentially fast with respect to the exit time. This
gives rise to the nice cusp-shaped image of the cube’s lid, as illustrated in Figure 4.
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Lemma 3.13. For all trajectories starting from the lid of the culde: |¢] <r},
where r < 1, we have

(L — kT (1 — e 3N < YL, 1) < (& +kr(1—e ),

wherex = 2 - 1071°. These estimates hold throughout the cube

Proof. Using the second part of Lemma 3.11, we can rewrite the differential
inequality foryr,(¢, t) as

[V2(2, 1) — Aavra(c, 1) < 3- 1078 47 gl0tatt <y gliatilt,

A straightforward calculation yields the following bounds¥s(¢, t):

Kt (et — gtlatity < kr(1— e et
K - s

1) — et <
W20, D = e = o 1 0]

using the fact that 1Q.3 + «) — 1, < —3. O

Combining this lemma with the second part of Lemma 3.11 gives

Ya(g, 1) < |§2|+Kr(1_eist)e)t2t

Va(C, )|~ reGa—t = L+ et

which proves that the lid of the cube will exit as two cusp-shaped regions.

Remark. Had we flattened out the invariant manifolds to an ordet 9, the
situation would be slightly different: We would then hagé\.s + «) — Ao > 0O,
which would result in a blunter cusp.

Combining and summarizing the results of this section, we achieve very tight
bounds on the trajectories leaving the cube.

Lemma 3.14. For all trajectories starting from the lid of the culde: 7] <r},

wherer < Z]i! we have the following interval-valued enclosures

Dll/0a) Ball/Da]
e m@n elel ()L wamener ()7

T T
where[Ai] = [A — k. A +«], [¢2] = [&2 — &, &2+ «], andk = 2-1072°,

For a precise definition of interval-valued enclosures, see Sections 4.2 and 4.3.
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3.5.2. C1-Properties We will now prove that, in our small cube, the normal

form flow expands and contracts tangent vectors at almost the same rate as the
linear flow does. The first variational equations for the normal form flow are

d

and the solution is formally given by

t
DY/(.t) = MDY (. 0+ [ e IDG (¢, 9)DY(c.9)ds
0
We will prove the following lemma, which states tHai) is virtually linear:

Lemma 3.15. For all trajectories starting from the lid of the culde: |¢| <r},
wherer < 1, we have

0V 00
Wiy = 22

< e+t (,j=1,23),
ag; ¢

wherex = 2 - 1071°. These estimates hold throughout the cube

Remark. Thekey pointis that@.s+«)+A; is negative. This means that the error
decreases as the exit-time increases, i.e., as weldgkemall. This is expected
seeing how we constructést the perturbation of the linearized equations is small
enough to dampen out completely the bad effects due to having to spend a long
time near the origin.

Proof. SinceDvr (¢, 0) = Dg(¢, 0) = |, the inequality is trivially true for small
t, say fort € [0, t*]. We will prove that we can take = 7.(¢), which will prove
the lemma. Fot € [0, t*], we have

t
IDY (¢, t) — De(¢, )| = /o er9DG(y (¢, 5)DY (¢, s) ds (22)

IA

t
/ 1eA9DG(y (¢, 5))Deg(¢, 5)| ds
0

t
+ /O ACIDG(Y (¢, 9)(DY (. 5) — De(¢, )| ds

By using the facts thaf is diagonal andD¢(z,s) = €%, a simple calculation
gives that

(eIDG(¢)e); | = e Vels

G .o
— i,j=1223).
9%, (E)' a, | )
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Ifwe setE(¢,t) = Dy (¢, t)—Dg(¢, t), we can treat each matrix entry separately:
Fori, j =1, 2, 3, we have

Ej (1)) < f RACEIE ds

(I/f(C S))

(I/f(C S)HEk(¢,9)| ds.

To carry on further, it is clear that we need some estimates on the partial deriva-
tives of G.

Lemma 3.16. In the cube(¢: [¢] < 1}, we have

<9-10°|cal® max(|¢al®, 1¢3l°)

8G|
=

Proof. By Proposition 3.1, the functiorns; (i = 1, 2, 3) can be extended to a
ball in C3 such that they are analytic in each of the three variaplés= 1, 2, 3).
Furthermore, fof¢| < E, the functions satisfy
7-107%¢ %
G0 < -2 K10 _ 7 10920,
1-1%

and the argument used in the proof of Lemma 3.2 shows that, in the complex ball

I£] < %, we have the estimate

’ﬁ(;)‘ _ 7-10°%
3¢ T oS53

=14-10%¢12°<9-108¢1® (,j=123. (23

Since we arranged faB(¢) € 0%0(¢1) N Oz, ¢3), we know that terms of the
partial derivatives of5; belong toO°%(z1) N O%(¢2, ¢3). Thus, for any terng; n¢"
of a partial derivative of5;, there exist$i € N3 andk e [0, 9] such that we can
factor the term as

Ging" = Gingies Keget 24
Applying the methods used in the proof of Lemma 3.8, combined with the estimate
(23), gives the desired result. O

Fromthe previous section, we know thés (¢, t)| < y3(¢, t) for alltrajectories
starting from the lid of the cube. Using this with Lemmas 3.9 and 3.11, gives

<910 8y (¢, ya(g, 1)[° < 4. 10713y %?Patist2ot,

— t
‘ag, W)
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We are now prepared to continue our estimates. We will use the factsgit&it ™t |
<r < Yand|E(¢, s)| < xkel®latOthls < ehis Fori, j = 1,2, 3, we have

aG;i
a—q(l/f(C S))

t 3
+/ it

t
4. 10—13|§1|9(1 + 3K)e)\it / e[9(11+)n3+2K)+)»j —Xils dS
0

[Eij (¢, D] ds

IA

[ eves

xetisds

0G;
Tg(w(i, S))

IA

4-1014°1+3 )ex»t[ el00aH1at20) +h—ils T
-107121[7 (1 + 3k)e”
0

A1+ A3+ 2) + &) — A
41071321 °(1 + 3«) @lOCha+ra+26) 2]t

91+ Aa) +r2— M1

_ 4 107131 + 3k)
= 47

|§.1e()\1+lc)t |9e[9()n3+K)+Aj]t

410731+ 3¢)
< d90a+)+4Jt o @9Ghat+i)+2]t
= 47 . 49 =K ’

for k = 2. 1071°. This completes the proof, since all estimates are valid in the
cube. O

4. Rigorous Numerics—Details

We will now outline the main underlying algorithms used to compute the return
map of the Lorenz flow. These algorithms are extremely general, and apply to
virtually any vector field in any dimension. We should, however, point out that
the algorithms used for following the cone fields have only been developed for
two-dimensional cones.

The real implementations of the algorithms differ slightly from what will be
presented below. This is because the program code has been optimized to minimize
the number of floating point operations, and an exact listing would be both tedious
and confusing. Nonetheless, the underlying mathematical reasoning is the same,
and any interested reader can study the actual source code which is available at
http://link.springer-ny.com/link/service/journals/10208/
index.htm

Recall that the algorithms described below are usetsidethe small cube
centered at the origin. Whenever a trajectory hits the lid of the cube, the program
computes the image of the trajectory leaving the cube (see Section 4.9) before
resuming the main algorithm. This “cube-part” of the program is strictly three-
dimensional, and relies heavily on the computations performed in Section 3. A
higher-dimensional saddle fixed point would certainly increase the complexity of
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the computations performed in Section 3, but should in principle not introduce
any additional difficulties. Regardless of the dimension, these computations are
performed a priori, and the necessary constants are hand coded into the program.
Thus this part of the code depends on the particular vector field at hand, as opposed
to the part that computes the enclosures of the actual trajectories and the partial
derivatives along them.

