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Abstract

In this paper we consider, in dimension d ≥ 2, the standard P1 finite
elements approximation of the second order linear elliptic equation in
divergence form with coefficients in L∞(Ω) which generalizes Laplace’s
equation. We assume that the family of triangulations is regular and
that it satisfies an hypothesis close to the classical hypothesis which
implies the discrete maximum principle. When the right-hand side
belongs to L1(Ω), we prove that the unique solution of the discrete

problem converges in W 1,q
0 (Ω) (for every q with 1 ≤ q <

d

d− 1
) to the

unique renormalized solution of the problem. We obtain a weaker
result when the right-hand side is a bounded Radon measure. In the
case where the dimension is d = 2 or d = 3 and where the coefficients
are smooth, we give an error estimate in W 1,q

0 (Ω) when the right-hand
side belongs to Lr(Ω) for some r > 1.
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Résumé

Dans cet article, nous considérons, en dimension d ≥ 2, l’approxi-
mation habituelle par des éléments finis P1 de l’équation linéaire ellip-
tique du second ordre sous forme divergence à coefficients dans L∞(Ω)
qui généralise l’équation de Laplace. Nous supposons que la famille de
triangulations est régulière et qu’elle satisfait une hypothèse voisine
de l’hypothèse classique qui entrâıne le principe du maximum discret.
Quand le second membre est dans L1(Ω), nous démontrons que
l’unique solution du problème discrétisé converge dans W 1,q

0 (Ω) (pour

tout q tel que 1 ≤ q <
d

d− 1
) vers l’unique solution renormalisée

du problème. Le résultat que nous obtenons est plus faible quand le
second membre est une mesure de Radon bornée. Dans le cas où la
dimension est 2 ou 3 et où les coefficients sont réguliers, nous don-
nons une estimation d’erreur dans W 1,q

0 (Ω) quand le second membre
appartient à Lr(Ω) avec r > 1.

Resumen

En este trabajo consideramos, para dimensiones d ≥ 2, la aproxi-
mación numérica mediante el método de elementos finitos P1 de la
ecuación lineal eĺıptica de segundo orden en forma de divergencia
con coeficientes en L∞(Ω) que generaliza la ecuación de Laplace.
Suponemos que la familia de triangulaciones es regular y satisface
una hipótesis próxima a la que se introduce clásicamente a fin de
garantizar el principio del máximo discreto. En el caso de segundo
miembro en L1(Ω) demostramos que la única solución del problema

discreto converge en W 1,q
0 (Ω) (para cualquiera q con 1 ≤ q <

d

d− 1
) a

la única solución renormalizada del problema. El resultado obtenido
es más débil para segundo miembro medidas. Además, en el caso
de dimensión d = 2 o d = 3 y coeficientes suficientemente regulares,
obtenemos una estimación de error en W 1,q

0 (Ω) para segundo miembro
en Lr(Ω) con r > 1.

Keywords: finite elements, P1 approximation, right-hand side in L1(Ω),
renormalized solution, diagonally dominant matrices, error estimate.
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Introduction

In this paper we consider the P1 finite elements approximation of the bound-
ary value problem 



−div A∇u = f in Ω,

u = 0 on ∂Ω,
(0.1)

where Ω is an open bounded set of Rd, with d ≥ 2, A is a coercive matrix
with coefficients in L∞(Ω) and f belongs to L1(Ω). This type of problem
often arises in applications, as for example in the modelling of heat transfer
and of turbulence. Then in general f is an energy dissipated by the system.
The fact that f belongs to L1(Ω) is the outstanding feature of the present
paper.

For this problem the standard P1 finite elements approximation, namely




uh ∈ Vh ,

∀vh ∈ Vh ,

∫

Ω

A∇uh∇ vh dx =

∫

Ω

f vh dx ,
(0.2)

where
Vh = {vh ∈ C0(Ω) : ∀T ∈ Th , vh|T ∈ P1, vh|∂Ω = 0} , (0.3)

has a unique solution, since the right-hand side

∫

Ω

f vh dx is correctly defined

for f ∈ L1(Ω).
However one cannot hope that the solution of (0.2) converges in H1

0 (Ω) to
the solution u of (0.1), since the solution of (0.1) does not belong to H1

0 (Ω)
for a general right-hand side in L1(Ω). Actually, in order to correctly define
the solution of (0.1), one has to consider a specific framework, the concept of
renormalized solution (or equivalently of entropy solution). The definitions
of these solutions (see Section 1 below) have been respectively introduced by
P.-L. Lions & F. Murat [19] and by P. Bénilan, L. Boccardo, T. Gallouët,
R. Gariepy, M. Pierre & J.L. Vázquez [2]. These definitions allow one to
prove that in this new sense problem (0.1) is well posed in the terminology of
Hadamard, namely that the solution of (0.1) exists, is unique, and depends
continuously on the right-hand side f .

Using the ideas which are at the root of the definition of renormalized
solution, we are able to prove in the present paper (Theorem 1.3) that the
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unique solution uh of (0.2) converges to the unique renormalized solution u
of (0.1) in the following sense

{
uh → u strongly in W 1,q

0 (Ω),

Πh (Tk(uh)) → Tk(u) strongly in H1
0 (Ω),

(0.4)

for every q with 1 ≤ q <
d

d− 1
and for every k > 0, where Πh is the usual

Lagrange interpolation operator in Vh and where Tk is the usual truncation
at height k.

To prove (0.4), we assume that the family of triangulations is regular in
the sense of P.G. Ciarlet [8], and that it satisfies an assumption which is
close to the assumption which is usually made to ensure that the discrete
maximum principle holds true. More precisely, denoting by ϕi the basis
functions of Vh, we assume that the matrix with coefficients Qij defined by

Qij =

∫

Ω

A∇ϕi∇ϕj dx

is a diagonally dominant matrix (hypothesis (1.17)). This allows us to prove
(Proposition 3.1) that the solution uh of (0.2) satisfies

α

∫

Ω

|∇Πh(Tk(uh))|2 dx ≤ k ‖f‖L1(Ω),

for every h and every k > 0. This is the main estimate of the present paper.
The assumption that Q is a diagonally dominant matrix is unfortunately

a restriction on the coercive matrices A with L∞(Ω) coefficients and on the
triangulations Th of Ω. In the case of Laplace’s operator, we recall in Section
6 the classical result (see e.g. P.G. Ciarlet & P.A. Raviart [9]) which asserts
that this condition is satisfied when every inner angle of every d-simplex of
the triangulations Th is acute. We also show in that Section that Q is a
diagonally dominant matrix for an adequate regular family of triangulations
when the matrix A is of the form

A(x) = a(x)C + E(x),

where

a ∈ L∞(Ω), a.e. x ∈ Ω, a(x) ≥ α > 0,

C is a symmetric coercive matrix with constant coefficients,

E ∈ L∞(Ω)d×d with ‖E‖L∞(Ω)d×d sufficiently small.
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In Section 5 we complete the main result of the present paper, namely the
convergence of uh to u in the sense of (0.4), by the error estimate (Theorem
5.1)

‖uh − u‖W 1,q
0 (Ω) ≤ C h2(1− 1

r
) ‖f‖Lr(Ω),

when d = 2 or d = 3, when f belongs to Lr(Ω) with 1 < r < 2 and when the
coefficients of the matrix A are smooth.

Some other error estimates have been obtained previously in similar set-
tings. L.R. Scott [23] derived error estimates for finite element approxima-
tions of general elliptic problems with singular data in norms of order lower
than the elliptic norms. In particular, when the datum is a Dirac distri-
bution in a plane domain, he proved an error of order h in the L2 norm.
Also S. Clain [10] obtained by duality arguments error estimates in frac-
tional Sobolev norms for the Laplace operator in a plane convex domain
with bounded Radon measure data.

In Section 4 we consider the case where f is a bounded Radon measure.
We prove that for a subsequence (still denoted by h) the unique solution uh

of (0.2) converges to a solution u of





∀ q with 1 ≤ q <
d

d− 1
, u ∈ W 1,q

0 (Ω),

∀ k > 0, Tk(u) ∈ H1
0 (Ω),

−div A∇u = f in D′(Ω),

(0.5)

in the following sense (compare with (0.4))

{
uh ⇀ u weakly in W 1,q

0 (Ω),

Πh (Tk(uh)) ⇀ Tk(u) weakly in H1
0 (Ω),

(0.6)

for every q with 1 ≤ q <
d

d− 1
and for every k > 0. In general it is not

known whether the solution of (0.5) is unique or not. When this solution is
unique (this is the case if ∂Ω is smooth and if d = 2 and/or if the coefficients
of the matrix A are smooth), the whole sequence converges. We therefore
obtain in this context a result which is similar to the result recently obtained
in dimension d = 2 by T. Gallouët & R. Herbin [17].
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Notation

In the present paper, Ω denotes an open bounded subset of Rd with d ≥ 2.
A particular case is the case where Ω is an open bounded polyhedron.

We use the notation Av w for the scalar product of the vector Av by the
vector w (which is often denoted by tw · Av).

For a measurable set S ⊂ Ω, we denote by |S| the measure of S, by Sc

the complement Ω\S of S, and by χs the characteristic function of S.

For 1 < p < +∞, we denote by W 1,p(Ω) the standard Sobolev space

W 1,p(Ω) = {u ∈ Lp(Ω) : ∇ u ∈ Lp(Ω)d},
equipped with the norm

‖u‖W 1,p(Ω) = (‖u‖p
Lp(Ω) + ‖∇u‖p

Lp(Ω)d)
1
p ,

and by W 1,p
0 (Ω) the closure in W 1,p(Ω) of C∞

c (Ω), the space of those C∞

functions whose support is contained in Ω. Since Ω is bounded, W 1,p
0 (Ω) will

be equipped with the equivalent norm

‖u‖W 1,p
0 (Ω) = ‖∇u‖Lp(Ω)d .

