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Existence and approximation results for shape optimization problems

in rotordynamics

Frank Strauß∗ Vincent Heuveline † Ben Schweizer ‡

Abstract

We consider a shape optimization problem in rotordynamics where the mass of a rotor is min-
imized subject to constraints on the natural frequencies. Our analyis is based on a class of rotors
described by a Rayleigh beam model including effects of rotary inertia and gyroscopic moments.
The solution of the equation of motion leads to a generalized eigenvalue problem. The governing
operators are non-symmetric due to the gyroscopic terms. We prove the existence of solutions for
the optimization problem by using the theory of compact operators. For the numerical treatment
of the problem a finite element discretization based on a variational formulation is considered.
Applying results on spectral approximation of linear operators we prove that the solution of the
discretized optimization problem converges towards the solution of the continuous problem if the
discretization parameter tends to zero. Finally, a priori estimates for the convergence order of the
eigenvalues are presented and illustrated by a numerical example.

Keywords: gyroscopic system, generalized eigenvalue problem, existence theorem, convergence
theorem, a priori estimates

1 Introduction

Typical design optimization problems in rotordynamics include the minimization of a given objective
function, such as the mass of a rotor, by changing the shape of the rotor. In addition it is often the
target to influence certain natural frequencies such as to increase selected ones to avoid their resonance
case. This can be formulated in the following optimization problem, on which we focus in this paper.

minr J(r)
subject to
λmi

(r) ≥ λ∗mi
, i = 1, . . . , nc

(1)

A continuous objective function J is minimized subject to constraints on the natural frequencies of
certain modes λmi

, where nc denotes the number of constraints. These frequencies are increased above
given target values λ∗mi

. All functions depend on a shape function r. We refer to this problem as
natural frequency optimization problem. In our framework the rotational speed is fixed.

Our analysis is based on a general class of simpy supported continuous rotors which can be de-
scribed by a Rayleigh beam model including the important effects of rotary inertia and gyroscopic
moments (see e.g. [5] and [10]). Such systems are called gyroscopic systems. They lack some nice
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2 F. Strauß and V. Heuveline and B. Schweizer

mathematical properties because the underlying operator is non-symmetric due to the influence of the
gyroscopic term. This changes the corresponding theory and we can no longer assume the natural
frequencies and eigenmodes to have real values but instead we have to cope with possible complex
eigenvalues.

A central result of the paper is a theorem that guarantees the existence of solutions for the opti-
mization problem (1) for the given class of rotors. In the solution process the second-order equation
of motion is transformed into a first-order system and separation of variables leads to a generalized
eigenvalue problem. The solution of this eigenvalue problem gives natural frequencies which are target
of the optimization. Since the governing operator is non-symmetric we cannot use results from the
literature (e.g. [6]) for the solution of the problem. But we are able to show that the operator of the
eigenvalue problem is compact. Then the solvability of the eigenvalue problem can be shown and the
spectrum is described. From these results the existence of solutions of the optimization problem can
also be derived.

In a next step we introduce a suitable finite element discretization based on a variational for-
mulation for a numerical solution of the problem. Using results on spectral approximation of linear
operators (see e.g. [2, 3, 8]) it can be shown that the solution of the discretized optimization problem
converges towards the solution of the continuous problem if the discretization parameter tends to zero.

Finally, we can establish a priori estimates that ensure a quadratic convergence of the eigenvalues
with respect to the discretization parameter. This result is illustrated by a numerical example.

This paper is organized as follows. In Section 2 the Rayleigh beam model is introduced as the model
of our choice and the equation of motion for a continuous rotor which is the basis for the forthcoming
studies is given. In Section 3 the equation of motion is considered in a functional analytical framework.
The solution of the equation of motion for free vibrations yields a non-symmetric generalized eigenvalue
problem. The operator of the generalized eigenvalue problem is shown to be compact. The application
of the Riesz-Schauder spectral theorem proves the solvability of the equation of motion. Continuity
of a finite subset of eigenvalues and eigenvectors guarantees the existence of solutions for the natural
frequency optimization problem. In the first section of Chapter 4 the convergence of eigenvalues
and eigenvectors of a discretized problem towards those of the continuous problem is shown if the
discretization parameter tends to zero. These results are used to show the convergence of the solutions
of the corresponding optimization problems. In Section 5 a priori estimates for the discretization error
of the considered eigenvalue problem are derived .