4.1. Ordinary Differential Equations
As a model problem, we will consider the general initial-value problem
x=1f00,  x(0=x, (25)

where f € CY([R", R"). We will denote the solution of (25) by(x, t), with

(X, 0) = x(0). Forreal-valued functions, this setting is classical and much studied
in standard textbooks on ordinary differential equations. Itis, however, not difficult
to find situations where having a whole set of initial values is natural. Indeed, any
model of a physical system always has some uncertainty concerning the measured
initial values. Furthermore, we are seldom sure of the exact appearance of the
vector field modeling our system. The natural thing to do is to enclose the initial
valuexg in a box o] whose side lengths reflect the maximal error made in the
measurements of the initial data, and to repléda (25) by a functionF, whose
components are interval-valued and contain the valuds dhe problem we then

face is to find the solution of the following system:

xe F(x]),  x(0) e[x?], (26)

Our objective is to compute a set that is guaranteed to contain all the solutions
of (26) with respect to some given stopping condition. Before presenting such
algorithms solving (26), we will outline the basics of interval arithmetic.

4.2. Interval Arithmetic

In this section, we will briefly describe the fundamentals of interval arithmetic.
For a concise reference on this topic, sk4,[[15].

LetIR denote the set of all closed intervals of the real line. For any elerapat |
IR, we adapt the notatiora] = [a, a]. If © is one of the operators, —, x, +,
we define arithmetic operations on element§idby

[a] © [b] ={a© b: ac[a],be[b]}

except that ¢] — [b] is undefined if Oe [b]. Working exclusively with closed
intervals, we can describe the resulting interval in terms of the endpoints of
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the operands

[a] +[b] = [a+b,a+h],

[a] —[b] = [a—b,a—b],

[a] x [b] = [min{ab, ab, ab, ab}, max{ab, ab, ab, ab}],

[a] +[b] = [a] x [1/b,1/b]  if O ¢ [b].
For practical implementations, speed is important. Therefore, it is customary to
break the formula for multiplication into nine cases (depending on the signs of the
endpoints), where only one case involves more than two multiplications. Moreover,

when computing with finite precision, the formula for division can be modified for
improved accuracy, and directed rounding must be taken into account, see, e.g.,
(2], [14], [19)].

It follows immediately from the definitions that addition and multiplication are
both associative and commutative. The distributive law, however, mmedways
hold. As an example, we have

[-1,1]([-1,0] + [3,4]) = [-1, 1][2, 4] = [-4, 4],
whereas
[—1,1][-1,01+[-1,1][3,4] =[-1,1]1+[-4,4] = [-5, 5].

This unusual property is important to keep in mind when representing functions as
part of a program. Interval arithmetic satisfies a weaker rule than the distributive
law, which we shall refer to asubdistributivity

[al([b] + [c]) < [a][b] + [a][c].

Another key feature of interval arithmetic is that itimelusion monotonigi.e., if
[a] € [a]and [b] < [b], then

[a] © [b] S [a] O [b],

where we demand that @ [b] for division. This is the single most important
property of interval arithmetic, it allows us to prove open conditions in a robust way.
We can turflR into a metric space by equipping it with the Hausdorff distance

d([a], [b]) = max|a— b, [a— bl}.

For dealing with higher-dimensional problems, we define the arithmetic operations
to be carried out component-wise. We then talk abouhterval vectoror, more
simply, abox The metric on the spad®" is defined by

d(al, [b]) = lrgzg{d([aa], [biD}.

Matrix operations are defined analogously to the real case.
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When implementing interval arithmetic on a computer, we no longer work
over the spac®, but ratherF—the floating points of the computer. This is a
finite set, and thus so is the set of all intervals with floating point endp®ihts
When performing arithmetic on intervalsliwe must round the resulting interval
outward to guarantee inclusion of the true result. This is because, fixing the set
the sum of two floating points may not be a floating point. The same holds for the
other arithmetic operations. As an example, adding two intenals[H] < IF,
becomes

[al+[bl=[la+bl.ta+b"]

where| X | is the largest floating point ifi that is strictly less thaw (calledx
rounded down), and x 1 is the smallest floating point ifi that is strictly greater
thanx (calledx rounded up). This type of arithmetic is called interval arithmetic
with directed rounding

4.3. Interval-Valued Functions

Consider a functiorf : R" — R". Given a box §] we define theangeof f over
[a] by
R(f; [aD) = {f(x): x € [a]}.

As mentioned earlier, it is often desirable in applications to exchange the function
f for aninterval extension F

Definition 4.1. A function F: IR" — IR" is an interval extension of: R" —
R" if, for all boxes K] € IR", we haveR(f; [x]) € F([x]).

It should be noted that many interval extensions are possible for a real-valued
function f . Asan example, givefi(x, y) = 2x—ny, bothF;(x, y) = [1.99, 2.01]
x—[3.14, 3.15]yandF,(x, y) = [1.9, 2.1]x—[3.1, 3.2]y are interval extensions of
f. From now on, any expression of the forhd[x]) should always be interpreted
to be an interval extension df evaluated in interval arithmetic. When we are
interested in the range of (tf'-valued) f over [x], we explicitly state so.

If we fix a representation of (which we also denotd), and evaluate it in
interval arithmetic, we always have

R(f;[a) < f(aD.

due to the inclusion monotonic property. From this property, it also follows that
by splitting the box §] into smaller piecesdy], .. ., [a.], we have

R(f:[a]) < | fqal) < f(aD.
i=0

It is clear that, by splittingd] into many small pieces, we can approximate the
true range off over [a] with any desired accuracy. If, howevdr s differentiable,
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then there are better ways to approximate the ranggt: &ét m([a]) denote the
midpoint of [a]. By the Mean Value Theorem, we have the following relation:

R(f:[a]) < fwv((a]) := f(m(a])) + Df (a])([a] — m(a])).
Let ||[a]|| denote the maximal diameter &][ It is easy to show that
d(R(f: [a]), f(aD) = Odlla]lD.
whereas

d(R(f; [a]), fuv (@) = Odl[all?.

Itis obvious that the latter version is preferred, seeing that we have a quadratically
small error. This assumes, however, that we only deal with intervals of small
widths. The most fundamental part of our algorithm—the partitioning process—
guarantees that this indeed will be the case, and thus allows us to attain a quadratic
approximation of the vector field rand¥ f; [a]).

For computer applications, we consider interval extensiang" — IF", and
perform all operations with directed rounding.

4.4. The Euler Method for a Time-t Map

The solution of (25) is formally given by

tk+1)

(6, 1) — (x, 1) 4 / fp(x. ) ds @7

tk

wherep(x, t©@) = x©@. Approximating the integrand in (27) bf/(¢(x, t®)), we
arrive at the classical Euler method, which gives the iterative scheme

XD — x® 4 AL® £ (xK)), k>0,

for an approximate solution to (25), i.e® ~ ¢(x, t®). Here we have used the
notationAt® = t®+D _t®_ The error we are making is in assuming that the
vector field f is constant over each time step. With interval arithmetic this can be
overcome by using the following algorithm:

Algorithm 1. For k > 0 do the following

. Enclose the computed solution at step k in a:fa%’] c [x®)].

. Compute a time stept® such thafx®] + At® f ([x®]) < [x®)].
0 L A0 S T, setAt® =T —t®,

. Set[x® V] = [x®] + At® £ ([x0]), and t*+D = t® 4 AL®0,
Iftk+D = T, break

OAwWN P
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This algorithm produces a box-valued solution that is guaranteed to contain the
true solution of the timg-map, i.e.p([x©@], t®) c [x®]. As promised above, it
also covers the case when the initial value is a solid box, rather than simply being
a point. The reason why this method works is that, instead of evaluating the vector
field at a single poink™, we evaluate over a whole box which is constructed to
contain all trajectories betweer®] and [x*+1)].

Of course, this algorithm is too simple to produce useful results in most cases.
Indeed, note that the successive enclosuxé&][are increasing in width, even if
the actual imageg ([x©], %) of the initial box are uniformly shrinking in size.
Also, we have not indicated how to construct the widened B8%][ This can be
quite delicate, and if not dealt with carefully, may produce gross overestimates
of the true images ([x@], t%). Finally, it is not obvious that time stepst®,
uniformly bounded away from zero, can be attained at every step. This requires a
few additional conditions on the vector field. All of these issues are properly dealt
with in the following sections.

