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Abstract

In this paper we derive accurate numerical methods for the quantum Boltz-
mann equation for a gas of interacting bosons. The schemes preserve the main
physical features of the continuous problem, namely conservation of mass and
energy, the entropy inequality and generalized Bose-Einstein distributions as
steady states. These properties are essential in order to develop schemes that
are able to capture the energy concentration behavior of bosons. In addition we
develop fast algorithms for the numerical evaluation of the resulting quadrature
formulas which allow the final schemes to be computed only in O(N2 log

2
N)

operations instead of O(N3).
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algorithms.
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1 Introduction

We consider a gas of interacting bosons, which are trapped by a confining poten-
tial V = V (x) with minV (x) = 0. We denote the total energy of a boson with
momentum p and position x (after an appropriate non-dimensionalization) by

ε(x, p) =
|p|2
2

+ V (x). (1)
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Let F = F (p, x, t) ≥ 0 be the phase-space density of bosons. Assuming a boson
distribution which only depends on the total energy ε we write

F (x, p, t) = f

( |p|2
2

+ V (x), t

)

, (2)

where f = f(ε, t) ≥ 0 is the boson density in energy space.

1.1 The Boson Boltzmann equation

Following [16],[17],[18],[19],[20] we write a Boltzmann-type equation (referred to as
boson Boltzmann equation in the sequel) in energy space

ρ(ε)
∂f

∂t
= Q(f)(ε), t > 0, (3)

with the collision integral

Q(f)(ε) =

∫

R
3
+

δ(ε + ε∗ − ε′ − ε′∗)S(ε, ε∗, ε
′, ε′∗)[f

′f ′∗(1 + f)(1 + f∗)

(4)
− ff∗(1 + f ′)(1 + f ′∗)] dε∗dε

′dε′∗,

where S ≥ 0 is a given function.
We denoted the density of states by

ρ(ε) =

∫

R6

δ

(

ε−
( |p|2

2
+ V (x)

))

dp dx, (5)

and
f ′ = f(ε′, t), f ′∗ = f(ε′∗, t), f = f(ε, t), f∗ = f(ε∗, t). (6)

As usual ε and ε∗ are the pre-collisional energies of two interacting bosons and ε′

and ε′∗ are the post-collisional ones.
The positive measure

δ(ε+ ε∗ − ε′ − ε′∗)S(ε, ε∗, ε
′, ε′∗) (7)

denotes the energy transition rate, i.e. Sdε′ dε′∗ is the transition probability per unit
volume and per unit time that two bosons with incoming energies ε, ε∗ are scattered
with outgoing energies ε′, ε′∗.

A simple computation shows that the phase-space density F = F (x, p, t) satisfies
the momentum-position space Boltzmann equation

∂F

∂t
+ p · ∇xF −∇xV (x) · ∇pF = Q̃(F ), (8)
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with the scattering integral

Q̃(F )(x, p) =
Q(F )

(

|p|2/2 + V (x)
)

ρ (|p|2/2 + V (x))
. (9)

Note that (9) does not correspond to the physical Boltzmann operator for bosons
except in the homogeneous case V (x) = 0 and F independent of x, where we set

ρ(ε) =

∫

R3

δ

(

ε− |p|2
2

)

dp (10)

and compute
ρ(ε) = 4π

√
2ε. (11)

Then equation (8) is formally identical to the Boson Boltzmann equation considered
in [6],[7]

∂F

∂t
=

∫

R9

δ(p + p∗ − p′ − p′∗)δ(ε + ε∗ − ε′ − ε′∗)W (p, p∗, p
′, p′∗)

(12)
[F ′F ′

∗(1 + F )(1 + F∗)− FF∗(1 + F ′)(1 + F ′
∗)] dp∗dp

′dp′∗,

with ε(p) = |p|2/2 and W , S are related by

∫

S2×S2×S2

δ(p + p∗ − p′ − p′∗)W (p, p∗, p
′, p′∗) dσ∗dσ

′dσ′∗

=
S
(

|p|2/2, |p∗|2/2, |p′|2/2, |p′∗|2/2
)

ρ(|p|2/2)|p∗||p′||p′∗|
.

Here we denoted p∗ = |p∗|σ∗, p′ = |p′|σ′, p = |p|σ, and p′∗ = |p′∗|σ′∗. In particular for
W ≡ 1 we have

S(ε, ε∗, ε
′, ε′∗) = const ρ(εmin), (13)

where (see [6])
εmin = min(ε, ε∗, ε

′, ε′∗). (14)

Even in the non-homogeneous case V (x) 6= 0 the equation (3) is formally identical
to the isotropic version of the homogeneous bosonic Boltzmann equation (12) (after
the introduction of |p|2/2 as new independent variable). However, the density of
states is computed by formula (5) in the non homogeneous case instead of (10) in
the space homogeneous case.

In the physical literature the equation (3), usually referred to as ergodic ap-
proximation of the Boltzmann equation, is derived in the nonhomogeneous case as
approximation of the phase-space Boltzmann equation by a projection technique
[18],[9].
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For a mathematical analysis of the bosonic Boltzmann equation in the space
homogeneous isotropic case we refer to [10],[11],[6],[7]. We remark that already the
issue of giving mathematical sense to the collision operator Q(f) is highly nontrivial
(particularly for scattering rates without cutoff or if positive measures f are allowed,
as required by a careful analysis of the equilibrium states).

