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1 Introduction

Iterative methods of Krylov subspace type form a well-known and well-researched area
in the context of solution methods for large sparse linear systems. In some cases, conver-
gence can be described, in others not. Invariably however, the theoretical and practical
convergence criterion is chosen to be the Euclidean norm of the residual, with the ubig-
uitous exception of the Conjugate Gradient method, where the ‘energy norm’ lends itself
quite naturally to analysis. On the other hand, finite element methods which are an
important source of large, sparse linear systems provide a natural norm for convergence.
While this fact is well-known and has been noted particularly in the case of symmetric
positive-definite problems (Golub and Meurant 1997), (Golub and Strakos 1994), (Meu-
rant 1999), (Strakos and Tichy 2002), only recently have there been attempts to relate
convergence in the ‘energy’ norm to the finite element context (Arioli 2002), (Arioli et
al. 2001), (Starke 1997). In particular, Arioli Arioli (2002) was the first to consider the
original finite element setting to provide convergence criteria for the Conjugate Gradient
method.

In this work we consider the choice of stopping criteria for nonsymmetric positive-
definite problems. The immediate difficulty encountered is that of defining a suitable
norm in which to measure convergence. In the case of symmetric positive-definite prob-
lems, the energy or A-norm of the error is equal to the dual norm or A~'-norm of the
residual, which is the quantity that is estimated. In the nonsymmetric case, we show
that a useful definition of dual norm is the norm induced by the symmetric part of A=
We show that one can also work with the norm induced by the inverse of the symmetric
part of A for problems which are not too non-normal.

The paper is structured as follows. In section 2 we describe the problem setting. In
section 3 we derive general stopping criteria while in sections 4 and 5 we present ways of
approximating the criteria introduced in the case of GMRES; we also consider the effect
of preconditioning and derive the corresponding modified bounds. Finally, in section 6
we investigate the stopping criteria by performing experiments on various discretizations
of convection-diffusion problems.

2 Problem description

2.1 Abstract formulation

Consider the weak formulation

Find u € H such that for all v € H

a(u,v) = f(v), (1)
where # is a Hilbert space of functions u defined on a closed subset  of R?, with dual '
and inner-product norm || - ||3, while a(-, ) is a nonsymmetric, positive-definite bilinear

form on H x H and f(-) € H' is a continuous linear form on H. Existence and uniqueness
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of solutions to problems of type (1) is guaranteed provided the following conditions hold
for all u,v € H

a(w,v) < Cillwlixllvllx (2a)
> Collvlf3 (2b)

a(v,v)

with constants C, Cy independent of discretization.

Condition (2b) is often used to replace the weaker (and sufficient) conditions of
Babuska (1971)

Q

(w, )

sup > Collw||n, (3a)
veH\{0} ||U||7-L

(Z’U),U
sup 20 S ol (3b)

weH\{0} l|w]|2

this is due to the fact that the weak formulation (1) with a(:,-) replaced by its symmetric
part is often stable in the sense of Babuska (i.e., satisfies (3)), leading to (2b).

2.2 Finite element approximation

An approximation to problem (1) is sought through projection onto a finite-dimensional
space Hjy C H; the resulting formulation reads

Find u; € H, such that for all v, € H,,

a(un, vp) = f(va)- (4)

Finite element methods choose H; to be a space of functions v, defined on a subdivision
Q, of © into simplices T of diameter h7; h denotes a piecewise constant function defined
on Qh via h‘T = hT.

Since H, C H, (2) are satisfied with constants independent of h; thus, there exists
a unique finite element approximation u,. Moreover subtracting (4) from (1) yields the
standard orthogonality condition for all v, € H,

a(u — up,v) =0, (5)

which can be used (together with conditions (2)) to derive standard error estimates of
the form

Cy .
Ju = unlh < & inf = wnll ©

Remark 2.1 Replacing v, with the interpolant of u, Zyu, and using interpolation error
estimates leads to a priori bounds of the form

[ = unlln < C(R)C(u)

where C(u) is typically a constant depending only on u and its derivatives.
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Conditions (2) can also be used in determining a posteriori error bounds. In particular,
if we define the functional residual as a linear functional via

(R(up),v) == f(v) — a(up,v) = a(u — up, v) Vv eH

then dividing by ||v||3 and using (2) leads to the following upper and lower bounds on

the error
1 1

SR < =l < G )
where (R(un), o)
Up), v
VR 1= sup ()0
veH\{0} vl

Alternatively, noting that ||a|l%% = C1 (cf. (2a)) we can rewrite (7) as

||U - Uh||% O
BE< — T — FE << —BE 8
< Tl <G ®)

where

| R(up) |2
BE = 9
l|un |2l @22 (9)

Definition 2.1 The quantities FE,BE in (8),(9) are the functional forward and back-
ward error respectively (Arioli et al. 2001).

