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Summary. We introduce a class Cn of n × n structured matrices which in-
cludes three well-known classes of generalized companion matrices: tridi-
agonal plus rank-one matrices (comrade matrices), diagonal plus rank-one
matrices and arrowhead matrices. Relying on the structure properties of Cn,
we show that if A ∈ Cn then A′ = RQ ∈ Cn, where A = QR is the
QR decomposition of A. This allows one to implement the QR iteration for
computing the eigenvalues and the eigenvectors of any A ∈ Cn with O(n)
arithmetic operations per iteration and withO(n)memory storage. This iter-
ation, applied to generalized companion matrices, provides newO(n2) flops
algorithms for computing polynomial zeros and for solving the associated (ra-
tional) secular equations. Numerical experiments confirm the effectiveness
and the robustness of our approach.
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1 Introduction

Matrix methods based on the QR algorithm are customary for polynomial
root-finding: they are proposed to the users of MATLAB1. These root-find-
ers enjoy the robustness and the rapid convergence properties of the QR
algorithm (see [48,38,3,59,60] for a general account of these properties) but
also inherit its substantial cost of the order of n2 arithmetic operations per
iteration and quadratic memory space for a polynomial of degree n. Our goal
is to present a QR-based root-finder for some specific classes of polynomial
and rational equations which runs in linear time per iteration and uses linear
memory space. The algorithm is not just a variant but rather a fast adaptation
of the classical QR iteration which exploits the structure of the associated
matrix problems. Therefore, it remains robust and converges as fast as the
customary QR algorithm.

More specifically, we present a QR-based algorithm for the computation
of the eigenvalues of some classes ofn×n generalized companion matrices in
O(n) arithmetic operations per iteration and with O(n) memory storage. As
a by product, this algorithm computes all the zeros of the n-degree character-
istic polynomial of a generalized companion matrix as well as the associated
secular equation in O(n2) flops2. Once the eigenvalues are available, the
whole set of eigenvectors can in principle be computed efficiently by means
of the inverse power method at the cost of O(n) flops per iteration.

The generalized companion matrices which we consider include

– arrowhead matrices, that is, matrices which have null elements everywhere
except for the elements on the diagonal, in the first row and in the first
column [1].

– comrade matrices [4], that is, matrices which are real symmetric tridiagonal
except in the last column where the elements can take any value;

– diagonal plus rank one matrices.

The key idea of our approach is to find the class Cn of structured matrices
defined by the minimum number of parameters, which includes the above
generalized companion matrices and which is closed under the QR iteration.
That is, Cn is such that, if A ∈ Cn and A− σI = QR is the QR factorization
of A − σI then A′ = RQ + σI ∈ Cn for any complex σ . In this way, the
sequence {As} generated by the QR iteration

A0 = A

As − σsI = QsRs

As+1 := RsQs + σsI

(1.1)

1 MATLAB is a registered trademark of The Mathworks, Inc..
2 A flop is a floating point operation x ◦ y, where x and y are floating point numbers

and ◦ denotes one of +, −, ×, ÷.
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for s = 0, 1, . . . and for any choice of σs , is such thatAs ∈ Cn for any s ≥ 0.
Here, Qs is unitary and Rs is upper triangular for s ≥ 0. We define Cn in
Section 1.1.

As pointed out in [1,2], the QR iteration (1.1) does not preserve the struc-
ture of generalized companion matrices. For instance, if A0 is an arrowhead
matrix then A1 is not generally an arrowhead matrix. However, as we show
in Section 3, the QR iteration preserves the structure of the matrices in Cn.

1.1 The class Cn
A matrix A = (ai,j ) ∈ Cn×n belongs to Cn if there exist real numbers
d1, . . . , dn, complex numbers t2, . . . , tn−1, and four complex vectors u =
[u1, . . . , un]T , v= [v1, . . . , vn]T , w= [w1, . . . , wn]T and z = [z1, . . . , zn]T

in Cn such that





ai,i = di + ziwi, 1 ≤ i ≤ n;
ai,j = uit

×
i,j vj , 1 ≤ j < i, 2 ≤ i ≤ n;

ai,j = uj t
×
j,ivi + ziwj − zjwi, 1 ≤ i < j, 2 ≤ j ≤ n,

(1.2)

where t×i,j = ti−1 . . . tj+1 for i − 1 ≥ j + 1 and, otherwise, t×i,i−1 = 1.
It turns out that Cn is a subclass of some well known classes of matrices

such as the matrices with low Hankel rank of [20,19], the quasiseparable
matrices introduced and studied in [23,25], the recursively semi-separable
and sequentially semi-separable matrices described in [15,16] and the weakly
semiseparable matrices defined in [50]. These classes arise in the numerical
solution of discretized rational approximation problems and integral equa-
tions with structured kernels (see, e.g., [28,29,14,22,23,25,53]) and, essen-
tially, contain matrices which have low rank on their off-diagonal blocks (see
also [56] for comparisons among different definitions). In particular, a matrix
B ∈ Cn×n is called quasiseparable of order (r, s) if rankB[k+1: n, 1: k] ≤ r

and rankB[1 : k, k + 1: n] ≤ s for k = 1, . . . , n − 1, where we adopt the
MATLAB notation B[i : j, k : l] for the submatrix of B with entries having
row and column indices in the ranges i through j and k through l, respec-
tively. A matrix A ∈ Cn is therefore a quasiseparable matrix of order (1, 3)
with a suitable rank structure in the upper triangular corner.

Appropriate choices for the elements defining the structured representa-
tion of A turn the class Cn into the cited classes of generalized companion
matrices.

– For z = u, w = v and ti = 1, i = 2, . . . , n − 1, the class Cn contains
the diagonal plus rank-one matrices of the form A = D + uvH with
D = diag[d1, . . . , dn] ∈ Rn×n.

– Under the assumptions w = wen and ti = 0, i = 2, . . . , n−1,A reduces
to a Hermitian tridiagonal matrix plus the rank-one correction wzeTn .
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– If w = z and ti �= 0 for i = 2, . . . , n − 1, then A is a Hermitian diago-
nal-plus-semiseparable (dpss) matrix [41].

– Finally, for v2 = . . . = vn = 0 and z2 = . . . = zn = 0, A turns into an
arrowhead matrix.

The property of rank invariance under the QR iteration was first observed
and communicated to us by D. Fasino in the case of Hermitian positive defi-
nite dpss matrices, where the diagonal-plus-semiseparable structure is main-
tained during the QR process. Fast implementations of the QR iteration for
real symmetric dpss matrices are also described in [55,57,58] together with
several applications to computing the SVD and rank-revealing factorizations
of symmetric matrices.

1.2 The QR iteration

Once we have proved that all the matrices Ak, k ≥ 0 generated by (1.1)
with A0 ∈ Cn belong to Cn, our next step is to relate the 6n − 2 parameters
which define the generic matrix As ∈ Cn by means of (1.2) with the 6n− 2
parameters which define the matrixAs+1. This is done in Section 4 where we
design an algorithm that performs this computation in about 120n ops.

In principle, one may perform the QR iteration in linear time per iteration
by extending the QR factorization algorithm in [24]. Indeed, sinceAs is quasi-
separable of order (1, 3) and one iteration of the QR algorithm applied to As
generates another quasiseparable matrix As+1 of order (1, 3), the algorithm
given in [24] can be used for the computation of a QR factorization of each
matrixAs generated by the QR process. Due to the very special rank structure
of the upper triangular part of As , however, one finds that the quasisepara-
ble representations of Qs and Rs also satisfy additional requirements which
should be forcefully imposed during the computation. Moreover, since Rs is
quasiseparable of order (0, 4), the algorithm of [24] works with a parametri-
zation which is both mathematically and numerically redundant.

To circumvent these difficulties, we propose a modification of the QR
factorization scheme of [24], where the upper triangular factor Rs is never
explicitly formed but implicitly represented as the sum of products of triangu-
lar quasiseparable matrices. Then we show that the structural representation
(1.2) of As+1 can be recovered from the structural representation of As and
from certain quantities generated step-by-step in the process of multiplying
Rs byQs , where the matricesQs are kept in factored form as products of ele-
mentary Givens rotations. This makes our design more involved technically
but decreases the number of parameters required to accurately determineAs+1

in the presence of numerical errors and consequently decreases the number
of flops in our algorithm.
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1.3 Motivation and related work

Our interest in structured eigenproblems originates from our search for numer-
ically reliable methods for approximating all roots of a high degree polynomial
p(z) [6]. One may reduce this problem to the computation of the eigenvalues
of a matrix called generalized companion matrix forp(z)whose characteristic
polynomial has the same zeros as p(z). The concept of secular equation also
provides the means to convert polynomial root-finding problem into matrix
eigenvalue computations. The name is due to Golub [37] who considered the
solution of secular equations arising in some modified eigenvalue problems.

The simplest approach is to consider the associated Frobenius (compan-
ion) matrix (which is an upper Hessenberg matrix) having p(z) as its charac-
teristic polynomial. In particular, MATLAB employs the QR algorithm for
the computation of the eigenvalues of a Frobenius matrix to approximate the
zeros of a polynomial given by its coefficients. However, as Cleve Moler
has pointed out [46], this method may not be the best possible because “it
uses order n2 storage and order n3 time. An algorithm designed specifically
for polynomial roots might use order n storage and n2 time.” Computational
advances along this direction have been first obtained in [52,51].

It is worth pointing out that Frobenius matrices are a special instance of
the more general set of rank-one perturbations of unitary Hessenberg matrices
(fellow matrices) which appear in the context of root-finding for linear com-
binations of Szegö polynomials [12]. A fast O(n2) QR-algorithm for eigen-
value computation of unitary Hessenberg matrices has been first designed by
Gragg [40] by exploiting their representation as a product of Givens rotation
matrices. Since fellow matrices do not inherit such a factorization, available
implementations of the fast QR-algorithm from [40] for unitary Hessenberg
matrices, however, are not able to use the structure of these matrices and
typically require O(n3) flops and O(n2) storage locations.

