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Summary For computations of planetary motions with special lin-
ear multistep methods an excellent long-time behaviour is reported
in the literature, without a theoretical explanation. Neither the total
energy nor the angular momentum exhibit secular error terms. In this
paper we completely explain this behaviour by studying the modified
equation of these methods and by analyzing the remarkably stable
propagation of parasitic solution components.
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1 Introduction

We are concerned with the long-time integration of second order or-
dinary differential equations

Mg=—-VU(q), q(0) = g0, 4(0) = vo, (1.1)

with a potential U(q) and a positive definite mass matrix M. Typical
examples are N-body problems such as those arising in astronomy or
in molecular dynamics.
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As numerical integrator we consider linear multistep methods for
second order differential equations § = f(q) (for f(q) = —M~1VU(q)).
They are given by a formula of the form

k k
> ignii =0 Bi f(gn+i)- (1.2)
i=0 i=0

The simplest but very important special case is

dn+1 — 2qp +qn1= th(Qn)a (13)

which, nowadays, is called the Stormer—Verlet method. Explicit meth-
ods of the form (1.2), where the left hand expression is the same as
for (1.3), have first been considered by Stoérmer [18] for computa-
tions concerning the aurora borealis. A general convergence theory
has been developed by Dahlquist [3], see also Henrici [14, Chapter 6]
and Hairer, Ngrsett and Wanner [13, Section II1.10]. Let us briefly
recall some important facts.

It is usual to denote the generating polynomials of the coefficients
of the linear multistep method (1.2) by

k
PO =Dl o) =) B¢ (1.4)
i=0 i

We assume throughout this article that p(¢) and o(¢) have no com-
mon zeros. Method (1.2) is stable if all zeros of p(¢) satisfy |¢| < 1,
and if the zeros of modulus one have multiplicity not exceeding two.
It is of order p if the coefficients are such that

Q)
(log ¢)?

In particular, 1 must be a double root of p({). Stability and order
p > 1 imply convergence of the numerical method, more precisely,
the global error satisfies the estimate (for ¢ = nh)

llgn — q()]| < CiL(h + t)e“'s + Cat2e“thP, (1.6)

o(¢) =0((¢—-1)P) for (—1. (1.5)

where C,Cs are generic constants, w is proportional to the square
root of the Lipschitz constant of f(g), and the starting approxima-
tions are assumed to satisfy ¢; — ¢(jh) = O(hé) for j =0,...,k — 1.

The methods of Stérmer have p(¢) = (¢ — 1)2¢*~2 and the poly-
nomial o({) of degree k — 1 (hence f; = 0) is determined such that
(1.5) holds with p = k.

It is proved by Dahlquist [3] that the order of a stable multistep
method (1.2) cannot exceed k + 2 (first Dahlquist barrier), and that
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stable methods of maximal order p = k + 2 have even k£ and are
symmetric, i.e., they satisfy

Q; = Of_gq, ﬂ, = /Bk—z' for all 3. (17)

For stable symmetric multistep methods all roots of p(¢) are on the
unit circle, and the order p is even. Dahlquist considers the appli-
cation of such methods to the test equation § = ag and notices the
following [3, p. 43f.]:

“Suppose that (; is a simple root of unit modulus. Then, the
corresponding root of p(¢) — ah?c(¢) = 0 is of the form (;, = (1 +
O(h?)), whence [(f| = (1+O(h?))" ~ 1 (h = 0, nh = z), and hence
there is no weak instability. If (; is a double root, however, then |(7),|
may, asymptotically, have an exponential growth.”

After Dahlquist’s work, symmetric multistep methods did not re-
ceive much attention over many years. Lambert and Watson [15] took
up again this investigation. They found that only for symmetric meth-
ods the numerical solution can remain close to a periodic orbit of the
linear test equation, and they noted that methods without multiple
roots of p({) other than 1 have this property for sufficiently small step
size. Only with the article of Quinlan and Tremaine [17], where an ex-
cellent performance of symmetric multistep methods for simulations
of the outer solar system is reported, the research on the long-time
behaviour of these methods for nonlinear problems started. We men-
tion the papers of Tang [19] and of Hairer and Leone [9], where the
non-symplecticity of these methods is shown, and the work of Cano
and Sanz-Serna [2], where the linear error growth for problems with
periodic solution is studied. A lot of attention is paid to symmetric
multistep methods in the astronomical literature, e.g., Fukushima [5,
6] and Evans and Tremaine [4].

2 Main results and numerical observations

Our results concern the long-time behaviour of symmetric linear mul-
tistep methods (1.2) of order p > 2. As a stronger condition than mere
stability, we shall need the following crucial property throughout (cf.
the above citation of Dahlquist):

Definition 1 A symmetric multistep method (1.2) is called s-stable
if, apart from the double root at 1, all zeros of p(¢) are simple and of
modulus one (the letter “s” stands for “simple roots”).

We remark that k is always even for symmetric methods. Other-
wise they would be reducible, because (1.7) implies p(—1) = o(—1) =
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0 for odd k. Furthermore, —1 cannot be a root of p(¢), because com-
plex roots appear as pairs.

The multistep method (1.2) is complemented with a difference
formula for approximations of the velocity:

1 l
Un =7 > 0idnij. (2.1)
p

The v, are computed a posteriori and do not enter the propagation
of the numerical solution. We assume that this difference formula is
also of order p, that is, it gives the exact derivative for polynomials
up to order p.

Instead of the velocities we often consider the momenta p = Mwv
(no confusion with the order p shall arise), and we set

Pn = Muy,. (2.2)

To start the multistep method, starting values qg, g1, ... ,gx_1 are
needed. We assume that their errors are O(hP*1), as they would be
if they are obtained from a pth order one-step method:

gj — q(jh) = O(RPTY)  for j=0,1,...,k—1. (2.3)

Finally we assume that the numerical solution values ¢, stay in a
fixed compact subset of the domain on which the potential U(q) is
smooth, and that the velocity approximations v, are bounded by a
constant. In view of Theorem 1 below, this is for example satisfied
if the level sets {q : U(q) < u} are compact. The above assumptions
are made throughout this section without further mention.