2 Physical model

Our rotor is a three-dimensional body which we want to describe by an one-dimensional model based
on theories of lateral beam vibrations. Of course, this requires some form of approximation to the
underlying physics. As mentioned above we work with a Rayleigh beam model capturing effects of
rotary inertia and gyroscopic moments.

We use a static XY Z-coordinate system whose Z-axis coincides in the static position with the
centerline of the shaft. We consider a shaft of length l and the spatial variable along the Z-axis is
denoted by s. The motion of the rotor is described by the lateral deflections and inclinations in each
point along the Z-axis (see Figure 1).

The lateral deflections in X- and Y -direction are denoted by u and v, respectively. The inclination
angle θ of the tangent to the rotor deflection curve can be decomposed into two components θx and
θy which are the projections of θ onto the XZ- and Y Z-plane, respectively. The deflections and
inclinations also depend on the time variable t. For the sake of simplicity this is not mentioned
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Figure 1: Model of rotor in XY Z-coordinate system (left) and inclination angle in XZ-plane (right).

explicitly in each equation. We assume the inclination angles to be small and have

θx(s) = u′(s) and θy(s) = v′(s), (2)

where a prime denotes a differentiation by s. The consideration of the inclination motion leads to
the gyroscopic moment in this system which is essential for our further studies. The shape of the
rotor is described by a continuous function r ∈ C(I), where I = [0, l] and r(s) is the radius of the
shaft at position s. It is bounded from below and above by fixed functions r and r̄ respectively and
r, r̄ ∈ L∞(I). Using the Lagrange formalism the equation of motion can be derived. For free vibrations
of a continuous rotor without damping it is given by

µz̈ −
1

2

(
Ipz̈

′
)′

+ i
(
Ipωż

′
)′

+
(
EIaz

′′
)′′

= 0, (3)

where µ denotes the mass per unit length, Ip the polar moment of inertia about the Z-axis, Ia the
cross-sectional moment of inertia with respect to the Z-axis. The product EIa is called bending
rigidity where E is Young’s modulus. The rotational speed is denoted by ω. As rotor support simple
support at both ends is considered. In this case transverse displacements are not possible, but end
rotations are permitted. The boundary conditions are written as

z(0, t) = 0, z(l, t) = 0, z′′(0, t) = 0, z′′(l, t) = 0.

3 Existence theorems

In this section we prove the existence of solutions for the introduced natural frequency optimization
problem. In a first step the equation of motion for the rotor is solved in Section 3.1. This is achieved
by the separation of variables which leads to an eigenvalue problem and which is giving the natural
frequencies and eigenmodes. The operator in the eigenvalue problem is shown to be compact and
the spectrum is described by the theorem of Riesz-Schauder. This result is then used to show the
existence of solutions for the optimization problem in Section 3.2.

Similar results for the non-rotating case can e.g. be found in Haslinger and Mäkinen [6] and Fichera
[4]. The inclusion of the gyroscopic term, however, yields a non-symmetric system and the theory of
compact operators is used. Hence our approach is an extension of existing results in the literature.

3.1 Solvability of equation of motion

Let us first consider the equation of motion for undamped free oscillations which was deduced above,

µz̈ −
1

2
(Ipz̈

′)′ + i(Ipωż
′)′ + (EIaz

′′)′′ = 0. (4)

3



4 F. Strauß and V. Heuveline and B. Schweizer

The parameters µ, Ip and Ia depend on the rotor shape function r and hence on the spatial variable
s. The function r belongs to the set of admissible functions U which is given by

U = {r ∈ C(I), r ≤ r ≤ r̄, |r(x) − r(y)| ≤ L0|x− y|, ∀x, y ∈ I}, (5)

where I = [0, l] as in Section 2. The additional Lipschitz condition with constant L0 makes U a
compact subset of C(I) which follows from the theorem of Arzelà-Ascoli.