Other generalized companion matrices have been also proposed for devis-
ing new polynomial root-finders or for rephrasing the known functional itera-
tions into a matrix setting. In [4] generalized companion (comrade) matrices
of the form A = T + uvH , where T ∈ Cn×n is a Hermitian tridiagonal
matrix, are considered for dealing with polynomials expressed with respect
to an orthogonal polynomial basis satisfying a three-terms recursion. Matri-
ces of the form A = D + uvH , where D is a diagonal matrix, are intro-
duced in [26,13] and used in [6] to provide a matrix formulation of the
Weierstrass (Durand-Kerner) method and in [31] for the design of an O(n3)

eigenvalue algorithm for approximating polynomial roots. Furthermore, a
root-finding method is devised in [42] which is based on matrix compu-
tations applied to a generalized companion matrix of arrowhead form first
studied in [30].
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For two subclasses of generalized companion matrices, that is, arrowhead
matrices and rank-one perturbations of diagonal matrices, it is shown in [37]
that their eigenvalues are the roots of a secular equation of the form

αz+ β +
n∑

j=1

pi

z− zi
= 0.

Conversely, for such an equation we may easily compute a generalized com-
panion matrix of these classes; therefore our algorithm approximates the roots
of this equation. Secular equations of this form play an important role, e.g.,
in updating the singular value decomposition (SVD) of matrices [10] and
in divide-and-conquer algorithms for computing the eigenvalues of Hermi-
tian tridiagonal matrices [17,21]. Related secular equations are also used for
solving least squares type problems [33,34,39], in invariant subspace com-
putations [32] and in the “escalator method” for computing the eigenvalues
of a matrix [27]. Numerical methods for solving secular equations based on
functional iterations are proposed, e.g., in [11,47,49,44,45,9].

The TR version [8] of this paper extended our previous work in [6] on
polynomial root-finding by means of matrix methods. A large part of our
techniques on structured matrices is related to [24] although neither root-
finding applications nor the properties of the QR iteration are considered in
[24].

1.4 Paper organization

The paper is organized as follows. In Section 2 we set up notations. In Section
3 we prove the invariance of the structure (1.2) under the QR iteration. In
Section 4 we develop a fast algorithm for the QR step applied to a matrix
A ∈ Cn with the cost of about 120n ops. In Section 5 we summarize our
QR-based algorithm and present the results of extensive numerical experi-
ments. Finally, conclusion and discussion are the subjects of Section 6.

2 Notation

We use capital letters for matrices and lower boldface letters for vectors. We
denote by A = (ai,j ) = triu(B, p) the upper triangular portion of B formed
by the elements on and above the p-th diagonal of B, that is, ai,j = bi,j
for j − i ≥ p, and ai,j = 0 elsewhere. Analogously, the n × n matrix
A = tril(B, p) is formed by the elements on and below the p-th diagonal of
B, that is, ai,j = bi,j for j − i ≤ p, and ai,j = 0 elsewhere.

Given two sequences {ai}ni=1 and {bi}mi=1 , then {ai}ni=1 � {bi}mi=1 is the
sequence obtained by concatenating them, i.e.,

{ai}ni=1 � {bi}mi=1 = {a1, . . . , an, b1, . . . , bm}.
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Let A = (ai,j ) ∈ Cn×n be a matrix of the form given in (1.2). One has

tril(A,−1) =












0 . . . . . . . . . 0

u2v1 0
. . .

. . .
...

u3t2v1 u3v2 0
. . .

...
...

...
. . .

. . .
...

untn−1 . . . t2v1 untn−1 . . . t3v2 . . . unvn−1 0












,(2.1)

wherevj denotes the complex conjugate ofvj . Given the elementsu2, . . . , un,
t2, . . . , tn−1 and v1, . . . , vn−1, we denote by L({ui}ni=2, {vi}n−1

i=1 , {ti}n−1
i=2 ) the

lower triangular matrix on the right hand side of (2.1). Moreover, the matrix

R({ui}ni=2, {vi}n−1
i=1 , {ti}n−1

i=2 ) = (L({ui}ni=2, {vi}n−1
i=1 , {ti}n−1

i=2 ))
H ,

is the upper triangular matrix of parameters u2, . . . , un, v1, . . . , vn−1 and
t2, . . . , tn−1.

Remark 2.1. A Hermitian matrix A satisfying (2.1) is characterized by the
property of having only rank-one submatrices in its strictly lower and upper
triangular parts. Historically, matrices with this property appeared for the
first time in the study of the structure of the inverses of banded matrices as
a part of a celebrated theorem due to Gantmacher and Krein [35]. More pre-
cisely, the theorem implied that if B is an invertible Hermitian irreducible
tridiagonal matrix, then A = B−1 satisfies (2.1) with t2 = . . . = tn−1 = 1,
that is, the matrix B−1 shares its strictly lower triangular part with a rank-
one matrix. However, if B is assumed to be reducible, this result is not yet

true. Taking B = J2 ⊕ J2, where J2 =
[

0 1
1 0

]

, it is immediately seen that

there exist no u and v such that tril(B−1,−1) = tril(uvH ,−1), but none-
theless, tril(B−1,−1) still satisfies (2.1) for suitable parameters ui , vi and
ti . This means that the structure (2.1) generalizes the rank-one structure by
providing a more robust representation for the cases where u and v have tiny
elements.

We denote by R′(·) the submatrix of R(·) obtained after deletion of its
first column and last row. Analogously, L′(·) is the submatrix of L(·) ob-
tained after deletion of its first row and last column. Observe that L({ui}ni=2,

{vi}n−1
i=1 , 0) is a lower bidiagonal matrix with zero diagonal entries and sub-

diagonal entries equal to ηi = uivi−1, 2 ≤ i ≤ n. Such a matrix is denoted
by Subdiag({ηi}ni=2).

Let A ∈ Cn be defined by (1.2) and denote xi = [zi, wi] and yi =
[wi,−zi] for i = 1, . . . , n. It is easily verified that
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triu(A, 1)− R({ui}ni=2, {vi}n−1
i=1 , {ti}n−1

i=2 ) =









0 x1y
H
2 . . . x1y

H
n

. . .
. . .

...
. . . xn−1y

H
n

0








.

(2.2)

For given row vectors x1, . . . , xn−1 and y2, . . . , yn−1, U({xi}n−1
i=1 , {yi}ni=2)

is the matrix on the right hand side of (2.2). The matrixU ′(·) is the submatrix
of U(·) obtained by means of the deletion of its first column and last row.

The QR factorization of a matrix can be computed by using Givens rota-
tions. Denote by G(γ ) the 2 × 2 complex Givens rotation of parameter γ ∈
C ∪ {∞} given by

G(γ ) = (
√

1 + |γ |2)−1

[
1 γ

−γ̄ 1

]

=
[
φ ψ

−ψ̄ φ

]

γ,ψ ∈ C, φ ∈ R, |ψ |2 + |φ|2 = 1,

and

G(∞) =
[

0 1
1 0

]

.

Observe that it is always possible to fix the value of γ in such a way that
G(γ ) transforms a vector [a, b]T ∈ C2 into a vector of the form [ρ, 0]T with
|ρ| =‖ [a, b]T ‖2. If a �= 0, we set γ̄ = b/a and otherwise choose γ = ∞.
Then define the n×nGivens rotation Gk,k+1(γ ) of parameter γ in coordinates
k and k + 1 by means of

Gk,k+1(γ ) = Ik−1 ⊕ G(γ )⊕ In−k−1 =



Ik−1 0 0

0 G(γ ) 0
0 0 In−k−1



 .

3 Invariance of the structure under the QR iteration

In this section we show that the structure (1.2) of a matrixA ∈ Cn×n is main-
tained under the QR iteration (1.1). We recall that, under quite mild assump-
tions the sequence {As} tends to an upper triangular or, at least, a block upper
triangular matrix thus yielding information about the eigenvalues of A.

Whenever the matrix Rs in (1.1) is nonsingular, it is easily found that
As+1 = RsAsR

−1
s , and this relation allows one to prove that the structure

of the lower triangular portion of A0 ∈ Cn is maintained at any step of QR
iteration (1.1).
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Theorem 3.1. Let As be the matrix obtained in s steps of the QR itera-
tion (1.1) applied to A = A0 ∈ Cn. For a given integer s̃ ≥ 0, assume
that R0, . . . , Rs̃ are nonsingular so that, for 0 ≤ s ≤ s̃, we can write
As+1 = RsAsR

−1
s . Then each matrix As , 0 ≤ s ≤ s̃ + 1, satisfies

tril(As,−1) = L({u(s)i }ni=2, {v(s)i }n−1
i=1 , {t (s)i }n−1

i=2 ),(3.1)

for suitable numbers u(s)2 , . . . , u
(s)
n , v(s)1 , . . . , v

(s)
n−1 and t (s)2 , . . . , t

(s)
n−1.

Proof. The proof is by induction on s ≤ s̃ + 1. The case s = 0 follows from
A0 ∈ Cn. Assume that the strictly lower triangular part of As , s ≤ s̃, is such
that (3.1) holds for suitable u(s)2 , . . . , u

(s)
n , v(s)1 , . . . , v

(s)
n−1 and t (s)2 , . . . , t

(s)
n−1,

and then prove the theorem for s+ 1. Write Rs = (r
(s)
i,j ), R

−1
s = Ws = (w

(s)
i,j )

and As+1/2 = AsWs . As+1/2 is obtained by linearly combining the columns
of As . Hence, tril(As+1/2,−1) admits the following representation:

tril(As+1/2,−1) = L({u(s+1/2)
i }ni=2, {v(s+1/2)

i }n−1
i=1 , {t (s+1/2)

i }n−1
i=2 ),

where u(s+1/2)
j = u

(s)
j , t (s+1/2)

j = t
(s)
j and, moreover,

v
(s+1/2)
1 = w

(s)
1,1v

(s)
1 ,

v
(s+1/2)
j = ∑j

k=2w
(s)
k−1,j t

(s)
j . . . t

(s)
k v

(s)
k−1 + w

(s)
j,j v

(s)
j , j = 2, . . . , n− 1.