2.1 Energy conservation
The total energy
1 _
H(g,p) = ;"M 'p+U(q) (2.4)

is conserved along solutions of the differential equation (1.1). One
way of seeing this is by multiplying the differential equation by ¢”:
0 =¢"Mg+q"VU(q) = (d/dt)(3¢" Mg+ Ul(q)) = (d/dt)H(g,p).
A related, though more elaborate argument will later be used for
showing that the total energy is nearly preserved over very long times
along numerical solutions.
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Theorem 1 The total energy is conserved up to O(hP) over times
O(h™P~2) along numerical solutions obtained by the s-stable symmet-
ric multistep method:

H(gn,pn) = H(qo,po) + O(W?)  for nh <h7P72
The constant symbolized by O is independent of n, h with nh < h P2,

Remark 1 The time scales in Theorem 1 and in Theorem 2 below can
be further extended if either non-resonance conditions on the roots
of p(¢) are satisfied or if the starting approximations are carefully
computed:

e If no root of p(¢) other than 1 can be written as the product of
two other roots, then the conservation up to O(h?) holds even over
times O(h—2P73).

o If the starting values are computed such that the numerical solu-
tion is “smooth”, i.e., the values z;(0) of Lemma 1 below are very
small, say of size O(h®) with s > p+ 1, the time scales are further
increased.

For symplectic one-step methods it is known that the total energy
is preserved up to O(h?) on exponentially long time intervals nh <
Ce®/™ [1]. However, the time scales of Theorem 1 and Remark 1 are
already long enough for practical computations. In contrast to the
result for one-step methods, symplecticity plays no role in the proof
of Theorem 1.

Ezample 1 For our numerical experiment we consider the Kepler
problem which is of the form § = —VU(q) with

Ulqi,q2) = — (g% + ¢3) 72

We choose initial values ¢1(0) =1 — e, g2(0) = 0, ¢1(0) =0, ¢2(0) =
(I1+e)/(1 —e), such that the solution is an ellipse with eccentricity

e = 0.2, and we apply the following three symmetric methods with

constant step size h = 0.04 on an interval of length 27 - 10%:

(A) p(¢) = (¢ —1)%¢8 (Stérmer)
B)  p() =(*—1) (2.5)
(©) p(C) = -1 -1 (gni-lmm2)

and the polynomial o({) of degree 7 is defined by (1.5) with p = 8.
All these methods are stable and of order 8, the methods (B) and
(C) are symmetric, but only the method (C) is s-stable. Fortran and
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Fig. 1. Energy and angular momentum conservation of the three linear multistep
methods given in (2.5)

Matlab versions of the code gni_1mm2 can be downloaded from the
Internet at http://www.unige.ch/math/folks/hairer/ (see also [8]).

The error in the total energy is plotted for all three methods in
Fig. 1. In agreement with Theorem 1, the error of method (C) remains
bounded of size O(h®) on the whole interval. The error of the sym-
metric method (B), which has double roots of p(¢) = 0 different from
1, shows an exponential error growth which agrees with the classical
error estimate (1.6). The non-symmetric method (A) shows an error
behaviour of the form O(h®) + O(th?).

For all methods, the error in the angular momentum behaves in
the same way as that for the total energy. This is in contrast to
symplectic one-step methods which exactly conserve quadratic first
integrals.

2.2 Conservation of angular momentum

N-body systems with rotational symmetry preserve the total angular
momentum. More generally, the invariance property

Ue™q) =Ulq) for all 7,q (2.6)

with a matrix A such that AM ! is skew-symmetric, implies, as a
special case of Noether’s theorem, that the differential equation has
the first integral

L(q,p) = p"Aq. (2.7)
Theorem 2 Quadratic first integrals of the form (2.7) are conserved
up to O(hP) over times O(h~P~2) along numerical solutions obtained
by the s-stable symmetric multistep method:

L(qn,pn) = L(q0,p0) + O(h) for nh<hPZ
The constant symbolized by O is independent of n, h with nh < h™P~2,
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2.3 Integrable systems: linear error growth and near-invariant tori

The differential equation (1.1) written as
j=v, ©=-M"'VU(q) (2.8)
is a reversible system in the sense that inverting the direction of the

initial velocity does not change the solution trajectory, but it inverts
the direction of motion. The flow ; thus satisfies that

(pt(qa U) = ({]\7 1/)\) 1mphes (q7 _U) = (Pt(q\a _Ib\)

The system (2.8) is an integrable reversible system if there exists a
transformation

(q,v) = 1/)(01, 0) (29)
to action-angle variables (a,#), defined for actions a = (a1, ...,aq)
in some open set of R% and for angles 6 = (61, ...,6,;) on the whole

torus T¢ = R?/(27Z%) = {(01,...,04) : 6; € R mod 27}, such that
the transformation preserves reversibility, that is,

(¢;v) =(a,0)  implies  (g,—v) =1(a,—0),
and the system (2.8) is transformed to the form
a=0, 6=uw() (2.10)

with frequencies w = (w1, ...,wq). For every a, the torus {(a,6) : 0 €
T?} is thus invariant under the flow. We write the inverse transform
of (2.9) as

(a,0) = (I(g,v),0(q,v))

and note that the components of I = (I1,...,1;) are first integrals of
the system (2.8).