Equation (4) is now transformed into an eigenvalue problem by the separation of variables and an
exponential function approach for the time variable. Every solution of the eigenvalue problem leads
to a solution of the original equation of motion and we just focus on these special solutions. The
separation of variables is written as

z(s, t) = ϕ(s)ψ(t),

where ϕ and ψ only depend on one of the variables. The original equation of motion (4) becomes

µϕψ̈ −
1

2

(
Ipϕ

′
)′
ψ̈ + i

(
Ipωϕ

′
)′
ψ̇ +

(
EIaϕ

′′
)′′
ψ = 0 (6)

and the boundary conditions are satisfied if

ϕ(0) = 0, ϕ(l) = 0, ϕ′′(0) = 0, ϕ′′(l) = 0. (7)

Equation (6) can immediately be transformed into the desired eigenvalue problem. However, before
doing this, to avoid a quadratic eigenvalue problem, the second-order-equation (6) is transformed into
a first-order-system by writing

(

µϕ− 1
2(Ipϕ

′)′ 0

0 µϕ− 1
2(Ipϕ

′)′

)(

ψ̈

ψ̇

)

=

(

−i(Ipωϕ
′)′ −(EIaϕ

′′)′′

µϕ− 1
2(Ipϕ

′)′ 0

)(

ψ̇

ψ

)

.

Setting ψ(t) = eλt we want to solve for φ = (φ1, φ2) the equation

λA(φ1, φ2) = B(φ1, φ2), (8)

where

A(φ1, φ2) =

(

µφ1 −
1
2(Ipφ

′
1)

′

µφ2 −
1
2(Ipφ

′
2)

′

)

and B(φ1, φ2) =

(

−i(Ipωφ
′
1)

′ − (EIaφ
′′
2)

′′

µφ1 −
1
2(Ipφ

′
1)

′

)

.

Once (8) is solved we may set ϕ = φ2 and obtain φ1 = λφ2 = λϕ from the second line and the solution
property for the first line.

Proposition 3.1 Let ϕ satisfy the boundary conditions (7). The function ϕ(s)eλt is a solution of
equation (4) if and only if (λϕ,ϕ)T is a solution of system (8).

Proof. We assume that ϕ(s)eλt solves (4). Then it is obvious that ϕ(s)eλt solves (6) where we set
ψ(t) = eλt. This equation can be transformed into a first order system as shown above. If we then set
φ1 = λϕ and φ2 = ϕ the eigenvalue problem (8) is satisfied.

For the other direction we assume that (λϕ,ϕ)T is a solution of (8). Then the first line of (8)
yields that ϕ and ψ(t) = eλt solve the first-order system (6). Then z(s, t) = ϕ(s)eλt is a solution of
(4). �
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Existence and approximation results in rotordynamics 5

To prove the existence of solutions of eigenvalue problem (8) and thus for the equation of motion
(4) a suitable analytical framework has to be introduced. We define the two Sobolev spaces V1 and
V2 on I = [0, l] by

V1 = {v ∈ H1(I)| v(0) = 0, v(l) = 0} = H1
0 (I),

‖v‖V1
=

(∫

I
|v(s)|2 ds+

∫

I
|v′(s)|2 ds

)1/2

and
V2 = {v ∈ H2(I)| v(0) = 0, v(l) = 0},

‖v‖V2
=

(∫

I
|v(s)|2 ds+

∫

I
|v′(s)|2 ds+

∫

I
|v′′(s)|2 ds

)1/2

and their dual spaces are denoted by V ′
1 = H−1(I) and V ′

2 , respectively. The conditions on the second
derivatives are not imposed but turn out to be satisfied as the natural boundary conditions.

The formulas (4) and (8) are the classical formulation of the equation of motion and the eigenvalue
problem. This is sufficient for the existence theorems of this chapter. For the convergence analysis
of a discretized model which is done in Section 4 the weak formulation is also needed and will be
introduced then.