1.2 Physical properties

A simple calculation gives the weak form of the collision operator. Let φ = φ(ε) be
a test function. Then, at least formally

∫ ∞

0
Q(f)φdε =

1

2

∫

R
4
+

δ(ε + ε∗ − ε′ − ε′∗)S(ε, ε∗, ε
′, ε′∗)[f

′f ′∗(1 + f)(1 + f∗)

(15)
− ff∗(1 + f ′)(1 + f ′∗)][φ+ φ∗ − φ′ − φ′∗]dεdε∗dε

′dε′∗.

Here we used the micro-reversibility property, i.e. the fact that each collision is re-
versible and that each pair of interacting bosons represents a closed physical system.
Mathematically this amounts to the requirement [6]

S(ε, ε∗, ε
′, ε′∗) = S(ε∗, ε, ε

′, ε′∗) = S(ε′, ε′∗, ε, ε∗). (16)

The symmetry properties (16) immediately imply the analogous properties for the
energy transition rate (7) and the weak form (15) follows from the variable substi-
tution in the integral using these symmetries.

As a consequence we have the following collision invariants

1.

φ(ε) ≡ 1 ⇒
∫ ∞

0
Q(f)(ε) dε = 0, (17)

2.

φ(ε) ≡ ε ⇒
∫ ∞

0
Q(f)(ε)ε dε = 0. (18)

Consider now the IVP (3) supplemented by the initial condition

f(ε, t = 0) = f0(ε) ≥ 0, ε > 0. (19)

Then (17) implies mass conservation

∫ ∞

0
ρ(ε)f(ε, t) dε =

∫ ∞

0
ρ(ε)f0(ε) dε, ∀ t > 0, (20)
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and (18) energy conservation

∫ ∞

0
ρ(ε)f(ε, t)ε dε =

∫ ∞

0
ρ(ε)f0(ε)ε dε, ∀ t > 0. (21)

The H-theorem for (3) is derived by setting φ(ε) = ln(1+ f(ε))− ln f(ε) in (15).
We calculate

∫ ∞

0
Q(f)(ε)(ln(1 + f(ε))− ln f(ε))dε

(22)

=
1

2

∫

R
4
+

δ(ε + ε∗ − ε′ − ε′∗)S(ε, ε∗, ε
′, ε′∗)e(f)dεdε∗dε

′dε′∗ := D[f ],

where
e(f) = z(ff∗(1 + f ′)(1 + f ′∗), f

′f ′∗(1 + f)(1 + f∗)) (23)

and
z(x, y) = (x− y)(ln x− ln y). (24)

Since the integrand of the entropy dissipation D[f ] is non-negative, we deduce the
following H-theorem, obtained by multiplying (3) by φ(ε) = ln(1 + f(ε))− ln f(ε)

d

dt
S[f ] = D[f ], (25)

which implies that the entropy

S[f ] :=

∫ ∞

0
ρ(ε)((1 + f) ln(1 + f)− f ln f)dε, (26)

is increasing along trajectories of (3). We remark that trivially the third physical
conservation law, namely momentum conservation, also holds. Clearly the phase-
space density F of (2) satisfies

∫

R3

pF (x, p, t)dx ≡ 0, ∀t ≥ 0. (27)

We now turn to the issue of steady states of (3). The problem of equilibrium
distributions for bosons has a very long history, going back to Bose and Einstein in
the twenties of the last century (see [1],[4],[5]), who noticed that the class of ’regular’
Bose-Einstein distributions

f∞(ε) =
1

eαε+β − 1
, α > 0, β > 0 (28)
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is not sufficient to assume all arbitrarily large values of equilibrium mass

M∞ =

∫ ∞

0
ρ(ε)f∞(ε)dε, (29)

and arbitrarily small values of equilibrium energy

E∞ =

∫ ∞

0
ρ(ε)εf∞(ε)dε, (30)

such that Dirac distributions centered in zero energy have to be included in the set
of equilibrium states. In [6] it was shown that for every pair (M∞, E∞) ∈ R

2
+ there

exist α ≥ 0, β ∈ R such that the generalized Bose-Einstein distribution defined by

ρ(ε)f∞(ε) =
ρ(ε)

eαε+β+ − 1
+ |β−|δ(ε), (31)

is an equilibrium state of (3) (in the sense of maximizing the entropy, see [6] for
analytical details) satisfying (29)-(30). Here we denoted β+ = max(β, 0) and β− =
−max(−β, 0). The value M∞,cond = |β−| represents the mass of particles which are
condensed in equilibrium, i.e. in their quantum mechanical ground state with ε = 0.

Off course, it is analytically nontrivial to define the nonlinearities in the en-
tropy (dissipation) and in the collision operator, in particular for measures which
are singular with respect to the Lebesgue measure, as required for the equilibrium
states. For details we refer to the references [6] and [10], here we only mention that
an approximation argument shows that the singular part of a measure f does not
contribute to the entropy S[f ]. For appropriate scattering rates (with unphysical
cut-off) in the homogeneous case an existence/uniqueness theory for integrable and
for measure solutions can be set up. So far, it is not clear how the cut-off assumption
can be removed.