Remark 2.2 The dual norm of the functional residual, |R(up)||3, is not easy to com-
pute and most a posteriori error bounds are derived as approrimations of this quantity.
However, in general it is known that ||R(up)||w and thus BE are (polynomial) functions
of the discretization parameter h and thus far from being close to machine precision. This
we will use to advantage in the derivation of stopping criteria. However, we will not be
concerned here with the derivation of any bounds but we will assume the following generic
bound on the relative error

Ju =l o )
[[unll2

where C'(h) is available via an a priori or a posteriori error analysis.

We end this subsection with some standard notation. Expanding wu, in a basis of Hj,, we
can derive a linear system of equations involving the coefficients (u);,i = 1,...,n of uy
in our choice of basis of H;,

Au=f (11)

where n = dimH;, and A € R"™" is a non-singular, generally nonsymmetric, matrix. In
fact there is an isomorphism II, between R" and H, which associates to every vector
v € R” a function v, € H;, via
v = sz’¢z‘,
i=1



where {¢;,i =1,...,n} form a basis for #;. Henceforth, given a vector v € R" we will
denote its functional counterpart II,v by v,. Note also that the above choice of basis
defines a norm-matrix H via

Hij = (64, ¢5))
where ((+,-)) is the H-inner product. Hence
[onllze = [1v]]a-
We will also use the matrix norm || - || g, g, : R"*" defined via

M|,

M|,y =
M|y, 122 xeR™\{0} |||,

where M € R™*" and H; € R**" 1 = 1,2, 3 are symmetric and positive-definite matrices.
We also note here that )
—1/2 —
M|l gy, 51 = [1Hy "MH. (12)

Finally, the stability conditions (2) become

max max w'Av < Ci||lw|ulv]a (13a)
weR?\{0} veR"\{0}
min viAv > Gyllv|% (13b)

veRn\ {0}
It is also easy to see that there also exits a constant C3 < C; such that

Av < Cs||v]|%. 13
Jax VAV < sl vIle (13c)

Remark 2.3 In many situations of interest one can have C3 = Cy. Moreover, if the
symmetric part of A is H, then Cy = C3 = 1.

We now state a result which can be found in Brezzi and Bathe (1990).

Theorem 2.2 Let M € R"™™ be nonsingular and let H € R"™™ be a symmetric and
positive-definite matriz. Then

w!Mv
M 1 o= max max ————
| M| g,z )
wern\{0} verm\{0} | W || ||V i

tM
IM7Y5t ,, = min max WY
) weRm\{0} verm\{0} | W || | V|| &

The above result justifies the following definition.

Definition 2.3 The H-condition number of a matriz M is

R(M, H) = kg (M) = | Mgz | M -1,



Thus the stability conditions (2) simply say that the discrete problem (4) is well-conditioned
with respect to the H-norm:

1Al ga— = C1, A7 5k 5 = Co, (14)

and hence for all n o
A) < 2L 15
FvH( ) =~ 02 ( )

Finally, we note that when solving Au = f the discrete versions of (8), (9) are

If — Atd||z-
, BE .= —
1G]] x| A

lu—allx

|
FE =1 (16)
12l

H,H-1

3 Stopping criteria

In many large-scale computations the exact solution u of the linear system (11) is out
of reach and an iterate 11 is used to approximate the solution. Since we identify @ with
a function u, € H,, we naturally expect a useful iterate u1 to satisfy an error estimate
similar to (10)

_M;ﬁﬂﬂgém%
||t ||

where C(h) is of the same order as C(h) in (10). Our aim is to derive a sufficient and
computable criterion for the above error bound to hold. First, we introduce some notation
and useful results. Let M € R**". We denote by Hy = (M + M*")/2,Sy = (M — M")/2
the symmetric and skew-symmetric parts of M, respectively. Moreover, if H,, is positive-
definite, it induces a norm which we denote by

-1l =11 Nl
We first prove the following results.

Lemma 3.1 Let conditions (13) hold. Then

1 1
rlla <llrlle < —==lrlla
\/@H la < N

and
Vs 1
——||r |1
CC4 Vo

Proof See Appendix. d

lefle-o < leflar <

Theorem 3.2 Let u be the solution of the weak formulation (1) and let u,u, = zu
satisfy
[l — w2

Au=f;
|| |2

< C(h).
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Then 1y, = llya satisfies

e =nllwe &y = 00y
@[3
if )
If = Aafla-r htC/(h)Co, (17)
lallm

for somet > 0.