The crucial point now is to transform the generalized eigenvalue problem given by (8) into a
standard one by inverting one of the operators A or B, then to show the compactness of the resulting
operator which allows the application of the Riesz-Schauder spectral theorem.

We consider the operator M : V1 → V ′
1 formally written as

M(u) = µu−
1

2
(Ipu

′)′ (9)

and for any v ∈ V1 defined by

M(u)(v) =

∫ (

µ(s)u(s)v̄(s) +
1

2
Ip(s)u

′(s)v̄′(s)

)

ds,

and the operator L : V1 × V2 → V ′
2 formally written as

L(u1, u2) = −i(Ipωu
′
1)

′ − (EIau
′′
2)

′′

and for any v ∈ V2 defined by

L(u1, u2)(v) = i

∫

ωIp(s)u
′
1(s)v̄

′(s) ds−

∫

EIa(s)u
′′
2(s)v̄

′′(s) ds.

Then eigenvalue problem (8) reads as

λ

(
M(φ1)
M(φ2)

)

︸ ︷︷ ︸

=A(φ1,φ2)

=

(
L(φ1, φ2)
M(φ1)

)

︸ ︷︷ ︸

=B(φ1,φ2)

, (10)

where A : V1 × V1 → V ′
1 × V ′

1 and B : V1 × V2 → V ′
2 × V ′

1 . Note that A and B map into different
spaces. However, if we can find an inverse operator to B we can construct an operator B−1A which
then is well-defined since V ′

1 ⊂ V ′
2 and we have to solve

B−1Aφ = ζφ, (11)

5



6 F. Strauß and V. Heuveline and B. Schweizer

where ζ = 1/λ.
Now the goal is to show that such an operator B−1 exists.

We first want to prove two lemmas giving us the invertibility of the operator M as introduced above
and the operator K : V2 → V ′

2 which is the second term of the operator L and is given formally by

K(u) = (EIau
′′)′′ (12)

and for any v ∈ V2

K(u)(v) =

∫

EIa(s)u
′′(s)v̄′′(s) ds,

respectively. As usual in such cases the theorem of Lax-Milgram is used.

CONVENTION: In this paper the letter C stands for a generic positive constant attaining
different values at different places.

Lemma 3.1 The operator M : V1 → V ′
1 given by (9) is invertible.

Proof. To apply the theorem of Lax-Milgram we have to show that the associated sesquilinear form
m : V1 × V1 → C given by

m(u, v) =

∫

I
µ(s)u(s)v̄(s) ds+

1

2

∫

I
Ip(s)u

′(s)v̄′(s) ds

is continuous and coercive.
The continuity and coercivity follow from the boundedness of µ and Ip. Indeed, we have

|m(u, v)| =

∣
∣
∣
∣

∫

µ(s)u(s)v̄(s) ds +
1

2

∫

Ip(s)u
′(s)v̄′(s) ds

∣
∣
∣
∣

≤ C

∣
∣
∣
∣

∫

u(s)v̄(s) ds+

∫

u′(s)v̄′(s) ds

∣
∣
∣
∣
= C|〈u, v〉V1

| ≤ C‖u‖V1
‖v‖V1

.

and

m(u, u) =

∫

µ|u(s)|2ds +
1

2

∫

Ip|u
′(s)|2ds

≥ C

(∫

|u(s)|2ds+

∫

|u′(s)|2ds

)

= ‖u‖2
V1
. (13)

Then the application of Lax-Milgram yields

m(u, v) = M(u)(v)

and the operator M : V1 → V
′

1 is invertible. �

Lemma 3.2 The operator K : V2 → V ′
2 given by (12) is invertible.

Proof. The proof is as above. The associated sesquilinear form k : V2 × V2 → C given by

k(u, v) =

∫

EIau
′′(s)v̄′′(s)ds

is shown to be continuous and coercive.
The continuity is obvious again due to the boundedness of Ia.