The effect of a perturbation of an integrable reversible system is
well under control in subsets of the phase space where the frequencies
satisfy the diophantine condition

|k - w| > 7]k for all &k € Z¢ (2.11)

for some positive constants v and v; see, e.g., [11, Ch. XI], [16].
The following result shows linear error growth and near-preservation
of invariant tori over long times.
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Theorem 3  Consider applying the s-stable symmetric multistep
method to an integrable reversible system (2.8) with real-analytic po-
tential U. Suppose that w* € R? satisfies the diophantine condition
(2.11). Then, there ezist positive constants C,c and hy such that
the following holds for all step sizes h < hg: every numerical so-
lution (gn,vy) starting with frequencies wy = w(I(qo,v0)) such that
lwo — w*|| < c|log h|7¥~1, satisfies

nyn) — t 9 2 S Cthp _
(g, om) = a(2),0(2)] r <t mhehr

||](qnavn) - I(QOaUO)“ <ChP
The constants hg,c,C depend on d,v,v and on bounds of the poten-
tial.

Ezample 2 We consider the Kepler problem with initial data as in
Example 1 and we apply the three methods of (2.5). Figure 2 shows
their global error as a function of time. In agreement with Theo-
rem 3, method (C) shows a linear error growth. For the strictly stable
Stormer method (A), we would expect a quadratic error growth pro-
portional to h?. We observe, however, a growth like O(th®) +O(2h?).
This can be explained with the results of Section 3 below: the domi-
nant term of the local error is, up to a constant factor, the same for
all multistep methods of order eight. Consequently, the error will be
a superposition of that of a symmetric method of order 8 with that of
a non-symmetric method of order 9. The exponential error growth of
method (B) is the behaviour of classical estimates like that of (1.6).
Notice that the estimates of Theorem 3 are confirmed for the Ke-
pler problem, although this problem does not satisfy the diophantine
condition (2.11), because here the two frequencies are identical.

global error

10t 102 10® 104 10°

Fig. 2. Global error of the three linear multistep methods given in (2.5) applied
to the Kepler problem
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Remark 2 The linear error growth and the long-time near-preser-
vation of tori remain valid if the s-stable symmetric multistep method
is applied to a perturbed integrable system

Mg = —-VUy(q) — eVUi(q)

with integrable MG = —VUjy(q) and € = O(h®) for some a > 0
(cf. [11, p. 354]).

Ezample 3 (Symplecticity) We consider the derivatives of ¢(¢) and
p(t) = Mq(t) with respect to the initial values (g, po),

dg(ty = 299 iy = PO v

8(q0ap0) ’ 6(q07p0)

which are the solution of the variational equation
Mdj = —V?U(q) dg. (2.12)

The flow of the differential equation (1.1) is symplectic, that is, the
matrix-valued function

S(dq,dp) = dq" dp — dp"dq (2.13)
is conserved: S(dq(t),dp(t)) = S(dq(0),dp(0)) for all ¢.

For the numerical solution, we assume that the starting values
qo,---,qk—1 are given by a one-step method, so that (gn,p,) can
be considered as a function of (go,po). We denote by dg, and dp,
the derivative matrices of ¢, and p, with respect to (qo,po). They
are obtained by applying the multistep method to the system (1.1)
augmented by the variational equation (2.12), which is of the form
Q = F(Q) (with @ = (¢,dq)) but no longer Hamiltonian.

100
error in symplecticity

10t 102 10® 104 10°

Fig. 3. Error in the symplecticity of the linear multistep methods (A) and (C)
given in (2.5) applied to the Kepler problem
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As in Example 1 we consider the Kepler problem and the methods
of (2.5). Figure 3 shows the Frobenius norm of the error S(dg,, dp,) —
S(dgo, dpp) as a function of time ¢ = nh. For the Stérmer method we
observe quadratic error growth, for the s-stable symmetric multistep
method there is a linear growth for a long time which turns finally
into a quadratic growth.

We remark that this error behaviour corresponds to the linear
growth of the derivatives df(¢) of the angle variables. For non-inte-
grable systems with positive Lyapunov exponents we expect the error
in the symplecticity to grow exponentially for both methods.

Although the entries of S(dg,dp) are quadratic first integrals of
the augmented system, Theorem 2 does not apply because on the one
hand the derivatives dg,, and dp,, do not remain bounded, and on the
other hand the augmented system is not Hamiltonian.

3 Backward error analysis for smooth numerical solutions

In this section we study the exceptional case of numerical solutions
(gn) for which

¢n = y(nh) + O(h") for a smooth function y(t), (3.1)

where N > p and smoothness is understood to mean that all deriva-
tives of y(t) are bounded independently of h. (Strictly speaking, this
refers to families of functions y(¢) parametrized by h.) The situation
(3.1) is met only for very special starting values, whereas general
numerical solutions contain oscillatory terms which correspond to
powers of the roots of p(¢) other than 1 and of their products (par-
asitic solution components). Nevertheless, the idealized situation of
no parasitic terms gives already much insight into the conservation
properties of the method, in a technically simpler framework than
the general case.

For the remainder of the paper it is convenient to assume that the
mass matriz is the identity matriz, M = I. This causes no loss of
generality, since the substitution M/2¢ — ¢ changes M to I. The
multistep method is invariant under this linear transformation.

3.1 Modified differential equation

Smooth functions y(t) with (3.1) satisfy a modified second-order dif-
ferential equation.
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Theorem 4 There exist unique h-independent functions f;(q,v) such
that, for every truncation index N, every solution of

i=f)+hfily,9) +. .+ b vy, 9) (3.2)

satisfies

k k
> aiy(t+ih) =h* Y- Bif (y(t +ih)) + O(AVF?). (3.3)

If the linear multistep method is of order p, then f; =0 for j <p.
If the method is symmetric, then f; = 0 for all odd j, and f;(q,—v) =
[i(g,v) for all even j so that the flow of (3.2) is reversible.

Proof We denote by D time differentiation and correspondingly by
ehP the shift operator. The equation (3.3) can be written as

p(e"P)y = Ko (") f(y) + O(KNT?).