We denote by W−1,p′(Ω), with p′ =
p

p− 1
, the dual of W 1,p

0 (Ω), and when

p = 2, we denote as usual

H1(Ω) = W 1,2(Ω), H1
0 (Ω) = W 1,2

0 (Ω) and H−1(Ω) = W−1,2(Ω).

We denote by Mb(Ω) the space of Radon measures on Ω with total
bounded variation.

For every r with 1 < r < +∞, we denote by Lr,∞(Ω) the Marcinkiewicz
space whose norm is defined by

‖v‖Lr,∞(Ω) = sup
λ>0

λ |{x ∈ Ω : |v(x)| ≥ λ}| 1r . (0.7)

For every real number k > 0 we define the truncation Tk : R→ R by

Tk(s) =





s if |s| ≤ k,

k
s

|s| if |s| ≥ k.
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1 Setting of the problem and main result

We consider a matrix A such that

A ∈ L∞(Ω)d×d, (1.1)

a.e. x ∈ Ω, ∀ξ ∈ Rd, A(x)ξξ ≥ α|ξ|2, (1.2)

for some α > 0, and a right-hand side f such that

f ∈ L1(Ω). (1.3)

Let us recall the definition of the renormalized solution of the problem


−div A∇u = f in Ω,

u = 0 on ∂Ω.
(1.4)

Definition 1.1 A function u is a renormalized solution of (1.4) if u satisfies

u ∈ L1(Ω) , (1.5)

∀k > 0 , Tk(u) ∈ H1
0 (Ω) , (1.6)

lim
k→∞

1

k

∫

Ω

|∇Tk(u)|2 dx = 0 , (1.7)





∀k > 0, ∀S ∈ C1
c (R) with supp S ⊂ [−k, +k],

∀v ∈ H1
0 (Ω) ∩ L∞(Ω) ,∫

Ω

A∇Tk(u)∇ v S(u) dx +

∫

Ω

A∇Tk(u)∇Tk(u) S ′(u) v dx =

=

∫

Ω

f S(u) v dx .

(1.8)

In (1.8) every term makes sense since Tk(u) belongs to H1
0 (Ω). Equation

(1.8) is the correct way to write the result which is obtained formally when
using v S(u) as test function in (1.4).

It is easy to see that when f belongs to L1(Ω) ∩H−1(Ω), the usual weak
solution of (1.4), namely




u ∈ H1
0 (Ω),

∀v ∈ H1
0 (Ω),

∫

Ω

A∇u∇ v dx =

∫

Ω

f v dx,
(1.9)

is also a renormalized solution of (1.4) and conversely.
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The above definition of renormalized solution was introduced by
P.-L. Lions & F. Murat [19] (see also [21], [22], [11]). Two others defini-
tions of solutions, the entropy solution and the solution obtained as limit of
approximations, were introduced at the same time respectively by P. Bénilan,
L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre & J.L. Vazquez [2] and by
A. Dall’Aglio [12]. The three definitions can be proved to be equivalent (see
e.g. [11]), and they can actually be given for monotone operators acting
in W 1,p

0 (Ω). In the linear case considered in the present work, the three
definitions are also equivalent to the definition of solution by transposition
introduced in 1969 by G. Stampacchia [25] (see e.g. [11]).

The main interest of the definition of renormalized solution is the follow-
ing existence, uniqueness and continuity Theorem.

Theorem 1.2 Assume that A and f satisfy (1.1), (1.2) and (1.3). Then
there exists a renormalized solution of (1.4). This solution is unique. More-

over this unique solution belongs to W 1,q
0 (Ω) for every q with 1 ≤ q <

d

d− 1
.

It depends continuously on the right-hand side f in the following sense: if f ε

is a sequence which satisfies

f ε → f strongly in L1(Ω),

when ε tends to zero, then the sequence uε of the renormalized solutions of
(1.4) for the right-hand sides f ε satisfies for every k > 0 and for every q with

1 ≤ q <
d

d− 1
Tk(u

ε) → Tk(u) strongly in H1
0 (Ω),

uε → u strongly in W 1,q
0 (Ω),

when ε tends to zero, where u is the renormalized solution of (1.4) for the
right-hand side f . Finally, if f1 and f2 belong to L1(Ω), and if u1 and u2 are
the renormalized solutions of (1.4) for the right-hand sides f1 and f2, then
for every k > 0, the function Tk(u1 − u2) belongs to H1

0 (Ω) and for every q

with 1 ≤ q <
d

d− 1
one has

α‖Tk(u1 − u2)‖2
H1

0 (Ω) ≤ k ‖f1 − f2‖L1(Ω),

‖u1 − u2‖W 1,q
0 (Ω) ≤ C1(d, |Ω|, q) 1

α
‖f1 − f2‖L1(Ω), (1.10)

where the constant C1(d, |Ω|, q) only depends on d, |Ω| and q.
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Now we consider a family of triangulations Th satisfying for each h > 0
the following assumption:





the triangulation Th is made of a finite number
of closed d-simplices T (namely triangles when d = 2,
tetrahedra when d = 3, etc.) such that:

(i) Ωh = ∪{T : T ∈ Th} ⊂ Ω,

(ii) for every compact set K with K ⊂ Ω, there exists
h0(K) > 0 such that K ⊂ Ωh for every h with h < h0(K),

(iii) for T1 and T2 of Th with T1 6= T2, one has |T1 ∩ T2| = 0,

(iv) every face of every T of Th is either a subset of ∂Ωh,
or a face of another T ′ of Th.

(1.11)

Note that because of (iv) the triangulations are conforming. A particular
case is the case where Ω is a polyhedron of Rd, and where Ωh coincides with
Ω for every h.

The vertices of the d-simplices T of Th are denoted by ai. There are
interior and boundary vertices, namely vertices which belong to

◦
Ωh and ver-

tices which belong to ∂Ωh. We denote by I the set of indices corresponding
to interior vertices and by B the set of indices corresponding to boundary
vertices.

For every T ∈ Th, we denote by hT the diameter of T and by ρT the
diameter of the ball inscribed in T . We set

h = sup
T∈Th

hT , (1.12)

and we assume that h tends to zero. We also assume that the family of
triangulations Th is regular in the sense of P.G. Ciarlet [8], namely that there
exists a constant σ such that

∀h, ∀T ∈ Th,
hT

ρT

≤ σ. (1.13)

On every triangulation Th, we define the space Vh of those continuous
functions which are affine on each d-simplex of Th and which vanish on Ω\ ◦Ωh,
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namely

Vh = {vh ∈ C0(Ω) : vh = 0 in Ω\ ◦Ωh, ∀T ∈ Th, vh|T ∈ P1}. (1.14)

One has
Vh ⊂ H1

0 (Ω).

For every (interior or boundary) vertex ai of Th, i.e. for every i ∈ I ∪ B,
we define the function ϕi by





ϕi ∈ C0(Ωh), ϕi|T ∈ P1 for every T ∈ Th,

ϕi(ai) = 1, ϕi(aj) = 0 for every vertex aj of Th with aj 6= ai.

One has ∑
i∈I∪B

ϕi = 1 in Ωh. (1.15)

When ai is an interior vertex, i.e. when i ∈ I, then the function ϕi belongs
to H1

0 (
◦
Ωh), and extending ϕi by zero to Ω\ ◦Ωh, we obtain a function of Vh,

still denoted by ϕi. The functions ϕi, i ∈ I, are a basis of the space Vh.

We define the interpolation operator Πh by



∀v ∈ C0(Ω) with v = 0 in Ω\ ◦Ωh,

Πh(v) ∈ Vh, (Πh(v))(ai) = v(ai) for every vertex ai of Th,

or equivalently by

Πh(v) =
∑
i∈I

v(ai) ϕi.

For all interior vertices ai and aj of Th, i.e. for every i and j of I, we define
the real number

Qij =

∫

Ω

A∇ϕi∇ϕj dx; (1.16)

this defines an I × I matrix Q. The main assumption of the present paper
is that Q satisfies

∀i ∈ I, Qii −
∑
j∈I
j 6=i

|Qij| ≥ 0. (1.17)

In other words, Q is assumed to be a diagonally dominant matrix. This
assumption is close to the usual assumption which ensures that the discrete
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maximum principle holds true (see Remark 6.2 below). We present in Sec-
tion 6 some examples where assumption (1.17) is satisfied.

For every triangulation Th, we consider the solution uh of





uh ∈ Vh ,

∀vh ∈ Vh ,

∫

Ω

A∇uh∇ vh dx =

∫

Ω

f vh dx .
(1.18)

Note that the right-hand side of (1.18) makes sense since f belongs to L1(Ω)
and vh to Vh ⊂ L∞(Ω). The solution uh of (1.18) exists and is unique.

Our main result is the following.

Theorem 1.3 Assume that A, f and Th satisfy (1.1), (1.2), (1.3), (1.11),
(1.12), (1.13) and (1.17). Then the unique solution uh of (1.18) satisfies for

every k > 0 and for every q with 1 ≤ q <
d

d− 1

Πh (Tk(uh)) → Tk(u) strongly in H1
0 (Ω),

uh → u strongly in W 1,q
0 (Ω),

when h tends to zero, where u is the unique renormalized solution of (1.4).

This Theorem will be proved in Section 3, using the tools that we will
prepare in Section 2. In Section 4 we will give a variant of this result in the
case where f is a bounded Radon measure, and in Section 5 an error estimate
when d = 2 or d = 3, when f belongs to Lr(Ω) with 1 < r < 2 and when the
coefficients of the matrix A are smooth.

2 Tools

In this Section we prove various results which will be used in particular in
the proofs of Theorems 1.3 and 4.1.

The following result is a piecewise P1 variant of a result of L. Boccardo &
T. Gallouët [4], [5] (see also P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy,
M. Pierre & J.L. Vazquez [2]).
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Theorem 2.1 Assume that vh ∈ Vh satisfies

∀ k > 0,

∫

Ω

|∇Πh(Tk(vh))|2 dx ≤ k M, (2.1)

for some M > 0. Then, for every q with 1 ≤ q <
d

d− 1

‖vh‖W 1,q
0 (Ω) ≤ C2(d, |Ω|, q) M, (2.2)

where the constant C2(d, |Ω|, q) only depends on d, |Ω| and q.

