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Summary. The convergence of a fourth order finite difference method for
the 2-D unsteady, viscous incompressible Boussinesq equations, based on the
vorticity-stream function formulation, is established in this article. A com-
pact fourth order scheme is used to discretize the momentum equation, and
long-stencil fourth order operators are applied to discretize the temperature
transport equation. A local vorticity boundary condition is used to enforce
the no-slip boundary condition for the velocity. One-sided extrapolation is
used near the boundary, dependent on the type of boundary condition for the
temperature, to prescribe the temperature at “ghost” points lying outside of
the computational domain. Theoretical results of the stability and accuracy of
the method are also provided. In numerical experiments the method has been
shown to be capable of producing highly resolved solutions at a reasonable
computational cost.

Mathematics Subject Classification (1991): 35Q35, 65M06, 76M20
1 Introduction

The 2-D incompressible Navier-Stokes equations under the Boussinesq as-
sumption, in the vorticity-stream function formulation, can be written as
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dw+ (u-V)<o =vAw + go, 0,
0,0 + (u-V)0 = kA6,

AY = w,

u=—0o,%, v=0,V,

(1.1)

where w is the vorticity, ¢ the stream function, u = (u, v)T the velocity
field, and 6 the temperature. The parameter v represents the kinematic vis-
cosity, « the heat conductivity, and g the product of the gravity constant with
the thermal expansion coefficient. We consider (1.1) on a domain €2 whose
boundary is denoted by I'.

We assume that the computational domain is simply connected and note
that the usual no-flow, no-slip boundary conditions for the velocity field,
u |r= 0, can be written in terms of the stream function v as

oy

(1.2) Y| r=0 and — | =0
on Ir

For the temperature 6, either a Dirichlet boundary condition
(1.3) 0 Ir=06p,

where 6, is a given distribution for the temperature on the boundary, or a
Neumann boundary condition

a6

(1.4) I

=0 Iz

where 0 is a given heat flux on the boundary, can be imposed. The latter
would apply when an insulated (adiabatic) boundary condition is imposed,
in which case 0y = 0.

This paper presents analysis of a fourth order computational method for
the Boussinesq equations (1.1) that was recently proposed by the authors in
[16]. A description of the overall scheme is given in section 2, which we
briefly outline here. A fourth order compact discretization is used for the

a
momentum equation in (1.1). The no-slip boundary condition a—w =0is
n Ir

converted into a local vorticity boundary condition, such as Briley’s fourth
order formula or the new fourth order formula discussed in [16]. The no-flow
boundary condition ¥ |r= 0 is reserved as a Dirichlet boundary condition
in the Poisson equation for . We emphasize that a compact approach is
crucial here for it avoids the need of prescribing values of the vorticity at
computational points outside of the flow domain (“ghost” points). Generally,
such values would be computed using extrapolation, which for the vorticity
can be troublesome due to the presence of sharp gradients in this variable at
the boundary. This is especially true in the case of large Reynolds number
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flow. In contrast, a compact approach is not indicated for the temperature
transport equation. Indeed, the temperature is generally well behaved near
the boundary and the prescribed boundary condition, (1.3) or (1.4), allows for
the discretization of the temperature equation to fourth order using long-sten-
cil approximations. Moreover, this avoids the additional computational cost
of solving a Poisson-like equation involving an auxiliary temperature vari-
able that would be required by a compact approach. However, we now must
prescribe temperature data at “ghost” points outside of the computational
domain, which are derived using one-sided extrapolation. Additionally, the
number of interior points in these formulas is reduced by applying informa-
tion obtained from the temperature equation at the boundary. Similar ideas
can be found in [10].

Detailed numerical experiments have been performed to show that this
approach is indeed very accurate and efficient. Benchmark quality simula-
tions of a differentially-heated cavity problem using this method is presented
in [13,16]. This flow was the focus of a special session at the first MIT con-
ference on Computational Fluid and Solid Mechanics in June 2001 [1]. A
detailed description of the problem setup, as well as a summary of the overall
results can be found in [6]. Submissions to the session included simulations
computed using finite difference, finite element, finite volume, and spectral
methods. The reference benchmark simulation was computed using a spec-
tral code, which was used to rank the submissions to the special session. In
all there were six composite metrics on which submissions were judged. The
simulation computed by our method received three first place rankings and
one second place ranking. In particular, with respect to numerical accuracy
and efficiency our method performed extremely well. See [6, 13] for a detailed
description.

As noted above, the purpose of this paper is to provide a theoretical analy-
sis for the numerical method presented in [16]. As is generally the case when
high order discretizations are used in conjunction with high order one-sided
extrapolation, stability of the resulting scheme becomes a crucial issue. In
what follows, we demonstrate the stability and full accuracy of the method.
To facilitate the description, we choose the computational domain as Q2 =
[0, 1]1x [0, 1] with gridsize Ax = Ay = h = %.The following two theorems
are the main results:

Theorem 1.1 Let u, € L*®([0, T]; C7*(Q)), 6, € L>([0, T]; CS(Q)) be
the exact solution of the Boussinesq equations (1.1)—(1.2) with the Dirichlet
boundary condition (1.3), and uy, 0y, the approximate solution of the fourth
order numerical method, namely (2.7), (2.16), and (2.20) below. Then

4
(L.6a)  |lu, — upllpoqo, .22y + 10 — OnllLoqo.11.02) < CUte, 0)R™,
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where the constant is determined from the exact solution ., 6, by

Cluc,0.) = C<||ue||c7,a(1 + llelics) + 16elleslluelles + I|9e||c6)

(1.6b) CT CT
exp {T“ tllellen’ + =1+ ||ue||co>2} :

Theorem 1.2 Letu, € L*([0, T]; C"%(R)), 6, € L*=([0, T1; C¥*(Q) ) be
the exact solution of the Boussinesq equations (1.1)—(1.2) with the Neumann
boundary condition (1.4), and uy, ), the approximate solution of the fourth
order numerical method, namely (2.7), (2.16), and (2.26) below. Then

4
(L7a)  |lue — upllpoqo.y..2) + 10 — Ol Looo.71.02) < C(ue, 0)R™,
where the constant is determined from the exact solution u,, 6, by

(1.7b)
C(ue, 0.) = C(”uel|c7-0‘(1 + lluelles) + 10ellcro llue |l cow + ||9e||c&a>

CT , CT )
-exXp T(1+Iluellc1) +T(1+”ue”C0) :

Remark 1.3 To simplify the analysis of a numerical method, one usually con-
siders the semi-discrete scheme, with spatial discretization and continuous
derivative in time. This is the so called “method of lines” approach, as it is
composed of a system of ODE:s. If the spatially discrete scheme is proven to be
convergent, the full accuracy for the fully discrete scheme can be established
as long as the temporal discretization is consistent and stable. For the numer-
ical scheme proposed in this article, we choose a high order Runge-Kutta
method, an explicit multi-stage method, to update the dynamic equations
in time. Full order convergence analysis is valid for either the forward Euler
method or the classical RK4 method. Since the proof of this standard approach
is long due to many technical considerations, we choose to omit it.

We note that the constants C appearing above depend on v and k. The
details of the discrete L? norms for different variables will be provided in
section 3. For simplicity, we use || - ||¢me to denote the L>([0, T]; C™%)
norm. It should be noted that the exact solution does not generally satisfy the
regularity assumption of the above theorems in a square domain, which is a
shortcoming of all convergence proofs for finite difference methods. Never-
theless, in many cases, such as periodic channel flow or Taylor-Couette flow
in an annular domain, the solution does possess the required regularity. We
note that in the finite difference setting, the regularity assumption in Theorem
1.1 and Theorem 1.2 is almost optimal.

In section 3 we first illustrate the techniques used in proving the theorems
above by analyzing the stability of the long stencil operators and one-sided
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approximations of the temperature near the boundary using a simple one-
dimensional heat equation model. The convergence proof of the fourth order
method with the Dirichlet or Neumann boundary condition for the temper-
ature is then established in sections 4 and 5, respectively. In both cases,
approximate solutions for the velocity, vorticity, and temperature are con-
structed and shown to be consistent up to O (h*) with solutions of the finite
difference scheme. Fourth order convergence then results from an estimate
for the error between the approximate solution and the numerical solution.
A crucial point in the stability analysis for the error functions is that both
the compact and the long-stencil operators have negative eigenvalues, hence-
forth are well-posed. In addition, careful treatment of the boundary terms is
required to recover an energy estimate. Here, discrete elliptic regularity is
applied to control the boundary terms of the vorticity equation, while a can-
cellation analysis is used to deal with the boundary terms of the temperature
equation.