4.5. The Euler Method for a Distance-d Map

There are, however, many situations when we are more interested in how far we
have flowed the initial values rather than how much time has passed. In dynamical
systems, the main example is the study of Poiacaaps, which play a crucial role
in determining the dynamics of many systems. In a local setting, a Peintap’
P can be thought of as a map between two very close codimension-one surfaces,
P: ® — &+ For simplicity, we will always demand that the sides of the
surfaces be parallel to the coordinate axes. Then, if the two surfaces are at a distance
d from each other, we call the (local) Poinearap a distancd-map.

In what follows, we will restrict out attention to the case- 3, as is the case for
the Lorenz equations. Note, however, that the methods described can be extended
to any finite dimension. With our restriction, we will now study maps between
rectangles and/or planes. Since we only consider planes that are cross-products of
the coordinate axes, there are exactly three planes through each poixpghe
X1X3-, andxXz-planes).

Given any pointx € R? that is not a fixed point of the vector field, there is
always at least one plane thatis transversal to the flow at thexpdive will always
choose the plane whose normal vector corresponds to the component of the vector
field having the largest modulus. In other words|, fif(x)| = max{| fi(x)|: i =
1, ..., 3}, then we select the plane whose unit norma isBy abuse of notation,
this direction will often be referred to as tlransversal directionThe remaining
directions will be called theontransversal directions

For the sake of concreteness, let us now assumefka) is negative and has
the largest modulus. Then there exists a rectamjfé = [x1] x [x2] x {x{}
containingx so thatfs(x) is negative orR . Geometrically, this means that the
flow is passing through the rectangle from above. By continuity, the flow will pass
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Fig. 5. Finding the rectangular hull of a propagated surface.

through a plan& ®*t0 = {x: x5 = xék“)} situated slightly beneatR®. The two

questions we now pose are the following:

(1) How do we determine the distanddo be travelled?
(2) How do we estimate the rectangular MBI of the flow of R© passing
throughz k2

The problems are illustrated in Figure 5.
If we denote the flow by(x, t), we may define alocal Poineamapl: R*W —
Z(k+1) by

[1(x) = (IT1(X), [T2(X)) = (@1(X, T(X)), p2(X, T(X))),
(k+1)

wherer (x) is the solution tas(x, (X)) = x{™ . We will sometimes view
and xék) as being fixed, and consider the Poircanap to be a function of two
variables.

The first problem now is to find bounds on the various flow times. In order to
this, we must restrict the flow to a compact set conneciifg and = *+_ The

simplest way to do this is to define a b&xas follows:

(1) stretch the sides gR® by a factory > 1, and call the new rectangle
R® = [%a] x [%a] x (x3");
(2) setB = R® x [x{, x{] where|x{™ — x| = d.
Our hope is to be able to flow the rectan@®é® all the way down to the bottom
of box B whilst staying completely insid8. For an arbitrary distanca, this is
unfortunately not always possible. It is, however, clear that gRé&handB, there
exists a positive distana¥ for which the distancet map is well defined. Before
we demonstrate this, we will introduce some auxiliary interval functions
Abs([a]) = {Ix|: x € [a]},
Mag([a]) = maxx: x € Abs([a])},
Mig([a]) = min{x: x € Abs([a])}.

Note thatthe function Abs s interval-valued, whereas Mag and Mig are real-valued.
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Returning to the distancg-map, we first compute the minimal flow time for
the nontransversal coordinates

At = mint > 0: [R¥] +tfi(B) ¢ [Bi]}. (28)

This is the first time the image & can possibly intersect a nontransversal side
of the cubeB. Next, we see how far the rectangle flows in the transversal direction
during this time, with the restriction that we may not flow further than distahce

d’ = min{d, At - Mig( f3(B))}. (29)

If d = d, the rectangle flows all the way down to the bottom of Bwvithout
touching the sides oB. If this is not the case, we define a smaller clgjeby
trimming B in the transversal direction

B = [B1] x [B2] x [X§” — o', x{].

This ensures that, when we repeat the procedure above using the trimmB¢ box
we will flow all the way down to its bottom. Note that this redefirgé+D .

Recall thatR® was constructed by stretching the sidesd¥ by a constant
factory. From a computational point of view, this is not optimal. Instead, we may
now trim R® (and thusB’) by defining

[B'] = [R¥]+[0.At]- fi(B) (=12,
[Bs] = [Bs].
If we now evaluate oveB”, we get atight bound on the flow times for the distance-
d’ map fromR®:
— d/
~ Abs(f3(B"))’

Finally, plugging the flow times into the Euler step gives a rigorous bound on the
image ofR® under the distancd- map

[t] (30

m(R®) C [REP]:=[R¥1+[t]- i(B)  (=12. (3D

By composing several distandemaps, we may flow an initial rectangle until the
vector field shifts its dominating direction.

We can guarantee that the successive step diz#s not approach zero under
very mild conditions:

(1) the sizes of the flow boxd® must be uniformly bounded from above;

(2) the flow boxedB must be uniformly bounded away from fixed points of the
vector field;

(3) the vector field evaluations must be finite.
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(a) (b)

Fig. 6. Restricting the computations: (a) the generic case, (b) the nongeneric case.

These conditions ensure that the minimal flow time given by (28) is uniformly
“large”, and that the transversal component of the vector field enclosure does not
contain a zero, which would giv@# = 0 in (29). We ensure condition (1) holds by
imposing afixed scalewhich is described in Section 4.6. Condition (2) is taken
care of by interrupting the computations whenever we come too close to the origin.
The other two fixed points of the system are never approached, which the program
checks for before computing @-step. Finally, condition (3) is valid since the
vector field is finite in any compact region of phase space.

4.5.1. Fine-Tuning the Euler Method There is, however, one major flaw in the
Euler method: even if the true solution set is shrinking, the computed o%es
are always nondecreasingknThis is because we always have the equdlif +
bl = II[a]ll + lI[b]]l for any two intervalsd] and [b]. The problem is that we are
using interval arithmetic on far too large a scale in (31). We will now show how
to eliminate this problem.

Generically, the trajectories maximizing the rectangular huRfY originate
from the corner$p®}#_, of R asiillustrated in Figure 5. This happens when the
partial derivatives of1 are nonzero irR™. There are, however, rare occasions
when this is not the case: sometimes a mixed derivarik(%(j (i # j) may vanish
(the fact that the nonmixed derivatives are always positive is confirmed by the
computer program). If, say, @ (1), (R®), we must consider the whole line
segment connectifig® andp™® in order to estimate the upper bound &ff ™,
see Figure 6(b). Assuming the generic case for now, the maximizing trajectories
are confined to small boxes contained in subboxes with lids centered on the corners
of R®, and extending down t&*+? | see Figure 6(a).

Given a cornep of R®, we define its associated flow b&®® by

[Bf] = pi +[0,% fi(B") (i=12),
[BS] = [B3]. (32)

4 We label the corners as quadrants.
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Fig. 7. The image may now contract in some directions.

Recall that f] = [t, ] are the flow times derived in the previous section. By
definition, the trajectory connecting andIT(p) is contained inBP. Using this

flow box, we can compute tighter bounds on the flow times associated to the initial
point p:

d/
tFl=———. 33
= Abs @) 53
As before, this gives an enclosure of the distadceap of p:
mi(p) S [S]:=p +[t°]- i(BP) (=12, (34

and by taking the convex hull (denoted by of the components o8P over all
corners, we get an enclosure of the imag®&¥:

mRY) C[REM1=| IS (=12. (39
P

The main reward is that now the image®f¥ is free to contract in any direction,
see Figure 7.