Remark 2.2 When d ≥ 3, we will actually prove a result which is stronger
than (2.2), namely

‖vh‖
L

d
d−2

,∞
(Ω)
≤ C(d) M, (2.3)

‖∇ vh‖
L

d
d−1

,∞
(Ω)d

≤ C(d) M, (2.4)

for a constant C(d) which only depends on d, where Lr,∞(Ω) denotes the
Marcinkiewicz space whose norm is defined by (0.7). Indeed (2.4) and the
embedding inequality

∀ q, 1 ≤ q < r, ‖ψ‖Lq(Ω) ≤ C(q, r, |Ω|) ‖ψ‖Lr,∞(Ω) (2.5)

immediately imply (2.2).

The proof of Theorem 2.1 uses the following lemma.

Lemma 2.3 Let vh ∈ Vh and let k > 0. If for some T ∈ Th there exists y ∈ T
with |vh(y)| ≥ k, then there exists a d-simplex S ⊂ T with |S| = C(d) |T |
such that

∀x ∈ S, |ΠhTk(vh(x))| ≥ k

2
,

where the strictly positive constant C(d) only depends on d.

Proof. Consider T ∈ Th. In order to simplify the notation, in this proof
we denote by ai, i = 0, · · · , d, the vertices of T . Let λi, i = 0, · · · , d, be the
barycentric coordinates with respect to the ai’s. Recall that

∀i, j, i, j = 0, · · · , d, λi ∈ P1, λi(aj) = δij,

∀x ∈ Rd,

d∑
i=0

λi(x) = 1,
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and that T is characterized by

T = {x ∈ Rd : 0 ≤ λi(x) ≤ 1, i = 0, · · · , d}.

If vh is affine in T and if |vh(y)| ≥ k for some y ∈ T , there exists a vertex,
say a0, where |vh(a0)| ≥ k. We define S as

S = {x ∈ T : λ0(x) ≥ 3

4
}.

Then S is a d-simplex contained in T and similar to T .
Since the function Πh(Tk(vh)) is affine in T , it satisfies for every x ∈ T

Πh(Tk(vh))(x) =
d∑

i=0

λi(x) Πh(Tk(vh))(ai) =
d∑

i=0

λi(x) Tk(vh)(ai),

and therefore one has, for every x ∈ S

|Πh(Tk(vh))(x)| =
∣∣∣∣∣

d∑
i=0

λi(x) Tk(vh)(ai)

∣∣∣∣∣ ≥

≥ λ0(x)|Tk(vh)(a0)| −
d∑

i=1

λi(x)|Tk(vh)(ai)| ≥

≥ λ0(x) k −
d∑

i=1

λi(x) k = λ0(x) k − (1− λ0(x)) k ≥ k

2
.

It remains to estimate the measure of S. Let T̂ be the reference unit
d-simplex with vertices â0 = 0 and âi = ei, i = 1, · · · , d, where ei,
i = 1, · · · , d, is the canonical basis of Rd. Let FT be the invertible affine
mapping that maps T̂ onto T . Set Ŝ = F−1

T (S). It is easy to check that

Ŝ = {x̂ ∈ T̂ : λ̂0(x̂) ≥ 3

4
},

and that |S| = |Ŝ|
|T̂ | |T | = C(d) |T |, with C(d) =

|Ŝ|
|T̂ | a constant that depends

only on d. This proves the result.
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Proof of Theorem 2.1. Sobolev’s theorem asserts that

∀ v ∈ H1
0 (Ω), ‖v‖L2∗ (Ω) ≤ CS‖∇ v‖L2(Ω)d ,

where 2∗ =
2d

d− 2
if d ≥ 3 (and then CS only depends on d), and where 2∗ is

any real number with 1 ≤ 2∗ < +∞ if d = 2 (and then CS depends on |Ω|).
From this estimate and (2.1) we deduce that

∫

Ω

|Πh(Tk(vh))|2∗ dx ≤ C2∗
S

(∫

Ω

|∇Πh(Tk(vh))|2 dx

) 2∗
2

≤ C2∗
S (k M)

2∗
2 .

(2.6)
For k > 0, we define the set B(k) by

B(k) =
⋃
{T ∈ Th : ∃ y ∈ T with |vh(y)| ≥ k} .

From Lemma 2.3 we know that for every T ∈ Th, with T ⊂ B(k), there exists
S ⊂ T , with |S| = C(d) |T | and

∀x ∈ S, |Πh(Tk(vh))(x)| ≥ k

2
.

Therefore if T ⊂ B(k)

∫

T

|Πh(Tk(vh))|2∗ dx ≥
∫

S

|Πh(Tk(vh))|2∗ dx ≥
(

k

2

)2∗

|S| =
(

k

2

)2∗

C(d) |T |,

and so

|B(k)| =
∑

T⊂B(k)

|T | ≤
∑

T⊂B(k)

1

C(d)

(
k

2

)2∗

∫

T

|Πh(Tk(vh))|2∗ dx ≤

≤ 1

C(d)

(
k

2

)2∗

∫

Ω

|Πh(Tk(vh))|2∗ dx.

From (2.6) one deduces that

|B(k)| ≤ 1

C(d)

(
k

2

)2∗C
2∗
S (kM)

2∗
2 =

(2CS)2∗

C(d)

M
2∗
2

k
2∗
2

. (2.7)
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The inclusion {x ∈ Ω : |vh(x)| ≥ k} ⊂ B(k) and inequality (2.7) imply
that

k
2∗
2 |{x ∈ Ω : |vh(x)| ≥ k}| ≤ k

2∗
2 |B(k)| ≤ (2CS)2∗

C(d)
M

2∗
2 ,

which is exactly (2.3) when d ≥ 3, since
2∗

2
=

d

d− 2
.

For every λ > 0 and for every k > 0 one has

{x ∈ Ω : |∇ vh(x)| ≥ λ} =

= {x ∈ Ω : |∇ vh(x)| ≥ λ and x ∈ B(k)}∪
∪{x ∈ Ω : |∇ vh(x)| ≥ λ and x ∈ B(k)c},

and therefore



|{x ∈ Ω : |∇ vh(x)| ≥ λ}| ≤

≤ |B(k)|+ |{x ∈ Ω : |∇ vh(x)| ≥ λ and x ∈ B(k)c}|.
(2.8)

But B(k)c coincides, up to a set of measure zero, with the union of the d-
simplices T ∈ Th which are not contained in B(k). On such a T , one has
|vh(x)| ≤ k, and therefore Πh(Tk(vh))(x) = vh(x) and ∇Πh(Tk(vh))(x) =
∇ vh(x). Therefore

|{x ∈ Ω : |∇ vh(x)| ≥ λ and x ∈ B(k)c}| =
=|{x ∈ Ω : |∇Πh(Tk(vh))(x)| ≥ λ and x ∈ B(k)c}| ≤
≤|{x ∈ Ω : |∇Πh(Tk(vh))(x)| ≥ λ}| ≤ 1

λ2

∫

Ω

|∇Πh(Tk(vh))(x)|2dx.

Going back to (2.8) and using (2.7) and hypothesis (2.1), we have proved
that for every λ > 0 and every k > 0

|{x ∈ Ω : |∇ vh(x)| ≥ λ}| ≤ (2CS)2∗

C(d)

M
2∗
2

k
2∗
2

+
k M

λ2
.

Taking k = λ
4

2∗+2 M
2∗−2
2∗+2 we obtain

λ
2 2∗
2∗+2 |{x ∈ Ω : |∇ vh(x)| ≥ λ}| ≤

(
(2CS)2∗

C(d)
+ 1

)
M

2 2∗
2∗+2 .
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When d ≥ 3, since
2 2∗

2∗ + 2
=

d

d− 1
, this is exactly (2.4), which implies

(2.2) (see Remark 2.2). When d = 2, this is an estimate for |∇vh| in

L
2 2∗
2∗+2

,∞(Ω), where 2∗ is any finite number, and (2.2) follows from this es-
timate and from (2.5).

The next lemmas show that when vh satisfies (2.1), then Πh(Tk(vh)) and
Tk(vh) are close in measure.

Lemma 2.4 Let vh ∈ Vh. For every s and every k with 0 < s < k, the set
B(k, s) defined by

B(k, s) = ∪{T ∈ Th : ∃x ∈ T, ∃y ∈ T, |vh(x)| ≥ k, |vh(y)| ≤ s} (2.9)

satisfies

|B(k, s)| ≤ h2

(k − s)2

∫

Ω

|∇Πh(Tk(vh))|2dx. (2.10)

Proof. Consider T ∈ Th which is contained in B(k, s). Then there exist
two points x and y in T such that

|vh(x)| ≥ k and |vh(y)| ≤ s .

Since vh belongs to P1 in T , it attains its maximum and its minimum on
the vertices. Since −s ≤ vh(y) ≤ s, there are two cases:

(i) If vh(x) ≥ k, then there exist two vertices of T , say ai and aj, such that
vh(ai) ≥ k and vh(aj) ≤ s . Hence

Tk(vh(ai)) = k, Tk(vh(aj)) ≤ s and k − s ≤ Tk(vh(ai))− Tk(vh(aj)).

(ii) If vh(x) ≤ −k, then there exist two vertices of T , say ai and aj, such
that vh(ai) ≤ −k and vh(aj) ≥ −s . Hence

Tk(vh(ai)) = −k, Tk(vh(aj)) ≥ −s and k− s ≤ Tk(vh(aj))− Tk(vh(ai)).