In the following sections we shall use

S(ε, ε∗, ε
′, ε′∗) = ρ(εmin). (32)

Notice that the condensation is fully localized in phase space, i.e. it may only
occur at p = 0 (vanishing momentum) and at those points in position space, where
the potential assumes its minimum value 0. The reason for this is the form (2) of the
phase space distribution and a semiclassical limit process which leads to the Boson
Boltzmann equation (3).

The purpose of this paper is to derive an accurate discretization of the IVP (3),
(19), which maintains the basic analytical and physical features of the continuous
problem, namely

• Mass and energy conservation
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• Entropy growth

• Generalized Bose-Einstein equilibrium distribution

To this aim we shall derive first and second order accurate quadrature formulas for
Q(f). These schemes due to their ’direct’ derivation from the continuous operator
possess all the desired physical properties at a discrete level. In addition we show
that with the choice (32) the computations can be performed with a fast algorithms
reducing the O(N3) cubic cost to O(N2 log2N). For the sake of completeness we
mention the recent works [2],[8],[12],[14],[15] in which fast methods for Boltzmann
equations were derived using different techniques like multipole methods, multigrid
methods and spectral methods.

The rest of the paper is organized as follows. In the next Section we discuss
the details of our numerical schemes, together with the issues of consistency and
computational complexity. In Section 3 several numerical tests are performed. The
results confirm the expected accuracy of the schemes and in particular show the
ability of the methods to capture the concentration behavior of bosons. Finally we
concluded the paper with some remarks in Section 4.

2 Fast, conservative and entropic methods

We consider the IVP for the quantum boson Boltzmann equation

ρ(ε)
∂f

∂t
= Q(f)(ε), t > 0, (33)

f(ε, t = 0) = f0(ε) ≥ 0. (34)

Here the independent variable ε > 0 represents the kinetic energy, ρ = ρ(ε) ≥ 0 is
the (given) density of states and the boson collision operator now reads

Q(f)(ε) =

∫

R
3
+

δ(ε + ε∗ − ε′ − ε′∗)ρ(εmin)[f
′f ′∗(1 + f)(1 + f∗)

(35)
− ff∗(1 + f ′)(1 + f ′∗)] dε∗dε

′dε′∗.

Obviously the equation (33) maintains a minimum principle such that solution of
(33), (34) satisfy f(ε, t) ≥ 0 for ε ≥ 0, t > 0 if f0(ε) ≥ 0 for ε > 0.

2.1 Reduction on a bounded domain

Our starting point in the development of a numerical scheme for (35) is the definition
of a bounded domain approximation of the collision operator Q.
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Let f be defined for ε ∈ [0, R] and denote

QR(f)(ε) =

∫

[0,R]3
δ(ε + ε∗ − ε′ − ε′∗)ρ(εmin)[f

′f ′∗(1 + f)(1 + f∗)

(36)
− ff∗(1 + f ′)(1 + f ′∗)]ψ(ε ≤ R) dε∗dε

′dε′∗

where ψ(I) is the indicator function of the set I. Then, at least formally

∫ ∞

0
QR(f)φdε =

1

2

∫

[0,R]4
δ(ε + ε∗ − ε′ − ε′∗)ρ(εmin)[f

′f ′∗(1 + f)(1 + f∗)

(37)
− ff∗(1 + f ′)(1 + f ′∗)][φ + φ∗ − φ′ − φ′∗]dεdε∗dε

′dε′∗

for any test function φ = φ(ε). The proof follows the lines of the corresponding
weak form of Q discussed in Section 1.

Consider now the approximate IVP

ρ(ε)
∂fR
∂t

= QR(fR)(ε), t > 0, (38)

fR(ε, t = 0) = f0,R(ε) ≥ 0. (39)

Then the weak formulation (37) of QR implies mass and energy conservation

∫ R

0
ρ(ε)fR(ε, t) dε =

∫ R

0
ρ(ε)f0,R(ε) dε, ∀ t > 0, (40)

∫ R

0
ρ(ε)fR(ε, t)ε dε =

∫ R

0
ρ(ε)f0,R(ε)ε dε, ∀ t > 0. (41)

Also the entropy inequality
d

dt
SR[fR] ≥ 0, (42)

holds with the entropy

SR[fR] :=

∫ R

0
ρ(ε)((1 + fR) ln(1 + fR)− fR ln fR)dε. (43)

These properties are in full analogy with the corresponding ones of the IVP (3),
(19).
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2.2 Discretization and main properties

Let us now introduce the set of discrete energy grid points ε1 ≤ ε2 ≤ . . . ≤ εN in
[0, R]. A general quadrature formula for (36) is given by

QR(f)(εi) ≈ Q̃R(f)(εi) =
N
∑

j,k,l=1

wkl
ij δ

kl
ij ρ(εmin)[fkfl(1 + fi)(1 + fj)

(44)
− fifj(1 + fk)(1 + fl)]ψ(εi ≤ R),

where now fi = f(εi) and εmin = min{εi, εj , εk, εl}. The quantities wkl
ij are the

weights of the quadrature formula and δklij a suitable discretization of the δ-function
on the grid.