Proof Let r =f — At. We have

l|lu — i |2 < lu—uplla lunlln | lun — Gnlln

lanllee = uallae  lldnlln [ n ]2
< om) (l-l- ”“hjuh”?-i) n ||Uh~_uh||7-l
lln |2 l[n |2
and since
lun —anllw _ lA” rlln
ll%n || [0l
< IA -1 e g2
- o]l
L ||zl :
< = using (14
- Oy ||ul|la (using (14) )
we get

w < C(h)(+h'C(h) + K C(h) =: C(h).
Up ||H

O
Remark 3.1 The stopping criterion (17) is equivalent to requiring the discrete backward
error BE defined in (16) to be of the same order as the functional backward error BE =

O(BE). This is also a sufficient condition for the discrete forward error FE corresponding
to our iterative solution to have the same order as the functional forward error FE.

In fact, criterion (17) can be replaced with a tighter bound. By Lemma, 3.1,

1 1
A™ At < At = — -
A x|l < \/C—,QII rfla< \/—II [a-1,alr]la-: \/@HI‘HA :

and thus, we can replace the bound (17) with

If — Aufl4-:

[afl

< h'C(h)\/Co. (18)



The difference between the stopping criteria (17), (18) is not significant if the H-condition
number (15) is not too large. This can be seen from the equivalence between || - || z-1, || -
||a-1 provided by Lemma 3.1. In particular, if the symmetric part of A is H, then
Cy = C5 = 1 and the effective condition number is C. A large value of C; corresponds
to a ‘highly nonsymmetric’ problem for which the use of criterion (18) rather than (17)
may be preferable. We return to this issue in the numerics section.

3.1 One more crime

In practice, the discretization of the weak formulation (1) is generally done in an approx-
imate fashion, very often due to the computational costs involved. This approximation
has been qualified as a variational crime (Strang and Fix 1973), as it leads to a perturbed
System

(A+AA)a=f.

However, it is known that if the perturbation AA is suitably small (usually within the
finite element error), then the approximate solution u satisfies the same error estimates
as the exact solution u (Strang and Fix 1973). In this context, the proposed stopping
criteria represent but another variational crime as the following standard result shows
(see Arioli et al., 2001; see also Rigal and Gaches, 1967 for the case when [, norms are
employed.)

Theorem 3.3 Let u satisfy

f — Aullg-:
M= A8la _ pecnyo,
||z
Then there exists AA such that
(A+AAda=f

and
||AA||H,H—1 S htC(h)Cg

Proof See (Arioli et al. 2001, Thm 1). O

Remark 3.2 The more general case where the right-hand side f is perturbed is treated
by Arioli et al. (2001). We do not include the results here since in most engineering
applications bounds of type (10) are preferred.

The stopping criteria derived above pose the problem of estimating the residual in the
H~'- or A~'-norms. While this was possible for the symmetric and positive-definite case
in a natural way (see Golub and Meurant, 1997, Golub and Strakos, 1994), the use of a
nonsymmetric iterative method does not allow for the same methodology to be applied.

In the remainder of the paper we show how this norm can be estimated using the
information contained in the Krylov basis K. For simplicity, we will consider only the
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case H = (A + A")/2 (and thus Cy = 1), i.e., the case when H defines the so-called
‘energy norm’ for the problem. In the next section, we show how the norm estimation is
achieved for GMRES and FOM. Finally, in the case of central preconditioning with H,
these two algorithms reduce to a three-term recurrence which computes directly ||t%|| z-1.
This will be the subject of section 5.

4 Stopping criteria for GMRES and FOM

We recall here some of the basic facts and standard notation for the GMRES and FOM
algorithms. The methods compute an orthonormal basis of x; the basis elements are
the columns of V;, € R***¥. This orthonormalization is achieved via an Arnoldi process
which yields the factorizations

ViAVi = Hy, AVy = Vi Hy,

where Hj, € RF*F, H, € Rtk are upper Hessenberg matrices, with Hj, being obtained
from Hj by deleting its last row. In the case of GMRES, a Q) R-factorization of Hy is
computed (updated at each step)

Hy = QxRy.
4.1 Estimation of ||r¥|| 5

This can be done simply via

¥ -1 < Apal2(H)||xb]).

men

Depending on the application, the smallest eigenvalue of H may or may not be estimated
with sufficient accuracy. If we do not have such an estimate, we must contend ourselves
with estimates provided by the iterative process. In the case of GMRES and FOM this
can be achieved as follows. Assuming no breakdown, the method computes the following
factorization of A involving an orthonormal matrix V;,

VAV, = H,,.
Thus, VIHV,, = (H, + H})/2 =: HS and therefore

Since in practice we wish to use the algorithm only for a small number of steps £, an
estimate of A\, (H) can be taken to be Ay (Hj). Unfortunately, this estimate is always
an upper bound on A, (H). In fact, we have the following monotonicity result.