(3.2)

Analogously, the rows of As+1 = RsAs+1/2 are linear combinations of the
rows of As+1/2. In this way, one deduces that tril(As+1,−1) can also be
represented in a similar form given by

tril(As+1,−1) = L({u(s+1)
i }ni=2, {v(s+1)

i }n−1
i=1 , {t (s+1)

i }n−1
i=2 ),

where v(s+1)
j = v

(s+1/2)
j , t (s+1)

j = t
(s+1/2)
j = t

(s)
j and

u(s+1)
n = r(s)n,nu

(s)
n ,

u
(s+1)
n−j =

j−1∑

k=0

r
(s)
n−j,n−kt

(s)
n−j . . . t

(s)
n−k−1u

(s)
n−k

+r(s)n−j,n−ju(s)n−j , j = 1, . . . , n− 2.(3.3)

�

Remark 3.2. By the latter theorem, we can represent the strictly lower trian-
gular part ofAs+1 by replacingu(s)= [u(s)1 , . . . , u

(s)
n ]T andv(s) = [v(s)1 , . . . , v(s)n ]

with u(s+1) = [u(s+1)
1 , . . . , u(s+1)

n ]T and v(s+1) = [v(s+1)
1 , . . . , v(s+1)

n ]T given
by (3.3) and (3.2), for v(s+1)

j = v
(s+1/2)
j , respectively, and having unchanged
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the scalars t (s+1)
2 = t

(s)
2 , . . . , t

(s+1)
n−1 = t

(s)
n−1. Recursively, this defines a repre-

sentation of tril(As+1,−1) of the form

tril(As+1,−1) = L({u(s+1)
i }ni=2, {v(s+1)

i }n−1
i=1 , {t (0)i }n−1

i=2 ),

for suitable u(s+1)
2 , . . . , u(s+1)

n and v(s+1)
1 , . . . , v

(s+1)
n−1 . If ti = t

(0)
i �= 0 for

i = 2, . . . , n − 1, then tril(A0,−1) is the strictly lower triangular part of a
rank-one matrix and, therefore, the same holds for each matrix As , i.e.,

tril(As,−1) = L({u(s)i }ni=2, {v(s)i }n−1
i=1 , {t (0)i }n−1

i=2 )

= L({û(s)i }ni=2, {v̂(s)i }n−1
i=1 , {1}n−1

i=2 ).

In other words, the semiseparable representation for the matrix tril(As,−1)
is not unique. Different representations are equivalent in the sense that they
generate the same matrix but, from a numerical point of view, the sensitivity
of the matrix entries with respect to small perturbations of the parameters
can vary greatly. Therefore, one may try to obtain a more robust representa-
tion of tril(As,−1) by varying the parameters u(s)i , v(s)i and t (s)i . These issues
are also discussed in [55,57,58] and raise the important question of finding
a quasiseparable representation of generalized companion matrices which
can be updated in an efficient and robust way during the execution of the QR
eigenvalue algorithm. The results of the next section confirm that the subclass
Cn provides such an effective representation.

The proof of Theorem 3.1 can be easily generalized to show that the rank
structure in the strictly lower triangular part of an invertible quasiseparable
matrix B ∈ Cn×n is maintained under the QR iteration. In general the same
property does not hold for the strictly upper triangular part except for the case
where BH is a small rank perturbation of B or of its inverse that corresponds
to an “almost Hermitian” or an “almost unitary” matrix B, respectively. For
any matrix A ∈ Cn given by (1.2) we find that B = A − zwH is Hermitian.
Thus,A = A0 is a Hermitian matrix plus a rank-one correction. Since for any
s ≥ 0 we have As+1 = PHs A0Ps , where Ps = Q0 . . .Qs , it follows that each
matrixAs+1 generated by the QR iteration applied toA0 is a Hermitian matrix
plus a rank-one perturbation. By combining this observation with Theorem
3.1, we arrive at the following result.

Theorem 3.3. LetAs , s = 1, . . . , s̃+1, be the matrices generated by the QR
scheme (1.1) starting withA = A0 ∈ Cn of the form (1.2), where R0, . . . , Rs̃
are assumed to be nonsingular. Then, eachAs , with 0 ≤ s ≤ s̃+1, belongs to
Cn. That is, for 0 ≤ s ≤ s̃+1, there exist real numbers d(s)1 , . . . , d(s)n , complex
numbers t (s)2 , . . . , t

(s)
n−1, and four n-vectors u(s) = [u(s)1 , . . . , u

(s)
n ]T ∈ Cn,

v(s) = [v(s)1 , . . . , v(s)n ]T ∈ Cn, z(s) = [z(s)1 , . . . , z
(s)
n ]T ∈ Cn and w(s) =
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[w(s)1 , . . . , w
(s)
n ]T ∈ Cn such thatAs = (a

(s)
i,j ) admits the following represen-

tation:





a
(s)
i,i = d

(s)
i + z

(s)
i w

(s)
i , 1 ≤ i ≤ n;

a
(s)
i,j = u

(s)
i t

(s)
i,j

×
v
(s)
j , 1 ≤ j < i, 2 ≤ i ≤ n;

a
(s)
i,j = u

(s)
j t

(s)
j,i

×
v
(s)
i + z

(s)
i w

(s)
j − z

(s)
j w

(s)
i , 1 ≤ i < j, 2 ≤ j ≤ n,

(3.4)

where t (s)i,j
× = t

(s)
i−1 . . . t

(s)
j+1 for i − 1 ≥ j + 1 and, otherwise, t (s)

×
i,i−1 = 1.

Proof. For s = 0 the claim follows fromA ∈ Cn by settingu(0) = u,v(0) = v,
z(0) = z, w(0) = w, d(0)i = d1, 1 ≤ i ≤ n, and t (0)i = ti , 2 ≤ i ≤ n − 1.

Recall thatA0 − z(0)w(0)H = B0 is a Hermitian matrix. For s > 0 the second
equality in (3.4) is established in Theorem 3.1. Moreover, since

As+1 = PHs A0Ps = PHs (B0 + z(0)w(0)H )Ps

= PHs B0Ps + z(s+1)w(s+1)H , s ≥ 0,

where Ps = Q0Q1 · · ·Qs−1, we find that As+1 is a rank-one correction of
the Hermitian matrix Bs+1 = PHs B0Ps , for s = 0, . . . , s̃. From this, we
characterize the diagonal and superdiagonal entries of As . We first deduce
that

a
(s)
i,j − z

(s)
i w

(s)
j = a

(s)
j,i − z

(s)
j w

(s)
i , 1 ≤ i, j ≤ n.(3.5)

For i < j , we have a(s)j,i = u
(s)
j t

(s)
j,i

×
v
(s)
i , a(s)j,i = u

(s)
j t

(s)
j,i

×
v
(s)
i . Substitute the

latter expression into (3.5) and obtain

a
(s)
i,j = u

(s)
j t

(s)
j,i

×
v
(s)
i + z

(s)
i w

(s)
j − z

(s)
j w

(s)
i , i ≤ j.

Otherwise, if i = j , then from (3.5) one deduces that the imaginary part of

a
(s)
i,i coincides with that of z(s)i w

(s)
i , and so we can write

a
(s)
i,i = d

(s)
i + z

(s)
i w

(s)
i , 1 ≤ i ≤ n,

for suitable real numbers d(s)1 , . . . , d(s)n . �

Remark 3.4. In Theorem 3.1 and 3.3 the preservation of the structure for the
matrix A1 ∈ Cn is proved under the auxiliary assumption that A0 − σ0I ∈ Cn
is invertible. In the next section the proofs are extended to cover the singular
case by means of a constructive approach. Some related issues concerning
the invariance of the quasiseparable structure in the singular case are also
discussed in [18].
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Remark 3.5. From the proof of the latter theorem we find that there exists a
representation of As+1 of the form (3.4) such that

z(s+1) = PHs z(0) = QH
s z(s)

and

w(s+1)H = w(0)HPs = w(s)HQs.

These equations provide simple rules for updating the vectors z(s) and w(s)

at each step of the QR iteration.

Theorem 3.3 means that the matricesAs generated at the first iterations in
the QR scheme (1.1) applied toA0 = A ∈ Cn inherit the structure (3.4) of their
ancestor A0. If, for a certain index ŝ, Rŝ and Aŝ − σŝIn are singular, then σŝ
is an eigenvalue of A0, and a deflation technique should be employed. When
working in finite precision arithmetic, deflation is also used if the entries of
the matrixAŝ satisfy a suitable stopping criterion. LetAŝ[1 : n−k, 1: n−k] ∈
C(n−k)×(n−k) be the leading principal submatrix of Aŝ obtained from Aŝ by
deleting its last k rows and columns. It is easily seen thatAŝ[1 : n−k, 1: n−k]
admits a representation similar to the one provided by Theorem 3.3. Such a
representation is found simply by truncating the corresponding representa-
tion of the matrix Aŝ of larger size. Hence, Aŝ[1 : n − k, 1: n − k] ∈ Cn−k
and, therefore, all the matrices generated by means of the QR scheme (1.1)
applied to A0 ∈ Cn for the computation of its eigenvalues still satisfy (3.4).

4 Efficient implementation of the QR iteration

We have already shown that if A0 = (a
(0)
i,j ) ∈ Cn×n is of the form (3.4) then

the matrix A1 generated by the first step of (1.1) admits a similar representa-
tion. In this way, the first step of the QR iterative process (1.1) reduces to the
computation of real numbers d(1)1 , . . . , d(1)n , complex numbers t (1)2 , . . . , t

(1)
n−1,

and the entries of the vectors u(1) ∈ Cn, v(1) ∈ Cn, z(1) ∈ Cn and w(1) ∈ Cn

which define A1 = (a
(1)
i,j ) according to (3.4). To perform this task efficiently,

in this section we investigate the structural properties of the QR factorization
ofA0 −σ0In withA0 ∈ Cn. For the sake of notational simplicity, without loss
of generality, we may assume that σ0 = 0.