Since the gradient of Πh(Tk(vh)) is a constant in T , we have in both cases
that

k − s ≤ |Tk(vh(ai))− Tk(vh(aj))| = |Πh(Tk(vh(ai)))− Πh(Tk(vh(aj)))| ≤
≤ |∇Πh(Tk(vh))| |ai − aj| ≤ |∇Πh(Tk(vh))|h.
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Therefore
∫

Ω

|∇Πh(Tk(vh))|2 dx ≥
∫

B(k,s)

|∇Πh(Tk(vh))|2 dx ≥ |B(k, s)|(k − s)2

h2
,

which proves (2.10).

Lemma 2.5 Let vh ∈ Vh. For every s and every k with 0 < s < k, one has

Ts(Πh(Tk(vh))) = Ts(vh) in B(k, s)c, (2.11)

and

∇Ts(Πh(Tk(vh))) = ∇Ts(vh) almost everywhere in B(k, s)c. (2.12)

Proof.
Assertion (2.12) immediately follows from (2.11): indeed, the functions

Ts(vh) and Ts(Πh(Tk(vh))) belong to H1(Ω), the set E = B(k, s)c is mea-
surable and one has ∇v = 0 a.e. in E for every v ∈ H1(Ω) and for every
measurable set E when v = 0 a.e. in E.

To prove (2.11) we fix x ∈ B(k, s)c. Let us consider a d-simplex T with
x ∈ T . There are five possibilities.

(i) If vh(x) ≥ k, then for every y ∈ T one has |vh(y)| > s. But actually
one has vh(y) > s, since if there exists y0 ∈ T with vh(y0) < −s, by continuity
there also exists y1 ∈ T with |vh(y1)| < s, a contradiction with |vh(y)| > s
for every y ∈ T . Hence for every y ∈ T

Ts(vh)(y) = s, Tk(vh)(y) > s, Πh(Tk(vh))(y) > s, Ts(Πh(Tk(vh)))(y) = s,

and therefore for every y ∈ T

Ts(Πh(Tk(vh)))(y) = Ts(vh)(y), (2.13)

which in particular holds for y = x.

(ii) If vh(x) ≤ −k, the proof is similar to (i).

(iii) If |vh(x)| ≤ s, then for every y ∈ T one has |vh(y)| < k, and therefore

Tk(vh)(y) = vh(y), Πh(Tk(vh))(y) = vh(y),
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Ts(Πh(Tk(vh)))(y) = Ts(vh)(y), (2.14)

which in particular holds for y = x.

(iv) If s < vh(x) < k, we consider some z ∈ T . If |vh(z)| ≥ k, we apply (i)
or (ii) and we obtain (2.13), which holds for every y ∈ T , and in particular
for y = x. If |vh(z)| ≤ s, we apply (iii) and we obtain (2.14), which holds for
every y ∈ T , and in particular for y = x.

It remains to consider the case where s < |vh(z)| < k for every z ∈ T .
As in case (i), by continuity one has actually s < vh(z) < k for every z ∈ T .
Then

Tk(vh)(z) = vh(z), Πh(Tk(vh))(z) = vh(z),

and therefore for every z ∈ T

Ts(Πh(Tk(vh)))(z) = Ts(vh)(z),

which in particular holds for z = x.

(v) If −k < vh(x) < −s, the proof is similar to (iv).

In view of (2.10), |B(k, s)| tends to zero when h tends to zero if estimate
(2.1) holds. The following result is therefore an immediate consequence of
Lemmas 2.5 and 2.4.

Proposition 2.6 Assume that vh ∈ Vh satisfies (2.1). Then for every s and
every k with 0 < s < k, one has

Ts(Πh(Tk(vh)))− Ts(vh) → 0 in measure, (2.15)

∇Ts(Πh(Tk(vh)))−∇Ts(vh) → 0 in measure, (2.16)

when h tends to zero.

We conclude this Section with an analogue in Vh of the fact that in the
continuous case, for every v ∈ H1

0 (Ω) and every k > 0, one has

A∇ (v − Tk(v))∇Tk(v) = 0 almost everywhere in Ω.

Proposition 2.7 Under assumption (1.17), one has for every vh ∈ Vh and
every k > 0

∫

Ω

A∇ (vh − Πh(Tk(vh)))∇Πh(Tk(vh)) dx ≥ 0. (2.17)
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Proof. Since

vh =
∑
i∈I

vh(ai) ϕi and Πh(Tk(vh)) =
∑
i∈I

Tk(vh)(ai) ϕi,

using the definition (1.16) of Qij, we have

∫

Ω

A∇ (vh − Πh(Tk(vh)))∇Πh(Tk(vh)) dx =

=
∑
i,j∈I

Qij (vh(ai)− Tk(vh(ai))) Tk(vh(aj)) =
∑
i∈I

Si,

where
Si = Qii (vh(ai)− Tk(vh(ai))) Tk(vh(ai))+

+
∑
j∈I
j 6=i

Qij (vh(ai)− Tk(vh(ai))) Tk(vh(aj)).

Fix i ∈ I. If |vh(ai)| ≤ k, then vh(ai) − Tk(vh(ai)) = 0 and Si = 0. If
|vh(ai)| > k, then

(vh(ai)− Tk(vh(ai))) Tk(vh(ai)) = |vh(ai)− Tk(vh(ai))| k.

Since |Tk(vh(aj)| ≤ k for every j, one has

Si ≥ Qii|vh(ai)− Tk(vh(ai))| k −
∑
j∈I
j 6=i

|Qij||vh(ai)− Tk(vh(ai))| k

= |vh(ai)− Tk(vh(ai))| k (Qii −
∑
j∈I
j 6=i

|Qij|) ≥ 0,

owing to hypothesis (1.17). This proves that

∀i ∈ I, Si ≥ 0,

and therefore (2.17), as desired.
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Remark 2.8 Proposition 2.7 asserts that condition (1.17) is a sufficient con-
dition for (2.17) to hold for every vh ∈ Vh. Actually (1.17) is also neces-
sary (and therefore necessary and sufficient) for (2.17) to hold true for every
vh ∈ Vh. Indeed, as seen in the above proof,

∫

Ω

A∇ (vh − Πh(Tk(vh)))∇Πh(Tk(vh)) dx =

=
∑
i,j∈I

Qij (vh(ai)− Tk(vh(ai))) Tk(vh(aj)) =

=
∑
i∈I

(
Qii (vh(ai)− Tk(vh(ai))) Tk(vh(ai))+

+
∑
j∈I
j 6=i

Qij (vh(ai)− Tk(vh(ai))) Tk(vh(aj))
)
.

Fixing i ∈ I and taking vh(ai) = k + 1 and vh(aj) = −k sgn(Qij) for ev-
ery j ∈ I, j 6= i, proves that (1.17) holds true when (2.17) holds for every
vh ∈ Vh.

3 Proof of Theorem 1.3

In this Section we prove Theorem 1.3.
We first obtain an a priori estimate on the solution uh of (1.18).

Proposition 3.1 Under the assumptions of Theorem 1.3, the solution uh of
(1.18) satisfies for every h > 0 and every k > 0

∫

Ω

A∇Πh(Tk(uh))∇Πh(Tk(uh)) dx ≤
∫

Ω

f Πh(Tk(uh)) dx. (3.1)

In particular, uh satisfies

α

∫

Ω

|∇Πh(Tk(uh))|2 dx ≤ k ‖f‖L1(Ω). (3.2)
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Proof. Since Tk(uh) is continuous, the function Πh(Tk(uh)) belongs to Vh.
Using this function as test function in (1.18) we have

∫

Ω

A∇uh∇Πh(Tk(uh)) dx =

∫

Ω

f Πh(Tk(uh)) dx.

On the other hand, Proposition 2.7 shows that

∫

Ω

A∇ (uh − Πh(Tk(uh)))∇Πh(Tk(uh)) dx ≥ 0.

This immediately implies (3.1). From (3.1) and from the coercivity (1.2) of
A one deduces (3.2).

Estimate (3.2) is the main estimate of the present paper. By Theorem

2.1, it implies that uh is bounded in W 1,q
0 (Ω) for every q with 1 ≤ q <

d

d− 1
.

We now prove the strong convergence of uh in this space.

Theorem 3.2 Under the assumptions of Theorem 1.3, the solution uh of

(1.18) satisfies for every q with 1 ≤ q <
d

d− 1

uh → u strongly in W 1,q
0 (Ω), (3.3)

when h tends to zero, where u is the unique renormalized solution of (1.4).

Proof. Consider a sequence f ε of functions such that

f ε ∈ L2(Ω), f ε → f strongly in L1(Ω).

Such a sequence is easily obtained by taking for example f ε = T 1
ε
(f). Let

uε
h be the unique solution of (1.18) for the right-hand side f ε. Then uh − uε

h

satisfies




uh − uε
h ∈ Vh,

∀vh ∈ Vh,

∫

Ω

A∇ (uh − uε
h)∇ vh dx =

∫

Ω

(f − f ε) vh dx.
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Applying estimate (3.2) to this problem, we obtain for every k > 0, every
h > 0 and every ε > 0

α

∫

Ω

|∇Πh(Tk(uh − uε
h))|2 dx ≤ k ‖f − f ε‖L1(Ω),

which implies by Theorem 2.1 that for every q with 1 ≤ q <
d

d− 1
, every

h > 0 and every ε > 0

‖uh − uε
h‖W 1,q

0 (Ω) ≤ C2(d, |Ω|, q) 1

α
‖f − f ε‖L1(Ω). (3.4)

On the other hand, since f ε ∈ L2(Ω) and since the family of triangulations
Th satisfies (1.11), (1.12) and (1.13), it is well known that for every fixed ε

uε
h → uε strongly in H1

0 (Ω), (3.5)

when h tends to zero, where uε is the unique solution of




uε ∈ H1
0 (Ω),

−div A∇uε = f ε in D′(Ω).
(3.6)

Finally, the function uε, which is the unique weak solution of (3.6), is also
the unique renormalized solution in the sense of Definition 1.1 of the problem




−div A∇uε = f ε in Ω,

uε = 0 on ∂Ω.
(3.7)

By the estimate (1.10) we have

‖uε − u‖W 1,q
0 (Ω) ≤ C1(d, |Ω|, q) 1

α
‖f ε − f‖L1(Ω), (3.8)

for every q with 1 ≤ q <
d

d− 1
, where u is the unique renormalized solution

of (1.4).