Now considering the case when one or several mixed derivatives vanish, we
may repeat the procedure outlined above by substituting some of the corners with
appropriate line segments. This results in larger flow boxes, and therefore gives a
somewhat less tight bound on the image3¥ .

4.5.2. Computing the Partial Derivatives We will now provide an algorithm
for computing enclosures of the partial derivatives of the local Poinoaap
I1: R — »&+D as defined in the previous sections.

Consider the partial derivatives oOF:

dIT; )
BXI'

d Qi ot dy;
a—xj[wi X, T(x)] = a—xj(x, (X)) + a_x,-(x)ﬁ(x’ 7(X))
= 29 2 00) + 220 (o, T(0)
8Xj 8Xj

_on 0T -
= % (X, T(X)) + I () fi (TT(x)) (i,j=1,223). (36)
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The partial derivatives of (x) are obtained by noting that o (x) is constant.
Continuing our example (i.e., assuming that we still are flowing betwersn
planes), we have thais(x) is constant, i.e,

913 .
= 3—X]( ) = 5 J(x (X))+8_(X) f3(IT(X)) (=123,

and solving fordt/9x; yields

]1¢3

d .
a_;-(x) = [ f(I1(x) x.7(x)  (j=1.23).
]

Inserting this expression into (36) gives

oTT; a§0| fi (TI(x)) .

o (x) = (X 7(X)) (X T(X ))]c S 0) (i,j=123. 37
Note that the components with= 3 vanish, just as we desired.

Since we already have an estimateld(x), we can easily estimate the right-
most factor in (37). The partial derivatives of the flow require some work, though.
First, we need the differential equations for the partial derivatives. These are
attained simply by differentiating the equations for the flgdjdt)¢; (x,t) =
fi(p(x, 1)) (i =1, 2, 3), and changing the order of differentiation. On component
level, this gives

d 9g _ 3 ofi BRI —_—
ax( )-éa—m(w(x,t»a—xj(x,t) (,j=123),

or, in matrix form,(d/dt) De(X, t) = Df (p(X, t)) De(X, t), with the initial condi-

tion Dy(x, 0) = |, wherel is the identity matrix. This translates into the following
integral formula:

t
Do(x,t) =1 + / Df (p(X, s))De(Xx, s)ds. (38
0
We will now state a simple lemma used to compute the enclosubeyok, t).

Lemma4.2. Let A be an nx n interval matrix containing zera.e., 0 € [A j]
fori,j=1,...,n.Ifl — %A is invertible then the exponential of A satisfies

efcl+[l —FAIA

Proof. By Taylor’s formula, we know that

2 A3

o0 k A
A
.;k A+ St
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Now, for any interval ] with 0 € [a], it is clear that f]/k! < [a]/2¢~? for all
k > 1, seeing thak! > 2¥-1. Note that it is crucial that the intervad] contains
zero for this condition to hold. Another fact we will use is thaBifis an interval
matrix containing zero, then @ BX for all k > 1. Therefore it follows that
AK/Kkl c Ak/2%=1for allk > 1, so we have

A2 A3 x Ak x Ak 1
A -1
eCI+A+t—+—=+ =1 — =142 =) =1+[1—2AA,
Cl+A+o o+ +k2=;2k’l + ;<2> +H1-5A
which concludes the proof. O

We are now ready to compute the enclosur®ef(x, t).
Lemma 4.3. Define At) = [0,t] - Df (B”), and let A be the interval matrix
defined by
A=Df(B") - (I +[I — 1AM A®)).
Then the solution t(38) satisfies v (x, s) C | +sA forall (x,s) e R® x [0, t].

Proof. By the constructioninthe previous section, we know@t s) < B” for
all (x,s) e R® x [0, t]. Therefore, we have the following differential inclusion:

%w(x, t) € Df (B")Dg(X, t). (39

SinceDf (B”) is a constant interval matrix, we can enclose the solution of (39) by
taking the exponential

Dy(x, t) € ePf(B) ¢ 0UDIED,

Since the interval matriA(t) = [0, t]-Df (B”) obviously contains zero, Lemma 4.2
applies, and so

Do(x,8) € AV C | +[I — 1AM A, (40)

forall (x,s) € R® x [0, t]. We will now use this enclosure @g(x, t), together
with the enclosure dbf (¢ (X, S)), in the right-hand side of (38). This gives

t
Do(x,t) € | +/ DfF(B")(I +[I — SA®] - Att)) ds
0

C 1 +t-DF(B"I +[I — 3AM] - A)), (41)

which completes the proof. O

Note that we may intersect the right-hand sides of (40) and (41) to get a (pos-
sibly) tighter enclosure since they are both valid enclosurd3gix, t).
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Fig. 8. (a) The wrapping effect, and (b) how to overcome it.

Returning to the partial derivatives Bf given by (37), we now have enclosures
of all appearing elements, which gives the following estimates:

fi(RE4Y)

fareny,  G1=123

oIT;
8—X_'(R<k>) C D¢ j (R™, [t]) — Des j (R®, [t])
]

Here, the flow timest] are given by (30), and all appearing elements are interval-
valued. Note that since (in our example) we are flowing betweernxtwgplanes,
we are only interested in the four partial derivatives indexed hy= 1, 2.

4.6. Partitioning

Although the method outlined in Section 4.5.1 may increase the accuracy on a
local level, we are still left with a global problem: If the flow of the system under
consideration rotates boxes, the strongest expanding (or least contracting) direc-
tion will contaminateall other directions. By this, we mean that the computed
enclosureR® will expand in all directions, although the true solution may con-
tract in several directions. This phenomenon is often referred to asrtping

effect see Figure 8(a).

Fortunately, we can reduce the wrapping effect by enforcifivgeal scaleif an
element of any intermediate solution set (including the initial set) attains a width
larger than a predetermined constamaix_size , itis bisected along the directions
that are too wide. Thus, the computed solution set will be made up of several
small boxes, all having widths less thamax size . If the system has contracting
directions, these will now show up in the solution set. This is due to the fact
that elements squeeze together in the contracting directions, which results in an
overlapping effect, as illustrated in Figure 8(b). The global error is now comparable
to maxsize , and the contamination is greatly reduced. The following pseudo-
code outlines an implementation of the algorithm just described:

Algorithm 2.

Initialize Stack with a box[x]

while Stack is not empty
Get a boxx] from Stack
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if [x] is too large{
Bisect[x] in all directions that are wider thamax size
Put the partitioned boxes itack
}
else{
if [x] satisfies the stopping condition
Put[x] in OutStack
else
Computgx’], the propagation ofx], using your favorite algorithm
Put[x'] in Stack
}

}
OutputOutStack

The concept of partitioning along the flow is probably the most fundamental idea
inthe entire program. Although the rectangles produced by our previous algorithms
may expand in both directions, we can force their returns to be confined to a thin
strip by partitioning often. The partitioning process just described is self-adaptive:
there is no need to know in advance where the expansion is strong, or in what
directions it may act. Each partitioned rectangle feels the pull in the attractor’'s
normal direction (that is why we call it an attractor), and is therefore forced to
center itself along the attractor. This results in a considerable overlapping, and is
precisely why we can see contraction in one direction at the return, see Figure 8(b).
Also, as mentioned earlier, we can attain quadratically close approximations of
the interval-valued vector field by choosingnax.size small.

Again, using the conditions mentioned at the end of Section 4.4, we ensure
that the number of partitioned elements remains finite. Indeed, since the vector
field is finite and bounded away from zero, both the return time and the expansion
along the flow are finite. Thus an initial rectangle can only expand by so much
during its return, and therefore only a finite number of partitionings are required.
Of course, if the vector field was extremely small (or our floating point system
extremely coarse), the effects of the directed rounding might dominate over the
actual expansion due to the vector field. In this case, only the successful termination
of the program would verify that a finite number of partitionings was required.