Recall that Cn is a subset of the more general class of quasiseparable matri-
ces studied in [23,25,24]. In particular, A ∈ Cn is quasiseparable of order
(1, 3) with a very special rank structure in its strictly upper triangular part.
The unitary factor Q and the upper triangular factor R such that A = QR

inherit the quasiseparable structure of A. Numerical methods for computing
the generators of the quasiseparable representation of Q and R are provided
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in [24], they are based on previous results reported in the book [20]. How-
ever, the methods of [24] work for general quasiseparable matrices and thus,
for both speed and accuracy reasons, it is important to specialize them for
dealing with the special structures considered here. In addition, as we noted
in the introduction, while bothA0 andA1 are quasiseparable of order (1, 3) it
turns out that R0 is quasiseparable of order (0, 4) and, therefore, the explicit
computation of the generators of its quasiseparable structure introduces a
parametrization which is both mathematically and numerically redundant.

In this section we circumvent these difficulties. We first devise a suitable
adaptation of the algorithm in [24] for the QR factorization of quasiseparable
matricesA0 of the form (3.4). The upper triangular matrix R is not explicitly
formed but implicitly determined in a partially factored form as the sum of the
products of triangular quasiseparable matrices. Then we describe a method
for recovering the structural representation (3.4) of the matrix A1 = RQ

from certain quantities generated step-by-step in the process of multiplying
R and Q given in their (partially) factored forms.

As usual, the unitary matrixQ0 can be constructed as a product of Givens
rotations suitably chosen to annihilate specific entries of A0. By exploiting
the structure of tril(A0,−1), we expressQ0 as the product of 2n− 3 Givens
rotations. The following two-step procedure is used to compute a QR factor-
izationA0 = Q0R0 of the matrixA0 ∈ Cn. The scheme has been first derived
in the paper [24] as a special case of a more general factorization algorithm
for finite and infinite quasiseparable matrices suggested in [20].

1) A0 is reduced to an upper Hessenberg matrix:

H0 = G2,3(γn−2) . . .Gn−1,n(γ1)A0;(4.1)

2) H0 is transformed into an upper triangular matrix:

R0 = Gn−1,n(γ2n−3) . . .G1,2(γn−1)H0.(4.2)

From (4.1) and (4.2) we find that

R0 = Gn−1,n(γ2n−3) . . .G1,2(γn−1)G2,3(γn−2) . . .Gn−1,n(γ1)A0.

It follows that

QH
0 = Gn−1,n(γ2n−3) . . .G1,2(γn−1)G2,3(γn−2) . . .Gn−1,n(γ1)(4.3)

is the desired unitary matrix such that QH
0 A0 = R0.

Once the upper triangular factor R0 and the Givens rotations Gj,j+1(γk)

are known, the matrix A1 can be determined by

A1 = R0(Gn−1,n(γ1))
H . . . (G2,3(γn−2))

H (G1,2(γn−1))
H . . . (Gn−1,n(γ2n−3))

H .
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The composite scheme for the transition fromA0 toA1 can be summarized
as follows:

A0
1→ H0

2→ R0
3→ A1.(4.4)

We prove that both H0 and R0 can be described in terms of O(n) parame-
ters; moreover, the matrix structures can be managed by means of efficient
and numerically stable methods. In addition,Q0 does not need to be formed
explicitly but it can be implicitly defined as the product of 2n − 3 Givens
rotation matrices Gj,j+1(γk). Combining these facts enables us to devise a
robust algorithm for the scheme (4.4) having linear complexity.

The remaining part of this section is divided into three subsections, each
of them is devoted to a single step in (4.4).

4.1 Reduction to the Hessenberg form

The upper Hessenberg matrix H0 is defined by (4.1), where the Givens rota-
tion matrices G2,3(γn−2), . . . ,Gn−1,n(γ1) are chosen to zero the respective
entries of tril(A0,−2). To do this, the parameters γj can be determined as
follows. Choose the first element γ1 to yield

G(γ1)

[
u
(0)
n−1

u(0)n t
(0)
n−1

]

=
[
û
(0)
n−1
0

]

.(4.5)

Similarly, choose the successive entries γ2, . . . , γn−2 to yield

G(γj )
[

u
(0)
n−j

û
(0)
n−j+1t

(0)
n−j

]

=
[
û
(0)
n−j
0

]

, 2 ≤ j ≤ n− 2.(4.6)

To describe the effects of pre-multiplying A0 by Gn−1,n(γ1), . . . , G2,3(γn−2)

we first investigate the structure of the unitary matrix

Q̂0 = G2,3(γn−2) . . .Gn−1,n(γ1) =
[

1 0T

0 Q̂

]

.(4.7)

It is easy to verify that Q̂0 is an upper Hessenberg matrix. The following
result proved in [36] also reveals the quasiseparable structure of its trailing
principal submatrix Q̂.

Theorem 4.1. The matrix Q̂ ∈ C(n−1)×(n−1) in (4.7) admits the following
representation:

Q̂ =











φ̃φn−2 φ̃ψn−2φn−3 . . . . . . φ̃ψn−2 . . . ψ1φ̂

−ψn−2 φn−2φn−3 . . . . . . φn−2ψn−3 . . . ψ1φ̂

0 −ψn−3
. . .

...
...

. . .
. . .

. . .
...

0 . . . 0 −ψ1 φ1φ̂











,(4.8)
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where for the sake of notational simplicity we may write φ̃ = φ̂ = 1.

Write x
(0)
i = [z(0)i , w

(0)
i ] and y

(0)
i = [w(0)i ,−z(0)i ] for i = 1, . . . , n, and

A0 = B0 + C0,

where B0 = (b
(0)
i,j ) ∈ Cn×n and C0 = (c

(0)
i,j ) ∈ Cn×n are defined by

B0 = L({u(0)i }ni=2, {v(0)i }n−1
i=1 , {t (0)i }n−1

i=2 )+ diag({a(0)i,i }ni=1)

+U({x(0)i }n−1
i=1 , {y(0)i }ni=2),(4.9)

and

C0 = R({u(0)i }ni=2, {v(0)i }n−1
i=1 , {t (0)i }n−1

i=2 ),(4.10)

respectively. Now observe that

Q̂0A0 = Q̂0B0 + Q̂0C0,

The following result specifies the structure of Q̂0B0. The proof follows from
[[24], Theorem 6.1, p. 430].

Theorem 4.2. The matrix Q̂0B0 is defined as follows:

Q̂0B0 =









a
(0)
1,1 x

(0)
1 y

(0)
2

H
. . . x

(0)
1 y(0)n

H

û
(0)
2 v

(0)
1

0
...

B̂0








,

where

B̂0 = Subdiag(η2, . . . , ηn−1)+ U ′({̂x(0)i }ni=2, {y(0)i }ni=2)

+R′({ζi}ni=2, {φn−i}n−1
i=1 , {ψn−i}n−1

i=2 ).

That is, we have

B̂0 =









x̂
(0)
2 y

(0)
2

H
. . . . . . x̂

(0)
2 y(0)n

H

η2 x̂
(0)
3 y

(0)
3

H
. . . x̂

(0)
3 y(0)n

H

. . .
. . .

...

0 . . . ηn−1 x̂(0)n y(0)n
H









+








φn−1ζ2 φn−1ψn−2ζ3 . . . φn−1ψn−2 . . . ψ1ζn
0 ζ3φn−2 . . . φn−2ψn−3 . . . ψ1ζn
...

. . .
. . .

...

0 . . . 0 φ1ζn







, (φn−1 = 1).(4.11)
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The subdiagonal entries ηj are defined by

ηj = −ψn−j a(0)j,j + φn−j û
(0)
j+1v

(0)
j , j = 2, . . . , n− 1.(4.12)

The remaining elements ζj are determined according to the following equa-
tion:

ζj = φn−j a
(0)
j,j + ψn−j û

(0)
j+1v

(0)
j − x̃

(0)
j y

(0)
j

H
, j = 2, . . . , n− 1,

ζn = a(0)n,n,

(4.13)

where x̃
(0)
j and x̂

(0)
j are generated by the following two-step procedure sub-

jected to the initialization x̃(0)n = 0:

for j = 1 : n− 2

1. x̂
(0)
n−j+1 = −ψjx(0)n−j + φj x̃

(0)
n−j+1;

2. x̃
(0)
n−j = φjx

(0)
n−j + ψj x̃

(0)
n−j+1;

end
x̂
(0)
2 = x̃

(0)
2 .

Summing up, we represent the matrix Q̂0B0 by means of a data structure
of linear size whose elements are computed at a linear cost. The same clearly
holds for the upper Hessenberg matrix H0 conveniently described as

H0 =









a
(0)
1,1 x

(0)
1 y

(0)
2

H
. . . x

(0)
1 y(0)n

H

û
(0)
2 v

(0)
1

0 B̂0
...









+
[

1 0
0 Q̂

]

C0,(4.14)

where B̂0, Q̂ and C0 are given by (4.11), (4.8) and (4.10), respectively.

4.2 Reduction to the upper triangular form

We reduce the matrix H0 = (h
(0)
i,j ) of (4.14) to the upper triangular form

R0 = (r
(0)
i,j ) by applying Givens rotations Gn−1,n(γ2n−3), . . . ,G1,2(γn−1) to

annihilate the entries located on the first subdiagonal. The first Givens rotation
G1,2(γn−1) is determined by the vector equation

G(γn−1)

[
a
(0)
1,1

û
(0)
2 v

(0)
1

]

=
[
r
(0)
1,1
0

]

.
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If we pre-multiply H0 by G1,2(γn−1), we obtain that

G1,2(γn−1)H0 =
[
r
(0)
1,1 x̃

(0)
1 y

(0)
2 + ψn−1ζ2 . . . x̃

(0)
1 y(0)n

H + ψn−1..ψ1ζn

0 B̃0

]

+Q̃0C0,

where x̃
(0)
1 = φn−1x

(0)
1 + ψn−1x̂

(0)
2 ,

B̃0 =









x̂
(0)
2 y

(0)
2

H
. . . . . . x̂

(0)
2 y(0)n

H

η2 x̂
(0)
3 y

(0)
3

H
. . . x̂

(0)
3 y(0)n

H

. . .
. . .

...