With the expansion z20(e®) /p(e®) = 1+p1z+poz?+. . . this becomes
equivalent to

§ = (1+ p1hD + uoh®D* + .. ) f(y) + O(AY) (3.4)

provided that y(¢) is a smooth function in the sense specified above.
Now, Df(y) = f'(y)y, which gives us fi(q,v) = f'(q)v. We express
the second derivative of y in D2f(y) = f"(y)(¥,9) + f'(y)ij again by
the differential equation (3.4) to obtain a formula for f. Continuing
in this way for the higher time derivatives and collecting equal powers
of h determines recursively the functions f3, fs,....

If the method is of order p, then u; = 0 for j < p. If the method
is symmetric, then p; = 0 for all odd j. This implies the result. O

The defect of a solution y(¢) of the truncated modified differential
equation (3.2) is of size O(hN12), whereas that of a solution g(t) of
G = f(q) is O(hP*?). Consequently, the classical convergence proof
(with ¢(t) replaced by y(t)) yields the following result: if the multistep
method is stable and of order p, then for every truncation index N
and for t = nh we have

llgn, — y(®)|| < Ci(h + t)e“’td + Ont2ethY, (3.5)

where w is proportional to the square root of the Lipschitz constant
of f(gq), and ¢ is such that the starting approximations satisfy ¢; —
y(jh) = O(hd) for 5 = 0,...,k — 1. Compared to (1.6), we have
improved the second term in the error estimate.
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3.2 Modified energy

In the case of a symmetric multistep method, the modified differential
equation (3.2) for f(¢) = —VU(q) has a formal first integral close to
the total energy H(q,p) = %pr + Ul(q).

Proposition 1 For a symmetric multistep method of order p, there
exists a formal modified energy

H(q,p) = H(q,p) + h? Hy(q,p) + W* 2 Hyi0(q,p) + ...

such that its truncation at the O(hV) term satisfies

d ~ .
= Hy(1),9(t)) = O(h™)
along solutions of the modified differential equation (3.2).

We remark that Theorem 4 and Proposition 1 imply, for smooth
numerical solutions (3.1) and their pth order momentum approxima-
tions (2.1),

H(gn,pn) = H(qo,po) + O(h?) + O(th").

Proof The proof is based on the ideas of the second proof of long-
time energy conservation of the Stormer-Verlet method in [12], which
uses only the symmetry of the method. Similar to the previous proof,
with the expansion p(e?)/(z%0 (%)) = (1 +7p7P +Ypr27P T2+ .. ), we
write the equation (3.3) as

(14 yphPDP + 4 ohPT2DPT2 ) = —VU(y) + O(RY), (3.6)

where we note that the left-hand side contains only even-order deriva-
tives of y thanks to the symmetry of the method. We multiply both
sides of (3.6) with ¢, so that on the right-hand side we have the total
derivative (d/dt)U(y). On the left-hand side we note §75j = %%(@)Ty)
and similarly for higher even-order derivatives

. m d . m— 27 m— 1 m m
yTy(2 ) — E(yTy(Q 1) _ yTy(2 2) + ... + E y( )Tfy( )), (3.7)

On the left-hand side we thus obtain the time derivative of an ex-
pression in which the appearing second and higher derivatives of y
can be substituted as functions of (y,y) via the modified differential
equation (3.2). Putting this together, the equation (3.6) multiplied
by 97 becomes of the form

T . . d
9"+ WP H(y,§) + hP P Hya(y, 9) +..) = =2 U(y) + O(hY),

1
il
which is the stated result. O
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3.8 Modified angular momentum and quadratic first integrals

Whenever we have a quadratic first integral of the form (2.7), for
example the total angular momentum in N-body systems, then the
modified differential equation has a formal first integral close to it.

Proposition 2 Suppose that § = f(q) has L(4,q) = ¢TAq as first
integral, i.e., A is a skew-symmetric matriz and f(q)T Ag = 0. For
a symmetric multistep method of order p, there then ezxists a formal
modified first integral

L(q,p) = pTAq + W Ly(q,p) + BP*? Ly 12(g,p) + . ..

such that its truncation at the O(hYN) term satisfies

d ~

- L(®),5(1) = O(h™)

along solutions of the modified equation (3.2).
Together with Theorem 4 this implies
i Agn = pj Ago + O(KP) + O(th™)
for smooth numerical solutions (3.1) with (2.1).

Proof The proof is very similar to the preceding proof. We now
take the inner product of (3.6) with Ay. By assumption we have
f(y)T Ay = 0. Since A is skew-symmetric, we have ' Ay = %(QTAy)
and similarly for the higher even-order derivatives

d _ _ ) _
y(2m)TAy _ E(y@m 1)TAy . y(2m 2)TAy 4.4 y(m)TAy(m 1))_
Hence the left-hand side becomes a total derivative, and the right-
hand side is of size O(h"). Expressing the higher derivatives of y as
functions of (y,y) via the modified differential equation then gives
the result. O

3.4 Integrable systems

If the differential equation ¢ = v,v = f(q) is an integrable reversible
system, then we can use reversible perturbation theory to study the
behaviour of solutions of the reversible modified differential equation
(3.2). In particular, Lemma XI.2.1 of [11] (used as in the proof of
Theorem X.3.1) yields the following.
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Proposition 3 Under the conditions of Theorem 3, the solution of
the modified differential equation (3.2) of a symmetric multistep method
of order p, starting with (qo,v0), satisfies

I(y(®),5(2)) — (q(2), ¢@)|| < CTh?
1(y(2),4(2)) — 1(go, vo) || < C P

This yields the estimates of Theorem 3 for smooth numerical so-
lutions.

0<t=nh<hP.