Writing now

‖uh − u‖W 1,q
0 (Ω) ≤ ‖uh − uε

h‖W 1,q
0 (Ω) + ‖uε

h − uε‖W 1,q
0 (Ω) + ‖uε − u‖W 1,q

0 (Ω),
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and using (3.4), (3.5) and (3.8), we have proved that for every ε > 0 and

every q with 1 ≤ q <
d

d− 1

lim sup
h→0

‖uh − u‖W 1,q
0 (Ω) ≤

(
C1(d, |Ω|, q) + C2(d, |Ω|, q)

) 1

α
‖f ε − f‖L1(Ω).

Taking the limit when ε tends to zero proves (3.3).

To complete the proof of Theorem 1.3, it remains to prove that Πh(Tk(uh))
converges strongly to Tk(u) in H1

0 (Ω). This is done in the following result.

Proposition 3.3 Under the assumptions of Theorem 1.3, the solution uh of
(1.18) satisfies for every k > 0

Πh(Tk(uh)) → Tk(u) strongly in H1
0 (Ω), (3.9)

when h tends to zero.

Proof. Fix k > 0. In view of estimate (3.2), we can extract a subsequence
(which depends on k and is still denoted by h) such that for some wk ∈ H1

0 (Ω)

Πh(Tk(uh)) ⇀ wk weakly in H1
0 (Ω), (3.10)

when h tends to zero. By estimate (3.2) and Proposition 2.6, uh satisfies
(2.15), namely

Ts(Πh(Tk(uh)))− Ts(uh) → 0 in measure,

when h tends to zero, for every s with 0 < s < k. The convergence (3.10),
the convergence (3.3), the Rellich-Kondrashov’s compactness theorem and
the continuity of the function Ts prove that

Ts(wk) = Ts(u),

for every s with 0 < s < k. Passing to the limit when s tends to k, we obtain
Tk(wk) = Tk(u). But since |Πh(Tk(uh))| ≤ k, the convergence (3.10) implies
that |wk(x)| ≤ k, hence Tk(wk) = wk. This yields wk = Tk(u), and since the
limit does not depend on the subsequence, we have proved that

Πh(Tk(uh)) ⇀ Tk(u) weakly in H1
0 (Ω), (3.11)

when h tends to zero without extracting a subsequence.
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Let us now prove that this convergence is strong.
Lebesgue’s dominated convergence theorem combined with

|f Πh(Tk(uh))| ≤ |f | k ∈ L1(Ω),

with the weak convergence (3.11) and with Rellich-Kondrashov’s compact-
ness theorem implies that

∫

Ω

f Πh(Tk(uh)) dx →
∫

Ω

f Tk(u) dx.

Therefore passing to the limit with respect to h in (3.1) yields

lim sup
h→0

∫

Ω

A∇Πh(Tk(uh))∇Πh(Tk(uh)) dx ≤
∫

Ω

f Tk(u) dx. (3.12)

On the other hand, since u is the renormalized solution of (1.4), it is well
known that one has

∫

Ω

A∇Tk(u)∇Tk(u) dx =

∫

Ω

f Tk(u) dx , (3.13)

but let us give a proof of (3.13) for completeness.
Take S = ψn in (1.8), where

∀s ∈ R, ψn(s) = ψ
( s

n

)
,

with ψ ∈ C1(R) a fixed function such that

ψ(s) = 1 if |s| ≤ 1

2
, ψ(s) = 0 if |s| ≥ 1.

Since supp ψn ⊂ [−n, +n], (1.8) reads as
∫

Ω

A∇Tn(u)∇v ψn(u) dx+

∫

Ω

A∇Tn(u)∇Tn(u) ψ′n(u) v dx =

∫

Ω

f ψn(u) v dx,

where we take v = Tk(u), that belongs to H1
0 (Ω) ∩ L∞(Ω). We obtain

∫

Ω

A∇Tn(u)∇Tk(u) ψn(u) dx +

∫

Ω

A∇Tn(u)∇Tn(u) ψ′n(u) Tk(u) dx =

=

∫

Ω

f ψn(u) Tk(u) dx.

24



Since ∇Tk(u) = 0 when |u(x)| ≥ k, we observe that

A∇Tn(u)∇Tk(u) ψn(u) = A∇Tk(u)∇Tk(u),

when n ≥ 2k. On the other hand, since |ψ′n| ≤
‖ψ′‖L∞(R)

n
, one has

∣∣∣∣
∫

Ω

A∇Tn(u)∇Tn(u) ψ′n(u) Tk(u) dx

∣∣∣∣ ≤ ‖A‖L∞(Ω)d×d

‖ψ′‖L∞(R)

n
k

∫

Ω

|∇Tn(u)|2 dx,

where the right-hand side tends to zero when n tends to infinity owing to
(1.7). Finally by Lebesgue’s dominated convergence theorem

∫

Ω

f ψn(u) Tk(u) dx →
∫

Ω

f Tk(u) dx,

when n tends to infinity. This proves (3.13).
From (3.12) and (3.13) we deduce that

lim sup
h→0

∫

Ω

A∇Πh(Tk(uh))∇Πh(Tk(uh)) dx ≤
∫

Ω

A∇Tk(u)∇Tk(u) dx,

which combined with the weak convergence (3.11) implies the strong conver-
gence (3.9).

4 The case where f is a bounded Radon mea-

sure

In this Section we consider the case where f no longer belongs to L1(Ω),
but belongs to Mb(Ω), the space of Radon measures with total bounded
variation. We obtain results which are weaker than in the case where f
belongs to L1(Ω), but which are still satisfactory in dimension d = 2 and/or
when the coefficients of the matrix A are smooth.

In this Section we assume that

f ∈Mb(Ω). (4.1)

Then, since Vh is contained in C0(Ω), uh is still correctly defined by (1.18).
Moreover, the statement and the proof of Proposition 3.1 remain valid with
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f ∈ L1(Ω) replaced by f ∈ Mb(Ω), the measure f dx replaced by df in
(3.1) and ‖f‖L1(Ω) replaced by ‖f‖Mb(Ω) in (3.2). With these modifications
estimate (3.2) is satisfied, and therefore by Theorem 2.1, uh is bounded in

W 1,q
0 (Ω) for every q with 1 ≤ q <

d

d− 1
. So there exist some u and some

subsequence, still denoted by h, such that for every q with 1 ≤ q <
d

d− 1

uh ⇀ u weakly in W 1,q
0 (Ω), (4.2)

when h tends to zero along this subsequence.

Let v ∈ C∞
c (Ω). Taking vh = Πh(v) in (1.18) yields

∫

Ω

A∇uh∇Πh(v) dx =

∫

Ω

Πh(v) df,

in which it is easy to pass to the limit when h tends to zero owing to (4.2)
and to the fact that for v ∈ C∞

c (Ω)

Πh(v) → v strongly in W 1,∞(Ω).

Moreover the first part of the proof of Proposition 3.3 remains valid (the
fact that uh is bounded in W 1,q

0 (Ω) is sufficient to obtain wk = Tk(u)) and
implies that for every k > 0 one has

Πh(Tk(uh)) ⇀ Tk(u) weakly in H1
0 (Ω),

when h tends to zero along the subsequence for which (4.2) holds.

We have proved the following Theorem.

Theorem 4.1 Assume that A, Th and f satisfy (1.1), (1.2), (1.11), (1.12),
(1.13), (1.17) and (4.1). Then there exist a subsequence, still denoted by h,

and a function u such that for every k > 0 and for every q with 1 ≤ q <
d

d− 1
one has

Πh(Tk(uh)) ⇀ Tk(u) weakly in H1
0 (Ω), (4.3)

uh ⇀ u weakly in W 1,q
0 (Ω), (4.4)

when h tends to zero along this subsequence, where u satisfies

∀k > 0, Tk(u) ∈ H1
0 (Ω), (4.5)
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∀q with 1 ≤ q <
d

d− 1
, u ∈ W 1,q

0 (Ω), (4.6)

∀ v ∈ C∞
c (Ω),

∫

Ω

A∇u∇ v dx =

∫

Ω

v df. (4.7)

In (4.7), one can also by density take v ∈ W 1,p
0 (Ω) for every p with p > d.

Let us discuss the assumptions and the results of Theorem 4.1. The
hypotheses of this theorem are weaker than those of Theorem 1.3, since f
is assumed to belong to Mb(Ω) and not to L1(Ω). But the conclusions
also are weaker, since convergences (4.3) and (4.4) are weak and not strong
convergences, and since they take place only for a subsequence. Indeed,
when A and/or ∂Ω are not smooth, it is not clear whether the solution of
(4.5), (4.6), (4.7) is unique or not. This is the main reason why renormalized
solutions, entropy solutions and solutions obtained as limit of approximations
were introduced when f ∈ L1(Ω). In particular, a counterexample due to
J. Serrin [24] shows that for every q with 1 ≤ q < 2, one can exhibit a coercive
matrix Aq with coefficients in L∞(Ω) and some function uq 6= 0 such that

{
uq ∈ W 1,q

0 (Ω),

−div Aq ∇uq = 0 in D′(Ω).
(4.8)

Note however that in this counterexample q is fixed and that uq does not
satisfy Tk(uq) ∈ H1

0 (Ω) for every k > 0. Observe also that P. Bénilan &
F. Bouhsiss [3] showed that for the specific matrix Aq of this counterexample,
every solution of (4.8) which also satisfies Tk(uq) ∈ H1

0 (Ω) for every k > 0 is
zero (this does not prove the uniqueness of the solution of (4.5), (4.6), (4.7),
but it is a first step in this direction).