2 Description of the scheme

In this section we describe in detail the fourth order finite difference method
for (1.1) proposed by the authors in [16]. First, a fourth order compact
approach for the momentum equation is outlined in section 2.1. Then in
section 2.2 the temperature transport equation is approximated by long-stencil
operators, along with one-sided extrapolation to obtain “ghost” point values
for the temperature outside of the computational domain.

In this article, 5x, 5),, Df and D% are the standard centered difference
operators for d,, 9, 32 and 8‘2,, respectively. Similar definitions can be applied
to 5y and Di.

2.1 Momentum equation

The momentum equation is solved by the Essentially Compact Fourth order
scheme (EC4) proposed by E & Liu in [8] for the two-dimensional Navier-
Stokes equations. The starting point of the scheme is a compact fourth order
approximation of the Laplacian A given by

2
A+ D2D?
Q2.1 A=——22 00,
1+ ﬁAh

where A, = D? + Di. Substituting the difference operator in (2.1) for the
Laplacian in the momentum equation and then multiplying the result by the
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denominator of the difference operator (2.1) gives the O (h*) approximation

2 B2 B2
1 —A) (1 —A)V- _ (1 —A)x
(+12ha,w+ + 1580 Vo) — g1+ 75284),0
h2
2.2) - (Ah + EDﬁDi)w.

The same procedure applied to the kinematic equation results in the O (h*)
approximation

h2 - h2
2.3) (Ah n EDny>1p _ (1 n EAh)w.
As in [8], the nonlinear convection term in the momentum equation is fully
discretized as

h? ~ h? ~ h?
(1 + EAh)V-(ua)) - Dx(l + gDi)(uw) + Dy(l n ng)(vw)
h? ~ ~
2.4) Y (qua) + vDya)) + oMY,
The first and the second terms in (2.4) are compact. The third term is not, yet it

does not cause any problem in actual computations since u" D" + v" D, o"
2

can be taken as 0 on the boundary. The gravity term (1 + EA;,)&;H is dealt

with similarly. A formal Taylor expansion gives

h? 3 h? o, R, 4
1 —A)B:D(l —D,——D) o
(+12”x I+ 3Py = Py) £ 00D
~ h? ~ h? ~
(2.5) = Dy + 5 DDy = 5 DD+ O(hY).

Note that at a horizontal computational boundary the third term on the right-
hand side of (2.5) requires values of 6 at “ghost” points lying outside of the
computational domain. The prescription of these will be discussed below.
Finally, by the introduction of an intermediate variable @

2

(2.6) ®= (1 n %Ah)a),

the momentum equation is approximated to O (h*) by

~ h? ~ h?
0@ + Dx(l + gDi)(uw) + Dy(l + gDi)(va))
2

h ~ ~ ~ h> 2
— 5581 (uBsw +vB,0) — D, (14 5D = DY)

h2
@7 =v(a+DiD})o.
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The stream function is solved using (2.3) (the right-hand side of which is
) with the Dirichlet boundary condition ¢ |r= 0. The velocityu = V' =
(—0y¥r, 0, ) is then obtained by long-stencil approximations to d, and 9,
namely

~ h* ~ h*
(2.8) u=—Dy<1 —gDy>1//, v=Dx<1 —FDX)I/L
Note that (2.8) requires values of i at “ghost” points. This is discussed below,
along with the boundary condition for the vorticity, which when given @ is
required in order to determine w from (2.6).

We now turn to the fourth order boundary condition for the vorticity,
focusing our discussion on the boundary I', where j = 0. The main point
in deriving a boundary condition for the vorticity is to convert the bound-
ary condition % = 0 into a boundary condition for w using the kinematic
relation Ay = w. One possibility is Briley’s formula

1
18h2

which results from a centered fourth order discretization of Ay = w at the
boundary along with the one-sided Taylor expansions of the stream function

(2.9 w0 = (108v; 1 — 272 + 4 3) ,

1 0
210) i1 = 6vis —20ia+ ~vis—4h (L) +om),
3 dy i0
and
8 0
Q1) Yoo = 40Yi) — 1512+ 3 ¥ia — 12k (%) + 0.
i,0

Alternatively, we can use a new fourth order formula for the vorticity,

2.12) 1<8¢ 3ia + Sy — 1y )+0(h4)
, oo (80— 30t Sy Ly ,
7,0 h2 i1 i,2 9 i,3 8 i,4

which is derived in the same manner as (2.9), but instead of (2.10)—(2.11) we
now estimate the stream function at the “ghost” points using

(2.13)
5 1 oy ]
Vi1 =10V — SYio+ Vi3 — —vYia —Sh| — +0M),
3 4 dy i0
and
(2.14)

5 Y 6
Vi =801 —45¢i 2 + 163, 3 — 5%,4 —30h 5 + 0 (h ) .
0.0
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The latter boundary formula (2.12) gives fourth order accuracy for the
vorticity on the boundary, while the Briley’s formula indicates a third order
accuracy, by formal Taylor expansion. Yet, the numerical evidence shows that
both (2.9) and (2.12) result in full fourth order accuracy for the two-dimen-
sional Navier-Stokes equations, with compact difference operators applied
at the interior points. See a relevant discussion in [16]. For computational
convenience, we suggest using Briley’s formula along with (2.10)—(2.11).
However, for conciseness of the analysis of the Boussinesq equations in
the present article we use (2.12). We note that the philosophy of local vor-
ticity boundary conditions can been extended, in particular, to derive local
pressure boundary conditions for the velocity-pressure formulation of the
Navier-Stokes equations. Moreover, unlike the vorticity-stream function for-
mulation, the local pressure boundary condition approach is easily extended
to three-dimensional flows; see [14].

2.2 Temperature transport equation

To solve the temperature transport equation 9,6 +u-VO = k A6, we discretize
dx, dy, and A using standard fourth order long-stencil operators:

(2.15)

B, (1- }16—21)5) + 0,
2

h 4 4 4
A =2y —35(Di+ DY) + 06,

9, = Bx(1 - %sz) +omY, a,

Thus an O (h*) approximation for the temperature equation is given by

(2.16)
3,6 + u5X<l _ %ZDg)e + vﬁy<1 — %Zpﬁ)ezfc(m, — T—;(D;‘ + D;‘))e.

Because of the use of long-stencil operators in (2.16) we must prescribe
0 at “ghost” points lying outside of the computational domain. We discuss
this issue next for the two boundary conditions considered herein, namely
Dirichlet and Neumann.

2.2.1 Dirichlet boundary condition for temperature. Inthe case of a Dirichlet
boundary condition 6 is given on the boundary by 6, (see (1.3)), hence we
only need to update (2.16) at the interior grid points (x;, y;),1 <1, j < N—1.
Thus, only one “ghost” point value must be prescribed, e.g. 6; _; along the
boundary I',. Local Taylor expansion at the boundary gives

20 6 4 1

12
= Hei 0 01 0; 2+_9i,3+ﬁh28§9i,0 +O0m).

2.17) 6 _ g ——
@17 O T R T RG]



Analysis of a fourth order finite difference method 563

Using standard finite difference stencils, approximation of h28)2,9i,0 to high
order would necessarily increase the size of the stencil in (2.17). Alternatively,
we will use the PDE and its derivatives (see the detailed discussion in [16]).
Since the velocity # vanishes on the boundary, the temperature transport
equation along I', reads

(2.18) 30 |r,= Kk AB |r,= k(3] + 92)6 |r,= k(3:65 + 0,6 Ir,) -

The above evaluation leads to
2 1 2
(2.19) 8),9 Ir,= —0:0, — 3,6,
K

where the right hand side is a known function since 6 is given by 6, on the
boundary. The combination of (2.19) and (2.17) gives

(2.20)

20 6 4 1 12,1
0 _1=—0;0——0;1 — —6;» + —6; —hz(—ae—aze) oh).
A= ptom gyt b plis it (40 = 9,6 ) + O ()

Similar arguments follow along the other three boundaries of €2. It will be
shown in later sections that this formula gives full 4-th order accuracy.

Alternatively, a fourth order Taylor expansion near the boundary results
in only one interior point in the formula for 6; _;, namely

(2.21) 0,1 = 20,0 — 01 + h*3;6,0 + O(hY)
which along with (2.19) gives

1
222) 61 =260— 0,1+ hz(zateb . afeb) +owmY.

This is a O(h*) formula analogous to (2.20). Our numerical experiments
indicate that both (2.20) and (2.22) are stable and full accuracy is achieved.
Since (2.22) only requires one interior point, we suggest its use in actual
computations.