In order to maintain the conservation properties on the discrete level it is of
paramount importance that the discretized δ-function will reduce the points in the
sum to a discrete index set which satisfies the relation i+j = k+l. Thus it is natural
to restrict to equally spaced grid points which satisfy exactly the aforementioned
relation on the computational grid.

We will further simplify the quadrature formula by considering product quadra-
ture rules with equal weights for which wkl

ij = wjwkwl = w3 with w = R/N and

∫ R

0
f(ε) dε ≈ w

N
∑

i=1

f(εi).

We now consider the set of ODEs which originates from the energy discretization
of the IVP (38), (39)

ρ(εi)
dfi
dt

= Q̃R(f)(εi), t > 0, (45)

fi(t = 0) = f0,R(εi) ≥ 0. (46)

and prove

Proposition 2.1 If we define

δklij =

{

1/w i+ j = k + l
0 otherwise

(47)

the solutions of the IVP (45), (46) satisfy the following discrete conservation prop-
erties and entropy principle

w
N
∑

i=1

ρ(εi)
dfi
dt
φ(εi) = 0, φ(ε) = 1, φ(ε) = ε, (48)
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w

N
∑

i=1

ρ(εi)
dh(fi)

dt
≥ 0, h(fi) = (1 + fi) log(1 + fi)− fi log fi. (49)

Proof:

Due to the definition of δklij we have the quadrature formula

Q̃R(f)(εi) = w2
N
∑

j,l=1

1≤k=i+j−l≤N

ρ(εmin)[fkfl(1 + fi)(1 + fj)

(50)
− fifj(1 + fk)(1 + fl)].

In particular, for any test function φ, formula (50) admits the following discrete
analogous of the corresponding weak identity for the collision operator

w

N
∑

i=1

Q̃R(f)(εi)φ(εi) =
1

2
w3

N
∑

i,j,k,l=1

i+j=k+l

ρ(εmin)[fkfl(1 + fi)(1 + fj)

(51)
− fifj(1 + fk)(1 + fl)][φi + φj − φk − φl],

where φi = φ(εi). The equations (48) are obtained taking φ(ε) = 1, and φ(ε) = ε.
The discrete entropy inequality can be derived choosing φ(ε) = h′(f(ε)) = ln(1 +
f(ε))− ln f(ε). In fact, as in the continuous case, we find

w

N
∑

i=1

ρ(εi)
dh(fi)

dt
=

1

2
w3

N
∑

i,j,k,l=1

i+j=k+l

ρ(εmin)[fkfl(1 + fi)(1 + fj)

(52)
− fifj(1 + fk)(1 + fl)][h

′(fi) + h′(fj)− h′(fk)− h′(fl)] ≥ 0,

since

h′(fi)+h′(fj)−h′(fk)−h′(fl) = log((1+ fi)(1+ fj)fkfl)− log((1+ fk)(1+ fl)fifj),

and the function z(x, y) = (x− y)(log x− log y) ≥ 0 for x, y ∈ R
+.

�

Remark 1 It is easy to check by direct verification using (52) that these schemes
admits ’regular’ discrete Bose-Einstein equilibrium states of the form

f∞(εi) =
1

eαεi+β − 1
, α > 0, β ∈ R. (53)
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More delicate is the question of ’generalized’ discrete Bose-Einstein equilibrium which
will be discussed later on.

Remark 2 Clearly one may use other product quadrature rules with different weights.
However then the definition of a consistent discrete δ-function which satisfies the
aforementioned conservation laws and entropy principle becomes very difficult. On
the other hand it is shown in the next section that the choice of quadrature (50)
includes numerical methods up to second order accuracy.

2.3 First and second order methods

Let us rewrite for ε ∈ [0, R] the collision integral (36) as

QR(f)(ε) =

∫ R

0

∫ D(ε,ε′)

S(ε,ε′)
ρ(εmin)F (ε, ε

′, ε′∗) dε
′
∗dε

′, (54)

where F (ε, ε′, ε′∗) = [f ′f ′∗(1+ f)(1+ f∗)− ff∗(1+ f ′)(1 + f ′∗)], with ε∗ = ε′ + ε′∗ − ε,
and S(ε, ε′) = max{ε−ε′, 0}, D(ε, ε′) = min{ε−ε′+R,R}. The integration domain
for a fixed value of ε in the (ε′, ε′∗) plane is shown in figure 1.

0     
0     

ε’

ε *’

I 

IV II

III

R

Rε

ε

R+ε

R+ε

Figure 1: The computational domain (dark gray region) in the (ǫ′, ǫ′
∗
) plane for a fixed ε

We need the following

11



Lemma 2.1 We have

ρ(εmin) =















ρ(ε∗) (ε′, ε′∗) ∈ I
ρ(ε) (ε′, ε′∗) ∈ II
ρ(ε′∗) (ε′, ε′∗) ∈ III
ρ(ε′) (ε′, ε′∗) ∈ IV

(55)

where the regions I, II, III, IV represent a partition of the computational domain
and are shown in figure 1.