However there are cases where the solution of (4.5), (4.6), (4.7) is known to
be unique, and in such cases the whole sequences (and not just subsequences)
converge in (4.3) and (4.4) (this is clear since then the limit u is uniquely
determined independently of the subsequence). On the first hand, when A
has sufficiently smooth coefficients and when ∂Ω is sufficiently smooth, the
operator u → −div A∇u is an isomorphism from W 1,q

0 (Ω) onto W−1,q(Ω)
for every q with 1 < q < +∞. Therefore, in this case the solution of (4.6),
(4.7) is unique. On the other hand, the two dimensional case presents some
special feature. Indeed, in view of Meyer’s regularity theorem [20], when ∂Ω
is sufficiently smooth, the operator u → −div A∇u is an isomorphism from

27

https://www.researchgate.net/publication/242998194_Une_remarque_sur_l'unicite_des_solutions_pour_l'operateur_de_Serrin?el=1_x_8&enrichId=rgreq-ddde0051fc5d8a225acabc981e460d82-XXX&enrichSource=Y292ZXJQYWdlOzI0Mjk0NDE3NDtBUzoxNDI2NjAxNzQwOTQzMzZAMTQxMTAyNDI0NDE5OQ==
https://www.researchgate.net/publication/245328785_An_IP-estimate_for_the_gradient_of_solutions_of_second_order_elliptic_divergence_equations?el=1_x_8&enrichId=rgreq-ddde0051fc5d8a225acabc981e460d82-XXX&enrichSource=Y292ZXJQYWdlOzI0Mjk0NDE3NDtBUzoxNDI2NjAxNzQwOTQzMzZAMTQxMTAyNDI0NDE5OQ==
https://www.researchgate.net/publication/265367254_Pathological_Solutions_of_Elliptic_Differential_Equations?el=1_x_8&enrichId=rgreq-ddde0051fc5d8a225acabc981e460d82-XXX&enrichSource=Y292ZXJQYWdlOzI0Mjk0NDE3NDtBUzoxNDI2NjAxNzQwOTQzMzZAMTQxMTAyNDI0NDE5OQ==


W 1,q
0 (Ω) onto W−1,q(Ω) for every q with 2− δ < q < 2 + δ, where δ > 0 only

depends on the dimension d, on the open set Ω, on the coercivity coefficient α
of the matrix A and on ‖A‖L∞(Ω)d×d . Therefore since in the two dimensional

case q <
d

d− 1
reads as q < 2, the solution of (4.6), (4.7) is unique when ∂Ω

is sufficiently smooth.

In the two dimensional case, for Laplace’s operator with a bounded Radon
measure right-hand side, the weak convergence (4.4) of the solution of (1.18)
to the (unique) solution of (4.6), (4.7) has recently been established by
T. Gallouët & R. Herbin [17] by a proof based on the similarity between P1

finite elements and finite volume schemes and on one of their previous results
[16] (see also [14]). The weak convergence (4.4) could also be proved by us-
ing the W 1,p-estimates of S.C. Brenner & L.R. Scott [6] in the two following
cases: the case where d = 2 and where the matrix A is a general coercive
matrix with L∞(Ω) coefficients, and the case where d = 3 and where the
matrix A has smooth coefficients ; note that these estimates are established
under the assumption that the family of triangulations is quasi-uniform in
the sense of [6].

Let us finally return to the result of Theorem 4.1, which is unsatisfactory
for a general coercive matrix A with L∞(Ω) coefficients but which has the
advantage that its proof is self-contained. If we appeal to the very powerful
result of N.E. Aguilera & L.A. Caffarelli [1] (we chose not to do so up to
now in order to keep our results self-contained), we can obtain a much more
complete result, namely the fact that in Theorem 4.1, the function u is the
unique solution by transposition of problem (1.4). Indeed N.E. Aguilera &
L.A. Caffarelli [1] claim that for a coercive matrix A with L∞(Ω) coefficients
(the result is only proved for Laplace’s operator in [1]), when g ∈ W−1,p(Ω)
for some p > d and when ∂Ω is sufficiently smooth, the solution wh of





wh ∈ Vh ,

∀vh ∈ Vh ,

∫

Ω

tA∇wh∇ vh dx = < g, vh >,
(4.9)

satisfies
wh → w in C0,α(Ω), (4.10)
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for some α > 0 which depends only on the data of the problem, where w is
the unique solution of





w ∈ H1
0 (Ω),

− div tA∇w = g in D′(Ω).
(4.11)

This is the discrete analogue of De Giorgi’s regularity theorem. In the setting
of Theorem 4.1, we have, taking vh = wh in (1.18) (with f dx replaced by df)
and vh = uh in (4.9)

∫

Ω

wh df =

∫

Ω

A∇uh∇wh dx =

∫

Ω

tA∇wh∇uh dx = < g, uh >,

in which it is now easy to pass to the limit in view of (4.10) and of (4.4).
This yields

< g, u > =

∫

Ω

w df, (4.12)

for every g ∈ W−1,p(Ω) with p > d, where w is the solution of (4.11). Equa-
tion (4.12) is nothing but Stampacchia’s definition of the solution by trans-
position of equation (1.4) (see [25]). Recall that this solution is unique.
Using N.E. Aguilera & L.A. Caffarelli’s result, we have thus proved that the
function u defined in Theorem 4.1 is the unique solution by transposition
of problem (1.4), which implies that the whole sequences converge in (4.3)
and (4.4). This result is much stronger than Theorem 4.1, whose proof is in
contrast self-contained.

5 Error estimate

When f belongs to L1(Ω), Theorem 1.3 proves the convergence of the finite
element method, but it does not provide any error estimate. In this Section
we prove that when Ω and the coefficients of A are sufficiently smooth, and
when f belongs to Lr(Ω) (or to the Marcinkiewicz space Lr,∞(Ω)) with r > 1,
then the argument used in the proof of Theorem 3.2 also provides an error
estimate in dimension 2 and 3.

To simplify the presentation, we assume in this Section that either d = 2
or d = 3, that Ω is a convex polyhedron, that Ωh = Ω for every h > 0,
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and that the coefficients of A belong to W 1,∞(Ω). In this case, it is well
known that for every g ∈ L2(Ω) the unique solution wh of problem (1.18)
with right-hand side g satisfies

‖wh − w‖H1
0 (Ω) ≤ C h ‖g‖L2(Ω), (5.1)

where w is the unique weak solution of problem (1.9) with right-hand side
g, and where the constant C > 0 is independent of h and g (but depends on
Ω, α, ‖A‖W 1,∞(Ω)d×d and on the parameter σ which measures the regularity
of the family of triangulations, see (1.13)).

We also assume in this Section that f belongs to the Marcinkiewicz space
Lr,∞(Ω) for some r with 1 < r < 2 (this holds in particular if f belongs to
Lr(Ω)). For every ε > 0, we set

f ε = T 1
ε
(f),

which belongs to L∞(Ω) ⊂ L2(Ω), and we denote by uε
h the solution of (1.18)

with right-hand side f ε. Defining also uε as the solution of (3.6), we write

for every q with 1 ≤ q <
d

d− 1

‖uh−u‖W 1,q
0 (Ω) ≤ ‖uh−uε

h‖W 1,q
0 (Ω) +‖uε

h−uε‖W 1,q
0 (Ω) +‖uε−u‖W 1,q

0 (Ω). (5.2)

From (5.1) applied to g = f ε, wh = uε
h and w = uε, and from the continu-

ous imbedding of H1
0 (Ω) in W 1,q

0 (Ω), we have for a new constant C (which
depends on q, Ω, α, ‖A‖W 1,∞(Ω)d×d and σ)

‖uε
h − uε‖W 1,q

0 (Ω) ≤ C h ‖f ε‖L2(Ω).

Using then (3.4) and (3.8), we deduce that for a new constant C, which is
independent of ε, h and f (but depends on d, q, Ω, α, ‖A‖W 1,∞(Ω)d×d and σ),
one has

‖uh − u‖W 1,q
0 (Ω) ≤ C

(‖f − f ε‖L1(Ω) + h ‖f ε‖L2(Ω)

)
. (5.3)

We now estimate the right-hand side of this inequality by using the coarea
formula, namely

‖g‖p
Lp(Ω) = p

∫ +∞

0

tp−1 |{x ∈ Ω : |g(x)| ≥ t}| dt,
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which gives





‖f − f ε‖L1(Ω) =

∫ +∞

0

|{x ∈ Ω : |f(x)− T 1
ε
(f)(x)| ≥ t}| dt =

=

∫ +∞

0

|{x ∈ Ω : (|f(x)| − 1

ε
) ≥ t}| dt =

=

∫ +∞

1
ε

|{x ∈ Ω : |f(x)| ≥ t}| dt,

(5.4)





‖f ε‖2
L2(Ω) = 2

∫ +∞

0

t |{x ∈ Ω : |T 1
ε
(f)(x)| ≥ t}| dt =

= 2

∫ 1
ε

0

t |{x ∈ Ω : |f(x)| ≥ t}| dt.

(5.5)

By the definition (0.7) of the norm in the Marcinkiewicz space Lr,∞(Ω), we
have

|{x ∈ Ω : |f(x)| ≥ t}| ≤ min

{
|Ω|,

‖f‖r
Lr,∞(Ω)

tr

}
,

and thus 



‖f − f ε‖L1(Ω) ≤ 1

r − 1
εr−1 ‖f‖r

Lr,∞(Ω),

‖f ε‖L2(Ω) ≤
√

2

2− r

1

ε1− r
2

‖f‖
r
2

Lr,∞(Ω).

(5.6)

Then (5.3) gives

‖uh − u‖W 1,q
0 (Ω) ≤ C

(
1

r − 1
εr−1 ‖f‖r

Lr,∞(Ω) +

√
2

2− r

h

ε1− r
2

‖f‖
r
2

Lr,∞(Ω)

)
.