2.2.2 Neumann boundary condition for temperature. For the Neumann
boundary condition (1.4) the temperature on the boundary is not known
explicitly, only its normal derivative. Thus, (2.16) is applied at every compu-
tational point (x;, y;), 0 < i, j < N requiring us to determine two “ghost”
point values, e.g. §; _; and 6; _, along I',.. As in the Dirichlet case above we
begin by deriving one-sided approximations. Local Taylor expansion near
the boundary gives

h3
61 =61 —2hd,0;0 — ?339,,0 + o0,
(2.23) e
02 = 60,5 — 4hd,6; 0 — Tage,-,o + 0",
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The term 9,6; o in (2.23) is known from the flux boundary condition (1.4).
It remains to determine 8)3, 6;.0, for which we again use information from the
PDE and its derivatives. Applying 9, to the temperature equation along I',
gives

(2.24) Oyr + 10,0y + ubsy + 0,0y + v0y, = ik (Byay + 336) .

Since 0, is given along I',, the first term on the left-hand side as well as
the first term on the right-hand side of (2.24) are known functions, 67, and
0rxx, respectively. The third and fifth terms on the left-hand side are zero
since u |r= 0. The fourth term on the left-hand side is also zero due to the
no-slip boundary condition and incompressibility, i.e. v, = —u, =0on I',.
It remains to evaluate the second term on the left-hand side. Since v, = 0
along I', it follows thatu, = —(v, —u,) = —w along I',. Moreover, since in
the Neumann case (2.16) is updated at all grid points including the boundary
points, 8, on I, can be calculated by the standard fourth order long-stencil
formula (2.15). Combining these arguments, 830 is approximated along I,
by

1 ~ h?
225 9%0= ;(eﬂ — WDy (1 — ng)Oi,()) — O

Substitution of (2.25) in (2.23) gives

(2.26)
61 = 61 — 200 — h—3(1ef, Lo But - 26 - 0r1)
’ ’ o3\ T ok 6 '
;-2 = 012 — 4h0y — 8—'“3(1@1 Lo But - 6 - Orer)-
’ ’ ' 3 \k K 6 '

We note that in the no-flux (or fixed-flux) case we have 6y, = 07, = 0, and
(2.26) reduces to
h wio~ h?
61 =61 + ?ﬂDx(l - FD,%)e,,o,
K
(2.27) 8% i o ~ B2 ,
0i, 2 =02+ ——’Dx<1 - —Dx)eio-
’ ’ 3 « 6 ’

Analogous formulas follow for the remaining three boundaries.

3 Stability of long-stencil operators and one-sided approximation

In this section we study a simple model, the one-dimensional heat equation,
to explain why long-stencil operators coupled with one-sided approximation
are stable. The approach used here will be applied to the convergence proof
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of the full nonlinear two-dimensional equations in sections 4 and 5. The
one-dimensional heat equation is given by

(3.1 30 = Kd?0.

Applying the fourth order spatial approximation (2.15) to (3.1) gives
h2

3.2) 00 = (D2 - ED;j)e .

Note that both the second and fourth order difference operators that appear
on the right-hand side of (3.2) are well-posed. It is this very important fact
that allows us to prove stability.

3.1 Dirichlet boundary condition for 6

For conciseness of presentation, we take 8, = 0in (1.3). In this case, we have
6y = Oy = 0 and the one-sided approximation for 6_; analogous to (2.20)
can be written as

20 6
33 01 =—6)— —
(3.3) 1=17% " 13

We use the discrete L2-norm and the discrete L>-inner product defined
by

(3.4) luly =G, uy>, @ vi=h Y wv,

I<i<N-1

0 40+19+0(h5)
S TRCE TR '

and introduce || Vjul|, defined by
Uit) — U

(35)  WVaul3= Y (Dfu)*h, where Dfu; = p

0<i<N-1

We note that a two-dimensional version of the corresponding inner product
and L? norm can be defined in a straightforward way.

Multiplying (3.2) by 26 atinterior grid points 1 < i < N —1, and applying
standard energy estimates gives

(3.6)
2 2 Kch? 2002, | 2 2
161} + 26 1V4013 + = (1D} + -, D36y + 61 D26x)) = 0.

An estimate of the boundary term 6; D)% 6y (and Oy _4 D)% Oy ) requires some sub-
tlety since the term D26 involves the one-sided “ghost” boundary condition
(3.3), namely

(3.7) D20—1 50—49+19
' e A TR TR T ReY A
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Since we have assumed that 6 vanishes on the boundary, (3.7) can be rewritten
as

2 1
(3.8) D%6y = —— D0, + — D?0, .
x 1 1"

As we will see below, the purpose of the form of (3.8) is to control local terms
by global terms. Application of Cauchy’s inequality gives the estimate

1 2 : 2 2 2 § 2 2 2
FO1D00 = = s O — (D30 — O — h(D36:)
5
(3.9) == Tl — RO’ = h(D6)’.

The first term on the right-hand side of (3.9) can be controlled by one of
the terms in 2« || V0 ||% appearing in (3.6), and the last two terms controlled
by ||D§0||% appearing in (3.7). The term GN_lD)%@N is handled in a similar
fashion. Combing these estimates gives

(3.10) NONT +klIVa0ll5 < 0.

This proves stability of the fourth order long-stencil operator together with
one-sided approximations near the boundary.

Remark 3.1 Alternatively, we can couple (3.2) with one-dimensional fourth
order extrapolation corresponding to (2.22), namely

(3.11) 0_1 =26y — 0.
Stability of (3.2) with (3.11) is more direct. Indeed, Df@o isinfactOby (3.11).

Therefore, (3.10) can be obtained immediately. Thus the fourth order scheme
with either (3.3) or (3.11) is stable.

3.2 Neumann boundary condition for 6

We assume 6y = 0in (1.4). In this case equation (3.2) is updated at all grid
points 0 < i < N. The corresponding one-sided approximations for 8_; and
0_,, analogous to (2.26), are given by

(3.12) -1 =01, 0o =06y,

since 8)?9(0) = 8;9(1) = 0, which follows from derivations similar to
(2.24)—(2.25).
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Since 8 does not necessarily vanish on the boundary, we introduce the
following discrete L?-norm and L?-inner product

(3.13)
1 1
lulls = . w3y, vy =h(Guov+ Y wiv+ Juyvy).

1<i<N-1

The two-dimensional versions can be similarly defined.
An energy estimate is accomplished by taking the (, )3 inner product of
the equation (3.2) with 26. It is straightforward to verify

(3.14) (0,D%0);=—|IVi0l3,  (6,D*);=| D3,

assuming the “ghost” point prescription (3.12). Moreover, observe that (3.14)
is a discrete version of integration by parts in the case of the symmetric pre-
scription (3.12). This is a crucial reason for the choice of symmetric extrapola-
tion for the temperature as presented in section 2 when a Neumann boundary
condition is imposed. As a result of (3.14), we have

2 2 ich? 20112
(3.15) 110115 + 2c (VRO |5 + TIIDx9||3 =0,

which indicates stability of the fourth order long-stencil operator and one-
sided approximation (3.12) near the boundary.

4 Convergence proof of Theorem 1.1

The convergence proof of the fourth order method for (1.1) proposed by the
authors in [16] is composed of technical consistency analysis for the approxi-
mated solutions and the corresponding error estimate. A typical difficulty that
arises in the analysis of finite difference methods is that if a direct truncation
error estimate is performed, an apparent loss of accuracy near the boundary
results, as can be seen by formal observation; see [11,12,21]. Instead, we
construct an approximate velocity field and vorticity from the exact stream
function. An approximate temperature can then be chosen as either an exact
solution or the one which includes an O (h*) correction term, depending on
the boundary condition for the temperature. The constructed velocity field,
vorticity, and temperature are then proven to satisfy the momentum equation
up to an O (h*) truncation error, including the vorticity boundary condition.
Similarly, the temperature transport equation is also shown to be satisfied
up to an O (h*) truncation error. This gives the consistency of our discret-
izations of the Boussinesq equations (1.1). The error analysis is based on
energy estimates. In the error estimate of the temperature transport equation,
we apply the stability analysis of the long-stencil operators and one-sided
approximations near the boundary, which was outlined in section 3.
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The fourth order method with Dirichlet boundary condition (1.3) for the
temperature is considered in this section. The corresponding analysis with the
Neumann boundary condition (1.4) is provided in section 5. For simplicity
of presentation we assume 6, = 0.