Proof:

Region I is characterized by 0 ≤ ε′∗ ≤ ε and 0 ≤ ε′ ≤ ε with ε′ + ε′∗ ≥ ε. Thus
ε∗ = ε′∗ + ε′ − ε ≤ ε, ε∗ = ε′∗ + ε′ − ε ≤ ε′, ε∗ = ε′∗ + ε′ − ε ≤ ε′∗ and hence εmin = ε∗.

Region II is characterized by ε′ ≥ ε and ε′∗ ≥ ε with ε′ + ε′∗ ≤ R + ε. Thus
ε∗ = ε′ + ε′∗ − ε ≥ ε and hence εmin = ε.

Region III is characterized by R ≥ ε′ ≥ ε and 0 ≤ ε′∗ ≤ ε. Thus ε∗ = ε′+ε′∗−ε ≥
ε′∗ and hence εmin = ε′∗.

Region IV is characterized by R ≥ ε′∗ ≥ ε and 0 ≤ ε′ ≤ ε. Thus ε∗ = ε′+ε′∗−ε ≥
ε′ and hence εmin = ε′.

�

Using the previous lemma the integral (54) over the four regions can be decom-
posed as

QR(f)(ε) = I1(ε) + I2(ε) + I3(ε) + I4(ε), (56)

with

I1(ε) =

∫ ε

0

∫ ε

ε−ε′
ρ(ε′ + ε′∗ − ε)F (ε, ε′, ε′∗) dε

′
∗dε

′, (57)

I2(ε) =

∫ R

ε

∫ R+ε−ε′

ε
ρ(ε)F (ε, ε′, ε′∗) dε

′
∗dε

′, (58)

I3(ε) =

∫ R

ε

∫ ε

0
ρ(ε′∗)F (ε, ε

′, ε′∗) dε
′
∗dε

′, (59)

I4(ε) =

∫ ε

0

∫ R

ε
ρ(ε′)F (ε, ε′, ε′∗) dε

′
∗dε

′. (60)

A similar decomposition holds for the quadrature formula (50)

Q̃R(f)(εi) = Ĩ1(εi) + Ĩ2(εi) + Ĩ3(εi) + Ĩ4(εi), (61)
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with

Ĩ1(εi) = w2
i

∑

k=1

i
∑

l=i−k+1

ρ(εk + εl − εi)F (εi, εk, εl), (62)

Ĩ2(εi) = w2
N
∑

k=i+1

N+i−k
∑

l=i

ρ(εi)F (εi, εk, εl), (63)

Ĩ3(εi) = w2
N
∑

k=i+1

i
∑

l=1

ρ(εl)F (εi, εk, εl), (64)

Ĩ4(εi) = w2
i

∑

k=1

N
∑

l=i+1

ρ(εk)F (εi, εk, εl). (65)

From the point of view of accuracy we can state

Theorem 2.1 (Consistency) Let the function f and ρ be Cm([0, R]), m = 1 or
m = 2, then the quadrature formula (50) satisfies

|QR(f)(εi)− Q̃R(f)(εi)| ≤ R2Cm(∆ε)mMm, ∆ε = R/N, (66)

where Mm is a constant that depends on f and ρ and their derivatives up to the
order m and if εi = (i − 1)∆ε, i = 1, . . . , N (rectangular rule) then m = 1 and
Cm = 1/2, whereas if εi = (i − 1/2)∆ε, i = 1, . . . , N (midpoint rule) m = 2 and
Cm = 1/24.

Proof:
First let us recall the following basic estimate for a composite product quadrature
rule with equal weights (see [3] for example)

∣

∣

∣

∣

∣

∣

∫ b

a

∫ d

c
g(x, y)dxdy −∆x∆y

Nx
∑

i=1

Ny
∑

j=1

g(xi, yj)

∣

∣

∣

∣

∣

∣

≤

(67)
(b− a)(d− c)Cm [(∆x)mMx,m + (∆y)mMy,m] ,

where ∆x = (b− a)/Nx, ∆y = (d− c)/Ny , Mx,m and My,m are two constants such
that

|∂
mg

∂xm
| ≤Mx,m, |∂

mg

∂ym
| ≤My,m,

on [a, b]× [c, d] and if xi = (i−1)∆x, yi = (i−1)∆y then m = 1, Cm = 1/2, whereas
if xi = (i− 1/2)∆x, yi = (i− 1/2)∆y then m = 2, Cm = 1/24.
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Now, since the integrands which appear in Ii satisfy the required regularity con-
ditions and approximations given by Ĩi are the corresponding generalized composite
product quadrature rules, each error |Ii − Ĩi| can be estimated similarly to (67).
More precisely we have

|I1(εi)− Ĩ1(εi)| ≤ (εi)
2Cm(∆ε)m[M1

ε′,m(εi) +M1
ε′∗,m

(εi)],

|I2(εi)− Ĩ2(εi)| ≤ (R − εi)
2Cm(∆ε)m[M2

ε′,m(εi) +M2
ε′∗,m

(εi)],

|I3(εi)− Ĩ3(εi)| ≤ εi(R− εi)Cm(∆ε)m[M3
ε′,m(εi) +M3

ε′∗,m
(εi)],

|I4(εi)− Ĩ4(εi)| ≤ εi(R− εi)Cm(∆ε)m[M4
ε′,m(εi) +M4

ε′∗,m
(εi)],

where the constantsM i
ε′,m(ε) andM i

ε′∗,m
(ε) are suitable bounds of the partial deriva-

tives of order m of the integrand functions.
Summing up the errors we get

|QR(f, f)(εi)− Q̃R(εi)| ≤ R2Cm(∆ε)mMm, (68)

where Mm(ε) = maxi,k{M i
ε′,m(εk) +M i

ε′∗,m
(εk)}.