Taking in this inequality ε =
h

2
r

‖f‖Lr,∞(Ω)

yields, for every q with 1 ≤ q <

<
d

d− 1
and for every h > 0

‖uh − u‖W 1,q
0 (Ω) ≤ C(d, q, r, Ω, α, ‖A‖W 1,∞(Ω)d×d , σ) h2(1− 1

r
) ‖f‖Lr,∞(Ω). (5.7)

We have proved the following result.
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Theorem 5.1 Under the assumptions of Theorem 1.3, if we further assume
that either d = 2 or d = 3, that f ∈ Lr,∞(Ω) for some r with 1 < r < 2, that
Ω is a convex polyhedron, that Ωh = Ω and that the coefficients of the matrix
A belong to W 1,∞(Ω), then we have the error estimate (5.7).

To the best of our knowledge, this estimate is new in the case where r
is close to 1, but also in the case where Lr(Ω) ⊂ H−1(Ω). Indeed when r is

such that Lr(Ω) ⊂ H−1(Ω), i.e. when r > 1 if d = 2 or when r ≥ 6

5
if d = 3,

one can interpolate between the estimate (5.1) for g ∈ L2(Ω) and the easy
estimate for g ∈ H−1(Ω)

‖wh − w‖H1
0 (Ω) ≤ ‖wh‖H1

0 (Ω) + ‖w‖H1
0 (Ω) ≤

2

α
‖g‖H−1(Ω).

This interpolation yields

‖wh − w‖H1
0 (Ω) ≤ Cδ h2(1− 1

r
)−δ ‖g‖Lr(Ω) for every δ > 0 if d = 2,

‖wh − w‖H1
0 (Ω) ≤ C h3( 5

6
− 1

r
) ‖g‖Lr(Ω) if d = 3.

If one compares this interpolation estimate with (5.7), the order of conver-
gence is higher in (5.7) but the norm under consideration is weaker since the
space W 1,q

0 (Ω) is larger than H1
0 (Ω).

To conclude this Section let us recall two error estimates obtained in a
setting different of (but related to) the present one. In dimension d = 2 for
Laplace’s equation and f a Dirac mass, L.R. Scott [23] proved that for a
quasi-uniform family of triangulations

‖uh − u‖L2(Ω) ≤ Ch,

while in the same setting, when f is a bounded Radon measure, S. Clain [10]
proved that

‖uh − u‖W 1,p
0 (Ω) ≤ C hs‖µ‖Mb(Ω),

for every s with 0 < s < 1 and every p with 1 < p <
2

1 + s
. These estimates

are neither stronger nor weaker than (5.7).
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6 Examples of triangulations and matrices

In this Section, we present examples of families of triangulations and of matri-
ces for which all the assumptions of Theorem 1.3, namely (1.1), (1.2), (1.11),
(1.12), (1.13) and (1.17), are satisfied. After some general considerations
(which are standard), we successively consider the case where the matrix A
is the identity, the case of a coercive matrix with constant coefficients, the
case where A is the product of a coercive matrix with constant coefficients
by a scalar function, and finally a pertubation of the last case.

6.1 General considerations

For every d-simplex T of Th and for every vertex ai of T , we denote in this
Section by Fi the face opposite to ai and by ni the exterior (to the d-simplex
T ) unit normal to the face Fi.

Our results are based on the following Proposition, whose proof is a
straightforward adaptation of a classical result (for Laplace’s operator see
e.g. A. Drăgănescu, T.F. Dupont and L.R. Scott [13] and the references
therein).

Proposition 6.1 Assume that the matrix A satisfies (1.1) and (1.2). If the
triangulation Th is such that for every T ∈ Th





∀i ∈ I, ∀j ∈ I ∪B, j 6= i,

∑
T∈Th

ai,aj∈T

1

d2

|Fi| |Fj|
|T |2

(∫

T

Adx

)
ni nj ≤ 0,

(6.1)

then (1.17) is satisfied. In particular, if for every interior vertex ai and every
(interior or boundary) vertex aj of T with aj 6= ai, i.e. for every i ∈ I and
j ∈ I ∪B with j 6= i, one has

(∫

T

Adx

)
ni nj ≤ 0, (6.2)

then (1.17) is satisfied.
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Proof. We give it here for the reader’s convenience.
For this proof we extend the definition (1.16) of Qij, which was given only

for i and j in I, to the case where i and j belong to I ∪B by setting

∀ i, j ∈ I ∪B, Qij =

∫

Ωh

A∇ϕi∇ϕj dx.

(In (1.16) we did not define Qij for i and/or j in B since these values are not
required in the statement of hypothesis (1.17); these new Qij coincide with
the Qij defined by (1.16) when i and j belong to I.)

First step. Since
∑

j∈I∪B

ϕj(x) = 1 in Ωh (see (1.15), one has

∑
j∈I∪B

∇ϕj(x) = 0 in Ωh.

For every i ∈ I ∪B this implies that

∑
j∈I∪B

Qij =

∫

Ωh

A∇ϕi

∑
j∈I∪B

∇ϕj dx = 0,

and therefore for every i ∈ I

0 =
∑

j∈I∪B

Qij = Qii +
∑
j∈I
j 6=i

Qij +
∑
j∈B

Qij. (6.3)

Observe that for i = j ∈ I, one has

Qii =

∫

Ωh

A∇ϕi∇ϕi dx ≥ 0.

If we assume that

∀i ∈ I, ∀j ∈ I ∪B, j 6= i, Qij ≤ 0, (6.4)

then one has Qij = −|Qij| for every i ∈ I and every j ∈ I ∪ B with j 6= i.
Therefore, for every i ∈ I

Qii −
∑
j∈I
j 6=i

|Qij| = Qii +
∑
j∈I
j 6=i

Qij = −
∑
j∈B

Qij =
∑
j∈B

|Qij| ≥ 0,
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which proves that the matrix Q satisfies (1.17) when (6.4) holds.

Second step. Let T be a d-simplex of Th. When ai is a vertex of T , one
has

∇ϕi = −1

d

|Fi|
|T | ni in T ;

indeed ϕi = 0 on Fi, and so ∇ϕi is orthogonal to Fi ; since ϕi(ai) = 1,

∇ϕi = − 1

hi

ni, where hi is the distance of ai to the hyperplane which contains

Fi ; finally |T | = 1

d
|Fi|hi. Therefore, when both ai and aj are vertices of T ,

one has ∫

T

A∇ϕi∇ϕj dx =
1

d2

|Fi| |Fj|
|T |2

(∫

T

Adx

)
ni nj. (6.5)

On the other hand, when ai and/or aj is not a vertex of T , then ϕi and/or
ϕj is zero on T , and then

∫

T

A∇ϕi∇ϕj dx = 0.

This implies that for every i and j in I ∪B, one has





Qij =

∫

Ωh

A∇ϕi∇ϕj dx =
∑
T∈Th

ai,aj∈T

∫

T

A∇ϕi∇ϕj dx =

=
∑
T∈Th

ai,aj∈T

1

d2

|Fi| |Fj|
|T |2

(∫

T

Adx

)
ni nj.

(6.6)

Third step. In view of (6.6), assumption (6.1) is nothing but (6.4) and
the first result of Proposition 6.1 follows from the first step above. On the
other hand, hypothesis (6.2) immediately implies that (6.1) holds true, which
proves the second result of Proposition 6.1.

Remark 6.2 The first step of the above proof establishes that (6.4) implies
(1.17). Actually condition (6.4), i.e. Qij ≤ 0 for j 6= i, is also necessary for
(1.17) to hold, at least as far as “strictly interior vertices” are concerned.
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Let us indeed define the strictly interior vertices as those vertices ai for
which, for every d-simplex T ∈ Th with ai ∈ T , all the vertices of T are
interior vertices. Since Qij = 0 when j 6= i and when ai and aj do not belong
to a same d-simplex T , one has Qij = 0 for every j ∈ B when ai is a strictly
interior vertex; then (6.3) reads as

0 = Qii +
∑
j∈I
j 6=i

Qij.

But Qij ≥ −|Qij| for every j 6= i and therefore one has

Qii −
∑
j∈I
j 6=i

|Qij| ≤ 0,

when ai is a strictly interior vertex. If (1.17) holds true, we necessarily have
for every strictly interior vertex ai

Qii −
∑
j∈I
j 6=i

|Qij| = 0,

and therefore Qij = −|Qij|, i.e. Qij ≤ 0 for every j 6= i when ai is a strictly
interior vertex.

We have therefore proved that condition (6.4) is a sufficient condition for
(1.17) to hold, and that this condition is necessary and sufficient when ai is
a strictly interior vertex. Let us finally note that (6.1) is equivalent to (6.4),
but that (6.2) is only a sufficient condition for (6.1) to hold.

Let us now present some examples of matrices A and of regular families
of triangulations Th for which assumption (1.17) is satisfied.

6.2 The case where A is the identity matrix

Consider first the case where the matrix A is the identity Id, i.e. where
the operator is Laplace’s operator −∆. Then condition (6.2), which implies
(1.17), is satisfied if and only if

∀i ∈ I, ∀j ∈ I ∪B with j 6= i, ni nj ≤ 0. (6.7)
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In the two dimensional case, (6.7) is satisfied if every inner angle of every
triangle is acute, i.e. not larger than π/2. In the three dimensional case,
(6.7) is satisfied if every inner dihedral angle of every tetrahedron is acute.
When d ≥ 4, we will say that the inner angles are acute if ni nj ≤ 0.

We have proved the following well-known result.

Proposition 6.3 In the d-dimensional case, (1.17) holds for Laplace’s op-
erator if every inner angle of every d-simplex of Th is acute, i.e. if (6.7)
holds.

An example of family of triangulations which enjoys all the properties
required in Section 1 for Laplace’s operator is therefore obtained by triangu-
lating Rd by a regular family of triangulations with acute inner angles, and
by taking for Th the union of the d-simplices T which satisfy T ⊂ Ω.