4.1 Consistency analysis

Denote by ., u., w,, and 6, the exact solutions of (1.1)-(1.3), and extend
Ve, 6, smoothly to [—8, 1 + 81, and let W; ; = Y. (x;, ¥;), ©; j = Oe(xi, ;)
for —2 < i, j < N + 2. Approximates for U and V are constructed via

4.1)

~ n o, ~ h .
Ui = —Dy(l - gDy)\l/, Vi = Dx<1 - gDx>\11, for0 <i,j <N.
We next construct an approximate vorticity. First define

h2
42 Q= (Ah n ngDi)\I!, for 1<i,j<N-—1.

Then €2 is recovered by solving the system
h? —
4.3) (1 + EAh)szi,j =0,

with boundary condition (say on 'y, j = 0)
(4.4) Qi0 = (@e)io + "Dy, 0<i=<N,
where the function @ is defined by

4.5) &= (—ia“— ia4+ia2a2)w
' 240 2407 90 * Y)Y
h2
Note that 1*@ is exactly the O (h*) truncation error of (Ah +€Df Di) 1/

2
— (1 + EAh)we. The purpose of the introduction of h*® is to maintain

higher order consistency needed in the truncation error estimate for the dis-
crete derivatives of the constructed vorticity, as we will see in the following
lemma.

Lemma 4.1 For grid points 0 < i, j < N we have that

(4.6) Q= w, + h*@+ 0RO |V, cs .
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Proof. The construction of €2 and W, and a Taylor expansion of ¥, and w,
shows that at each grid point (x;, y;), 1 <i,j <N —1,

h? h?
@.7) (1 + EA;,)Q - (Ah + gDiDi)l/fe
h? 4~ 6
= (1+ 580 )@ + 3+ 0 Yellcs

where @ was introduced in (4.5). The approximation (4.7) gives

(4.8)
2

h kS

(1+520) @ = 0= h*D) == 85 + OB [Weles = OO e .

since the second order differences of @ is bounded by ||1/, || 5. The combina-
h2

tion of (4.8) and (4.4), and the property that the matrix / + T Ay, is uniformly

diagonally dominant, results in (4.6). U

The analysis of the approximate velocities U and V is more straightforward.
From the definitions of U and V, and a Taylor expansion of ., we have at
grid points (x;, y;),0 <i,j <N,

1
(4.9) U = tte + 35h* 009 + O 1 ellce
1 445 5
V= v, = 35h 00 + O [Yelce -

(4.6) and (4.9) provide estimates of the differences between the approxi-
mate U, V, and 2 and the exact solution. We must now carry out an analysis
of the finite difference operators applied to U, V, and Q2. The results for
the convection and diffusion terms of the momentum equation are stated in
the following lemma, for which we only provide a brief description of the
analysis.

Lemma 4.2 For interior grid points (x;,y;), 1 < i,j < N — 1, we have
that

(4.10)
2

~ h* h 4
Dol + =D)HWUR) = (14 =4)0, 1w + OB [WellcollVelles

(4.11)
2

~ h? h
B,(1+ =02 vey = (1+ gA)aywewe) + O Il cellVellcs
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2

h ~ -
EA;,(UD,CSH V D,SQ)
2

h
(412) = EA(ueaxwe + veaya)e) + 0(h4)||WE”C(’”1pe”C8 5

h? h?
@13 (Mn+ FD,%Di)sz = (1+358) A0+ 0GH) el cs.

Proof. The verification of the above lemma relies on the estimates (4.6) and
(4.9). (4.13) is a direct consequence of (4.6) along with a Taylor expansion
of w,. (4.10) results from the combination of (4.9) and (4.6), along with a
Taylor expansion of u.w,. The derivation of (4.11)—(4.12) is similar. O

Next we examine the time marching term. At the interior grid points
(xlsy])7l Sla.] SN_1,

(4.15)
2

h 2o,
o (1+ T580)2 = (84 + = DID} o

h? 4 4 h? 242 4
(a+ o+ gaxa},)a,we + O 10l cs

2

h
The first term on the right-hand side is exactly (1 + EA)B,a)E. For an esti-

mate of the second term consider the following Poisson equation satisfied by

0 Ye:

(4.16) { A0 ) = 0w, in £,

oY, =0, on I'.
A Schauder estimate of (4.16) gives

4.17)
19 ellcow < Clldrwelcee = CIVellcse + [1WellcrallYellcse + 10ellcse)

where C depends on v and «, and in the second step we have applied the
original momentum equation. Therefore

n? B2
3,(1 + EAh)sz - (1 + EA)G,a)e
(4.18) +O Y (1Wellcse + Vel crallYellcse) -

Next, a Taylor expansion of 6, shows that for the gravity term we have

~ h? h*
4.19) D14 55D} = DD)O = (1 + = 8)8,60, + OG0l cs.
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The combination of (4.18)—(4.19) and Lemma 4.2, along with the original
2

h
PDE which implies that (1 + EA> (0w, +u.,- Vo, — g0,6, —vAw,) =0,

results in

. - h2 - h2
4.20) 9,5+ Dx<1 n ng)(UQ) n Dy<1 + ED)%)(VQ)
h? ~ ~ -~ K2
~SMWUDB.e+ VD, - ng(l + 5D} - Dﬁ))@

h2
= v(Ah + FD§D§>Q + f,

where | f| < Ch*[lu,llcre (1 + luelles) + CH*16, [ s

We note that the constructed vorticity €2 satisfies the fourth order for-
mula (2.12) up to O (h*) on the boundary. To see this, consider the following
one-sided Taylor expansion of 1, on the boundary applied to the kinematic
equation relating w, and .,

1 8 1
4.21) (we)io = ﬁ(g‘pi,l — 3V, + §‘I’i,3 — g‘ym) + OH¥ellcs »

which in combination with the definition of €2; ¢ in (4.4) and the fact that
|@; 0] < Cl|¥ellcs, show that the vorticity boundary condition is satisfied up
to O (h*). In particular,

1 8 1
(422) Qo= 581 —3Wip+ gWis — S Wia) + O 1¥ellcs -

The truncation error analysis for the temperature equation is more direct.
A local Taylor expansion of 6, gives

~

D (1 _ h—202)® = 0.0, + O |16,
X 6 X = 0xUe ellCS

(4.23) B,(1- % D})0 = 8,0, + Oh")l6. s

L 4
(&1 = T3 (Di+ DD)O = A6, + OB 6l co.
It can be seen from (4.9) and (4.23) that
4.24)
~ h?
UDx(l - FD)%)(B = uodx0, + O(h")(llwel|colBellcs + lluellcs 10elicr) -

~ h?
and a similar result follows for VDy<1 — FD}Z)(B An estimate for the
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convection term in the temperature equation is then given by

" h2 ~ h2
425) UD,(1-%D})0 + VD, (1-D})© = u.-Ve,

+ O (luelcolbelics + luelles6elen) -

Finally, from (4.23) and (4.25), along with the original temperature equation
0,0, +u,-V0, = k Af,, we have that

~ h? ~ h?
@20 20 +UD,(1-=D})o+VD,(1-D})e
h2
= (&) - DI+ DY) +4.

where |g| < Ch*([16cllcsllmellco + 10l et luellcs + 116l o).
In addition, it should be mentioned that

4.27) ® —20® 6@ 4@ + 1@
. z,—l—ll i,0 11 i1 11 i,2 11 i,3

12 1
+57h7 (00 = 976,) + evo

where |e; o] < Ch5||66||Cs, as discussed in section 2. The approximation

(4.27) will be used in the estimates of error functions in the next subsection.
This completes the consistency analysis.

4.2 Proof of Theorem 1.1

We now prove Theorem 1.1, and begin by defining the following error func-
tions at all grid points (x;, y;),0 <i, j <N,

(4.28)

Subtracting (4.20) and (4.26) from the numerical scheme (2.7), (2.16),
and (2.8) we have

(4.29)

~ h? ~ ~

a,9+£1=K(Ah—E(Dj+D§))9—g, ir=0,
h? = PP v LI

(1 + EAh>8,w+£2 —ng(1+ 503 —DX))Q - v(Ah + FDXD_V)@— f.
W 5 o\a LAY 7

(Ah + —Dny)w = (1 + EAh>w, 7 Ir=0,

=B, Co0)7. 7-B.(1- " 02)7.
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where the linearized convection error terms £, and £, appearing in the tem-
perature and vorticity equation, respectively, can be represented as

~ h? ~ h? ~
L, = ﬁDX<1 _ gD§>® +qu<1 _ gDﬁ)@
2

ISR L ~ R\~
+9D, (1 - =D})o +vD,(1- Z=D})d.
(4.30) R R
L= D1+ zDi)(ﬁQ +u@) + Dy(1+ gDﬁ)(’ﬁsz +0d)
W ~ ~ ~
— 558D, & +vD,5+iD,2+7D,9).