Lemma 4.1 Let Hi = (Hy + H})/2. Then



Proof

ey A Hiak
Amin(HR) = B0, 7 g2
q. VI AViq,
areRr  laxll?
rtAr
reky |ViT|2
. rtAr
AN

>
Now, any r € K4, can be written as r = V. 1qg41 for some qi; € R¥L and
hence

t t
Q1 Vi1 AVir1Qk+1
t
arr€RM VIV g |?

Amin(Hp) 2

tH
> min Qi1 k+1(21k+1
Qp 1 ERFFL lak+1l
Amm(Hl;:s—l—l)

O

This result enables us to approximate the stopping criteria as follows. Since by the
previous lemma Apin(HE) \¢ Amin(H) monotonically, there exists a £* and a constant
C* = C*(k*) such that Apin(H) < C*Apin(H}) for all £ > k*. Hence, our stopping
criterion becomes

5] < AL (H)R'C (). (19)
We recall here that the value of ¢ > 0 can be chosen according to application (a larger
value, for a more pessimistic convergence criterion). Thus, we only have to compute
Amin(H{) and estimate C*. In practice, the constant C* is of order one for small values
of k*. We investigate this issue in the next section.

Remark 4.1 Estimating Apin(H) can be done easily in the case of the FOM algorithm.
However, in the case of GMRES this is not necessarily straightforward, since we do
not store Hy, but the Ry factor of the QR-factorization of Hy. In this case, a further
approximation could be introduced

Amzn(HIi) < Umin(Hk) < O-min(ﬁk) = Umin(Rk)

leading to the bound

4| < Croylo (Ri)A'C (h),
where C* is a constant which accounts for both convergence to Apin(H}) and the difference
between Apmin(HY) and 0pmin(Ry), which cannot be guaranteed to be small and is not known

a priori. However, this latter bound is useful in estimating ||v*|| 4-1.



4.2 Estimation of |[r*|| 4

In this case we proceed similarly

—1/2
¥ a1 < [[rk]|opan’ (A).

men

A similar monotonicity result holds for the singular values of Hj (cf. Horn and Johnson,
1991, Cor. 3.1.3)

O-mm(ﬁk) 2 O'min(ﬁk—kl)
and thus there exists a £* and a constant ¢* = ¢*(k*) such that o,,:,(A) < *omin(Ri)
for all £ > k*. Thus the stopping criterion (18) can be replaced with
k]| < c*orl2 (Re)h'C(R). (20)

min
where, as before, ¢* is a constant (of order one) which we need to estimate.

Remark 4.2 We note that this criterion can be used both in the case of GMRES and
FOM, since in the first case the matriz Ry is available and in the second case Hy 1is
available (with oyin(Hg) = Omin(RE))-

4.3 Restarted GMRES/FOM

There are many situations where the construction of an orthonormal basis for the Krylov
subspace is limited to a small number of vectors. This leads to the restarted versions of
GMRES or FOM. From the point of view of the above stopping criteria, this does not
pose any major problems — we still need to estimate either A, (H) or oyin(A) and this
is done in a similar fashion. Thus, assuming we run the algorithms for m iterations of k&
steps each, we use the following approximations

O (HD),  Omin(H) ~ min ol (Ry) (21)

. ~ mi (%)

Amin (H) 1213% A 1<i<m

where we denote by A\ (H}?), o) (Ry), the eigenvalues and singular values of the indicated
matrices constructed at the sth iteration.

4.4 The effect of preconditioning

In the case where a preconditioner is used, the Arnoldi algorithm constructs a similar
factorization of the preconditioned matrix. We consider here only the case of right pre-
conditioning for which the GMRES/FOM residual remains unchanged. The factorization
is

AP*IV,C = Vk+1ﬁk

and since

t)la-1 < il (A)||x]| < il (AP o, 12 (P) ||

men min min
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we can derive a stopping criterion similar to (20) using the approximation o, (AP™!) ~
Tmin(B) 1/2 1/2
4] < el (Ri) ol (PYRC (). (22)

min
However, this requires the estimation of the smallest singular value of P which may not
be easy to achieve. We address this issue in the Section 6.

5 A minimum residual algorithm

We have seen that in the case of GMRES estimation of |[r*||z-1 can be done provided
the Hessenberg matrix is stored. On the other hand, the more relevant quantity ||r*|| 41—
can be estimated quite naturally during the GMRES process. However, there is one
situation where working with ||r¥||z-1 leads to a three-term recurrence algorithm as well
as useful preconditioning. The algorithm solves Au = f by minimizing ||f — Au||z-1 over
the Krylov space. This is by no means a novel result and has been previously considered
by Glowinski and Lions (1976) and Widlund (1978) in the context of preconditioning
nonsymmetric matrices by their symmetric part. We consider below the version of this
algorithm which minimizes the H~!-norm of the residual, where H is the symmetric and
positive-definite part of A.
Consider the modified problem

Au=f (23)
where A = H-Y2AH-Y/2 f = H-'/2f. Let us consider first the FOM algorithm applied
to this system. As before, the residual is orthogonal to the Krylov space

(tF,q) = (H™'*(f — Au*),q) =0, Vqe K,
where
Ky, = span {fO,AfO, e A’f—lfo} = H'?IC(H*A, H'1Y).
Thus, Vp € Kx(H 1A, H 'r?)
(H '*r* H'?p) = (z*,p) = (H 'r*,p), =0.