4.7. Switching the Transversal Direction

Once we have found rigorous bounds on the imag®&t, we can restart the
whole procedure witlR*+D as the initial rectangle. This can be repeated as
long as the vector field does not vanish in the direction that we are flowing (the
transversal direction). If we stay away from fixed points, there will always be at
least one component of the vector field that is nonzero. Therefore, if the transversal
component of the vector field becomes small, we switch to planes whose normal
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vector corresponds to the strongest component of the vector field. We do this by a
transition procedure described below. Having switched the transversal direction,
we can continue to flow the surface using the methods described in the previous
sections. By switching between various planes when appropriate, we can follow the
initial surface a whole lap up to its complete return to the global Poinsaction
3. As mentioned above, the only exception to this rule is when a trajectory comes
close to a fixed point. As we will not be performing any numerical computations
near a fixed point, we may disregard this particular situation.

Let us continue our example from the previous sections. Suppose that we have
followed the initial rectangléR® c ¥ by composing several distandemaps,
and suppose that we, at stdgérave

Mig( f(R%)) > C - Mag( f3(R™®)), (42)

for someC > 1. Without loss of generality, we may assume tliais positive
onR®. This means that the flow is turning to the right. SuppR$€ = [x1] x

[X2] x {x3}. Instead of flowing to a planE *+? sijtuated slightly beneatR®, we
flow to ¢+ = {x: x; = X;}. Just as before, we first must construct a flow box
B which contains all trajectories froR® to =*+b. Let Ax; = X; — x;, and set

B = [x1] x [X; — AXq, X2 + AXq] X [X3 — AXq, X3].

This is a candidate for the flow box, but we must confirm that no trajectory leaks
out of B except througlz ®+9 . An easy way of checking this is simply to compute
the range of the vector field ov®, and then compare the components. If

Mig(f1(B)) > Mag(fi(R®)) (i =23), (43)

then no initial point iNR® is displaced by more thanx; in any direction, and
thus B qualifies as a flow box. If, however, (43) does not hold, we partiisf
into smaller pieces and start the switching procedure all over with each piece
individually. Since the constant appearing in (42) is strictly larger than one, this
procedure will succeed sooner or later.

Given a flow boxB, we start by computing its associated flow tim#s the
largest flow time is given b= Ax;/ Mig( f1(B)), and since some points &®
are also points oE *+D | the smallest flow timeis zero. We can now construct a
(possibly) tighter flow box8':

[B1] = [Bil,
[B] = [R¥I+1[t]- fi(B) (=23

Computing the range of over B’ gives a tighter enclosure of the flow time$ [
and, finally, we get bounds on the imagef:

[RE] = (%), (44)
[RED] = [RP]+11]- i(B) (i =293).
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4.8. Cone Field Propagation and Expansion Estimates

Now that we can rigorously compute the propagation of a rectangle traveling along
the flow, we want to compute the evolution of tangent vectors associated to the
rectangle’. To be more specific, each rectan@é is equipped with a coné®
spanned between two unit vectar§ andv®:

e® = (w®t): wPt) =u® cost + v¥ sint, t € [0, 7/2]}.
Our aim is twofold:

(1) we want to compute an enclosgé+? of the image of£® underDIT;
(2) we want to estimate the amount elementgf are expanded/contracted
underDII.

Starting with (1), we use the enclosures derived in Section 4.5.2 and compute
a*Y =pn@R*Hu®  and  F*P = DIR)Y.

Note that the components@f+? ands*+? are interval-valued. We simply define
¢+ to be the hull oi®*+? cost 4 7+ sint wheret € [0, 7/2].
Turning to the second point, let
k+1 - -
[EI(JI’(; )] — |u(k+1)| L |v(k+1)|
be a preliminary estimate on the expansion of vecidf&t) flowing fromR® to
R&+D Here| - | denotes the Euclidean norm 8. Also, leto™ denote the angle
between the boundary vectar® andv®, and let p*+P] denote the set of angles
between the interval vectoig“t? and*+?. Since we have not considered the
interior vectors, we must correct the preliminary expansion estimate by the factor

1+ cosp®

To see where this correcting factor comes from, we first note that,&do, = /2],
we have

w2 = u®Rcogt + [v®|2sirf t + 2(u®, v) sint cost
— 1+ 2sint cost cosa®,
and

W V)12 = (0% 12cot + |0*H D12 sir t 4 2(a*HD, 5*+D) sint cost

5 The algorithms that will be outlined in this section have only been implemented in three di-
mensions. Thus, we will restrict our discussion to cones that are two-dimensional, which makes life
somewhat easier.
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N

[G*D12cogt 4 |56V 2 sirP t
+2|a%*V15*+D] sint cost cos p &V

[s,()':;r,l)]z(l + 2sint cost cos p*+D7).

N

Therefore, we clearly have

1D (1)) 2 c (k+1)]21+25int cost cos p*+]
— &
lw® ()] = oprel 1+ 25sint cost cos9®
1+ cos p&t1]
(k+1),2
< (prer ) ({1}u 1+coso® |-

Before continuing to the next plane, we multiply the expansion estimate with the
previous one, taking the correcting factor into account,

N

[8(k+1)] — [83:;-'1)] . [fc] . [g(k)].
Initially, we take g©@] = {1}.

Due to the partitioning process, an initial rectang§l€’ returns toX as many
overlapping rectanglefR;}{_, whose union strictly contains the exact return of
R©. By the procedure just described, each one of these rectangles is equipped
with an expansion estimate;] = [r"y[¢]. By taking the hull E] = || [i],
it is clear that any vector of the initial cone associated WitR is expanded by
some factoe € [£].

4.9. Handling Cube Entries

Let us deal finally with the trajectories passing close to the fixed point at the origin.
The sole purpose of Section 3 was to allow us to interrupt the numeric computations
whenever a rectangi®® comes close to the origin. To be more precise, we center
a cube of radiu#0 at the origin, and we interrupt the computations if a rectangle
hits the lid of the cube. At this stage, the rectangles are small compared to the lid of
the cube, and therefore we need not interrupt the computations for partial hits. If,
however, the rectangle is completely within the boundary of the lid, we change to
the normal form coordinates. This will distort the rectangle and its tangent vectors
as described in Lemma 3.4, and the discussion following it. Once we have taken
the distortion into account, we may assume that the flow is totally linear in the
cube. Indeed, the maximal error this assumption yields is of the same size as
and can thus be considered as taken into account via the distdftauns we can
explicitly compute where the rectangle exits the cube, and also how the tangent
vectors are affected.

6 Recall thatc was used in the estimates on the normal flow. Its value 52 1°.
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Fig. 9. (a) Splitting along the stable manifold, (b) no splitting.
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Fig. 10. The five stages of passing through the cube: (a) hit the cube completely, (b) distort via change
of coordinates, (c) compute the exit, (d) distort via inverse change of coordinates, and (e) flow the box
into a codimension-one surface.

There are two different ways that a rectangle can pass through the cube. If the
distorted rectangle intersects the stable manifold of the origin (which is,ttze
plane), itis split along the line of intersection, and exits the cube in two directions.
Otherwise the rectangle flows out in one piece, see Figure 9.

Now we are ready to switch back to the original coordinates. Once again, the
computed exit rectangle(s) and the associated tangent vectors will be distorted
as described in Lemma 3.4. The distortion widens the rectangle in all directions,
making it a solid box. Since our algorithms are tuned for flowing codimension-one
surfaces (e.g., rectanglesIt¥) we therefore flatten out the box by flowing it to
its out-most side, see Figure 10. After having completed these outlined steps, we
can resume the numeric computations as described in the previous sections.

5. The RODES Program

The RODES (Rigorous ODE Solver) program is a highly adaptive, multiprocessor
program. As we pointed out earlier, the computations are performed in interval
arithmetic with directed rounding when necessary. This functionality is provided
by the PROFIL/BIAS package (se8]] which is supported on all architectures
utilized inthe proof. The program was executed on 20 machines working in parallel.
Data was passed between the processes via a common text file. All floating point
numbers were passed with 17 digits of precision, which converts exactly according
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to the IEEE standard. The computers employed for the task were a variety of
SUN Sparc stations, with models ranging from LX, Sparc 4 to Ultra 1. The total
computational time in this setting was about 100 hours. Other setups with fewer
computers equipped with stronger processors have been performed with similar
results. In the sections to come, we will give an overview of the program'’s global
structure and the computations carried out.