0 . . . ηn−1 x̂(0)n y(0)n
H









+








φn−1ζ2 φn−1ψn−2ζ3 . . . φn−1ψn−2 . . . ψ1ζn
0 ζ3φn−2 . . . φn−2ψn−3 . . . ψ1ζn
...

. . .
. . .

...

0 . . . 0 φ1ζn







,

with x̂
(0)
2 = φn−1x̂

(0)
2 − ψn−1x

(0)
1 , and, moreover,

Q̃0 =











φ̃φn−1 φ̃ψn−1φn−2 . . . . . . φ̃ψn−1 . . . ψ1φ̂

−ψn−1 φn−1φn−2 . . . . . . φn−1ψn−2 . . . ψ1φ̂

0 −ψn−2
. . .

...
...

. . .
. . .

. . .
...

0 . . . 0 −ψ1 φ1φ̂











,

with φ̃ = φ̂ = 1.
We have

Q̃0 = Subdiag({−ψn−i}n−1
i=1 )+ R′({φn−i}n−1

i=1 � {1}, {1} � {φn−i}n−1
i=1 , {ψn−i}n−1

i=1 ),

and

B̃0 = Subdiag({ηj }n−1
j=2)+ R′({ζi}ni=2, {φn−i}n−1

i=1 , {ψn−i}n−1
i=1 )

+U ′({̂x(0)i }ni=2, {y(0)i }ni=2).

Once B̃0 and Q̃0 have been computed, we may determine γn and then continue
the triangularization process. The following theorem is a suitable specializa-
tion of Theorem 6.3 in [24] and provides the desired representation of the
upper triangular matrixR0 obtained at the end of the triangularization process
applied to H0.
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Theorem 4.3. The matrix R0 = Gn−1,n(γ2n−3) . . .G1,2(γn−1)G2,3(γn−2) . . .

Gn−1,n(γ1)A0 = Gn−1,n(γ2n−3) . . .G1,2(γn−1)H0 admits the following repre-
sentation:

R0 = R
(1)
0 + R

(2)
0 +Q

(1)
0 C0 +Q

(2)
0 C0,

where

R
(1)
0 =









r
(0)
1,1 x̃

(0)
1 y

(0)
2

H + δ1ζ2 . . . x̃
(0)
1 y(0)n

H + δ1ψn−2 . . . ψ1ζn

0 r
(0)
2,2 − φñs2 . . . x̃

(0)
2 y(0)n

H + δ2ψn−3 . . . ψ1ζn
...

. . .
. . .

...

0 . . . 0 x̃(0)n y(0)n
H + δnζn








,

R
(2)
0 =














0
0 0
... ψnφn+1̃s2

. . .
... −̃s2φn+2

∏n+1
j=n(−ψj) ψn+1φn+2̃s3

. . .

...
...

. . .
. . .

0 −̃s2φ̃
∏2n−3
j=n (−ψj) . . . . . . ψ2n−3φ̃s̃n−1 0














,

Q
(1)
0 =








ρ1 δ1φn−2 . . . δ1ψn−2 . . . ψ1φ̃
. . .

. . .
...

ρn−1 δn−1φ̃

0 . . . 0 ρn







,

and

Q
(2)
0 =












0
φnµ1 0
...

. . .
. . .

φ2n−3(−ψn) . . . (−ψ2n−4)µ1 . . . φ2n−3µn−2 0
φ̃(−ψn) . . . (−ψ2n−3)µ1 . . . . . . φ̃µn−1 0












, (φ̃ = 1).

The vectors x̃
(0)
j and x̌

(0)
j are generated by the following two-step proce-

dure subjected to the initializations x̃
(0)
1 = φn−1x

(0)
1 + ψn−1x̂

(0)
2 and x̌

(0)
2 =

x̃
(0)
2 = φn−1x̂

(0)
2 − ψn−1x

(0)
1 :

for j = 2 : n− 1

1. x̃
(0)
j = φn−2+j x̌

(0)
j + ψn−2+j x̂

(0)
j+1;

2. x̌
(0)
j+1 = φn−2+j x̂

(0)
j+1 − ψn−2+j x̌

(0)
j ;
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end
x̃(0)n = x̌(0)n .
The parameters φj andψj , n−1 ≤ j ≤ 2n−3, defining the Givens rota-

tions Gn−1,n(γ2n−3), . . . ,G1,2(γn−1), are determined by the following vector
equations:

G(γn−1)

[
a
(0)
1,1

û
(0)
2 v

(0)
1

]

=
[
r
(0)
1,1
0

]

and

G(γn−2+j )

[

x̌
(0)
j y

(0)
j

H + δ̂j ζj + s̃j

ηj

]

=
[
r
(0)
j,j

0

]

, j = 2, . . . , n− 1,

where the quantities δj , µj , ρj , sj and s̃j are defined according to the fol-
lowing procedures.

The entries δj are generated by the following two-step procedure sub-
jected to the initialization δ1 = ψn−1, δ̂2 = φn−1:

for j = 2 : n− 1

1. δj = φn−2+j δ̂jψn−j + ψn−2+jφn−j ;
2. δ̂j+1 = −ψn−2+j δ̂jψn−j + φn−2+jφn−j ;

end
δn = δ̂n.
The parameters ρj and µj satisfy ρ1 = φn−1, ρj = φn−2+j δ̂jφn−j −

ψn−2+jψn−j , 2 ≤ j ≤ n−1,ρn = δ̂n,µ1 = −ψn−1 andµj = −ψn−jφn−2+j−
ψn−2+j δ̂jφn−j , 2 ≤ j ≤ n− 1.

Finally, the elements sj and s̃j are given by s̃j = u
(0)
j sj , 2 ≤ j ≤ n− 1,

where
{
s2 = µ1v

(0)
1 ,

sj = (−ψn−3+j )t
(0)
j−1sj−1 + µj−1v

(0)
j−1, j = 3, . . . , n− 1.

Theorem 4.3 provides a structural description of the matrix R0 obtained
by triangularization of the matrix A0 ∈ Cn. The next step of the QR scheme
(1.1) is to compute the matrix A1 = R0Q0. From the results of the previous
section we know thatA1 ∈ Cn. Hence, our task reduces to the computation of
d
(1)
1 , . . . , d(1)n , t (1)2 , . . . , t

(1)
n−1, u(1) ∈ Cn, v(1) ∈ Cn, z(1) ∈ Cn and w(1) ∈ Cn,

which defineA1 = (a
(1)
i,j ) according to (3.4). From Remark 3.5 it follows that

z(1) = Gn−1,n(γ2n−3) . . .G1,2(γn−1)G2,3(γn−2) . . .Gn−1,n(γ1)z
(0),

and, analogously,

w(1) = Gn−1,n(γ2n−3) . . .G1,2(γn−1)G2,3(γn−2) . . .Gn−1,n(γ1)w
(0).
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In this way, it remains to find only the quantities d(1)1 , . . . , d(1)n , t (1)2 , . . . , t
(1)
n−1,

u(1) ∈ Cn and v(1) ∈ Cn, which specify the lower triangular part of A1. This
issue is addressed in the next subsection.

4.3 Computation of the new iterate

We have already shown how to calculate the upper triangular matrix R0 and
the unitary matrixQ0 such thatA0 = Q0R0. Once this factorization is known,
the QR iteration (1.1) determines the new iterateA1 asA1 = R0Q0. Observe
that

A1 = R0(Gn−1,n(γ1))
H . . . (G2,3(γn−2))

H (G1,2(γn−1))
H . . . (Gn−1,n(γ2n−3))

H

= A1/2(G1,2(γn−1))
H . . . (Gn−1,n(γ2n−3))

H ,

with

A1/2 = (a
1/2
i,j ) = R0(Gn−1,n(γ1))

H . . . (G2,3(γn−2))
H .(4.15)

Let r̂ (0)j,j denote the diagonal entry of R0(Gn−1,n(γ1))
H . . . (Gj,j+1(γn−j ))H in

position (j, j), where r̂ (0)n,n = r(0)n,n and r̂ (0)1,1 = r
(0)
1,1. The process of forming the

matrix A1/2 is demonstrated below for a generic 5 × 5 matrix.









× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 0 r̂ (0)5,5









G4,5(γ1)
H

→









× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 r̂

(0)
4,4 ×

0 0 0 ψ 1̂r
(0)
5,5 φ1̂r

(0)
5,5









G3,4(γ2)
H

→










× × × × ×
0 × × × ×
0 0 r̂

(0)
3,3 × ×

0 0 ψ 2̂r
(0)
4,4 φ2̂r

(0)
4,4 ×

0 0 ψ1ψ2̂r
(0)
5,5 ψ1φ2̂r

(0)
5,5 φ1̂r

(0)
5,5










G2,3(γ3)
H

→









× × × × ×
0 r̂

(0)
2,2 × × ×

0 ψ 3̂r
(0)
3,3 φ3̂r

(0)
3,3 × ×

0 ψ2ψ3̂r
(0)
4,4 ψ2φ3̂r

(0)
4,4 φ2̂r

(0)
4,4 ×

0 ψ1ψ2ψ3̂r
(0)
5,5 ψ1ψ2φ3̂r

(0)
5,5 ψ1φ2̂r

(0)
5,5 φ1̂r

(0)
5,5








.

(4.16)

This is extended to the next theorem.
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Theorem 4.4. The matrix A1/2 of (4.15) satisfies

tril(A1/2, 1)

=
[
r̂
(0)
1,1 a

(1/2)
1,2 0 . . . . . . . . . 0

0 Subdiag({a(1/2)i,i+1}n−1
i=2 )

T + L′({̂r(0)i,i }ni=2, {1} � {φn−i}n−1
i=2 , {ψn−i}n−1

i=2 )

]

=












r̂
(0)
1,1 a

(1/2)
1,2

0 r̂
(0)
2,2 a

(1/2)
2,3

0 ψn−2̂r
(0)
3,3 φn−2̂r

(0)
3,3

. . .

...
...

. . .
. . . a

(1/2)
n−1,n

0 ψn−2 . . . ψ1̂r
(0)
n,n . . . ψ1φ2̂r

(0)
n,n φ1̂r

(0)
n,n












.