4 Backward error analysis for general numerical solutions,
part I

We now consider general numerical solutions obtained by the sym-
metric multistep method. We derive the modified equations for the
principal and the parasitic solution components, study their Hamil-
tonian-like structure and derive long-term bounds for the parasitic
solution components.

4.1 Principal and parasitic modified equations

The results in this subsection are analogues of results in [7] concern-
ing multistep methods for first order differential equations. Here we
consider general second order problems § = f(g) and we assume that
f(q) is real-analytic in the considered region.

Let (o = 1 be the double root of the characteristic polynomial p(¢)
and (41, ..., (4 (k/2—1) the simple roots on the unit circle, ordered such

that (_y = ;. We enumerate the set of all possible products of roots,

{Ceteer = { I &°

Jl<k/2

m; integer },

again with (_y = ;. The set of subscripts Z can be finite or infinite.
We let 7 = 7'\ {0}.

We aim at writing general solutions g, of the multistep method
(with g, — gn—1 = O(h)) in the form

gn = y(nh) + D (F 2e(nh)
=

where y(t) and z,(t) are smooth functions (that is again, with all
derivatives bounded independently of /). The principal solution com-
ponent y(t) satisfies a second order differential equation close to (1.1)
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and the parasitic components z¢(t) for £ # 0 are small and are de-
termined by first order differential equations for £ corresponding to a
root ¢y of p(¢), and by algebraic equations otherwise.

The following result extends Theorem 4 in giving the system of
modified differential equations for both the principal and parasitic
components.

Theorem 5 Consider an s-stable symmetric multistep method (1.2).
There exist unique h-independent functions fy;(q,v,z*) with z* :=
(Zg)0<w|<k/2 such that, for every truncation indexr N and for every
solution of

:ij = fo,o(y,:t), z*) + h’fO,l(yaya Z*) +.+ h’N_lfO,N—l(yalya Z*)
zZy = hfl,l(yay7Z*) +...+ thZ,N(yayaZ*) 7’f p(CZ) =0 (41)

g = h2ff,2(ya'ga Z*) +...t hN+1fZ,N+1(ya v, Z*) else,

the function

)+ ¢ (4.2)
LeT™
satisfies
k
> o z(t+ih) = hQZﬂz z(t +1ih)) + O(RN1?). (4.3)
=0 =0

For z* = 0 the functions fo;(y,9,0) are identical to those of Theo-
rem 4. In particular, fo ;(y,9,0) =0 for 0 < j < p, if the method is
of order p. Moreover, the solutions of (4.1) satisfy z_e(t) = Zg(t) for
all ¢ € I if this relation holds for the initial values.

Proof We insert (4.2) into (4.3) and note, with 2 (t) = y(t),

k

Z ot + ih) = Z Zc(tﬂh)/h ihD 20(t)

=0 =0 KEI
=S¢ z aiCiemPzy(t) = 3 ¢ p(CoeP) 24 (8).
el 1=0 el

We expand f(z(t)) into a Taylor series around y(t),

Fat) =Y i eO)( X Wt Y @)

m>0 0 ETH Zme.’[*

Y LS ) (8, (1) -

el m>0 Ql...Qm:Q
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This gives, as above,

Z Gif(xz(t +ih))
_ zgt/h )Y Y ) )z (1),
LeT m>0 " (oo =Ce

Comparing coefficients of Cé/ " we obtain for all £ € T

PG D)z = Ro(e”) Y o Y ) s 2)
m>0 Ceq -Cem=Ce
(4.4)
(for £ = 0 and m = 0 the sum is understood to include the term f(y)).
With the expansion z%0((se”)/p(Cee®) = poo + peaz + peoz? + ...
with peo = o(Ce)k!/ (CFp™*) (¢r)) for a k-fold zero ¢4 of p(¢) (k = 2 for
£=0,k=1for0< |{| <k/2,and k = 0 else), this equation becomes

2™ = W27 (go + peahD + pesh®D? + ..
1
X X M) (45)

m!
m>0 Coq-Com=Ce

Like in the proof of Theorem 4, this leads to the differential equations
(4.1). O

We note that all functions f; ; are sums of infinitely many terms.
For example,

fOO(yaya + Z Z f(m)(’y)(ZZl,...,ng)

m>2 """ Czl Gl =1

where the second sum is over ¢; satisfying 0 < £; < k/2. As explained
in detail in [7], these sums converge absolutely whenever y remains in
a compact set K, f(y) is analytic in a neighbourhood of K, and the
||z¢|| are bounded by a sufficiently small (h-independent) constant.
This constant is proportional to the distance of K and the boundary
of the set where f is analytic.

It is possible to avoid infinite sums in the coefficient functions
of the modified equation, if we work with variables w, defined by
z¢ = hwy. This leads to a truncated system similar to (4.1) with
functions depending on y,y and w* := (w¢)o<|¢<k/2, Which now are
finite sums. Moreover, only finitely many wy are non-zero.
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Thanks to the assumption that all roots of p(¢) other than 1 are
simple, the differential equations for the z; corresponding to the par-
asitic roots are first order differential equations, with the additional
bonus of a factor A on the right-hand side:

_ 5, 9C)
Ger' (Ge)
Here, “higher order terms” means that they contain either an addi-
tional factor h or an additional factor z;.

f'(y)ze + higher order terms.

Lemma 1 Consider an s-stable symmetric multistep method (1.2).
To every set of starting values qo,...,qk—1 satisfying q; — q(jh) =
Oh®) (j = 0,....,k—1) with 1 < s < p+ 2 there exist (locally)
unique initial values y(0), hy(0), 2.(0) (0 < |¢] < k/2) for the system
(4.1) such that its solution ezactly satisfies

g =y(ih) + 3. Galjh)  for j=0,....k—1. (4.6)
LeT*

These initial values satisfy z—¢(0) = Z¢(0) and
y(0) — q(0) = O(n*),  hy(0) — hq(0) = O(R?),  2(0) = O(h°).