In other words, the standard FOM algorithm for (23) is also an orthogonal projection
method with respect to the H-inner-product onto Kz(H'A, H~'r%). Moreover, the
advantage of this formulation is that there exists a three-term recurrence which solves
this problem. We summarize this below.

Lemma 5.1 Let A have symmetric and positive-definite part H. The FOM algorithm
applied to
(H '?AH '?)(H'*u) = H '/*f,

in the Euclidean inner-product is equivalent to the FOM algorithm in the H-inner product
applied to
H 'Au=H'f.

11



Moreover, the Arnoldi orthogonalization process applied to the normal matriz H /2 AH /2
yields a factorization
V;CtAVk = H,

where (Hy)i; = 0 for all |i — 5| > 1.
Proof See Appendix. O

This idea is contained in the work of Widlund (1978), although the author constructs a
different tridiagonalization than that constructed by FOM (Arnoldi). Similarly, using the
above result one can modify the standard GMRES algorithm into a three-term recurrence
which constructs the solution with the smallest residual over XCj, as measured in the H!-
norm. We do not include the details here, but only present in the next section numerical
results obtained with this modified version of GMRES.

Remark 5.1 The action of the inverse of H as a preconditioner can be relaxed in prac-
tice. Indeed, solving to an accuracy of order o(C(h)) (say, h'C(h)) is sufficient for
convergence of the algorithm. We explore this issue in the next section.

6 Examples

In this section we are interested in establishing explicit stopping criteria for the generic
example of finite element approximation of the solution of scalar elliptic equations.
Let Q C R? with boundary I'. We will be using the following norms:

oGl = TGl = ([ vexax) 2

1ol = lv(x)lloo = esssup [u(x)
1/2
oG lum@ = To@)ln=| > / D (x)|" dx
|| <m
where ()
o 0'%v(x N o
D) = g e = 061 06
and & = (v, ..., 0y) is an index of order |a| = a; + ...+ 4. We also need to define the
space H}(Q)
— [u() € B') vl = 0)

with norm
1/2

gy = [0 = | 30 [ 10700 i

laf=1
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6.1 Elliptic problems

Consider the general second-order elliptic problem

-V - (a(x)Vu) + b(x) - Vu+c(x)u = f in QcR (24a)
u = 0 on I (24b)

where the matrix a(x) is symmetric and positive definite for all x € Q, i.e.,

ka(x) [€] < €a(x)¢ < ku(x) lg[*
for some functions k;(x), k2(x). We also assume that the coefficients are bounded, i.e.,
(a)ij, (b)i,c € L*(Q),4,7 =1,...,d, and that the following condition holds
1
c(x) — §V -b(x) >0 Vxe.

The weak formulation seeks a solution u € H = H;(€2) such that
a(u,v) = f(v) for allv € Hy(S) (25)

where

a(w,v) = (a- Vw, Vo) + (b - Vw,v) + (cw, v).

It is straightforward to show that a(-,-) satisfies the continuity and coercivity conditions
(2) with respect to the Hj-norm |- |; with constants

C1 = [|k1||ze() + |[bllzo@) + C(Q)cllo@), Co= min ka(x),

where C'(Q) is a constant of order one which depends only on the domain.

Let now H; C H be a space of piecewise polynomials defined on a partition 7} of
Q into simplices T' of diameter hy. As described in section (2.2) the inclusion H, C H
ensures that the stability conditions (13a) and (13b) are satisfied with the constants
(4, Cy defined above. Moreover, discretizing (25) as

Au=1f1,

the constants Cy, C3 in (13) are given as follows. If we choose to monitor the error with
respect to | - [; then

03 = ||k1||Loo(Q) + C(Q)”C”Loo(g), 02 = minkz(x).

x€eN

However, if we work with the energy norm defined by
[Hwl[] = a(w, w), (26)

then Cy = C3 = 1. We consider both cases below.

13



(a) v =1/10

Figure 1: Solution of advection-diffusion problem.