The local truncation error terms satisfy |g| < Ch4(||He llcs +11Bellcs llute |l co +

16ellctlluellcs) and | £ < Ch*[luellcra (1 + luelics) + Ch*[1f]lcs. Along
the boundary (say on I',, j = 0) we have

~ ~ ~ 5~ 1~
Vi1 = 10¥; 1 — S0 + g‘/’i,?a - Z%A,

~ 1 ~ ~ 8 ~ 1~

4.31) Wi = ﬁ(gwi,l — 32+ 5%,3 - g%,zx) +h;p,
) 65 adry + L2 +
i—1=—"7bi1— b T Ui €0,
! RGN T BT R

where |h; o] < Ch*|lu,l|cs and |e; o] < CH[|6,]|¢s.

We now derive estimates of the error functions for the closed system
(4.29) along with the boundary conditions (4.31). Multiplying the vorticity
2

error equation by —(1 + EA h)a, and the temperature error equation by ]

at the interior grid points 1 < i, j < N — 1, we have

{1+ B (2o

{(re a7 (ans Goror)s)
{0 )5 o ) B+ ot o)
2

12
h ~
+<(1 + EAh>1/f,f>l,
(4.32)

1

1

1
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and

ld ~o -~ ~ VRIS S
(433) 52101} + @, L1 = (0. (& = 75D+ D))D e

First we focus on the vorticity equation (4.32). Summing by parts and
using the discrete kinematic relationship between ¥ and @ gives

2

(1+h2A>$ (1+hA)8~
[e— — , — Cl)
127" 127"

434 = —<<1 + ]f—zAh)J, (an+ %zDﬁDg)atJ>l - %%,

with

- - h2 - h? ~
E=|IVa¥l3 — =AY |I] — —IID« Dy |1
h 2 12 h 1 6 X y 1

ht ~ ~
(4.35) +=5 (IDDT 1} + 1D, DIT 1)

in which the vanishing boundary condition for ¥ was utilized.
For the diffusion term in (4.32) we have the following estimate.

Proposition 4.3 The following inequality holds

(4.36) <<1 + ?—;Ah){/?, (an+ %2D§D§>c7)>l > é

Proof. Summing by parts and keeping in mind that 17] |[r= 0, we have

<(1 + %Ah)&', (an+ %2D§D§)5>1
4.37) - <<Ah + %szDf)fp‘, (1 n %Ah)$>l +B.

The first term on the right-hand side of (4.37) is exactly ||5||2 since

h? 2n2\7 h? ~ __ =
(Ah-’_ngDy)w:(l"_EAh)w:w’
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and the boundary term 3 can be decomposed as B = B + B, + B3 where

(4.38)
N-1 ~ h2 5\ ~ N
= ;((1 + — D )l/fi,l ;0 + (1 + EDX>WL',N—1 'wi,N))
-1 h2 - h2 -
+3 (1 + —Dz)w1 Jdo + (1 + FDZ)wN_w.aN,jﬁ
ke
5:52 201 D230 + D2y n—1 D2ai n)

=1

it N
_ZZ leDwo,-l-D U ljDa)Nj)

B; = g(l/fl,la)o,o + Vi N-1@oN + YN_1,1ON.0 + YN_1.N—1DN N) -

To complete the proof we estimate the three boundary terms separately in the
following Lemmas.

Lemma 4.4 We have the estimate

(4.39)

B = By = 2 (1(1+ S 02) 027 + (1 + 02 D27R) — .

where By, is given by
N-1 N-1

@40) By =) (B AU+ ) W R ).
i=1 j=1

N-1

h?
Proof. The boundary condition (4.31) for @ implies that Z (1 +— ; D2) Y
i=1

®; o can be written in two parts, /; and I, where

N—
= Zl+ D)7 (891~ 302 + 513 — i)

N-1

h? ~
b=} (+-=D)¥ir hiy.

i=1

(4.41)

The term /; can be controlled by Cauchy’s inequality directly. First, re-
call the definition of h;o in (4.31). Then summing by parts gives I,
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N- h2
Z —D ), o, and we have

(4.42)
N—1 72 N-1 772
_%gi_ 9Zh2((1 —D )h,0> z——Zi——Ckg,

i=1 i=1

| \%

since |h; o] < Ch*||lu,||¢s. As for I, since 1’; vanishes on the boundary, the

~ ~ 8 ~ 1~
term 8vy; 1 — 3¢ + 51/&',3 - gl/f,"4 can be rewritten as

~ ~ 8 ~ 1~ 25 ~ 115
81 = 32+ g¥is — gVia = Vi1 - —h2<D2w>, |
2 ~
4.43 Z 2Dy, ——h2 DY),
(4.43) +3¢ 1 (DWi2 = h* (D)5

which implies that /; can be, after summing by parts, expressed as

(4.44)

25

= o . B w,lD%/f, >——Zwl (1+h D) (D

I

ummmz

2 ~ h? ~ 1 ~ h? ~
T w (1+ ED,%)(Dix/m,-,z—g ; Fia (1 + FD)%)(Diz/f)i,s.

The first term on the right-hand side of (4.44) is estimated directly, while for
the remaining terms we apply Cauchy’s inequality, giving

125
(4.45) Z(w,1+ w,lD Vi) = ——Zw,l,

6h2 ~ 36n?

=

115 ¥
72

— ~1,1<1+%2D )(DZW)M

M

i

=1

1 2

(3;12 171252 <1 + %2D§> (Dilz)i,l

)

M

3
|1/fi,1|2 + th

wll\)
AN W

Vi, 1(1 + ng)(D§W)i,2
1
123~ , 3
P+ 20
- <3h2 362“[[’1' *a

=

2

%
|

(1+ %Dﬁ)wi{/?)i,z

).

i
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1 N—1 2
g2V 1(1 + Df)(Dflﬁ)w
i=1
N—1 2
112 , 3 h? ~

> P — R? (1 —DZ) D*¥): )

- l:1<3h282|‘/”1| 4 g D ) (Dy¥is
Ginee 125 1(US 23 Y13
mee -—-— — - | —= — — we nave

36 3\ T TR) T3

2

n?
(1+ —DZ)DZw, ;

3 N—
446) I, > — 1> —=h?
(4.46) 1_36h22|w| 7 gz

The combination of /; and I, then gives

N—1
<1 + — D )Wi,lCNOi,o
i=1
2

@47 = —le, i - —Z 3 (1+ DZ)D%, W —Ch.
i=1 j=1,2,3
Finally, we obtain
N—1N-1 )
1 3 2 h2 2 2
B] - WBV, - Zh (1 + FD)Y)DXWI 7
i=1 j=I
3 N—1N-1 h2 2
(4.48) - <1+ - Dﬁ)Dzwu che.

where By, was defined in (4.40). Moreover, (4.39) is a direct consequence of
(4.48). The treatment of the other three boundary terms is exactly the same.
This completes the proof of Lemma 4.4. U

To complete the estimate of 3| we need to control || (1 + %Di)DﬁJ I

2 ~ . .
and || (1 + %Dg) D3|, However, standard local estimates do not work in

this case. The methodology we adopt here is similar to that used in [21], i.e.,
control the local terms by global terms via elliptic regularity.

Lemma 4.5 For any 1; that vanishes on the boundary, we have
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~ ~ 9 ~
(4.49) IDWIT+ I3V < gl
h? ~ h? ~ ~
@500 (14 DY) DI+ (1 + D) DT < 13-

Proof. Given the homogeneous boundary condition 1/f, j lr=0, we perform
a Sine transformation of {w, ;} in both the x and y directions, i.e.,

N-1

~ 2 2
4.51) Y= —— ) Yy sin(kmx;) sin(émy;).
; HZ=1( ) Ve ;

Parseval’s equality gives

(4.52) Z (i) = )wk e‘ :
i,j=1 k (=1
If we introduce
4  Srkmh 4 S(tmh
(453) fk = —}7 Nl (T) , 8r = _ﬁ sin <T) y

then the Fourier Sine expansions of Dfxz and Dixp are given by, respectively,

N-1 2 A

D= (o) febu sinth) sincey;)
k=1
N-1

Dy = 3 (=) g Ty sinths,) sincery,)
y i,j = — ) 8¢ k1 SIN(KTX;) SIn JTy/ s
k=1 2N

which in turn implies that

(4.54)

N-1 N-1 W2 2
Yo=Y (Ah + KD)%Di)‘/fi,j
ij=1 ij=1
N-1
h? 21 |2
(455) = (St et hise) [Tl -
k=1
Similarly, we have
N-1 N-1
K2 - K2 ~ P
Z (14 =03) D2, = Y11+ e ) AP F|
ij=1 k=1
(4.56) _q N_1

|(1+ D2>D2¢u| > |<1+%2fk)gz|2‘:;u‘2.

i,j=1 k,l=1
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4
On the other hand, direct calculation along with the fact that — n < fr, 8 <

0 shows that

h? h? h?
@ST) 1fi+ g+ fral = 11+ ) Al +1(1+ 2 fi el

6
h2 2 2 2
@S8)  Vitat sl = (R +al— 5 he) = o7+,

Combining (4.55)—(4.57) gives (4.50). Estimate (4.49) can be argued in a
similar fashion. Lemma 4.5 is proven. U

The combination of Lemmas 4.4 and 4.5 results in the estimate

(4.59) B, > WB"’ ||5||% —Cr.