5.1. Fundamental Classes and Computational Structure

Let us begin by explaining how we represent data in the program. First, we select
our return plane. In our case, it was chosen to Be= {x € R3: xz = 27}. This

is the usual choice for the classical parameter vajages, o) = (10, g 28). Note

that the plangx € R3: x3 = o — 1} contains the two symmetric fixed poir@s
mentioned in Section 1.1. Next, we restrict the classdwhissiblénitial rectangles

to the ones that are representable in the following form:
RO =2Psu—1Lu+1xv—1v+1 (uv, Pe2).

We are now assuming that all rectangles lie in the planéNot only does this
allow us to represent initial rectangles in a very compact iR ~ (u, v, P),

we also have a very restricted number of rectangles (grids) to deal with later, when
we will be following orbits under the return map.

The valueP = 8 is used for the computations at hand. Also, we exclusively use
odd integers for the grid coordinatesindv. This makes the admissible rectangles
nonoverlapping.

Once an initial rectangle has entered the program it is converted to a degenerate
box which, in turn, is represented as the cross product of three intervals, one of
them having zero diameter. Every initial box comes equipped with a cone, which
is represented as the two angles its boundary vectors make with the pasitive
axis. The initial box and cone are parts of a larger structure calleareel A
parcel contains all the information we need to perform the flowing procedures
described in Section 4. The parcel structure (which really is a C++ class) contains
the following elements:

class parcel
{
BOX box; /I The coordinates of all the
/I variables.
INTERVAL angles; /I The boundary angles of the cone.
INTERVAL expansion; /I The enclosure of the expansion.
short trvl; /I The transversal coordinate:
/I 1,...,DIM.
short sign; /Il The sign of the flow c-1or + 1.
INTERVAL time; /I The "flow time" variable.
short message; /I Any message that needs to be

/I passed on.
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Once all the elements of the parcel are defined, the variablesize is given
an appropriate value, depending on the location of the initial rectangle. Recall
that this variable determines the maximal diameter a box may attain before being
partitioned into small pieces.

Next, we set the global stopping conditions. These make sure that we flow the
initial parcel all the way back t& as illustrated in Figure 2. This information
is stored in the variablglob _stop _param. We are now all set to call the core
function described in Section 4 that computes the return of the initial parcel:

Flow _The _Parcel(current _pcl, Return  _List, glob  _stop _param,
maxsize);

Here,Return _List isawhole collection of parcels representing the return of the
initial parcel.

5.2. The Initial Data

Let us recall our candidate for the trapping regidn This set consists of two
disjoint branchesN~ andN*, each made up of admissible rectangles belonging
to the return plan&. We will call these small rectanglesﬁi, and write

N=N UNT= (QN()U(QN#).

The two branches oN have the same symmetry as the Lorenz equations, i.e.,
NiJr = S(N;), whereS(xy, X2, X3) = (—X1, —X2, X3). Thanks to this symmetry,

we only have to perform the computations on one brancN ofVhen it is not
relevant which branch we are considering, we sometimes omit-tladeling of

the small rectangles. For quantifying the hyperbolic properties of the return map,
each initial rectangl®; comes with a con€([«;]), where we use the notation

¢([a]) = {v € R% v/(0, 1) mod 180¢ [«]}.

Initially, the candidate for the trapping regidhconsists of just one seed element,
situated in the upper branch. It is representeduas, P) = (1255 727, 8), and

its associated cone is spanned between the angles 0 and 10 (degrees). In the next
section, we shall see how the program modifiglsy gradually adding elements to

it. The cones are also subject to modification as the program adds more elements
to the the trapping region.

5.3. Forward Invariance

As described in Section 4, the program comp@@andC* information about the
return of the rectangles. TI&® information gives us rigorous bounds on the entire
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orbit of an initial rectangle. In Earticular, given aly, the program produces a set
of overlapping rectanglg; }ji)l whose union strictly contains the returnigf.

k(i)
RN < [ Qi
j=1

Note that, although we demand that the initial rectangles are admissible, the rect-
anglesQ; j are generally not. By simply adding any admissible rectangle that has
nonzero intersection with one of tig ;’s, and which is already not a member of
N, we ensure thaR(N;\I') € N. When we have gone through the whole list of
elements ofN, and no more elements need to be added, we clearly have proved
that R(N\I") ¢ N, and thus that the return map is well defined (in the sense of
the geometric model) on the whole trapping reghdn

Turning to the cone field, recall that each initial rectarigle€omes with a cone
¢([«i]). TheCt information provides us witk(i) new cone([4; j]) associated
with the returnsQ; j, j = 1,...,k(). If a Q; j intersects an elememy not
already belonging tdN, we simply addNg to N and equip it with the cone of
Qi,j, i.e., €([Bi,;]). If, on the other handQ); ; intersects an elemem, already
belonging toN, then we check i£([i ;]) € &([a]). If this is the case, we do
not need to take any action. If, however[8; ;1) ¢ €([ak]), we must widen the
cone associated witNy so that it contains the hull of both cones. If, furthermore,
theCP andC? information forNy has already been computed, we must recompute
this information forNy with its wider cone.

Again, when we have gone through the whole list of elements 0aAnd no
more elements need to be added or recomputed, we clearly have proved that

RINDNNe#0 = DR(N)-€([e]) C E([ax])-

Since this inclusion holds for all elementsf we have proved the existence of a
forward invariant cone field. This condition was satisfied wigh= 7260 for our
initial seed.

A short remark is in order here: Since most elementd dfave several preim-
ages, it is highly unlikely that we wouldot have to recompute due to the cone
being widened. Therefore, when a new element is adddl tee modify its asso-
ciated cone and make it wider than strictly necessary. To be more precise, we first
widen the cone by a factor of4. If the cone opening is still less than 5 degrees,
we widen it to an opening of 5 degrees. If an already existing element needs to
be recomputed due to cone overflow, we also take the new cone to be wider than
strictly necessary.

5.4. Expansion Estimates

We now turn to the question of expansion. As described in Section 4.8, the compu-
tations carried out to prove forward invariance also provide us with an enclosure
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of the expansion of tangent vectors belonging to the initial cone: €aghis
associated with an intervad;[;] containing the range of the expansion a vector
starting within€([«;]) can be subjected to. As we are primarily concerned with
theminimalexpansion a vector may have, we simply take

& =min{§i'j: j=1,...,k()}

to be the minimal expansion estimate associated with all tangent vec&xigih).
Each element of the trapping region will also have a correspomi@axpansion
estimateSi(_l) (which isnotthe reciprocal of;). This is defined as follows:

&Y =minfe; ;- Qij N Ny # B},

Note that the returning elemeng; ; are to be taken over all intersecting images
R(N;j) N Nk # @. Just as in the section above, this estimate will thus be modified
during the computations of the trapping region.

Much to our surprise, we found regions k which were contracted in all
directions undeR. In view of the geometric model, which is everywhere expanding
in the unstable cones, this was not anticipated. We prove, however, that all tangent
vectors within the cone field amventuallyexpanded unddPR. More precisely,
given any orbiko, X1, . . ., wherex; = RI (xo), we can divide itinto nonoverlapping
pieces Ko, - . -, Xils [Xko+1, - - - » Xk ], - - - Where all but the first piece accumulate
an expansion factor greater than 2.79. The fact that this number is greater than 2
is relevant when proving transitivity of the attracting set, see Section 2.4. We also
show that . ; — ki < 31, which gives a very crude lower estimate of the positive
Lyapunov exponent oR:

1
liminf = log(min{|DR"(x)v|: v € €, [v] = 1}) > V/2.79> 1.033

5.4.1. Getting Oriented Before we prove these facts, let us pause for a moment,
and consider Figure 12. We will use this illustration as a dynamic road map. First,
note thatA consists of two main branches (upper and lower). Next, note that each
branch is split in two by the lin&€ = W?3(0) N X. This gives us four naturally
defined regions, and we will refer to these&s ..., A4, Wwhere the labeling is
analogous to that of quadrants. The dynamic&a$ now easy to describe: any
trajectory starting inA; tends to the left, and enteis, after a finite number of
iterates. A trajectory starting i\,, however, must immediately go to eith8g
or A4. Using the symmetry of the Lorenz equations, we end up with the diagram
illustrated in Figure 11.