�

2.4 Fast algorithms

Finally we will analyze the problem of the computational cost of the quadrature
formula (50). A straightforward analysis shows that the evaluation of the double sum
in (50) at the point εi requires (2(i−1)(N−i+1)+N2 )/2 operations. The overall cost
for all N points is then approximatively 2N3/3. However using transform techniques
and the decomposition (61) this O(N3) cost can be reduced to O(N2 log2N).

In order to do this let us set h = k + l = i+ j in (50) and rewrite

Q̃R(εi) = w2
2N
∑

h=2

N
∑

k=1

ρ(εmin)[fkfh−k(1 + fi)(1 + fh−i)

(69)
− fifh−i(1 + fk)(1 + fh−k)]Ψ

[1,N ]
h−i Ψ

[1,N ]
h−k ,

where we have set

Ψ
[s,d]
i =

{

1 s ≤ i ≤ d
0 otherwise

(70)

In (69) we assume that the function fi is extended to i = 1, . . . , 2N by padding zeros
for i > N .
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The sum (69) can be split into sum over the four regions which characterize
ρ(εmin). We shall give the details of the fast algorithm only for region I, the other
regions can be treated similarly. We have

Ĩ1(εi) = w2
2N
∑

h=2

i
∑

k=1

ρ(εh−i)[fkfh−k(1 + fi)(1 + fh−i)

(71)
− fifh−i(1 + fk)(1 + fh−k)]Ψ

[1,i]
h−iΨ

[1,i]
h−k,

or equivalently

Ĩ1(εi) = w2
2N
∑

h=2

ρ(εh−i)(1 + fi)(1 + fh−i)Ψ
[1,i]
h−i

i
∑

k=1

fkfh−kΨ
[1,i]
h−k

− w2
2N
∑

h=2

ρ(εh−i)fifh−iΨ
[1,i]
h−i

i
∑

k=1

(1 + fk)(1 + fh−k)Ψ
[1,i]
h−k

= w2
2N
∑

h=2

ρ(εh−i)(1 + fi)(1 + fh−i)Ψ
[1,i]
h−iS

1
h(i)

− w2
2N
∑

h=2

ρ(εh−i)fifh−iΨ
[1,i]
h−iS

2
h(i),

where we have set

S1
h(i) =

i
∑

k=1

fkfh−kΨ
[1,i]
h−k, S2

h(i) =

i
∑

k=1

(1 + fk)(1 + fh−k)Ψ
[1,i]
h−k. (72)

Now the two sums S1
h(i) and S2

h(i) are discrete convolutions and can be evaluated
for all h and i using the FFT algorithm in O(N2 log2N) operations. This can be
easily done rewriting them in the form

Sh(i) =

N
∑

k=1

gkgh−kΨ
[1,i]
h−kΨ

[1,i]
k , (73)

for a suitable choice of the discrete function gi. It is well known that for N = 2α

with α integer the sum (73) can be computed for each i via FFT in O(N log2N)) =
O(2αα) operations. The total cost to compute Sh(i) for all i is then O(N2 log2N).

A better algorithm can be obtained if we rewrite the sums S1
h(i) and S2

h(i) in
the form

Sh(i) =

2βi
∑

k=1

gkgh−kΨ
[1,i]
h−kΨ

[1,i]
k , (74)
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where

βi =

{

[[log2(i− 1)]] + 1 i > 1
0 i = 1

(75)

and [[·]] denotes the integer part.
For each i the convolution sum (74) now can be computed in O(2βiβi) operations.

The total cost will be approximatively reduced by one half since O(
∑N

i=1 i log2 i) ≈
O(12N

2 log2(N)).
Clearly once expressions S1

h(i) and S
2
h(i) have been computed the remaining two

sums are of the type

gi

2N
∑

h=2

gh−iΨ
[1,i]
h−iSh(i), (76)

which can be computed directly with O(N2) operations. Thus the final cost for the
computation of Ĩ1(εi) for all i is O(N2 log2N +N2) = O(N2 log2N).

Remark 3 In the case of constant ρ it is easy to show that expression (69) reduces to
a double convolution sum which can be evaluated using the FFT in only O(N log2N)
operations instead of O(N2 log2N).

0 0.5 1 1.5 2 2.5
10

−5

10
−4

10
−3

10
−2

10
−1

t

L 1 E
rr

or

0 0.5 1 1.5 2 2.5
10

−5

10
−4

10
−3

10
−2

10
−1

t

L 1 E
rr

or

Figure 2: The relative L1 error for scheme QBF1 (left) and QBF2 (right) computed with
N = 20 (solid line), N = 40 (dotted line), N = 80 (dash-dot line) points for t ∈ [0, 2.5].