Proof We rewrite (4.6) as
y(0) +jhy(0) + > ¢Jze(0) = g + (y(0) + jh§(0) — y(jh))

0< || <k/2

+ 3 (0 —zih) = X alin)
0<|t|<k/2 o>k/2
with y(¢) and z¢(¢) the solutions of (4.1) for initial values y(0), hy(0),
20(0) for 0 < |¢| < k/2. This defines a convergent fixed-point iter-
ation for the initial values, with a contraction factor of O(h) (after
solving the confluent Vandermonde system arising on the left-hand
side). If we start the iteration with (¢(0),hg(0),0,...,0), then the
first increment is of size O(h*), and consequently (4.7) holds. O

If we replace the exact solution ¢(t) by y(t) + > scr= C;/ th(t) of
Theorem 5 in the classical convergence proof, then we get for s-stable
symmetric methods (1.2) that (for ¢t = nh)

an=yt)+ > Gault) + Ot hY), (4.8)
LeT*

where w is proportional to the square root of the Lipschitz constant
of f(g). Compared to (3.5) this gives a precise description of the
propagation of perturbations in the starting approximations.
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4.2 Hamiltonian of the full modified system

The key to proving long-time estimates for the symmetric multistep

method is the observation that much of the Hamiltonian structure

of the differential equation § = —VU(q) is conserved in the modi-

fied equations (4.1). The results and techniques of this subsection are

closely related to those of [11, Sect. XIIL.6.3] and [10, Sect. 4.2] devel-

oped for numerical methods for oscillatory differential equations.
We define U(z) for z = (Zg)ge_'[ as

Z/{( Zo + Z Z U(m) (Z())(Zgl, .. ,ng), (4.9)

m>1 Cll sz:].

where the second sum is over all indices ¢ € Z*,...,¢,, € Z* (that
is, £; # 0) with {4, ... (s, = 1, and the first sum actually starts with
m = 2. With this notation it follows from (4.4) with f(q) = —VU(q)
that every solution of the truncated modified equation (4.1) satisfies

p(Cee")zg = —h20 (e )V ,_ U(z) + O(RNT?) (4.10)
(for all £ € 7) as long as
ye K, gl <M, |zl <6 for 0<|f <k/2, (4.11)

where K is a compact subset of the domain of analyticity of U(q),
M > 0 some bound on the derivative, and é > 0 is a sufficiently small
constant (note that this implies ||z;|| < d for all £ € Z* if the third
relation of (4.1) is satisfied and if A is sufficiently small).

For ease of presentation, we assume for the moment that o(¢;) # 0
for all £ € Z (in any case we know that this holds for |¢| < k/2, that
is, for the roots (; of p(¢)). We apply the operator o1 ({,e"”) to both
sides of (4.10) and divide by h?:

h72(§) (Cee"P)ze = —V,_,U(z) + O(RY). (4.12)
We multiply with z'fe and sum over all £. This gives
-2 hD d N
> 2 ( ) (Cee™)ze + o, U(z) = O(hT). (4.13)
ez

We now show that also the first expression on the left-hand side is a
total derivative of a function depending on z and its time derivatives.
For this we note that

( ) Qe” Zczjmj with real coefficients ¢, ; = (—1)jc_g,j.
7>0
(4.14)
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This holds because the symmetry of the multistep method yields
(p/o)(1/¢) = (p/o)(¢) and hence, for real z,

(2)cee™) = (£) @™ = (£) ).

With this expansion we obtain

N+1 _
(g)(@ehD)ze =3 e j(—iny 2P + OmN ). (4.15)
7=0

On the other hand, we have the relations

. d /. _ . _ 1

yTy(Zm) — _( Ty(2m 1) yTy(Zm 2) T M (y(m))Ty(m))
dt 2

for the real function y = zg and for 2, corresponding to {y = —1, while

for the complex-valued functions z = 2y, with complex conjugate

Z = z_y, we have

. d . .
Re? 2™ = Re E(ETZ@WU —F e g % (z(m))Tz(m))

=T @m+41) _ 1o G (2T om) =T (am—1) —(m)\T _(m+1)
Imz z —Imd (zz Z z +...FEZ") 2 )

Together with (4.15) these relations show that the terms

() etz + 4 (L) (C-eeP)oe

N+1 . .
=Y ey 2Re((=in) 7' 7)) + O(hNH2)
j=0

give a total derivative (up to the remainder term). Hence the left-hand
side of (4.13) can be written as the time derivative of a function which
depends on zy, £ € Z, and on their derivatives. Using the modified
equation (4.1) we eliminate all z, corresponding to (; with p({;) # 0
and their derivatives, the first and higher derivatives of z; (for 0 <
|¢| < k/2), and the second and higher derivatives of y = zy. We thus
get a function

H(yayaz*) = HO(yagaz*) +. hN_lHN—l(y,lyaz*) (416)

such that

(w0, 5(0), 7" (1)) = O™, (4.17)

along solutions of (4.1) that stay in a set defined by (4.11). The
function # is therefore an almost-invariant of the system (4.1).
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If, however, o({) does have a zero (y, then we omit the corre-
sponding term from the sum in (4.13). Hence the term z7,V,_,U(z)
is missing from (d/dt)U(z) and must therefore be compensated in
the remainder term. Since (y is a product of no fewer than two ze-
ros of p(¢), it follows from (4.5) with x = 0 and from p,o = 0 that
2o = O(h36%), as long as | zj|| < 6 for 0 < |j] < k/2. We further have
V._,U(z) = O(6%), so that the remainder term in (4.17) is augmented
by O(h36%).

We summarize the above considerations as follows.