Of course, we are deliberately ignoring the preimages.dfhese points have
a finite number of iterates before hittidgand vanishing.

Let us now resume our discussion about the contracting regions. There is one
such region in eachy, and they are situated as follows:Aq, the right-most part
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@@3
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Fig. 11. The simplified dynamics of the return m&p
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Fig. 12. Anapproximation ofA with the most contracting directions for one iteratéofr he (almost)

straight line cutting across the two brancheg\as the intersection between the stable manifold of the
origin and the return plane. Note the close tangencies between the extreme tips of the attractor and the
contracting directions. The bounding box is§, 6] x [—6, 6] x {27}.
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(x1 > 2.820) is contracting. The strongest contracfioncurs to the far right, and

is roughly a factor of 0.6804. All trajectories travel to the leftAn, and thereby

tend to the expanding region @&;. The contracting region ii; is situated to

the left x; < —0.5937), and the strongest contraction is no less than by a factor
of 0.1186. This is quite a strong contraction rate, mostly due to the small angle
between the attractor and the stable direction, see Figure 12. As always, these
numbers should not be taken as absolute facts: they only reflect the outcome of
our computations. Indeed, with higher accuracy, it is possible to get the expansion
estimates for the region mentionedAa to be almost one. The left-most region
mentioned inA,, however, does not seem to rise much when the accuracy is
increased. This is expected, as there is nothing we can do about the close tangency
present.

As the geometric model assumes that the attractor is virtually perpendicular
to the stable directions, the problem of close tangencies is never discussed in the
literature. It is, however, a serious obstruction that must be overcome to prove that
there exists an expanding direction. Indeed, by increasing the paransétgrtly,
the attractor appears to become tangent to the stable directions, and then there is
no hope of saving the robust persistence of the attractor,l4¢arid [10].

We are saved by the fact that orbits entering the outer-most paAs of A4
have just been very close to the fixed point. Recall that the expansion is very
large (unbounded, in fact) in a neighborhood of the origin. Thus, before we enter
a strongly contracting region, we have hopefully already precompensated for the
coming contraction. We prove that this indeed is the case by confirming that the
producte P& is always large.

5.4.2. Forward Iterates and Accumulated ExpansioriLet us begin this section
by introducing some notation: LeR](N;) denote the computed return Nf, and
let (R)(N;) denote the set of admissible rectanglesNofhat intersect R](N;),
ie.,
k(i)
[R](Ni)=UQi,j and (RY(Ni) = {Nk: Nk N [RI(N;) # 7}
j=1
Note that(R) takes the set of admissible rectangles into itself. Therefore, we may
consider higher iterate$R?), (R%), . . ., by defining

(RM(N) = (RI(R™ ) (Np)),

where (R%(N;) = N;. Thus, for any initial pointxg € N;, we haveR(xo) €
(R&Y(N;) for k = 0,1.... With each iterate, we can now also associate a lower
expansion estimate

&R =min&: N; e (RN}

7 When we talk about contraction and expansion rates, we always mean the rates restricted to the
unstable cone field.
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Therefore any tangent vectore €([«;]) following the orbit of an initial point
Xo € N will satisfy

n—1
IDR(xo)v| = [v] [T &Y.
k=0

We will now prove that the expansion along orbitsNngrows exponentially
with the number of iterates. First, we will coarsen the set of admissible rectangles
making up the trapping regioN. This is done by considering one branchMf
at a time, and grouping all rectangles that have the saradue into one larger
rectangle. This makes the skt very similar to a one-dimensional set, which
clarifies much of the arguments to come. We keep the same notation by also
denoting these new (and larger) elementsldfy Nii.

SinceN is a trapping region with a forward invariant cone field, it is foliated by
stable leaves. Letbe any leaf of the foliation, and consider the set of pointd in
between (and including) and its image under the return meg¢). We call such
a set dundamental domaifor R. An important property of such a set is that an
orbit cannot cross a fundamental domain without having an iterate in it. Of course
this property also holds for any set containing a fundamental domain.

We will produce a seF such that the following proposition holds:

Proposition 5.1. There exists a set E N satisfying

(1) F contains a fundamental domain
(2) F contains the leaveE N N;
(3) anyorbitwith € F,eventually leaving Fsatisfies foreveryreturnxe F:

min{|IDR"(xo)v|: v € €} > 2[v];
(4) any orbit completely contained in F satisfies
min{|DR"(xo)v|: v € €} > (+/2)"|v].

In particular, statement (3) is true for tfiest return toF. Therefore, a small
line segment must more than double its length between two consecutive slicings
overl' = ¥ NWS(0).

Once more, our claims will be proved by a computer progexpansion.cc
The underlying algorithm can be described as follows:

Algorithm 3.
Enter F
SetF = (R)(F) N (N\F)
Foreach N € F {
Setacc exp = &Y
Insert N in Stack
while Stack is not empty
For each N in Stack {
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if Nk eF {
if acc exp > 2
Remove Nfrom Stack
else
Signal an error

}
}
Setlocal _exp = min{&;: N; € Stack }
SetStack = (R)(Stack )
Setacc _exp =local _exp xacc _exp

Note that we start computing orbits from a Setvhich is the image oF minus
any overlaps withF itself. This is a technical trick motivated by the fact that
the preexpansion estimatesfnare much better than the corresponding forward
estimates irf-.

The reason we may “trim” away the overlapping eleménts(R) (F) is seen as
follows: these points will either eventually leave the Bedr remain inF forever.

In the first case, we use the fact that the expansidn is greater than one. This

is verified by the program by checking that rffin N; € F} > 1. Therefore we

may consider these points to be taken care of by the main algorithm. In the second
case, we simply verify that the points satisfy iDR?(xo)v|: v € €} > 2[v].

This is done by the program by checking thatlle F with (R)(Nii) NN #£ ¢
satisfy& > /2.

The program also verifies th&treally contains a fundamental domain. This is
easily done by checking that the the right-most boundary eledgérdf the upper
branch part ofF, calledF*, is mapped intd=". Therefore, sincé" is a union
of adjacent rectangles, any element to the righfidfmust also have an iterate in
F+.

Finally, the fact that the program does not signal an error proves that all points
that leaveF have accumulated an expansion factor of at least 2 on their first return
to F. The fact that the program terminates proves that all points that leasally
do return toF.

The program was executed with"™ selected to be the union of all rectangles
with u values in [-128 512]. This corresponds to the set of rectangledNin
whosex; coordinates belong to{%, 2]. The smallest accumulated expansion for
orbits returning toF was found to be 2.7914; the smallest expansion factor for
orbits confined toF was found to be 1.7526; the minimal expansionFrwas
found to be 1.06792. Furthermore, the longest number of iterates spent outside
F was found to be 30. The time required for these computations was a couple of
minutes on averyslow computer.

This completes the proof of Proposition 5.1, and also provides us with an algo-
rithm for dividing an orbit into nonoverlapping pieces|. .., Xkl [Xk+1, - -

Xk, - . . where all but the first piece accumulate an expansion factor greater than 2.
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A. Chaos Theory for Pedestrians

In this section we will outline some basic definitions used in the theory of dynamical
systems. The presentation is based mainlyldh [18], and [24].