6.2 Numerical experiments

To illustrate the ideas presented above, we chose to perform experiments on a 2D advection-
diffusion problem (¢ = 0). In particular, we chose to study the robustness of our stopping
criteria with respect to the nonsymmetry in the problem. Thus, we solved a test problem
for constant diffusivity tensors

a(x) = vl,

where the diffusion parameter v toggles the degree of nonsymmetry of the matrices in-
volved. The test problem is thus

—vV2u+b(z,y)-Vu = f in Q=(-1,1) (27a)
u = 0 on T, (27b)

o 2y(1—2?)
b(may) - (_21.(1 _ y2)
and right-hand side f such that the solution u is

TV 4 p(—s-1)/VF W=Dy 4 o(-2)/v
U(.’E,y):<1_ 1+ e~2/Vv )(1+y—2 1 — e—2/v )

This choice of solution tries to mimick the behaviour of problems where boundary layers
are present (see Fig. 1).

We first consider the errors with respect to the Hi-norm. We denote by u’ the linear
interpolant of the solution at the mesh points. Our numerical results below will display
the following estimators and errors:

(i) FE: the exact relative (forward) errors |u — uf|, /|uf|;

with
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Figure 2: Comparison of stopping criteria for GMRES; h = 1/32.

(ii) FIE: the exact relative (forward) interpolation errors |u’ — u¥|,/|uf|;

(iii) HINV: the exact H '-norm criterion (17) h=*Cy ||e*|| g1 /|| u®|| a;

(iv) AINV: the exact A~'-norm criterion (18) h*Cy Y/2||r*|| o1 /||u”|| a;

(v) HINV-est: the estimated H '-norm criterion (19) A *Cy ! ||e*|| A% (H) /|| u||a;
(vi) AINV-est: the estimated A~'-norm criterion (20) h=*Cy “/*||r*||o, /2 (H?)/||u*| &
(vii) the standard 2-norm stopping criterion ||r*]|.

We chose the exponent ¢ to be in all cases ¢ = 1/2 and the constants ¢* = C* =1 in (19),

(20).

15



6.3 GMRES without preconditioning

We begin with the case of a uniform partition of {2 into squares of size h and linear basis
functions. The GMRES convergence curves are displayed in Fig. 2.

We see that if we are interested in satisfying a tolerance with respect to the Hj-norm,
then in all cases we have to perform far fewer iterations than with a standard stopping
criterion such as the relative Euclidean norm of the residual being brought below 108
(standard threshold).

Another remarkable fact is that the criterion (17) based on the dual norm of the residual
is an upper bound for the interpolation error. The reason for this is not so surprising
since in standard finite element calculations the interpolation error is usually smaller
than the error in the energy or related norms (sometimes by a factor of h). Thus, our
stopping criterion gives an upper bound on both errors so that the iterates have either

10° 10°
107 o 107
107 N 107
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N
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Figure 3: Comparison of stopping criteria for GMRES(50); h = 1/32.
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achieved the final error or have achieved an error bounded from above by our dual norm
estimate. We also note here that the constants c¢*, C* are indeed of order one for all values
of v. This robustness also holds with respect to the mesh parameter, although we do not
include here experiments to demonstrate this fact.

The same convergence curves for the case of restarted GMRES are displayed in Fig. 3.
They exhibit indeed the most dramatic difference between convergence in the H~!- or
A~lnorm and the standard 2-norm criterion. Again, the estimation of the relevant
convergence curves based on the approximation (21) works extremely well. Moreover,
the difference between the two stopping criteria (17), (18) is negligible. However, this
may not always be the case. Indeed, the equivalence between the two norms described
by Lemma 3.1 deteriorates if the H-condition number of the problem deteriorates. For
our test problem this happens when v is small and the discretization is nonuniform. We
consider this case below.

For small values of v, the problem becomes more nonsymmetric, with the matrices
more nonnormal. At the same time, the finite element error on uniform meshes of squares
deteriorates and even becomes of order one. One way to avoid this is to refine the mesh
suitably. Given the boundary layers in the solution, we chose an exponential refinement
of the meshes. In this case, the parameter h is not defined in (19), (20) — we chose
h == ||f||a/||£]|l, where M = (¢;, ¢;) is the Grammian (mass) matrix with respect to the
L?(Q)-inner product (+,+). The convergence curves are displayed in Fig. 4. Again, we
see that the two norm of interest are approximated well; however, the exact convergence
curves in the H~!- and A~'-norms are not close in the initial phase of the iterative
process, but become almost identical close to the convergence stage.

Finally, the case when the H}-norm is replaced with the energy norm (26) simplifies
considerably for the advection-diffusion problem under consideration. Indeed, the energy
norm is nothing but a scaling by /v of the Hi-norm. Hence, all convergence curves

<
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Figure 4: Comparison of stopping criteria for GMRES — exponentially-stretched mesh.
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displayed in the previous figures are scaled accordingly except for the relative Euclidean
norm which stays the same. Thus, by varying v, we can obtain GMRES convergence
curves based on the Euclidean residual which can be either above or below the relevant
convergence curve for the finite element error. For this reason we do not display all the
performance again, but emphasise the fact that the standard stopping criterion used in
iterative solvers has no relation to the actual convergence of quantities of interest in the
original problem.