The transformation from A1/2 to A1 modifies the lower triangular part of
A1/2 and is next demonstrated in the case of a 5 × 5 matrix A1/2 represented
as at the end of the process (4.16). The first two steps are:

A1/2
G1,2(γ4)

H

→










a
(1)
1,1 × × × ×

ψ 4̂r
(0)
2,2 φ4̂r

(0)
2,2 a

(1/2)
2,3 × ×

ψ3ψ4̂r
(0)
3,3 ψ3φ4̂r

(0)
3,3 φ3̂r

(0)
3,3 × ×

ψ2ψ3ψ4̂r
(0)
4,4 ψ2ψ3φ4̂r

(0)
4,4 ψ2φ3̂r

(0)
4,4 × ×

ψ1ψ2ψ3ψ4̂r
(0)
5,5 ψ1ψ2ψ3φ4̂r

(0)
5,5 ψ1ψ2φ3̂r

(0)
4,4 × ×










G2,3(γ5)
H

→











× × × × ×
× a

(1)
2,2 × × ×

× v
(1)
2 r̂

(0)
3,3 η3̂r

(0)
3,3 a

(1/2)
3,4 ×

× v
(1)
2 ψ2̂r

(0)
4,4 ψ2η3̂r

(0)
4,4 φ2̂r

(0)
4,4 ×

× v
(1)
2 ψ1ψ2̂r

(0)
4,4 ψ1ψ2η3̂r

(0)
5,5 ψ1φ2̂r

(0)
5,5 ×











,

where

a
(1)
1,1 = φ4̂r

(0)
1,1 + ψ4a

(1/2)
1,2 , a

(1)
2,2 = φ5φ4̂r

(0)
2,2 + ψ5a

(1/2)
2,3 ,

and

v
(1)
1 = ψ4, , v

(1)
2 = φ4φ5ψ3 + ψ5φ3, η3 = −ψ5ψ3φ4 + φ5φ3.
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The process is completed as follows:

A1/2G1,2(γ4)
HG2,3(γ5)

H G3,4(γ6)
H

→










× × × × ×
× × × × ×
× × a

(1)
3,3 × ×

× × v
(1)
3 r̂

(0)
4,4 η4̂r

(0)
4,4 a

(1/2)
4,5

× × v
(1)
3 ψ1̂r

(0)
5,5 η4ψ1̂r

(0)
5,5 φ1̂r

(0)
5,5










G4,5(γ7)
H

→










× × × × ×
× × × × ×
× × × × ×
× × × a

(1)
4,4 ×

× × × v
(1)
4 r̂

(0)
5,5 a

(1)
5,5










.

In this way, we easily arrive at the following characterization of the lower
triangular part of A1.

Theorem 4.5. We have

tril(A1, 0) = diag(a(1)1,1, . . . , a
(1)
n,n)+ L({ui}ni=2, {vi}n−1

i=1 , {ti}n−1
i=2 )

=












a
(1)
1,1 0 . . . . . . 0

u
(1)
2 v

(1)
1 a

(1)
2,2

. . .
. . .

...

u
(1)
3 t

(1)
2 v

(1)
1 u

(1)
3 v

(1)
2

. . .
. . .

...
...

...
. . .

. . . 0

u(1)n t
(1)
n−1 . . . t

(1)
2 v

(1)
1 u(1)n t

(1)
n−1 . . . t

(1)
3 v

(1)
2 . . . u(1)n v

(1)
n−1 a

(1)
n,n












,

where

u
(1)
j = r̂

(0)
j,j , 2 ≤ j ≤ n, t

(1)
j = ψn−j , 2 ≤ j ≤ n− 1.

Moreover, the entries a(1)j,j and v(1)j are defined by the following procedure:

Set v(1)1 = ψn−1, a(1)1,1 = φn−1̂r
(0)
1,1 + ψn−1a

(1/2)
1,2 , and η2 = φn−1;

for j = 2 : n− 1

1. v(1)j = φn−2+jψn−j ηj + ψn−2+jφn−j ;
2. a(1)j,j = φn−2+j ηj r̂

(0)
j,j + ψn−2+j a

(1/2)
j,j+1;

3. ηj+1 = −ψn+j−2ψn−j ηj + φn+j−2φn−j .

end
Set a(1)n,n = ηn̂r

(0)
n,n.
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This theorem says that the lower triangular part of A1 and, therefore, the
unknowns d(1)1 , . . . , d(1)n , t (1)2 , . . . , t

(1)
n−1, u(1) ∈ Cn and v(1) ∈ Cn can be

evaluated at a linear cost whenever we know both the superdiagonal entries
a
(1/2)
j,j+1 of A1/2 and the elements r̂ (0)j,j emerging from the main diagonal in the

construction of A1/2.

Remark 4.6. Another interesting consequence of Theorem 4.5 is the mini-
mality of the parametrization (1.2) used to represent the Hermitian matrices
in Cn. IfA = A0 ∈ Cn is Hermitian, thenA0 is a dpss matrix and this structure
is preserved under the QR iteration, that is, As is dpss for any s ≥ 0. At the
very beginning, the representation (1.2) for A0 involves 4n − 3 parameters.
The structure of the Hermitian dpss matrix A1 obtained after one QR-step
applied to A0 is described in Theorem 4.5. By using the symmetry of A1 it
can easily be shown that the coefficients of the Givens rotations together with
the elements u(1)j , 1 ≤ j ≤ n, (u(1)1 = r̂

(0)
1,1), are sufficient for representing the

entries of A1. In our formulas the cosine and sine appear separately because
of numerical accuracy. Theoretically, only using the cosine (or sine) would be
enough thus leading to a representation for A1 involving 3n− 3 parameters.
The existence and the computation of such a minimal representation for any
Hermitian dpss matrix is discussed in [56].

To compute these quantities efficiently, we devise suitable recurrence rela-
tions using the structural representation of R0 provided by Theorem 4.3. The
updating of R(1)0 , i.e., the construction of the matrix R(1)0 (Gn−1,n(γ1))

H . . .

(G2,3(γn−2))
H , can be carried out in a compact way at the cost of O(n) ops

by explicitly combining the columns of R(1)0 step by step. The updating of
R
(2)
0 is also easily performed since the resulting matrix is lower triangular.

Hence, we only need to specify the updating of Q(1)
0 C0 and Q(2)

0 C0. For the
final updates of the latter matrices, we restrict ourselves to computing their
diagonal and superdiagonal entries.

Recall from (4.10) that

C0 =












0 u(0)2 v
(0)
1 u

(0)
3 t

(0)
2 v

(0)
1 . . . u

(0)
n t

(0)
n−1 . . . t

(0)
2 v

(0)
1

...
. . . u

(0)
3 v

(0)
2 . . . u

(0)
n t

(0)
n−1 . . . t

(0)
3 v

(0)
2

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . u
(0)
n v

(0)
n−1

0 . . . . . . . . . 0












For demonstration consider the first two steps of the updating process applied
to a 5 × 5 matrix C0.
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C0
G4,5(γ1)

H

→










0 × u
(0)
3 t

(0)
2 v

(0)
1 ũ

(0)
4 t

(0)
3 t

(0)
2 v

(0)
1 û

(0)
5 t

(0)
3 t

(0)
2 v

(0)
1

0 0 u
(0)
3 v

(0)
2 ũ

(0)
4 t

(0)
3 v

(0)
2 û

(0)
5 t

(0)
3 v

(0)
2

0 0 0 ũ
(0)
4 v

(0)
3 û

(0)
5 v

(0)
3

0 0 0 η4 ζ4

0 0 0 0 0










G3,4(γ2)
H

→










0 u(0)2 v
(0)
1 ũ

(0)
3 t

(0)
2 v

(0)
1 û

(0)
4 t

(0)
2 v

(0)
1 ×

0 0 ũ
(0)
3 v

(0)
2 û

(0)
4 v

(0)
2 ×

0 0 η3 ζ3 ×
0 0 ψ2η4 φ2η4 ×
0 0 0 0 0










,(4.17)

where

ũ
(0)
4 = φ1u

(0)
4 + ψ1u

(0)
5 t

(0)
4 , ũ

(0)
3 = φ2u

(0)
3 + ψ2ũ

(0)
4 t

(0)
3 ,

û
(0)
5 = −ψ1u

(0)
4 + φ1u

(0)
5 t

(0)
4 , û

(0)
4 = −ψ2u

(0)
3 + φ2ũ

(0)
4 t

(0)
3 ,

and

η4 = ψ1u
(0)
5 v

(0)
4 , η3 = ψ2ũ

(0)
4 v

(0)
3 ,

ζ4 = φ1u
(0)
5 v

(0)
4 , ζ3 = φ2ũ

(0)
4 v

(0)
3 .

The updating of the 5 × 5 matrix C0 is completed by

C0G4,5(γ1)
HG3,4(γ2)

H G2,3(γ3)
H

→









0 ũ(0)2 v
(0)
1 û

(0)
3 v

(0)
1 × ×

0 η2 ζ2 × ×
0 ψ3η3 φ3η3 × ×
0 ψ3ψ2η4 φ3ψ2η4 × ×
0 0 0 0 0








.

By proceeding in this way, we obtain the following description of C0(Gn−1,n

(γ1))
H . . . (Gj,j+1(γn−j ))H .
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Theorem 4.7. We have

C0(Gn−1,n(γ1))
H . . . (Gj,j+1(γn−j ))H [1 : n− 1, j : n] =






















ũ
(0)
j t

(0)
j−1 . . . t

(0)
2 v

(0)
1 û

(0)
j+1t

(0)
j−1 . . . t

(0)
2 v

(0)
1 . . . . . . û(0)n t

(0)
n−2 . . . t

(0)
2 v

(0)
1

ũ
(0)
j t

(0)
j−1 . . . t

(0)
3 v

(0)
1 û

(0)
j+1t

(0)
j−1 . . . t

(0)
3 v

(0)
1 . . . . . . û(0)n t

(0)
n−2 . . . t

(0)
3 v

(0)
1

...
...