An estimate for B, can be derived in a similar fashion, which we only
briefly outline. Consider first the expressmn > Dzl/f, 1D w; o in B,. Once
agaln the boundary condition (4.31) for @ leads to examining ), D? g[fl
Dxa),’o in two parts, I3 and 14, given by

N-1
1 ~ ~ - 8 - 1 o~
h= Dzi(SDz" — 3D}V + DI ——D2i>,
3 hz; Vi Vi xlﬁ,z-l-g Vi3 2 Vi

N-1

Iy = Z D1 D2hig .
i=1
(4.60)

The estimate of /3 and I, is similar to that of /; and I,, respectively. Repeating
the arguments in the proof of Lemma 4.4, we arrive at (omitting the details)

1
(4.61) B, > ——h4||D2D2¢||1 ch.

On the other hand, the fact that | D} D2y || < ﬁ||D2zp||1 and | DD || <

4 o~

ﬁHDylle implies

IDID2Y |} = (||D202w||1+||0202w|| )5ﬁu02wn + 4||D§$||%
9

(4.62) < =l
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where in the last step we applied (4.49) in Lemma 4.5. Substituting (4.62)
into (4.61), we arrive at

1 ~
(4.63) By = ——loll} — CK*.

Finally, B3 can be controlled by applying Cauchy’s inequality (we only

consider here the term 6% 180.0)

1~ 19 1, 1 9,
4.64) — >———=——h > ———
(68) V100 2 =550 — M@0 = T e

where in the last step we used the fact that |@g 9| < Ch*||1/.| s by our con-
struction of €2 in section 3.1. The first term on the right-hand side of (4.64)

can be absorbed into the B, term, giving

— Ch" Y ligs

1
4.65 >———B, —CH.
(4.65) By = — 5B
The combination of (4.63), (4.65), and Lemma 4.4 shows that B >
13

—EH%H% — h®, whose substitution into (4.37) is exactly (4.36). This com-

pletes the proof of Proposition 4.3. U

The estimates for the linearized convection terms in (4.32) are given in
the following proposition. The proof is similar to that of Proposition 4.3 and
the details are left to interested readers.

Proposition 4.6 Assume a-priori that the error functions for the velocity
field and temperature satisfy

(4.66) @l < h?, |10l < B>,

Then we have

~ T2 Y= 4o g8
= CillVayrllz + 8||w||1-|-h ,

4.67) <(1 n T—;Ahﬁ, £2>

1

OO+ )’
Vv

where C, + CQ2+ llulle)® + Clullcs.

In addition, by Cauchy’s inequality and the boundary condition for the
temperature error function 6 in (4.31), we have the estimate of the gravity
term

‘<(1 + %Ah)fﬁ, B(1- T—;(Di - Df))5>

(4.68) < CUI¥I + IVA1I3) + Ch',

1
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In (4.33), the local truncation error term —(5 , 8)1 can be controlled by

Cauchy’s inequality. The technique used in Lemma 4.6 can be applied here for
the estimate of the linearized temperature convection term, i.e., the assumed
a-priori assumption (4.66) leads to

~ ~ o~ 1 ~
(4.69) ‘(0,501 5C2||9||%+§K||Vh9||§+h8v

C(1+ lluclico)?
-

Next, we apply the technique demonstrated in section 3.1 for the sta-
bility analysis of the long-stencil discretization of the one-dimensional heat
equation to the temperature diffusion term.

where C, =

Proposition 4.7 We have
(4.70) i (A U (D* +D4))5 > Livae
’ T T T T =R

Proof. The proof of (4.70) is just the two-dimensional version of the stability
analysis in section 3. Since 6 vanishes on the boundary, we have

—<5, (a0 - ]f—;(D;t + D;?))’9“>

1

32 h2 2712 h2 27112 h2
4.71 = ||V,0 — || D6 — || D6 —B,
4.71) IViBl3 + 35 ID1T + 51D + 35

where B arises from the boundary terms, which after summation by parts,
can be written as

N— N-1

B= Zell(Diﬁm Z N1 (D30)in + Y01 (D30)

N—

4.72) Z (D) -

We focus on the first term appearing on the right-hand side of (4.72); the
other three boundary terms can be treated similarly. Applymg the boundary
condition for @ at the * ‘ghost points” as in (4.31), (D 9), o can be written as

o~ 1 /5~ 4 ~ 3~
@73) (Do = 75 (T00 = 1102+ 303+ ein).
which is analogous to (3.7) except for the local error term e; ¢ (defined in

(4.31)), whose product with 6; ; can be controlled by Cauchy’s inequality.
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Alternatively, we can rewrite the right-hand side of (4.73), as we did in sec-
tion 3, as

€0

2

The aim here is the control of local terms by global terms. Applying Cauchy’s
inequality to each term in (4.74) leads to

27" 2 27 27
(4.74) (D30 = = (D3 + (D B)in + 22

o~ o~ 22 12
2 2120, \2 2120 \2
0,~,1(Dy0),-,0 = m@ll I’l (D 9 ) m@ll l’l (D Q )
1 2
_ g %o
4p2700 g2
1 2 25 2 25 ei2,0
> 00 = (D30 = (D302 — 5

(4.75)
Here the arguments in section 4 can be repeated: the first term appearing above
2

can be controlled by || th ||%, since it will be multiplied by I resulting in a
1 ~
term greater than 3 IV,0 ||§; the second and third terms can be controlled by

| D}zg ||%; while the last term can be controlled by

2 N—
1
(4.76) Z —;’ < N*-ChP0ellgs- 75 = Ch Il »

| =
NS}

1
where we used the fact that 4 = N (4.70) then follows. O

Finally, the combination of (4.32)—(4.37), and (4.67)—(4.70) gives us

ldE 1d ~ ~
T ——||0||2 <CR*+ C|fI3+Cliglli + CillVatrIl3
4.77) +C2||9||1 — §||Vh9||2-

Integrating in time results in

T T
E+||0||%sc/ <||f||%+||g||%>dz+2czf 1912 dr
0

0
T
(4.78) +2C1/ IVyrli3dt + CThE.
0

It can be seen that

~ - h? - h? -
479 Va3 <3(IVav 3 — EHAWM% - gquDywu%),
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since J vanishes on the boundary, which along with (4.78) implies that
IV llz + 18117 < C/ AL£17 + llglh dr + CC / IVarllz dt
0 0

T
(4.80) +CC2/ 16113 dt + CTh®.
0

By Gronwall’s inequality we then have

IVA 15 + 1611} < Cexp {CCIT + CCoT)

([ 15691 + 1gc.tias + 1)
(4.81) < CThbexp {CCiT + CCoT}
(el (1 + aelles)? + 161512
101126 + CTh8>.
Thus, we have proven
(. ) —ue(@ll 2 + 10, 1) = 0. (0] 12

(4.82) = Ch4<||ue||c7.a(1 + llelics) + 16elles lluelles + ||9e||c6>

CT , CT )
exp = (L4 fluelle)™ + ==+ fluefco)” -

Using the inverse inequality, we have
(4.83) | e < Ch3.

At this point, we can introduce a standard concept which asserts that (4.66)
will never be violated if % is small enough, and Theorem 1.1 is proven. O

5 Convergence proof of Theorem 1.2

The numerical scheme with the Neumann boundary condition (1.4), namely
(2.7), (2.16), and (2.26), is analyzed in this section. For simplicity of pre-
sentation we set 6y = 0 in which case the one-sided extrapolation of the
temperature at the boundary is given by (2.27).