6.4 Preconditioned GMRES

We turn now to the case where preconditioning is employed to speed up the iteration
process. As specified in section 4, we consider only the case of right preconditioning,
which has the advantage of preserving the residual, a property which enabled us to
derive the stopping criterion (22). However, the use of this stopping criterion requires
the estimation of the smallest singular value of our preconditioner P. In some cases this
estimation can be performed cheaply, but in general it may be quite difficult to provide
this information. The approximation we use is described below.

All preconditioning techniques require the solution of a linear system involving the
preconditioner matrix P:

Pz =v.

Since .
P! B
)it - e 1)

ver\{0} ||v||

we choose to approximate oy, (P) via

-1
||Z’“||> |

Tmin(P) (mf?"‘nvkn

e [
where zF = P~'v*. In the case of GMRES, the vector v* is the vector generated by the
Arnoldi process, so that ||[vF]| = 1.

The performance of GMRES with ILU preconditioning is displayed in Fig. 5. While
the number of iterations is greatly reduced, the convergence behaviour is similar to the
unpreconditioned case. Moreover, the approximation of the residual A=!-norm described
above appears to work extremely well. However, in general we expect over- or under-
estimation to occur, in which case alternative methods for the estimation of the smallest
singular value of P may have to be employed.

6.5 Three-term GMRES

We end this section with numerical results obtained with the minimum residual algorithm
based on a three-term recurrence described in section 4. We recall here that this is
essentially the GMRES algorithm implemented in the H-norm with left-preconditioner
H. The norm of the modified residual in this method is the quantity we seek, ||*||z 1.
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Figure 5: Comparison of stopping criteria for GMRES with ILU(0) preconditioning;
h=1/32.

The results are displayed in Fig. 6. As before, our stopping criterion (17) provides an
upper bound for the convergence of quantities of interest, such as Hj-norm of the error or
the interpolation error. More remarkable, though, is the fact that in this case the solver
yields iterates whose 2-norm residual traces closely the convergence curves of interest.
This is a phenomenon also noticed in the case of a similar GMRES implementation used
for the solution of flow problems (Loghin and Wathen 2002). The same experiments
were run with inexact implementation of the preconditioner H. More precisely, we solved
systems with H using CG with an incomplete Cholesky preconditioner and a stopping
criterion as described by Arioli (2002); the tolerance was chosen to be of order h/2, which
for this problem is h'/? less than the order of the interpolation error. The results are
displayed in Fig. 7. We see indeed that our criterion is an upper bound for both the
finite element error |u —uf|; and the interpolation error |u’ — u¥|;. Moreover, the inexact
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solves do not affect the convergence curve in the regime where it is relevant.

6.6 Other iterative methods

In order to test further the relevance of the A~!- and H !-norms of the residual, we ran
experiments with BICGSTAB, QMR and CGS. The results for the case of discretization
on uniform meshes are displayed in Figs 8, 9, 10. We again see that in all cases the two
residuals provide upper bounds for the energy norm of the error and interpolation error.
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Figure 8: Comparison of stopping criteria for BICGSTAB: h=1/32.
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Figure 9: Comparison of stopping criteria for QMR: h=1/32.

In particular, the A~*-norm provides again the closest approximation to the these quanti-
ties, with the H~'-norm bound possibly deteriorating for more nonsymmetric problems,
as Fig. 9 shows. As for the 2-norm of the residual, the behaviour oscillates between the
smooth, relevant convergence curve of QMR to the oscillating, large residuals exhibited
by CGS. However, the issue of dynamic estimation of the A~'- and H~'-norms is not as
straightforward as in the case of GMRES.
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Figure 10: Comparison of stopping criteria for CGS: h=1/32.

7 Conclusion

The message of this paper is simple: do not accurately compute the solution of an inac-
curate problem. This was highlighted already by Arioli (2002) for the case of symmetric
and positive-definite problems — our contribution here was the generalization to the case
of nonsymmetric problems. The proposed stopping criteria require the calculation of
the residual in a norm related to the problem formulation. We demonstrated that the
suggested criteria are relevant to convergence in the energy-norm (or equivalent norms)
while at the same time highlighting the fact that the standard criterion based on the Eu-
clidean norm of the residual has no relevance to the quantities of interest and is in general
wasteful. Further generalizations of these ideas include the case of indefinite problems
and mixed finite element discretizations of systems of partial differential equations, where
the use of mixed norms in which to measure convergence arises quite naturally. We hope
to address some of these issues in a future paper.
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8 Appendix