3 Numerical tests and applications

In this section we test the performance of the proposed schemes by considering their
behavior in different physical and mathematical situations. We shall refer to the
first and second order fast schemes developed in the previous section by QBF1 and
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Figure 3: Convergence rates for scheme QBF1 (left) and QBF2 (right) computed with
N = 20, 40 (solid line), N = 40, 80 (dotted line) points for t ∈ [0, 2.5].

QBF2 respectively. The time integration is performed with standard first and second
order explicit Runge-Kutta schemes after dividing equation (45) by ρ(εi) and thus
rewriting the semidiscrete schemes as

∂fi
∂t

= w2
N
∑

j,l=1

1≤k=i+j−l≤N

ρ(εmin)

ρ(εi)
[fkfl(1 + fi)(1 + fj)

(77)
− fifj(1 + fk)(1 + fl)].

In all our numerical tests the density of states is given by

ρ(ε) =
ε2

2
, (78)

which corresponds to an harmonic potential V (x).
Note that 0 ≤ ρ(εmin)/ρ(εi) ≤ 1 for εi 6= 0 and that as εi → 0 we have

ρ(εmin)/ρ(εi) → 1. Furthermore since ρ(0) = 0 the values of the distribution func-
tion at εi = 0 does not affect the discrete conservation of mass and energy.

The schemes were implemented using the fast algorithm described in Section 2.4.

3.1 Accuracy analysis

The first test case has been used to check the numerical convergence of our quadra-
ture formulas by neglecting the time discretization error (as usual this can be
achieved either using very small time steps or sufficiently accurate time discretiza-
tions). The initial datum is a Gaussian profile centered at R/2

f = exp(−4(ε −R/2)2), (79)

17



with R = 10. The final integration time is T = 2.5. We report in Figure 2 the relative
errors in the L1−norm obtained with the different schemes for N = 20, 40, 80 grid
points. As a reference solution we used the numerical result obtained with a fine
grid of N = 160 points.

In Figure 3 the corresponding convergence rates of the schemes are reported. As
usual given two error curves EN and E2N corresponding to N and 2N grid points
the convergence rate is computed as

log2

(

EN

E2N

)

.

The results confirm the expected first order and second order degree of accuracy of
the methods.

Remark 4 Since the midpoint rule, similarly to the trapezoidal rule, admits an
Euler-MacLaurin expansion we can in principle increase the order of the method
by extrapolation techniques. Unfortunately with this approach it is difficult to keep
conservations as well as entropy inequality.

3.2 Bose-Einstein equilibrium

Next we consider the same initial data as in the previous section and compute the
large time behavior of the schemes for N = 40. The stationary solution at t = 10 is
given in Figure 4 for both schemes together with the numerically computed entropy
growth. As observed the methods converge to the same stationary state given by a
’regular’ discrete Bose-Einstein distribution.
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Figure 4: Stationary discrete Bose-Einstein equilibrium and entropy growth for scheme
QBF1 (◦) and QBF2 (×) computed with N = 40 points.
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The trend to equilibrium in time for the two schemes is reported in Figures 5.
Note that although the two schemes agree very well there is a remarkable resolution
difference in proximity of the point ε = 0 due to the staggered grids of the schemes.
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Figure 5: Trend to equilibrium in time for scheme QBF1 (left) and QBF2 (right) computed
with N = 40 points.

However since the value of f at ε = 0 does not affect the macroscopic quantities
and the entropy we can adopt a suitable extrapolation strategy to recover a better
resolution of scheme QBF2 near ε = 0. Since we are mostly interested in the large
time behavior of the solution we can recover the value at the zero energy level by
a steady state extrapolation. This corresponds to assume f of the form (53) and
consequently to assign

f(0) =
1

eβ − 1
, β = log

(

f2 + 1

f2

)

+
1

∆ε
log

(

f2(f2 + 1)

f1(f1 + 1)

)

. (80)

In Table 3.2 we compare the extrapolated results at the final computation time
of scheme QBF2 for different extrapolation methods with scheme QBF1 and with
the “exact” steady state solution. We remark that the values of α and β for the
stationary state can be computed by inverting numerically the equations (29)-(30)
for f∞ given by (28). The marked improvement in the resolution given by scheme
QBF2 with steady state extrapolation is evident.

In Figure 6 we present the corresponding result for scheme QBF2 with steady
state extrapolation at ε = 0 (as we shall always do from now on with QBF2). In the
same figure we also report the final “steady” solution at t = 10 for the phase-space
density reconstructed at x = 0 and p = (p1, p2, 0).
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Exact QBF1 QBF2 with extrapolation

Steady state Exponential Cubic Linear

7.144 6.335 7.217 6.449 6.323 5.994

Table 1: Values of f(0) at t = 10 with N = 40 points.
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Figure 6: Trend to equilibrium in time for scheme QBF2 (left) and stationary phase-space
density reconstructed at x = 0 and p = (p1, p2, 0) (right) with steady state extrapolation at
ε = 0.