6



Existence and approximation results in rotordynamics 7

For the coercivity we have to apply the standard Poincaré inequality as well as a generalized form of
it (see e.g. [1]) since we have no boundary conditions for the first derivatives. The latter inequality
says, that for a nonempty convex closed cone S with apex 0,

‖u‖Lp ≤ C‖∇u‖Lp for all u ∈ S, (14)

iff there exists a u0 ∈ S and a constant C0 <∞, such that for all ξ ∈ R
m

u0 + ξ ∈ S ⇒ |ξ| ≤ C0. (15)

In our case the set S is chosen to be

S =

{

v ∈ H1(I)|

∫ l

0
v = 0

}

and having in mind that v = u′ and u ∈ V2. This set is a subspace of H1(I) and hence a cone with apex
0. Then condition (15) is fulfilled with C0 = 0, since for any u0 ∈ S and ξ 6= 0, we have u0 + ξ 6∈ S.
Then the estimate ∫

|u′(s)|2 ds ≤ C

∫

|u′′(s)|2 ds ∀u′ ∈ S

is obtained. The coercivity follows immediately

‖u‖2
V2

=

(∫

|u(s)|2 ds+

∫

|u′(s)|2 ds+

∫

|u′′(s)|2 ds

)

≤ C

∫

|u′(s)|2 ds+

∫

|u′′(s)|2 ds

≤ C

∫

|u′′(s)|2 ds

≤ C

∫

EIa(s)u
′′(s)ū′′(s) ds = C k(u, u). (16)

The first inequality holds due to the standard Poincaré inequality and the second one due to the gener-
alized Poincaré inequality. The remaining expression can again be estimated due to the boundedness
of Ia leading to the last inequality. Then, by applying Lax-Milgram,

k(u, v) = K(u)(v)

and K is invertible. �

Knowing the invertibility of M and K we can construct an inverse operator to the operator B
given in (10).

Lemma 3.3 To the operator B given in (10) there exists an inverse operator B−1 : V ′
2×V

′
1 → V1×V2.

Proof. We consider an arbitrary right-hand-side (f1, f2) ∈ V ′
2×V

′
1 and look at the system B(φ1, φ2) =

(f1, f2)
T , i.e.

L(φ1, φ2) = −i(Ipωφ
′
1)

′ − (EIaφ
′′
2)

′′ = f1 ∈ V ′
2 , (17)

M(φ1) = µφ1 −
1

2
(Ipφ

′
1)

′ = f2 ∈ V ′
1 . (18)

From Lemma 3.1 we know that M is invertible. Hence we can write

φ1 = M−1f2 ∈ V1.

7



8 F. Strauß and V. Heuveline and B. Schweizer

Then the equation (17) can be written as

−(EIaφ
′′
2)

′′ = i(Ipω(M−1f2)
′)′ + f1 ∈ V ′

2 .

Lemma 3.2 shows that the operator on the left-hand-side is invertible and we have

φ2 = −K−1(i(Ipω(M−1f2)
′)′ + f1) ∈ V2.

Thus we have found a preimage (φ1, φ2) ∈ V1 × V2. �

The next step is to show that the operator B−1A is compact. The notion of compactness requires
a mapping from a certain space onto itself. We notice that the space V1 × V2 is the correct space for
which the operator B−1A is compact.

Lemma 3.4 The operator B−1A : V1 × V2 → V1 × V2 is compact.

Proof. We apply the operator on an arbitrary pair (φ1, φ2) ∈ V1 × V2. Note that we restrict the
second component to be in V2 whereas A also allows V1-functions. Then we have

B−1A(φ1, φ2) = B−1(M(φ1),M(φ2))

= (M−1(M(φ2)),−K
−1(i(Ipω(M−1(M(φ2)))

′)′ +M(φ1)))

= (φ2,−K
−1(i(Ipωφ

′
2)

′ +M(φ1))).

We show that the mapping is compact in each component.
For the first component we have

(φ1, φ2)
B−1A
7→ φ2

id
7→ φ2,

V1 × V2 → V2
cpt
→֒ V1,

and for the second component

(φ1, φ2) 7→ i(Ipωφ
′
2)

′ +M(φ1)
id
7→ . . .