Theorem 6 Every solution of the truncated modified equation (4.1)
satisfies, with H from (4.16),

H(y (1), 9(t),2* (1)) = H(y(0),9(0),2"(0) + O(thY) + O(th*6*)

(4.18)
as long as the solution stays in the set defined by (4.11). Moreover,
H(y,9,2") = H(y,y) + O(hP) + O(hd?). (4.19)

The closeness to the Hamiltonian H(y,y) = 1||9]2 + U(y) fol-
lows also directly from the above construction. For z* = 0 we have
H(y,9,0) = H(y,y), where H is the modified energy from Proposi-
tion 1.

We will use Theorem 6 in Section 5 to infer the long-time near-
conservation of the Hamiltonian along numerical solutions. Before
that we need to bound the parasitic components.

4.8 Long-time bounds for parasitic solution components

The modified equations have further almost-invariants which are close
to the squares of the norms of the parasitic components that corre-
spond to the roots of p(¢). We derive them here and use them to
show that all parasitic solution components remain small over very
long times. The techniques used in this subsection are similar to those
in [11, Sects. XII1.6 and XIIL.7].

We consider £ with 0 < |£| < k/2 for which (; is a simple root
of p(¢) and o(¢¢) # 0. The dominant term on the left-hand side of
(4.12) is —cg,13h ™1 2. Since

d . .
$||Ze||2 = 2Ly + 2] 54 (4.20)

we multiply (4.12) with 27, and the equation for —¢ with 2} and
form the difference, so that the dominant term on the left-hand side



Symmetric multistep methods over long times 21

becomes —C[,lih71%|‘zg||2 (note c_y1 = —cg,1). Dividing by —c;g,lih*I
gives
1
(#Te 2 (cee™)ze — F £(¢ 4eP)z )
ce1h o o (4.21)
th :
= — (—zTsz_lU(z) + zzTVzll/{(z)).

Ce,1

We first estimate the right-hand expression. Since
V._U(z) = V?U(z)z + O(6°),

as long as (4.11) is satisfied, we obtain from the symmetry of the Hes-
sian that the right-hand side of (4.21) is of size O(hd?). The dominant
O(hé?) term is present only if (_y can be written as the product of
two roots of p(¢) other than 1. If this is not the case, the expression
(4.21) is of size O(hd*).

Using the expansion (4.15) on the left-hand side of (4.21) and the
relations (for z = zy)

d

ST, (2m+1) _ G or_(2m) 2T (2m-1) 1 S(mN\T _(m)
ReZz" z —Redt(zz Z z ...:F2(z )z )
hmamwuﬂm%@umw_fwM+mi@Wmeg

we obtain that (4.21) is, up to O(hV), the total derivative of a func-
tion depending on z and its derivatives.

By construction the dominant term is % || ze||?. The following terms
have at least one more power of i and at least one derivative which by
(4.1) gives rise to an additional factor h. Eliminating higher deriva-
tives with the help of (4.1), we arrive at a function of the form

]Cf(ya :l], z*) = ||ZZ||2 + h2Kf,2(y, y‘a Z*) +. h’Nile,Nfl(y, y, z*)'
(4.22)
As we have seen, its total derivative is of size O(hd®) or smaller. We
summarize these considerations in the following theorem.

Theorem 7 Along every solution of the truncated modified equation
(4.1) the function K¢(y,y,z*) satisfies for 0 < |[£| < k/2

Ke(y(t),9(1),2" () = Ke(y(0),5(0),2*(0)) + O(th™) + C’)(th??’) )
4.23
as long as the solution stays in the set defined by (4.11). The second
error term is replaced by O(thd*) if no root of p(¢) other than 1 is
the product of two other roots. Moreover,

Ke(y,9,2") = |lzel|* + O(h*8%). (4.24)



22 E. Hairer, Ch. Lubich

This result does not yet directly give information about the nu-
merical solution, since the remainder term in (4.8) can still grow
exponentially in time. Nevertheless, it allows us to write the numer-
ical solution in a form that is suitable for deriving long-time error
estimates. Let us first collect the necessary assumptions:

(A1) the multistep method (1.2) is symmetric, s-stable, of order p;

(A2) the potential function U(q) of (1.1) is defined and analytic in
an open neighbourhood of a compact set K;

(A3) the starting approximations qg,...,gx_1 are such that the ini-
tial values for (4.1) obtained from Lemma 1 satisfy y(0) € K,
[9(0)]| < M, and |[2¢(0)|| < 6/2 for 0 < |¢] < k/2;

(A4) the numerical solution {¢,} stays for 0 < nh < T in a compact
set Ky which has a positive distance to the boundary of K.

Theorem 8 Assume (A1)-(A4). For sufficiently small h and ¢ and
for a fized truncation index N (large enough such that h'¥ = O(6*)),
there exist functions y(t) and z¢(t) on an interval of length

T =0O((hd) ™)
such that

o g =y(nh)+ > (Fz(nh) for 0 <nh<T;
LeT
e on every subinterval [jh,(j + 1)h) the functions y(t), z¢(t) are a

solution of the system (4.1);

e the functions y(t), ze(t) have jump discontinuities of size O(h™¥12)
at the grid points jh;

o ||z(t)|| <6 for0<t<T.

If no root of p(¢) other than 1 is the product of two other roots, all
these estimates are valid on an interval of length T = O((hé%)71).

Proof To define the functions y(t), z¢(¢) on the interval [jh, (j + 1)h)
we consider the k£ consecutive numerical solution values g;,q;41,.. .,
¢j+k—1- We compute initial values for (4.1) according to Lemma 1,
and we let y(t), z¢(t) be a solution of (4.1) on [jh, (j+1)h). Because of
(4.8) such a construction yields jump discontinuities of size O(h¥1?2)
at the grid points.