For d = 2, one such family of triangulations is obtained by covering R2 by
squares of vertices (ih, jh) with i, j ∈ Z, and then by subdividing each square
{(x1, x2) : i ≤ x1 ≤ (i+1)h, j ≤ x2 ≤ (j +1)h} into 2 triangles along its first
or its second diagonal. Other triangulations (e.g. by equilateral triangles)
are of course possible.

For d = 3, one such family of triangulations is obtained by covering R3

by cubes of vertices (ih, jh, kh) with i, j, k ∈ Z, and then by subdividing
each cube {(x1, x2, x3) : ih ≤ x1 ≤ (i + 1)h, jh ≤ x2 ≤ (j + 1)h, kh ≤
≤ x3 ≤ (k + 1)h} into 6 tetrahedra obtained by slicing each cube along the
three planes defined in the cube (0, h)3 by x1 = x2, x2 = x3 and x3 = x1.
It is easy to see that condition (6.7) is satisfied for this subdivision. Other
subdivisions of the cube (e.g. the subdivisions into 6 similar thetrahedra
where the diagonal x1 = x2 = x3 of the cube (0, h)3 is replaced by one of the
other three diagonals of the cube, but also subdivisions into 5 tetrahedra)
are also possible.

In order to ensure that (1.17) holds true, one can of course use, in place of
the sufficient condition (6.2), the sufficient condition (6.1), which is weaker.
In the two dimensional case, for two given vertices ai and aj with i ∈ I,
j ∈ I ∪ B and j 6= i, there is either no triangle T with ai ∈ T and aj ∈ T ,
or ai and aj belong to the same triangle; in this case the edge [ai aj] is not
included in ∂Ωh and there are exactly two triangles T+ and T− which share
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the two vertices ai and aj. When A = Id, condition (6.1) is nothing but





∀i ∈ I, ∀j ∈ I ∪B, j 6= i,

1

22

|F+
i | |F+

j |
|T+| n+

i n+
j +

1

22

|F−
i | |F−

j |
|T−| n−i n−j ≤ 0.

(6.8)

Denote by θ+ the inner angle facing the edge [ai aj] in T+ and by h+
i the

distance of ai to the straight line which contains F+
i . Then

|T+| = 1

2
|F+

i |h+
i =

1

2
|F+

i | |F+
j | sin θ+,

n+
i n+

j = cos(π − θ+) = − cos θ+,

1

22

|F+
i | |F+

j |
|T+| n+

i n+
j = −1

2

cos θ+

sin θ+
.

Therefore if θ− denotes the inner angle facing the edge [ai aj] in T−, condition
(6.8) becomes

−1

2

cos θ+

sin θ+
− 1

2

cos θ−

sin θ−
= −1

2

sin(θ+ + θ−)

sin θ+ sin θ−
≤ 0.

Since θ+ and θ− belong to (0, π), (6.8) is equivalent to

∀i ∈ I, ∀j ∈ I ∪B, i 6= j, θ+ + θ− ≤ π.

In the two dimensional case, we have thus proved the following classical
result (see e.g. A. Drăgănescu, T.F. Dupont and L.R. Scott [13] and the
references therein).

Proposition 6.4 In the two dimensional case, (1.17) holds for Laplace’s
operator if for every edge [ai aj] of the triangulation which is not included in
∂Ωh, the sum of the two inner angles θ+ and θ− facing [ai aj] is not larger
than π.

In the two dimensional case, a triangulation which satisfies the require-
ment of Proposition 6.4 is called a Delaunay triangulation, see e.g. P. Frey
& P.-L. George [15] or P.-L. George & H. Borouchaki [18].
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6.3 The case where A is a coercive matrix with con-
stant coefficients

Consider now the case where A is a coercive matrix with constant coefficients.
Then we can always reduce ourselves to the case where A is a symmetric
matrix since for every u

−div A∇u = −
∑

k,`

Ak`
∂2u

∂xk∂x`

= −
∑

k,`

Ak` + A`k

2

∂2u

∂xk∂x`

=

= −div

(
A + tA

2

)
∇u.

Using an orthonormal change of basis, we write A as

A = tMDDM,

with M an orthogonal matrix and D a diagonal coercive matrix. Then con-
dition (6.2), which implies (1.17), is satisfied if and only if

∀i ∈ I, ∀j ∈ I ∪B with i 6= j, (DM ni)(DM nj) ≤ 0. (6.9)

On the other hand, for a triangulation Th, consider the triangulation T̂h

obtained by the change of variables x̂ = D−1M x, namely

T̂h = {T̂ : T̂ = D−1M (T ) with T ∈ Th}.

When ai is a vertex of T and ϕi the basis function associated with ai, we
define ϕ̂i on T̂ by

ϕ̂i(x̂) = ϕ̂i(D
−1Mx) = ϕi(x) = ϕi(

tMDx̂).

Then ϕ̂i is the basis function associated with âi = D−1Mai, and for every
pair of vertices ai and aj of T , one has, since A = tMDDM

∫

T

A∇ϕi∇ϕj dx =

∫

T̂

A tMD−1∇ϕ̂i
tMD−1∇ ϕ̂j |det D| dx̂ =

= |det D|
∫

T̂

∇ ϕ̂i∇ ϕ̂j dx̂.
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Therefore, in view of (6.5),

(∫

T

Adx

)
ninj = |T |Aninj and n̂in̂j have the

same sign.

Actually by the change of variables x̂ = D−1M x, we have transformed
the problem (1.4) into the problem




−∆û = f̂ in Ω̂,

û = 0 on ∂Ω̂,

for which we will consider an acute triangulation T̂h of Ω̂.

We have proved the following result.

Proposition 6.5 In the d-dimensional case, (1.17) holds for a given sym-
metric coercive matrix with constant coefficients A = tMDDM if (6.9) holds,
or in other words if every inner angle of every d-simplex of the triangulation
T̂h obtained from Th by the change of variables x̂ = D−1Mx is acute.

6.4 The case where A is the product of a coercive ma-
trix with constant coefficients by a scalar function,
and a perturbation

More generally, consider the case where A is a matrix of the form

A(x) = a(x)C,

where
a ∈ L∞(Ω), a.e. x ∈ Ω, a(x) ≥ α,

for some α > 0 and where C is a symmetric coercive matrix with constant
coefficients, with C = tMDDM as before. Then

(∫

T

Adx

)
ninj =

(∫

T

a(x)C dx

)
ninj =

(∫

T

a(x)dx

)
C ninj

shows that
(∫

T

Adx

)
ninj has the same sign as C ninj = (DM ni)(DM nj).
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Therefore every triangulation which satisfies (6.2) for the matrix C also satis-
fies (6.2) for the matrix A = a(x)C, and condition (6.2) is here equivalent to
(6.9). This condition is satisfied if the triangulation obtained by the change
of variables x̂ = D−1Mx has acute inner angles.

Consider finally a (small) perturbation of the previous case, i.e. a matrix
A of the form

A(x) = a(x)C + a(x)E(x), (6.10)

with
a ∈ L∞(Ω), a.e. x ∈ Ω, a(x) ≥ α, C = tMDDM,

for some α > 0, where M is some orthogonal matrix and D is some coercive
diagonal matrix, both with constant coefficients. Assume that the triangula-
tion T̂h obtained by the change of variables x̂ = D−1Mx has strictly δ-acute
inner angles for some δ > 0, in the sense that, for every i ∈ I and every
j ∈ I ∪B with i 6= j, one has

(DMni)(DMnj) ≤ −δ. (6.11)

Then if
‖E(x)‖L∞(Ω)d×d ≤ δ,

condition (6.2) is satisfied since
(∫

T

Adx

)
ninj =

(∫

T

a(x)

)
C ninj +

(∫

T

a(x)E(x)dx

)
ninj ≤

≤
(∫

T

a(x)dx

)
(DMni)(DMnj) +

(∫

T

a(x)dx

)
‖E‖L∞(Ω)d×d ≤

≤
(∫

T

a(x)dx

)
(−δ + δ) = 0.

Note also that the matrix A is coercive when ‖E‖L∞(Ω)d×d is sufficiently
small, since denoting by β > 0 the coercivity coefficient of C, one has for
every ξ ∈ Rd

A(x)ξξ = a(x)Cξξ + a(x)E(x)ξξ ≥

≥ a(x)β|ξ|2 − a(x)‖E‖L∞(Ω)d×d |ξ|2 =

= a(x)
(
β − ‖E‖L∞(Ω)d×d

) |ξ|2 ≥ α
β

2
|ξ|2,
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when ‖E‖L∞(Ω)d×d ≤ β

2
.

We have proved the following result.

Proposition 6.6 In the d-dimensional case, hypotheses (1.11), (1.12), (1.13)
and (1.17) hold for a matrix A of the form (6.10) and for a family of tri-
angulations Th when the family of triangulations T̂h obtained by the change
of variables x̂ = D−1M x is regular and has δ-acute inner angles for some
δ > 0, i.e. when the family of triangulations Th satisfies (6.11), and when
‖E‖L∞(Ω)d×d is sufficiently small.

An example of family of triangulations which enjoys all the properties
required in Section 1 for a matrix A of the form (6.10) with ‖E‖L∞(Ω)d×d

sufficiently small is obtained by triangulating Rd by a regular family of tri-
angulations Th such that the transformed family of triangulations T̂h has
δ-acute inner angles for some δ > 0, and by taking for Th the union of the
d-simplices T which satisfy T ⊂ Ω.

Unfortunately, for a general coercive matrix with coefficients in L∞(Ω),
it is not clear for us whether one can always construct a regular family of
triangulations which satisfy (6.2) or (1.17) (recall that (6.2) implies (1.17)
but not conversely).

Let us finally mention that in [7] we will construct in the two dimensional
case a regular family of triangulations for any coercive symmetric matrix A
with L∞(Ω) coefficients, when the matrice A given by

A(x) =




A11(x) A12(x)

A12(x) A22(x)


 ,

satisfies
|A12(x)| ≤ inf

(
A11(x), A22(x)

)
a.e. x ∈ Ω.
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