The consistency analysis of the momentum equation is the same as that
presented in section 4. We denote by ., u., and w, the exact solutions of
(1.1)—(1.2), and (1.4), and extend v, smoothly to [—§, 1 + 81%. Then let
WV, i = Ye(x;, y;) for =2 < i, j < N + 2. The approximated velocity pro-
files U and V, and the vorticity profile €2 are given by (4.1) and (4.2)—(4.5),
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respectively. Lemmas 4.1 and 4.2, along with the estimate for the time march-
ing term in (4.18), remain valid. The fourth order approximation (4.22) for
the constructed vorticity €2 on the boundary is also preserved.

Regarding the temperature variable, instead of substituting the exact solu-
tion into the numerical scheme, a careful construction of an approximated
temperature profile is performed by adding an O (h*) correction term to 6,
to satisfy the truncation error fully to fourth order. The reason for this proce-
dure is to avoid the loss of accuracy near the boundary which would result
from a direct truncation error estimate. To be more precise, we construct the
approximate temperature field ® as

(5.1) © =6, +h'g,
in which the correction function 6 satisfies the Poisson equation
(5.2a) AO =C',

with the Neumann boundary condition

89(x0) i89(}60) 89(x 1)_i89(x 1,

80 80 ¥
(5.2b) 1 1
8)(9 3 0 8)(9 1, 8 9 1
0,y) = 30 % O, y), (ILy) = 30 % (1, y).

36
The scalar C! (a function of time 7) is chosen as / Cldx = f —dn
Q aq on

in order to maintain consistency with the Neumann boundary condition, i.e.,
CIZL(/1 L 9%0,x,0) + 189(x 1) dx
1IN\ 807 80 7
(5.3) +/01 8088(0y)—|— 039(1 y)dy)
A Schauder estimate applied to the Poisson equation (5.2) gives
(5.4) 1Bllcne < Clibellenaa,  for m > 2.

The reason for taking the boundary condition for 6 in (5.2b) will become
apparent later. A local Taylor expansion for the exact temperature field 6, at
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points near the boundary y = 0 gives

5.5
Lape h? 7
(0e)i,—1 = (Oe)i,1 — 3 950 (x;, 0) — 50 036, (xi, 0) + O(h")[|6,llc7
X hs ;
= (0e)i,1 +t3e (wE)l 0(9x0e)i,0 — a0 936, (xi, 0) + O (W) [1Bellc7 .
8h3 32h°
Be)i.—2 = (Be)ia — == 9, 936 (x;, 0) — <0 % 3360 (xi, 0) + O(h") 6.l 7
8h3 32h°
= (0)i2 + 7= (@) 00:0e)i.0 — ——836.(x;, 0) + O ()|l c7,
3k 60

due to the no-flux boundary condition for 6, and the derivation for 8398 as
given in (2.25) by applying the original PDE on the boundary. The insertion
of the boundary conditions given by (5.2b) into a Taylor expansion of 0, along
with the Schauder estimate ||§||Cs < C||6,|lc7.« given by (5.4), gives

0i—1 = 01 — 2hd,0:0 + O(h*)36,0

=%—MWMM®+OmWMwm

o; 2_912—4h8 B0+ OK )3 B0
—91',2 y0 (x;,0) + OB 16, || c7.e -

(5.6)

2()

The combination of (5.5) and (5.6) results in an estimate for ® = 6, + /50
given by

5.7)
3

h h’
Oi 1 =051 + 7= (@)1 00:8e)i.0 — 77 336.(xi, 0) + ORI, [l e
3k 24
3

8h h :
O; 2 =02+ =— (0.)i,000:0)i.0 — —= 0,6.(x;, 0) + O(h") |6 || 7. .
3k 12 7

Similar results can be obtained at the other three boundary segments, namely
y = 1,x = 0,and x = 1. Note that the O (k) coefficients of ®; _1and ®; _,
have the ratio 1 : 14. This will be needed for the error analysis of the inner
product of the temperature with the diffusion term in the temperature equa-
tion. This crucial point is the reason for the choice of the boundary condition
for 6 in (5.2b).

A direct consequence of the Schauder estimate (5.4) is given by

(5.8) 10l w2e(@) < CllOllc2w < ClBell e
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in which || - ||wm.eo(q) represents the maximum value, at grids points, of the
given function up to m-th order finite-difference, over the domain Q2. As a
result, we have

(5.9) 1O = O llw2oe(y = h* 101l w2e@) < CH*[10c| o -

The combination of (5.9) and a local Taylor expansion for 6, gives the esti-
mates

(5.10)
~ hz 2 2 jag h2 2 2 4
B (14 3503 = D)6 = B, (1 + T5(DF = DD )6 + 0U) 6. cse

2

h 4
— (1 + EA)axee + O MOellcoe

D (1 _ h—2D2)® = 3.0, + O |16,
X 6« = 0xUe ellcoo ,

(5.11) By (1- EDy)@ = 0,0 + O(h*) |0l coo

h2 4 4 4
(&0 = 5 (Di+DD)O = 86, + O )6, csc

~ h2
(5.12) UDx(l _ EDﬁ)@ — 100+ OB el 51160l o

- h?
(5.13) vpx(1 _ gpg)@ = 0e0y0, + O (h*) |1l o516 | cou -

Moreover, taking the time derivative of (5.2) leads to a Poisson equation
for 9,6, namely

(5.14a) A(3,0) = 8,C",
with the Neumann boundary conditions

(5.14b)
-~ 1 ~ 1
9y(9,0)(x,0) = 30 (3:076.)(x,0),  9,(3,0)(x, 1) = 30 (0,076.) (x, 1),

-~ 1 ~ 1
9:(0,6)(0, y) = <5 (3:076.)(0,y),  3:(3:0)(1,y) = 20 (3:076.)(1, ) .
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Similarly, the value of 9,C! is given by

o L
o]

t

1
1 5 1 5
(—/O g0 (019,00 (x, 0) + 25(8,9760) (x, 1) dx
(5.15) 1
+/ s B30, ) + o 3601 y)dy)
o 80 AT g e '

A Schauder estimate applied to the Poisson equation (5.14) reads

13,00l cna < Cl13:0ell e < C<||ue||Cm+4-°‘”96”C'"+5v°f + ||9e||cm+e.a> ,
(5.16) for m > 2,

in which the original temperature transport equation 9,6, + (u.- V)6, = k A6,
was used. It can be seen that (5.16) amounts to

(5.17) 50 = 0,0, + O0") (el coe 10ell e + 1 cse ) -

The combination of (4.10)—(4.13), (4.18)—(4.19), (5.10), and the original
momentum equation results in

- - h2 - h2
9, + Dx(l + gD§)(UQ) + Dy<1 n ng)(vsz)
h? ~ ~ - h2
- S UD.2+VD,2) - ng<1 + 5D} - D§)>®

h2
(5.18) :v(Ah—i-gDiDi)Q—l—f,

where | f| < Ch*||u,||cra (1 + |||l cs) + Ch*||6, || cs.e. Similarly, the com-
bination of (5.11)—(5.13), (5.17), and the original temperature equation gives

%0 +UD,(1- %ZD,%)@ +VvD,(1- %203)6
h2
(5.19) = (& - (DI +DH)O+g.

where |g| < Ch*(llucllcoullellcre + 16 llcs.e).

The error functions at the computational grid points (x;, y;),0 <i, j < N
are defined in the same way as in (4.28). Subtracting (5.18)—(5.19) from the
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numerical scheme (2.7), (2.16), and (2.27), gives

(5.20)
g h* 4 M\ =~
00+ L= (8, - SOI+DH)I—g.  Flr=0.
& ~ ~ LEPFCRINCP Ry 2\~
1+ —Ah>a,w+£2 —ng(l + (D —DX)>0 - v(Ah + ngDy)w— f.