K−1

7→ −K−1(i(Ipωφ
′
2)

′ +M(φ1)),

V1 × V2 → V ′
1

cpt
→֒ V ′

2 → V2.

All operators are linear and continuous and the composition with a compact embedding yields a
compact operator. Hence, the operator B−1A : V1 × V2 → V1 × V2 is compact. �

Theorem 3.1 Let T := B−1A. The spectrum σ(T ) is an at most countable set with no accumulation
point different from zero. Let σ′(T ) be a finite system of eigenvalues, which is separated from the rest
σ′′(T ) of σ(T ) by a closed Jordan curve. All eigenvalues λ of σ′(T ) depend continuously on the shape
function r. The same holds for the set of corresponding eigenvectors φ.

Proof. Since the operator B−1A is compact the spectral theorem of Riesz-Schauder can be applied
and the eigenvalue problem (11) has a solution with eigenvalues ζi with at most one accumulation
point at zero. This means that the values λi = 1/ζi tend to infinity. It also implies that the spectrum
can be separated into two parts by a closed Jordan curve with the part inside the curve consisting of
a finite number of eigenvalues and not containing zero. Then from Kato [7, IV.3.5], it follows that the
eigenvalues and eigenvectors depend continuously on the closed operator B−1A and hence also on the
shape function r. �

Remark. Our focus lies only on eigenvalues belonging to modes which are excited in the respective
operating speed range. Their number is limited and can be included in a finite system of eigenvalues
and can be separated from the accumulation point zero. Hence, the continuity argument of Theorem
1 holds for this case.

8



Existence and approximation results in rotordynamics 9

3.2 Solvability of optimization problem

As pointed out in Section 1, the design optimization problem we want to study for a continuous rotor
is the following: Find a thickness distribution which minimizes a given continuous cost functional J
subject to natural frequency constraints as given in the introduction. The rotor shape function r is
bounded from below and above. More precisely, r belongs to the class of admissible functions U as in
(5).

The optimization problem deals with a continuous objective function J and a constraint on the
natural frequency λm of a certain mode m and is written as

minr J(r)
subject to
λm(r) ≥ λ∗m,
r ∈ U.

(19)

In our applications the function of the total mass of the rotor is often chosen as cost functional J . For
the natural frequency λm a lower bound λ∗m is given. The constraint on the natural frequencies can
be put into U as defined in (5) giving the (new) class of admissible functions for this problem

Uc = {r ∈ U |λm(r) ≥ λ∗m}.

The theory of the last section enables us to show the existence of solutions for problem (19).

Theorem 3.2 Let Uc 6= ∅. Then the optimization problem (19) has a solution.

Proof. Due to Theorem 1 and the subsequent remark λm is a continuous function in r. Hence Uc is
a compact subset of C(I). Moreover, the objective function is assumed to be continuous in r. Since
a continuous function on a compact set possesses a minimum the existence of solutions is proven. �

Remark. The shown existence and approximation results can be extended to further shape
optimization problems in rotordynamics, such as the minimization of the mass subject to constraints
on the critical speed and unbalance response. Details on this case can be found in [9].

4 Approximation results

4.1 Convergence of eigenvalues of discretized problem

In a first step, the convergence of the eigenvalues and eigenvectors of discretized generalized eigenvalue
problems has to be shown. These functions appear in the constraints of our optimization problem.
Important results in spectral approximation can be found in Babuška & Osborn [2], Chatelin [3] and
Kolata [8] and can be applied to our case.

The convergence theory uses the weak formulation of the classical eigenvalue problem

λA(φ1, φ2) = B(φ1, φ2).