It follows from Theorem 7 that Ky(y(t),y(t),z*(f)) remains con-
stant up to an error of size O(h26%) on the interval [jh, (j + 1)h).
Taking into account the jump discontinuities, we find that

Ke(y(1),9(t),2° (1)) < Ke(y(0),5(0),2"(0) + C1thd® + CgthN( i )
4.25
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as long as ||z¢(t)|| < 6. By (4.24) this then implies
llze@®)|? < ||ze(0)]|> + C1thé® + CothN T + C3h262. (4.26)

The assumption ||z¢(t)|| < ¢ is certainly satisfied as long as C1thd <
1/4, CothN+1 < 62/4, and C3h? < 1/4, so that the right-hand side
of (4.26) is bounded by 2. This proves not only the estimate for
|z¢(t)||, but at the same time it guarantees recursively that the above
construction of the functions y(t), z,(¢) is feasible. O

Notice that for initial values computed by a sufficiently accurate
one-step method the constant § can be chosen as small as O(hP*?2)
where p is the order of the multistep method (cf. Lemma 1). The
above estimates are therefore valid on very long time intervals.

Ezample 4 To illustrate the long-time behaviour of the parasitic terms
zp we consider the pendulum equation § = — sinq, and we apply the
symmetric multistep methods with generating polynomials

) pQO=C-1(C+1), a(¢)=§(T¢ -2 +7¢),
M pl0) = =12 +17 (0 =4+ +¢Y).
Both methods are explicit and of order 4. The starting values are
chosen far from a smooth solution, so that the propagation of the
parasitic terms in the numerical solution can be better observed.

The parasitic roots of method (S) are +: and both are simple. The
numerical solution is therefore of the form

gn = y(nh) +i"z1(nh) + (—1)"2z1(nh) + (—1)"22(nh).

One observes in Fig. 4 that the functions z;(¢) not only remain bounded
and small, but they stay nearly constant over the considered interval.

2eGCe

[
(3

Fig. 4. Stable propagation of perturbations in the starting values, method (S)
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Fig. 5. Unstable propagation of perturbations in the starting values, method (T)

Method (T) has a double parasitic root at —1 and, therefore, is
not s-stable. Its numerical solution behaves like

qn = y(nh) + (—=1)"z(nh).

In Fig. 5 every second approximation is drawn in grey. One sees that
the numerical solution stays on two smooth curves y(t) + z(¢) and
y(t) — z(t) which, however, do not remain close to each other for
method (T).

5 Backward error analysis for general numerical solutions,
part 11

The results of the previous section enable us to finally prove the
theorems of Section 2.

5.1 Conservation of energy

The energy conservation is now a direct consequence of Theorems 6
and 8. We shall use the representation of ¢, in terms of functions
y(t), z¢(t) as in Theorem 8. Taking into account the jump discontinu-
ities of these functions, Theorem 6 yields

H(y (1), 5(t), 2" (1) = H(y(0),9(0),2°(0)) + O(th*s") + O(th" ).

We have § = O(hPT!) if the starting approximations are computed
by a pth order one-step method. If N is chosen sufficiently large, this
together with (4.19) implies that

H(y(t),y(t)) = H(y(0),5(0))+O(h") for 0<t<T=0Mh7P?).

If the velocity approximation p, = v, (for identity mass matrix) is
given by a pth order finite difference formula (2.1), it follows from
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Theorem 8 that p, = g(nh) + O(h?) provided the truncation index
N is sufficiently large. This gives the statement of Theorem 1. If no
root of p({) other than 1 is a product of two other roots, the statement
holds on intervals of length O(h2P—3).

5.2 Conservation of angular momentum and quadratic first integrals

The invariance property (2.6) implies, for U of (4.9),
U(e™z) = U(z) for all ,z.

Along solutions z(t) of the modified equations (4.10) we therefore
have up to terms of size O(h™)

d A T
0= E T:OU(e Z) = ZZIZ—ZAVZ—Z Z/{(Z)
, € (5.1)
= Z h_2ZTz A (_) (ClehD)Zf-
o
ez

If o(¢) has a root (s, then the corresponding term is omitted from
the last sum, leading to a remainder term which in the worst case is
O(h36*), as in Theorem 6. Like in the previous proofs, the last sum
is, for skew-symmetric A, the total derivative of a function

L(ya Y, Z*) = LO(ya Y, Z*) +...+ h’NilLN*I(ya Y, Z*)
which satisfies (under the same assumptions as in Theorem 6)
L{y(#), 5(2), 2" (1) = L(0), 5(0), 2" (0)) + Oth**) + O(thN+)

and
L(y,9,2") = L(y,§) + O(h?) + O(6* /h). (5:2)

The statement of Theorem 2 thus follows in exactly the same way as
that for Theorem 1 in Section 5.1.

5.3 Integrable systems

Assume that the differential equation § = —VU(q) is an integrable
reversible system (see Section 2.3). By Theorem 8, the numerical
solution can be written as ¢, = y(nh) + > jc7+ (f'2ze(nh), where (at
least locally) y(t) is the solution of a modified differential equation
(first equation of (4.1))

?j = fO,O(yﬁgaZ*) + th,l(yayaik) +...+ h’NilfO,N—l(yayaZ*) (53)
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which, for z* = 0 becomes the modified differential equation (3.2).
We now consider (5.3) as a differential equation for y only with z*(¢)
as a given function. Since z;(t) = O(d) (see Theorem 8) and since z*
appears at least quadratically in (5.3), this equation is a O(§?) per-
turbation of (3.2). We now apply the same transformation as for the
proof of Proposition 3. The additional (non-reversible) perturbation
of size O(42) in the differential equation (5.3) produces an error term
of size O(td?) in the action variables and of size O(#262) in the angle
variables. If § = O(hPt1), these terms are negligible with respect to
those already appearing in Proposition 3. The errors due to the jump
discontinuities (Theorem 8) are also negligible. We have thus proved
the statement of Theorem 3.
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