...
...

...

ũ
(0)
j v

(0)
j−1 û

(0)
j+1v

(0)
j−1

...
...

...

ηj ζj
. . .

...
...

ψn−j ηj+1 φn−j ηj+1 ζj+1
. . .

...
...

...
. . .

. . . û(0)n v
(0)
1

ψn−j . . . ψ2ηn−1 ψn−j−1 . . . ψ2φn−j ηn−1 . . . φ2ηn−1 ζn−1






















where

ũ
(0)
n−k = φku

(0)
n−k + ψkũ

(0)
n−k+1t

(0)
n−k, 1 ≤ k ≤ n− j, (ũ(0)n = u

(0)
n )),

û
(0)
n−k+1 = −ψku(0)n−k + φkũ

(0)
n−k+1t

(0)
n−k, 1 ≤ k ≤ n− j,

and

ηn−k = ψkũ
(0)
n−k+1v

(0)
n−k, ζn−k = φkũ

(0)
n−k+1v

(0)
n−k, 1 ≤ k ≤ n− j.

For j = 2, . . . , n− 1, let ĉ(0)j,j and ĉ(0)j,j+1 denote the entries of the matrix

(Q
(1)
0 +Q

(2)
0 )C0(Gn−1,n(γ1))

H . . . (Gj,j+1(γn−j ))H

in positions (j, j) and (j, j + 1), respectively. The computation of these
entries can be efficiently performed based on the recurrence relations which
employ the quasiseparable structure of C0, Q(1)

0 and Q(2)
0 .

In view of Theorem 4.3, one easily finds that

ĉ
(0)
j,j = ũ

(0)
j φn−2+j

[

µ1

j−3∏

i=0

−ψn+i , µ2

j−3∏

i=1

−ψn+i , . . . , µj−1

]

×







t
(0)
j−1 . . . t

(0)
2 v

(0)
1

...

v
(0)
j−1






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+ρjηj + δjψn−j

[

φn−j−1, φn−j−2ψn−j−1, . . . , φ̃

n−1−j∏

i=1

ψi

]

×








ηj+1
...

ηn−1
∏n−j−2
i=1 ψn−j−i

0







,

and, similarly,

ĉ
(0)
j,j+1 = û

(0)
j+1φn−2+j

[

µ1

j−3∏

i=0

−ψn+i , µ2

j−3∏

i=1

−ψn+i , . . . , µj−1

]

×







t
(0)
j−1 . . . t

(0)
2 v

(0)
1

...

v
(0)
j−1







+ρjζj + δjφn−j

[

φn−j−1, φn−j−2ψn−j−1, . . . , φ̃

n−1−j∏

i=1

ψi

]

×








ηj+1
...

ηn−1
∏n−j−2
i=1 ψn−j−i

0







.

Thus, the computation of ĉ(0)j,j and ĉ(0)j,j+1 reduces to evaluation of two scalar
products:

s
(0)
j =

[

µ1

j−3∏

i=0

−ψn+i , µ2

j−3∏

i=1

−ψn+i , . . . , µj−1

]






t
(0)
j−1 . . . t

(0)
2 v

(0)
1

...

v
(0)
j−1





 ,

and

q
(0)
n−j =

[

φn−j−1, φn−j−2ψn−j−1, . . . , φ̃

n−1−j∏

i=1

ψi

]








ηj+1
...

ηn−1
∏n−j−2
i=1 ψn−j−i

0







.

Observe that

s
(0)
j = (−ψn−3+j )t

(0)
j−1s

(0)
j−1 + µj−1v

(0)
j−1, 2 ≤ j ≤ n(4.18)
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and

q
(0)
n−j = |ψn−j−1|2q(0)n−j−1 + φn−j−1ηj+1, j = n− 2, . . . , 1.(4.19)

By using recursions (4.18) and (4.19) complemented with the initial condi-
tions s(0)1 = 0 and q(0)1 = 0, we determine the entries ĉ(0)j,j and ĉ(0)j,j+1 at a

linear cost. Hence, the values r̂ (0)j,j as well as the superdiagonal entries ofA1/2

are also computed at a linear cost.

5 Implementation issues and numerical results

In this section we study the speed and the accuracy of the proposed algorithm.
In particular, the structured QR iteration described in the previous sections
has been implemented in MATLAB and then used for the computation of the
eigenvalues of generalized companion matrices of both small and large size.
The results of extensive numerical experiments confirm the robustness and
the efficiency of the proposed approach.

At each QR step (1.1) the matrix As ∈ Cn×n is stored in a linear data
structure of size � 6n defined by the vectors d(s), u(s) v(s), z(s), w(s) and t (s).
The QR step (1.1) is performed as follows.

function [d(1), u(1) v(1), z(1), w(1), t (1)] = QRSStep(d(0), u(0) v(0), z(0), w(0)

t (0), σ0)
% Compute the structured representation of A1 generated by (1.1)
% A1 is the matrix generated from A0 after having performed one step
% of QR iteration with linear shift σ0

Compute Givens rotations Gn−1,n(γ1), . . . ,G2,3(γn−2) by (4.5) and (4.6).

Set a(0)i,i = d
(0)
i + z

(0)
i w

(0)
i − σ0, i = 1, . . . , n.

Find the generators of Q̂0B0 as defined in Theorem 4.2.
Find Givens rotations G1,2(γn−1), . . . ,Gn−1,n(γ2n−3) as shown in
Theorem 4.3.
Compute z(1) and w(1) as described in Remark 3.5.
Find the generators of R(1)0 , R(2)0 , Q(1)

0 and Q(2)
0 by means of Theorem 4.3.

Find u(1) v(1), t (1) and a(1)i,i , 1 ≤ i ≤ n, by using Theorem 4.5.

Evaluate d(1)i = real(a(1)i,i + σ0 − z
(1)
i w

(1)
i ), i = 1, . . . , n.

Our implementation of function QRSStep requires 120 n + O(1)
multiplications and 28 n + O(1) storage. The main program complements
this routine with the following shifting strategy suggested in [[60], p. 549].
At the beginning the shift parameter σ is equal to zero. IfAs = (a

(s)
i,j ) ∈ Cn×n

satisfies

|a(s−1)
n,n − a(s)n,n| ≤ 0.1|a(s−1)

n,n |,(5.1)
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then we apply non-zero shifts by setting σk = a(k)n,n, k = s, s + 1, . . . . We
say that a(k)n,n provides a numerical approximation of an eigenvalue λ of A0

whenever

|u(k)n | max{|v(k)n−1|, |t (k)n−1|} ≤ eps |a(k)n,n|,
where eps is the machine precision, i.e., eps � 2.2 ·10−16. If this condition is
fulfilled, then we set λ = a(k)n,n and deflate the matrix by restarting the process
with the initial matrix being the leading principal submatrix of Ak of order
n− 1.

After non-zero shifting has begun, we check for the convergence of the
last diagonal entries of the currently computed iterate Ak. If convergence
fails to occur after 15 iterations, then at the 16-th iteration we set σk =
1.5 (|a(k)n,n| + |u(k)n v(k)n−1|) and continue with non-zero shifting. If a(k)n,n does not
converge in the next 15 iterations, then the program reports failure. In our
experience such failure has been never encountered.

The results of our numerical experiments are shown in Figures 1, 2, 3
and Table 1. Figure 1 covers our tests with unsymmetric arrowhead matrices
A0 obtained by setting v(0)2 = . . . = v(0)n = 0, z(0)2 = . . . = z(0)n = 0 and
t
(0)
2 = . . . = t

(0)
n−1 = 1, whereas the remaining elements u(0)i , w(0)i , v(0)1 and

z
(0)
1 take random complex values with real and imaginary part ranging from

−1 to 1 and d(0)i are random real elements lying in the interval [−1, 1]. Table
1 covers the results of our tests with a set of arrowhead matrices of increasing
order whose eigenvalues are algebraically known. Specifically, we consider
the matrix A0 ∈ Cn×n, n = 2s , s = 3, . . . , 8, having the unit entries on
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Fig. 1. Eigenvalue computation for unsymmetric arrowhead matrices of sizem(n) = 22+n,
1 ≤ n ≤ 8
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Fig. 2. Eigenvalue computation for Hermitian diagonal-plus-semiseparable matrices of
size m(n) = 22+n, 1 ≤ n ≤ 8
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Fig. 3. Eigenvalue computation for Chebyshev comrade matrices of size m(n) = 22+n,
1 ≤ n ≤ 8

the main diagonal and in the first row and the entries −1 in the first column
(except for the position (1, 1)). Since AH0 = −A0 + 2In, we find that A0 is
normal and its eigenvalues are 1, 1−√

1 − n and 1+√
1 − n. Figure 2 reports

the test results for Hermitian diagonal-plus-semiseparable matrices, where
w(0) = z(0), t (0)2 = . . . = t

(0)
n−1 = 1, u(0)i and v(0)i are random complex entries

with real and imaginary parts ranging from −1 to 1 and d(0)i are random
real entries in the interval [−1, 1]. An implicit QR eigenvalue algorithm for
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s 3 4 5 6 7 8

cond 1.2 1.5 3.8 2.4 7.2 1.2e+04

err 4.4e-16 1.4e-15 2.9e-15 6.7e-15 5.6e-14 1.5e-14

Table 1.

Hermitian dpss matrix is described in [54]. For Hermitian semiseparable
matrices it requires � 41 n flops per iteration. Our implementation does not
exploit the symmetry of the input matrix and, therefore, its cost per iteration
is about twice that of the algorithm in [54]. Figure 3 describes an application
of our algorithm to polynomial root-finding. We consider the computation
of the zeros of a complex n-degree polynomial given the coefficients of its
representation in the Chebyshev basis defined by






p0(z) = 1

pj(z) = wj +
(

1

2w

)j

, j ≥ 1,

where z = w + 1

2
w−1. In our experiments the coefficients are random com-

plex values with real and imaginary parts ranging from −1 to 1. Since the
Chebyshev basis satisfies a three-term recurrence relation, the polynomial
root-finding problem can be recasted into a matrix setting as the problem of
computing the eigenvalues of a Chebyshev-comrade matrix of order n.