Proof of Lemma 3.1.
We need to show

1 1
rija <|r|jg < r|a
e lella < liella < Il
and -
Vs 1
< < — 1.
Sl < liellas < —liells
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The first equivalence is just a restating of the discrete stability conditions (13b),
(13c). For the second we have

r'A 1r

1/2 p—1g71/2

_ O_;I(H—I/QAH—I/Q)

( xtH_l/QAI—I_l/Qx)1
< min

xeR\ {0} xtx
= min
yeRr\{0} y'Hy

VAN

Cy!
by using (13b). Finally, since

rt Ar . r'Hyr

CHh < —— = < C
2= YHr rlHr — %
we have
r'A~'r  rlA7'r rfH'r > -1 mi r'A-lr > o1 mi ytA~ly
rtH-'r  ¢tH,r r'H-'r = 3re§}}\%0}rtH71r = M3 rm\| t
A A ye \{0} Yy

where A =T+ N,N = HZI/QSAHZIﬂ. Since A (and thus A~') is a normal matrix,
its field of values is the convex hull of its eigenvalues (Horn and Johnson, 1985, p.
11). Hence,

t -1
min yAt Y = minRe 1~ = minRe 1 — 1
yeR"\{0} y'y (A R M) ‘Ak(ix)

2

and since |[H~Y2AH-1?|| = |All g, -1 = C1 (cf. (12), (14)) we get
max ‘/\k(ﬁ)‘ < |HMVPAH?)| < | HV2AH Y2 0y HY)
and the result follows. g

Proof of Lemma 5.1. Consider the two equivalent linear systems

Aa=f, Au=f

=1}

where
A=H'2AH Y2 a=H"Y?u, f=H Y%, AH'A, f=H'f.

?

The first part of the Lemma follows from the equivalence of the Arnoldi algorithms
below.
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Arnoldi in (-,-) Arnoldi in (-,-)g

V1 = To/|To V1= 1o/||Toll#
doj:1,2,...,m (Aioj:}a2a"'7m

hij = (A¥j,¥:), 1 <i < j hij = (Avj, %), 1 < i < j
wj = AV — 371 hii W = AV — 37 hijV

if 15 = [W;]) = 0 stop if 15 = |Wlln = 0 stop
Vit = Wji/hji1; Vig1 = w;/hji1

end do end do

where v; = HY2v;,w; = HY?Ww;, 79 = H V2% #p = H'r0 1 = £ — Au® for
some initial guess u’. In particular, they yield the same Hessenberg matrices since

hij = (A%, %) = (H™ V2 A%, H'?%;) = (H 'A%, i) g = haj.

For the second part, we work with the Arnoldi algorithm in the Euclidean inner-
product and system matrix A=I+N , where N = —N! is skew-symmetric. For
ease of presentation we drop the s. We now prove by induction on j that for all
1<j—2
hij = vi(I + N)v; =0,

We first note that (i) hi; = 1ifi = j, (ii) hyj = vINv; if i < j and (iii) vIN3v; = 0,
since N is skew-symmetric. Since wi = Nv; and wg = Nve — hiavy we have using
()i

viNw, . viN(Nvy — hiavy) . viN?v,y B viN3vy 0

h3a h3o h3o h3ahot

hiz =viNvs=
and the first inductive step holds. Assume now that for all¢ < j—2, h;; = va v =
0. Then (iv) w; = Nv; — hj_1 ;vj—1. Hence, for all i < j — 2,
0= hi,i,lvaVj = vz-Ntwi,l = vé-Nthi,l = —V§N2Vi—1

i.e., we have (v) vEN?v; = 0 for all 4 < j — 2. We now prove that h; ;1 = 0 for all
i < j— 1. We have using (iv)
ViNw; _ ViN(Nv; = hj1,5vj1) _ ViN?vj = hj1,;viNvj

241
hjy1 hjy1,5 hjy1,

If i < j — 3, by the inductive hypothesis VINv,;_1 = 0 and by (v) viN%v,; = 0
and hence h;;; 1 = 0. If i = j — 2 then h; 5,,1 = 0 also since V§_2N2Vj —
hj 1,V oNvj 1=V oN?vj+hj 1 ;h; 15 2 =0 because

V;Nth_Q V;-NQVJ'_Q

, L — gt R —
hj1j=vj1Nvj= he 1 T T Th
j—1,j-2 j—1,5-2

Finally, if i = ] — 1, hj—l,j+1 = Vj_1N2Vj/h]‘+1,j = 0 since Vj_lNQVj = 0 for all
J > 2. This use prove again by induction. Assuming v;_1N 2vj = 0, we have using
(iv), (iii)
viN?w; Vv;N2(Nv; —h;_1vi_
vjN2vj+1: J J_YJ (Nv; =15 V] 1):0.
hjv15 hjt1,
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The result follows by noting that

V1N2V2 = V1N2W1/h21 = V1N3V1/h21 =0.
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