(+%
(

h’ 202\ h ~ 7
M+ D) = (14 SA)E, T Ir=0,

i=-B,(1-Cp2)7. v=Bi(1- L 0)7.

in which the linearized convection error terms £; and £, are given by (4.31),
and the local truncation error terms satisfy

lgl < Ch*(luellcoxlOellcre + N10ellcs.e) s
(5.21) | f] < Ch*luellcr.e (14 lluelles) + Ch*||6, |l co -

On the boundary, (say on I'y, j = 0), we have
~ ~ ~ 5~ 1~
Vi1 = 10%;1 — S5¥i0 + 5%,3 - Z%A,
- 1/ ~ ~ 8 ~ 1~
(5.22) wi0 = ﬁ(glﬂm —3Yix + 5%,3 - g‘ﬁi.A) +hio,

with |h; o] < Ch*||lu,||¢s, which is the same as in (4.31). We then conclude
from (5.7), and using the approximations (4.22) and (5.11), that for the tem-
perature field

h3 - h2 5 hS s
O =0+ —Q Dx<1——D )®,~ — L 9%,(x:. 0
1= O gt 6 Dv) @0 = 54 9,0e(xi. 0)

+ O (16l crer + el cs el )
(5:23) 8hY R s
®i,—2 = ®i,2 + ﬁ Qi,ODx<1 — FDX>®,"0 — E 8y9e(xl~, O)

+ 0N (118 llcre + luelicslelcoe ) -

Subtracting (5.23) from (2.27), we arrive at

- - h3 hS
O 1 =01 +—q° — —rt + e,
) 1 ,1+3K_ql 24rl+el
(5.24a) N N 813 e
9i,—2=0i,2+_qi __ri‘f‘eibz’

3k 12
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where
(5.24b)
b~ N h? 2 ~ h? N b 5
q; = wj oD (1 — FDX)GZ-,O + Qi oDy (1 — ng)Qi,Oa r; = 0;6.(x;, 0),

bl b2 7
€f'1. 1617 < CH7 (116 cre + llwelles 6ol )

Once again, we observe that the O (W) coefficients of 5,»,,1 and 51-,,2 have
the ratio 1 : 14. Such a ratio is a crucial point in the error analysis of the
temperature diffusion term in (5.20), which will be established in detail in
Proposition 5.1.

The estimate of the error functions in the system (5.20)—(5.22) and (5.24)

is similar to that in section 4. Multiplying the vorticity error equation by
2

—(1 + EA;,)]/NJ at interior grid points 1 < i, j < N — 1 gives the same

identity as in (4.32)

(5.25)
2

- <(1 n gAh){/?, (1 + ’;—zAh)a,Fo>l

h? ~ o,
+<(1 n EA;,)W , (Ah n gDny)a)>l

=1+ Ba)T ) —o 1+ o). B 1+ 03 - b))
2

+<<1+%Ah){/7,f>l.

The energy estimate of the temperature error is different from the Dirichlet
boundary condition case since the temperature field is updated at every grid
point 0 < i, j < N. Taking the ( , )3 inner product (see the definition in
(3.13)) of the temperature error equation with i} gives

1

(5.26)

ld ~, ~ ~ o, Ry ~

§£||9||3 +(0, Li)3 = K<9, (Ah - E(Dx + Dy))9>3 — (0, 8)3,
which is also the same as (4.33) except for the difference of inner product and
L? norms. Again, this is due to the fact that the temperature field is updated
at every grid points 0 < i, j < N.

An estimate for (5.25) is the same as that for (4.32). The identities (4.34)—

(4.35), Propositions 4.3 and 4.6, and (4.68) are still valid. More precisely,



590 C. Wang et al.

{1+ 07 (14 o)

(5.27) - (1+ L )J (A +h20202)axZ _1dE
' - )T T e ) T S
with
— T2 h2 T2 h2 T2
E = |Vp,yll; — E”Ahlﬂﬂl - ZHDnykﬁlh
4
+= (ID.DT I} + 1D, DIT 1)
h? ~ h? 22\ ~ l ~ 8
(5.28) (14+ a0, (a0 + = D202)a) = I3l - 1°.
2 6 =8

(5.29) <(1 + h—zAhﬁ, £z>

~ ~ V o~
5 < CIVi¥ |3 + §||w||%+h8,

1

(1+h—2Ah){; b <1—h—2(D2—D2)5 < CUI I+ 1V4815)
B , Dy 127y x 0 1 2

(5.30) +Ch'°,

provided the a-priori assumption (4.66) is satisfied, along with C, as intro-
duced after (4.67).

Similar to (4.69), the linearized temperature convection term can be
controlled by

~ ~ o~ 1 ~
531) @, 13| = CTIR + 519,505 + 1.

L CA+|U.|l 0)?
with Gy = (+1Uelco)?

K
An estimate of the temperature diffusion term in (4.69) is outlined below.
Its proof relies on the stability analysis given in section 3.2 and some error
estimates.

Proposition 5.1 We have
5 h* “\5 3 o a2
{0, (8 = 51+ DD)F) = ZIVBI3 = CClelicow + 1)
3

~ ~ l
(5.32) x (IVa¥ I3 + 160113) — Ehg.
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Proof. Summing by parts under the inner product (, )3 and using the
boundary extrapolation (5.24) gives

(5.33)
g (Ahh—2<D4 +D))F) = IV, - D3R — L D3AE +
) 12 X y 2 12 X 3 12 y 3 :

3

The boundary term 5 can be decomposed as
(5.34a) B=B'+B+B+B*,

in which B', corresponding to the boundary term along y = 0, reads

(5.34b)
N—-1
ool el e~ L
B'= =3 (Gu@ier = i) + 500| @iz = Bi2) — 16@,1 ~ 8.0 )
i=1
1 N—1 (5 |:h3 b h5 + ]
= — | —a? e;
2 &\ 3cdi T g
+@[%3b7h L m&3 B’ +M@
—0i0| =—4q; e’ —q; — —r!te
270 3.9 T g 39~ 2

It should be noted that the derivation of (5. 34b) comes from the formula for
;.—1 and 0 _5 in (5.24a). The definitions of ql, l, f’ ! eb2 were given in

(5 24b). The boundary terms along y = 1,x = 0,and x = 1 can be similarly
presented. In more detail, B' can be simplified as

3 Ml | Nl |
B'= 2= > a/@r 450 + o3 Y (' B — 8Ti0) + Se Do)

i=1 i=1
5 N—1

h U
oo i (0i0 — 0
U El ri(0io—0i1)

=10+ +17.
(5.35)
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The first term /7 can be controlled by using the form of qf.’ as in (5.24b),
namely

N-1 N—1 52
n Z: 4?91‘,1 =n ZI: 0; 1@; 0Dy (1 — FD)%)@,;()

N—1 h2
3 N ~ AN
+h 21: 012D (1 = <= D)oo

(5.36) < Cl0 w1 VAT 128115 + ChIL < 181311 V4812 + Ch™
< Cl8ellcse + DUVAI3 + 1613) + Ch(llmelics + 1)
(18131 + 1V48113) + Ch',
in which the first inequality comes from the boundary formula for ;¢ in
(5.22). The second inequality results from the estimate (5.9), (4.6), and the
a-priori assumption (4.66). A similar result can be obtained for h? Zl 1 ql
6;.0. Then we arrive at
1} < CU8llcse + DUAVATIZ + 1013 + Ch(luclles + 1)

(5.37) (0131 + 1V46113) + Ch™®.

The term 121’ can be controlled by Cauchy’s inequality and the estimate (5.24b),
giving

N-1

Py
E e 01

i=1

N-1

b1y
E e 0o

i=1

(5.38) <cC +C < C|813 + Ch".

What remams 1s the estimate of /5. b As can be seen, the detailed esti-
mates for 9 _1 and 0 _» in (5.24), Wthh shows that the O (h°) coefficients
of 9 1, 9 _» have the ratio 1 : 14, allows the term I; b to be written as

2% N 1 r’ (9,0 9, 1). Thatis crucial to implement the error analysis below.
An apphcatlon of Cauchy’s inequality shows that
hs N—1 N N— "" 1)
= — b@i0 —6i1) < =— £
§ = agg 2 1o ‘)—288 g
N—1
(5.39) h“’ Z 2,

Itis observed that the first term appearing above can be absorbed into ||V}, g I %
Meanwhile, we note that rf’ = 83@ (x;, 0), which is a bounded quantity on
y = 0. Then we get

N—
(5.40) Z 00— ,1><—||vh9||2+0h9



Analysis of a fourth order finite difference method 593

The combination of (5.37)—(5.38) and (5.40) leads to

1 T2 712 1 12 1 8
(541 B = Clbelicoa + DUV I3 + 116113 + 2gg I VAPl + gh .

The other three boundary terms B2, B3, B* can be treated similarly. As a
result, we arrive at

(542) B < C(lfellcos + DUV I3 + 10113 )+ IIVh9||2 + hg

The insertion of (5.42) into (5.33) implies (5.32). Proposition 5.1 is proven.
O

By the combination of (5.25)—(5.32) we have the following inequality

1 dE 1 d 8

T I|9||3 < ChE+CUfI53+ gl + CiIVav 13 + C211113
(5.43) —§||Vh9||2-
The proof of Theorem 1.2 can be carried out by using a similar argument as
in (4.78)—(4.83). The details are left to the interested reader. O
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