A.1l. Hyperbolicity

Consider &C* diffeomorphism k > 1) of a compact manifold to itself;: M —

M. Theforward orbitof a pointp € M underf is the sef fi(p)}i"io, wheref' is

f composed with itself times. A pointp is aperiodic point of period provided

fk(p) = pand fi(p) # pfor0 <i < k. If p has period one, we call itfxed

point of f. We say thatp is a hyperbolic fixed pointf f if f(p) = p and if

Df , has no eigenvalues on the unit circle. According to standard results in spectral
theory, there then exists a splitting of the tangent spiadé = Ej @ E;, where

the invariant subspacﬁ and]Eg correspond to the spectrum inside and outside
the unit circle, respectively. This means that we can find constarts0, 1) and

C > O such that for alh € N:

IDfYIEG] < Co™ and IDf " [Epll < Co™

for some Riemannian norih- || onT,M. The subspacei&?J andEY are called the
stableandunstable subspacéasr the fixed pointp. Given a hyperbolic fixed point
p, we define its stable and unstable manifolds

WS(p) = {xe M: lim f'(x) = p},
WY(p) = {xe M: lim f~'(x) = p}.

These sets are injectively immers€d submanifolds ofM, and have the same
dimensions as their corresponding linear subspaces.

We can extend these definitions to the case whera periodic point of period
k simply by replacingf by fk. Also, we can extend the notion of a hyperbolic
fixed point to a whole set.

Consider a compact sét ¢ M which is invariant undeff, i.e., f(A) = A.
We say thatA is ahyperbolic sefor f if there exists a splittingxM = ES & EY
for eachx € A, such that:

1. E§ andE; vary continuously withx;
2. the splitting is invariant, i.eDf, - E§ = Ef ) andDf, - E} = Ef ,;
3. there are constantgse (0, 1) andC > 0 such that for alh € N:

IDfRE;l <Co™  and  |Df"|EY| < Co".
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A.2. Robustness

In practice, it is impossible to find explicitly the invariant st not to mention
the splittingTAM = ES @ EY, except in the most trivial cases. Fortunately, we
shall soon see that hyperbolicity is a robust property, and one can thus make do
with pretty crude approximations of botkh and the subbundles of the splitting.
By robust we mean that the defining hypotheses are open i€th®pology.

A compact regiorN C M is called atrapping regionfor f provided f (N) C
N°, whereN° denotes the interior o. Given such a set, we can construct the
maximal invariant sebf N:

A:ﬁ f1(N).
i=0

It is clear that any other invariant set b must be a proper subset af Seeing
that the sequendd ' (N)}°, is nested, we can approximateby considering high
iterates ofN. Any property valid in an open neighborhoodafwill then also hold
for fX(N) if we takek sufficiently large. Seeing that the image of a trapping region
is also a trapping region, we may assume khat 1 by takingN close toA.

Let TyWM = F° @ [FY be a continuous splitting approximatifij @ EY. Given
a > 0 we define thestableandunstable cone fields

Ci(a) = {v1+ v e Fy @ F}: |vg| < afusl},

Ci(e) = {v1+ vz € F§ @ Fy: |va| > arfval]}.

The following theorem provides a practical way of proving that a set is hyper-
bolic:

Theorem A.1. Let N be a trapping region for a Ediffeomorphism fSuppose
that there exists a continuous splitting M = FS®F", and that there are constants
a>0,C>0,ando > 1so that

Df; ! Ci(@) C C§yyy(@) and  Dfy - Cli(a) C Ciy (@)
and
IDf;"CS ()]l > Co™ and |IDfy|Cy ()| > Co"

for every xe N. ThenA = (2, f'(N) is hyperbolic for f

Itis clear that the hypotheses of this theorem are open i@ thepology, which
proves that hyperbolicity is a robust property. In particulag i C! close tof,
thenAg = (2o 9 (N) is hyperbolic forg.
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Fig. 13. An attracting set which is not an attractor.

A.3. Strange Attractors

We will fix the following notation® A compact, invariant set ; is calledattracting

if there exists an open neighborhoddof A+ such tha{)2, fi(U) = A¢. The
largest suchJ is called the basin of attraction fdy;, and is denotedB(A+). In
particular, the maximal invariant set of any trapping region is an attracting set.
Even so, it may be the case that most point8ia ;) tend to a much smaller
subset ofA¢. As an example, consider the diffeomorphism with a phase portrait,
as illustrated in Figure 13.

Although the whole interval between the two filled fixed points is attracting
with B(l) = R?, itis clear that most orbits tend to either one of the extreme points
of I.

In order to avoid this kind of situation we restrict our attention to a subset
of the attracting sets. Aattractor is an attracting set which contains a dense
orbit: Ay = i"io fi(x) for somex € As. This means that\; is minimal in
the sense that no proper subseigfis attracting. Clearly, the attracting detn
our example is not an attractor whereas the two extreme fixed points are. There
is, however, nothing “chaotic” about the asymptotic behavior of points tending to
these attractors, and the situation is therefore dynamically uninteresting.

From this point of view we would like to be able to distinguish attractors
exhibiting interesting dynamical properties from those which do not. For this
purpose, an attractor is callsttangeif for almost all pairs of different points in
B(At), their forward orbits eventually separate by at least a conéf@®pending
only onAys). Here, almost all pairs means with probability oneBign ) x B(A+¢)
with respect to Lebesgue measure. These attractors are sometimesttadigcbr
sensitiveseeing that, no matter how accurately we measure the initial conditions,
we will eventually accumulate an error of size

Sometimes, we can also say something about the speed at which nearby orbits
separate. Indeed, if an attractoy is hyperbolic with a nontrivial unstable tangent
bundle, we clearly have exponential divergence of almost all nearby orbits. Such

8 The reader should be aware of that there are several different notions of a strange attractor, see
[13]. We choose to use very strong (but natural) requirements seeing that the Lorenz attractor satisfies
almost all existing definitions of a strange attractor.
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5

Fig. 14. The surfacez and two trajectories.

an attractor is calledontrivial hyperbolicand, apart from being strange, it is also
robust.

A.4. Flows and Their Return Maps

We will now describe a useful relation between discrete-time (maps) and continuous-
time (flows) dynamical systems. Consider the system of ordinary differential equa-
tions

X =v(x), (45

wherex € M and where the vector field is aC' function,v: M — TM. Let
(X, t) denote the flow of (45), i.e.,

d
a‘ﬂ(X, t) = v(e(X, 1)),

and suppose that the system (45) has a periodic solution of perio@, containing
the pointxg, i.e.,o(Xo, T +t) = ¢(Xo, t) forallt € R. Suppose that ditM) = n,
and letX be an(n — 1)-dimensional surface transverse to the vector fielghat
see Figure 14. By this, we mean tHatxg)) @ Ty, X = Tx,M. Then we can find
an open set) C ¥ containingxg such that for alk € U, there exists a(x) close
to T such thatp(x, T(X)) € X.

The pointp(x, t(x)) is called thefirst return of x, and the mapR which
associates a point with its first return is called t&eirn map R(X) = ¢(X, t(X)).
Note that, by construction, we havéxy) = T and R(Xg) = Xo. Thus a fixed
point of R corresponds to a periodic orbit of (45), and a periodic point of peciod
corresponds to a periodic orbit of (45) piercibigk times before closing.

The following theorem states that the return map is as smooth as the vector
field:

Theorem A.2. Under these conditionand for sufficiently small Uthe return
map is a C diffeomorphism of U onto a subsetbf
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This means that the partial derivatives Rfare well defined. Once we have
the return map and its derivative, we can employ the machinery described in the
previous sections: we say that a periodic orbit of (45)js hyperbolic if any
member inZ N y is a hyperbolic periodic point for return mdp Likewise, we
say that a se#d, which is flow-invariant, is hyperbolic if its intersection with
is a hyperbolic set for th&. All definitions concerning attractors can be carried
over to flows by substituting’, i € N for ¢(-, 1), t > 0.
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