It is obtained by multiplying the operators A : V1 ×V1 → V ′
1 ×V

′
1 and B : V1 ×V2 → V ′

2 ×V
′
1 given by,

A(φ) = A(φ1, φ2) =

(

µφ1 −
1
2(Ipφ

′
1)

′

µφ2 −
1
2(Ipφ

′
2)

′

)

9



10 F. Strauß and V. Heuveline and B. Schweizer

B(φ) = B(φ1, φ2) =

(

−i(Ipωφ
′
1)

′ − (EIaφ
′′
2)

′′

µφ1 −
1
2 (Ipφ

′
1)

′

)

.

by test functions η = (η1, η2) ∈ V2 × V1 and integrating the two equations over the interval I. Consid-
ering the boundary conditions (7) we obtain

a(φ, η) := A(φ1, φ2)(η1, η2) =





∫
µφ1η̄1 ds+ 1

2

∫
Ipφ

′
1η̄

′
1 ds

∫
µφ2η̄2 ds+ 1

2

∫
Ipφ

′
2η̄

′
2 ds



 (20)

and

b(φ, η) := B(φ1, φ2)(η1, η2) =




i
∫
Ipωφ

′
1η̄

′
1 ds−

∫
EIaφ

′′
2 η̄

′′
1 ds

∫
µφ1η̄2 ds+ 1

2

∫
Ipφ

′
1η̄

′
2 ds



 . (21)

For the further studies we use the notation V = V1 × V2 and Ṽ = V2 × V1 with ‖ · ‖V = ‖ · ‖Ṽ =
‖ · ‖V1

+ ‖ · ‖V2
.

Remark. All lemmas and theorems formulated for the classical case then obviously hold for the
weak case as well.

The approximation of the operators and the optimization problems is based on the partition of
the interval I = [0, l],

0 = a0 < a1 < . . . < an = l,

where h = maxi=1,...,n |ai − ai−1| is the discretization parameter. We assume a partition such that
h → 0 if n → ∞. Moreover, let Pk([ai−1, ai]) denote the space of polynomials of degree ≤ k on the
interval [ai−1, ai].

The rotor shape function r ∈ U , where U is given by (5), is then assumed to be approximated by
piecewise constant functions rh belonging to the set

Uh = {r ∈ L∞(I)| ri = r|[ai−1,ai] ∈ P0([ai−1, ai]), i = 1, . . . , n, r ≤ r ≤ r̄,

|ri+1 − ri| ≤ L0h, L0 > 0, i = 1, . . . , n − 1}.

The spaces V1 and V2 defined in Section 3 are replaced by finite dimensional approximations V h
1 and

V h
2 . The exact choice of these approximations depends on the degrees of freedom under consideration.

Moreover, we set V h = V h
1 × V h

2 and we assume a partition such that ∪h>0V
h is dense in the space

V = V1 × V2.

The discretized eigenvalue problem is now obtained by replacing the continuous rotor shape func-
tion r ∈ U by a function rh ∈ Uh. This is written as follows. At first, the notation of the eigenvalue
problem of Section 3 is extended about a subscript r indicating the dependence on the continuous
function r, i.e.

λAr(φ) = Br(φ), φ = (φ1, φ2) ∈ V1 × V2

and
λar(φ, η) = br(φ, η), η ∈ Ṽ ,

respectively. Furthermore, we write

Tr = B−1
r Ar, V1 × V2 → V1 × V2

for the operator which was shown to be compact in Lemma 3.4.

10



Existence and approximation results in rotordynamics 11

The discretized subproblem for rh ∈ Uh is then

λhArh
(φh) = Brh

(φh), φh ∈ V h (22)

with eigenvalues λh and eigenvectors φh in V h.

The corresponding weak formulation is

λharh
(φh, ηh) = brh

(φh, ηh), ηh ∈ Ṽ h
2 . (23)

Following Kolata [8] we now define a projection of the space V = V1 × V2 on the space V h. This is
done by using the weak formulation.

Definition 4.1 We define a linear operator Ph : V → V h by

brh
(Phφ, ηh) = br(φ, ηh), ∀ηh ∈ Ṽ h

2 .

Furthermore, let Trh
: V → V h be given by

Trh
= Ph ◦ Tr

and Trh
= B−1

rh
Arh

.

In addition, the convergence of eigenvalues λh and eigenvectors φh of the discretized problem to
those of the continuous problem is shown by applying the concept of strongly stable convergence (see
Chatelin [3]).