3.3 Condensation

In this test we consider the process of condensation of bosons. It is a fundamental
results of quantum statistics of bosons that above a critical density/below a critical
energy particles enter the ground state, i.e. a Bose-Einstein condensate forms (see
[19],[20],[18],[16],[17]) and the equilibrium distribution f∞ is of the form (31) with
β− 6= 0.

In general the evaluation of the condensate fraction as a function of time is a
challenging problem from the computational viewpoint. If we assume the density
function f to be of the form (31), which corresponds to the long time behavior, we
can use the following method to identify if condensation will occur and compute the
equilibrium condensate mass for a given mass energy pair (M,E).

First solve numerically for α the equation

E =

∫ ∞

0

ρ(ε)ε

exp(αε) − 1
dε. (81)
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Then compute

Iα =

∫ ∞

0

ρ(ε)

exp(αε)− 1
dε. (82)

If I(α) < M the mass entropy pair is critical and condensation will take place. The
condensate mass fraction in equilibrium can then be computed

Mc

M
= 1− Iα

M
. (83)

We report in Figure 7 the condensate mass fraction computed with the previous
method for (M,E) ∈ [0, 1] × [0, 1].
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Figure 7: Mass fraction of the condensate in the mass-energy plane at the stationary state.

A related challenging problem is the computation of the critical time at which
the condensate starts to form. In order to do this we consider two different numerical
indicators.

We recall that for the second order method, unlike the first order one, due to the
midpoint quadrature, we have εi 6= 0 for all gridpoints. This makes scheme QBF2
more suitable to treat situations where the solution is close to be singular at ε = 0.
In particular, in such cases, it is impossible to extrapolate the value f(0) with a
positive β. Thus whenever steady state extrapolation is impossible we can assume
to have formation of condensate at ε = 0.

For the scheme QBF1 we expect the value of f(0) to increase dramatically when
formation of condensate takes place. In this case we can use as an indicator of the
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formation of condensate the expression [13]

CF =
∆εf0

∆ε
∑

i fi
. (84)

For the numerical test we choose the initial distribution in the energy interval
[0, R] with R = 10 to be[16],[17]

f(ǫ) =
2f̄

π
arctan(eΓ(1−ǫ/ǫ0)), (85)

with Γ = 5 and ǫ0 = R/8. At values of f̄ larger than a critical f̄∗ the formation of
a condensate occurs (see [16],[17] for similar results in the homogeneous case). We
choose f̄ = 1, which turns on to be supercritical. In this case the mass energy pair
is approximatively (0.42, 0.50) which corresponds to a condensate mass fraction of
≈ 0.3 at the stationary state (see Figure 7). Using N = 320 points and scheme
QBF2 with steady state extrapolation the condensate formation in finite time at
tc ≈ 4.2 is observed.
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Figure 8: Estimation of the critical time using the numerical indicator CF in time for
N = 80, 160, 320 for scheme QBF1 (left) and scheme QBF2 with steady state extrapolation
(right).

We report in Figure 8 the time evolution of the indicator (84) for scheme QBF1
and for scheme QBF2 with steady state extrapolation before the critical time. The
vertical line correspond to the critical time at which the steady state extrapolation
fails. The results indicate the numerical convergence of the approximation (84).

The distribution of bosons at different times in logarithmic scale before the criti-
cal time is shown in Figure 9 for scheme QBF1 (left) and scheme QBF2 with steady
state extrapolation (right) .
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Figure 9: Distribution of bosons at different times in logarithmic scale before the critical
time for scheme QBF1 (left) and scheme QBF2 with steady state extrapolation (right) for
N = 320.

A magnified view of the numerical solutions obtained with N = 40 and N = 80
points at t = 15 shows that away from the singularity the two schemes are still in
good agreement (see Figure 10).

Finally in Figure 11 we also report the phase-space density reconstructed at
x = 0 and p = (p1, p2, 0) at two different times before the critical time. The cor-
responding solution has been obtained for N = 80 with scheme QBF2 and steady
state extrapolation.

4 Conclusions

We have developed first and second order fast solvers for the Boson Boltzmann
equation assuming a boson distribution which only depends on the total energy.
The methods preserve all the relevant physical properties (conservation of mass and
energy, entropy inequality and steady states). The performance of the schemes
has been tested for both Bose-Einstein and generalized Bose-Einstein steady states.
The numerical methods have shown the capability to describe well the challenging
phenomenon of condensation of bosons.

We remark that, to our knowledge, this is the first example of accurate, conser-
vative and fast deterministic numerical method for a Boltzmann equation. Previous
results were available in the literature for Fokker-Planck-Landau type equations (see
[2],[8],[14]) or using some suitable approximations of the Boltzmann equation (see
the recent review [12] and the references therein).

Note that the present numerical methods can be applied directly even to the
case of the energy dependent quantum Boltzmann equation for Fermions as well as
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Figure 10: Magnified view of the distribution of bosons after the critical time of conden-
sation with scheme QBF1 (◦) and scheme QBF2 (×) with N = 40 (left) and N = 80 (right)
points at time t = 15.

the classical Boltzmann equation of rarefied gas dynamics.
We hope to extend in the future these ideas to time dependent potentials [13].
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