Each figure contains two plots. In Figure 1 and 2 we show the values
of the errors and running t ime for matrices A of size m(n) = 22+n for
n = 1, . . . , 8. Figure 3 reports the values of the errors and average num-
ber of iterations per eigenvalue for matrices A of size m(n) = 22+n for
n = 1, . . . , 8. Our test program returns these values as the output. The input
data are random low rank perturbations of Hermitian matrices; experimen-
tally we have found that their condition numbers with respect to eigenvalues
are fairly small. Therefore, in our experiments we have always assumed that
the MATLAB function eig computes the eigenvalues exactly. Let λ(A)
denote the set of eigenvalues computed by the MATLAB function eig. Let
λ̃(A) denote the set of eigenvalues computed by our algorithm, and define
the distance between the sets λ(A) and λ̃(A) by

dist(λ(A), λ̃(A)) = max{ max
λ̃∈λ̃(A)

‖ λ̃− λ(A) ‖, max
λ∈λ(A)

‖ λ− λ̃(A) ‖},

where ‖ λ − λ̃(A) ‖= minλ̃∈λ̃(A) |λ − λ̃|. We refer to this distance as the
error in the eigenvalues computed by our algorithm. For each size we car-
ried out 100 numerical experiments. In each figure, the first plot reports the
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average value of the errors. In Figure 1 and 2 the second plot reports the ratio
between the average values of running time for matrices having sizes m(n)
and m(n + 1). Since m(n + 1)/m(n) = 2 and the proposed algorithm for
computing all the eigenvalues of A is expected to have quadratic cost, this
ratio should be close to 4 for large m(n). Table 1 reports the maximum esti-
mated condition numbers and the distances between the set of the computed
eigenvalues and the set of exact eigenvalues. These data are shown for the
sizes n = 2s , s = 3, . . . , 8. Theoretically the condition number should be 1
due to the normality of A0 but, in practice, the normality is lost after a few
iterations so that the estimate provided by MATLAB can be far from 1.

The results of our numerical experiments are found to be quite accu-
rate. This can be expected. Indeed, the proposed algorithm for computing
all eigenvalues of a generalized companion matrix A ∈ Cn performs no
division except in the computation of the Givens rotations. Furthermore,
since it employs unitary transformations only, there is no coefficients growth
at intermediate steps of the QR iteration. In particular, for the elements of
the structured representation of the matrix As = (a

(s)
i,j ) ∈ Cn×n we have

‖ z(s) ‖2=‖ z(0) ‖2, ‖ w(s) ‖2=‖ w(0) ‖2, ‖ t (s) ‖∞≤ 1, ‖ v(s) ‖∞≤ 1,
‖ u(s) ‖∞≤‖ A0 ‖2 and |a(s)i,i | ≤‖ A0 ‖2, 1 ≤ i ≤ n. (The result for v(s)

easily follows from Theorem 4.5 by using the Cauchy-Schwartz inequality
to obtain an upper bound for its entries v(s)j , 1 ≤ j ≤ n.) Therefore, the
propagation of absolute errors during the iterative process can be taken under
control, and this explains the robustness of the algorithm. In [7] the algorithm
has been applied for approximating the roots of potentially ill-conditioned
polynomials expressed in the Lagrange basis. In all the experiments reported
there the accuracy of the computed approximations is in accordance with the
conditioning estimates for the associated matrix eigenvalue problems.

The figures representing the running time confirm the effectiveness of our
structured approach. According to our tests, the overall time for computing
all the eigenvalues ofA indeed changes roughly quadratically in n, in contrast
to the classical QR method which requires O(n3) arithmetic operations and
O(n2) storage.

Finally, from Figure 3 we deduce that the average number of iterations
per eigenvalue is about 6.

6 Conclusion and future work

We have exploited matrix structures to devise a fast and numerically stable
QR-based algorithm for computing all eigenvalues of a generalized com-
panion matrix and, hence, all roots of associated polynomials and secular
equations. This step has been highly desired but so far missing in the area of
polynomial root-finding via matrix methods. The structural representation of



32 D. A. Bini et al.

a generalized companion matrix based on its quasiseparable form is main-
tained at each step of the QR iteration, which enables us to yield a linear time
per iteration using a linear memory space. Extensive numerical experiments
have confirmed the effectiveness and the robustness of the proposed approach.
We are advancing in a more refined implementation of the structured QR
iteration including quadratic shifting techniques together with the optimiza-
tion of the memory requirements. Another practical issue to be addressed
is the selection of the cutting criterion for detecting whether the eigenvalue
problem can be split into several smaller subproblems. The cheap cutting
techniques introduced in [54] can easily be incorporated in our program. We
plan to translate this program in Fortran to be compared with the LAPACK
implementations of the QR algorithm.

Several extensions and applications of our results are now under inves-
tigation. The application to the polynomial root-finding problem causes no
theoretical problem. Indeed, given a monic polynomial p(z), a diagonal plus
rank-one or arrowhead matricesA having p(z) as their characteristic polyno-
mial can be constructed at almost a linear cost. Our QR-like iteration applied
to such matrices A provides an efficient polynomial root-finding algorithm
with good convergence features. The theoretical properties as well as the
numerical behavior of this QR-based polynomial root-finding algorithm will
be described in a forthcoming paper.

In our approach the QR-step (1.1) is implemented explicitly and this is
called the explicit QR algorithm. The implicit QR algorithm is based on a
different way of carrying out the iteration (1.1). It is generally claimed [[59],
p. 373] that the cost of the two single-shifted algorithms is almost the same,
but in rare occasions the implicit version performs more stably. An implicit
QR algorithm for the class of Hessenberg-like matrices, which includes gen-
eralized companion matrices as a special subclass, has been presented in
[54]. It would be interesting to analyze the complexity of such an implicit
QR algorithm applied to the computation of the eigenvalues of a generalized
companion matrix A ∈ Cn.

The problem of computing the set of eigenvectors of a generalized com-
panion matrix given approximations of its eigenvalues also deserves fur-
ther attention. It is well known that the inverse power iteration has serious
drawbacks if clusters are present in the spectrum. A more refined method to
compute the eigenvectors of a symmetric semiseparable matrix has been pre-
sented in [43]. The method is based on the properties of the implicitly shifted
QR algorithm. Possible extensions to (symmetric) generalized companion
matrices and to the explicit shifted QR algorithm are currently under study.

We have considered matrix classes which are small rank perturbations of
Hermitian matrices. It turns out that simple fractional transformations convert
an Hermitian matrix into a unitary matrix. This enables the extension of any
method and result for almost Hermitian matrices to devising fast algorithms
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for eigenvalue computation of small rank perturbations of unitary Hessenberg
matrices. These generalizations and extensions will be presented elsewhere.

Frobenius (companion) matrices are most commonly used to compute
polynomial roots. Frobenius matrices do not belong to the class of quasisep-
arable matrices introduced here. Notwithstanding that, by generalizing the
approach of this paper it is possible to develop an algorithm for computing
the eigenvalues of Frobenius matrices which usesO(n) ops per iteration and
a linear storage [5]. However, practical experience with this algorithm shows
that numerical errors can sometimes magnify so that computed results are
less accurate that the ones computed by the plain QR iteration. An alter-
native algorithm for Frobenius matrices relies on the extension extension
of our methods to the eigenvalue computation of rank-one perturbations of
unitary Hessenberg matrices. The design of a fast and stable algorithm for
Frobenius matrices is therefore an ongoing work which still deserves further
investigations.

Another interesting topic is the use of our results for the computation
of all the eigenvalues of a general real matrix A. It is well known that the
inverse of a nonsingular upper Hessenberg matrix takes the form R + uvT ,
where R is an upper triangular matrix and uvT is a rank-one matrix. Fur-
thermore, some recent algorithms for the numerical treatment of symmet-
ric diagonal-plus-semiseparable matrices (see [55,57,58] and the references
therein) transform A into a matrix of the same form R+ uvT , without using
intermediate recurrence to a Hessenberg matrix. The transformation employs
only unitary matrices so it is numerically robust. Once the reduction has been
carried out, the matrix R + uvT with a nondefective R can be further trans-
formed by a similarity transformation into a diagonal plus rank-one matrixB.
The overall computational cost of computingB isO(n3) and the eigenvalues
of B can be approximated by our algorithm at the total cost of O(n2). The
second stage of the reduction fromA to B, however, involves transformation
matrices that generally are not unitary so that numerical difficulties could
have arisen at this step. The design of a numerically stable algorithm that
converts a real matrix A into a diagonal plus rank-one matrix by a similarity
transformation as well as the experimental study of the numerical behavior
of the latter algorithm are subjects of our work in progress.

Acknowledgements. The authors wish to thank the referees for their knowledgeable and
helpful suggestions.
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this is the list of our corrections.  
 
-- replace "ops" with "flops" at p.4, l.17; p.6, l.-13; p.23, l. 23; p.33,  
l.7 
 
-- p.2 l. 14 replace "in" with "(specified in Subsection 1.3) by using" 
 
-- p.5 l.20-21 replace  "rank-one perturbations of unitary Hessenberg  
matrices (fellow matrices)" with "fellow matrices, that is, rank-one  
perturbations of unitary Hessenberg matrices," 
 
-- p.7 l. -18 replace "implied" with "implies" 
 
 
--p.27 l.17-18 insert a comma after "u^{(1)}",   "u^{(0)}" and "w^{(0)}" 
 
 
--p.33 l. 11 remove "extension" 
 
--pp. 34 update reference 5 and reference 7.  
  
The reference 5 should be  
"Bini, D. A., Daddi, F, Gemignani, L.: On the shifted QR iteration applied  
to companion matrices, Electron. Trans.  Numer. Anal.  
{\bf 18}, 137-152 (2004)" 
 
 
The reference 7 should be  
"Bini, D. A., Gemignani, L., Pan, V.Y.: Improved initialization of the  
accelerated and robust QR-like polynomial root-finding, Electron.  
Trans.  Numer. Anal. {\bf 17}, 195-205 (2004)" 