Theorem 4.1 Let rh → r as h → 0 in L∞(I). Moreover, let S be a set bounded by a closed Jordan
curve which encloses exactly one eigenvalue λ of Tr with multiplicity m. Then σ(Trh

)∩ S consists for
h small enough of exactly m eigenvalues, counting their multiplicities.

Proof. Since ∪h→0V
h is dense in V the projection operator converges pointwise towards the identity

operator, Ph → I. The convergence is uniform on any sequentially compact set. Since we know that
Tr is compact it follows

‖Tr − Trh
‖ = ‖(I − Ph)Tr‖ → 0 as h→ 0.

This implies strongly stable convergence of the sequence Trh
(see Chatelin [3, Example 5.14]). For

a definition of strongly stable convergence see [3, Chapter 5.2]. Let now λ be an eigenvalue of Tr

with multiplicity m. Then the strongly stable convergence property of Trh
guarantees that σ(Trh

)∩S
consists for h small enough of exactly m eigenvalues, counting their multiplicities [3, Proposition 5.6].
�

The convergence of eigenvectors then also follows immediately by [3, Theorem 5.10].

Theorem 4.2 Let Trh
be an approximation of Tr, converging strongly stable in S. Then for any

sequence of eigenvalues λh converging to λ and for any sequence of associated eigenvectors φh there
exists a subsequence converging to an eigenvector φ associated with λ.

11



12 F. Strauß and V. Heuveline and B. Schweizer

4.2 Convergence of solutions of optimization problem

Having established the convergence of the constraint functions in Section 4.1 we now want to show
the convergence of the solutions of the natural frequency optimization problems for rotating bodies.
Similar results for problems for the non-rotating case can be found in [6].

For the formulation of the discretized natural frequency optimization problem the set of admissible
functions Uh is restricted about the constraint on the eigenvalues and is

Uh,c = {r ∈ Uh|λh(r) ≥ λ∗}.

In practice the eigenvalue constraint is only set for few specific modes. Similar to Chapter 3 we
consider only one constraint function for the analysis. Other constraints can be included in the same
way. The natural frequency optimization problem with a continuous objective function J writes as

minrh
J(rh)

subject to
rh ∈ Uh,c.

(24)

We now show that a sequence of optimal solutions of (24) converges towards an optimal solution of
(19).

Theorem 4.3 Let r∗h be a sequence of optimal solutions of (24), h → 0. Then one can find a subse-
quence such that there exists a function r∗ ∈ U and

r∗h → r∗ in L∞(I)

and r∗ is an optimal solution of (19). In addition, any accumulation point of r∗h possesses this property.

Proof. Let rh ∈ Uh, h → 0 be an arbitrary sequence. With any rh a continuous piecewise linear
function r̂h is defined on the partition {bi}i=0,...,n+1, where

0 = b0 = a0 < b1 < a1 < . . . < an−1 < bn < an = bn+1

and bi is the midpoint of the interval [ai−1, ai],

bi =
ai + ai−1

2
, i = 1, . . . , n.

The function r̂h is given by

r̂h(bi) = rh(bi), i = 0, . . . , n and r̂h(bn+1) = rh(an)

and
r̂h|[bi−1,bi] ∈ P1([bi−1, bi]), i = 1, . . . , n+ 1.

This definition implies that
r ≤ r̂h ≤ r̄ in I

and
|r̂′h| ≤ L0 in I.

We have that r̂h ∈ U . Since U is compact there exists a subsequence r̂h and a function r̂ ∈ U such
that

‖r̂h − r̂‖L∞(I) → 0 as h→ 0.

12



Existence and approximation results in rotordynamics 13

The function rh can be viewed as piecewise constant interpolant of r̂h implying that

‖rh − r̂h‖L∞(I) ≤ L0h.

Using the triangle inequality we can now show that rh converges towards the function r̂

‖rh − r̂‖L∞(I) ≤ ‖rh − r̂h‖L∞(I) + ‖r̂h − r̂‖L∞(I) → 0.

So far, we only have r̂ ∈ U . But of course, the constraint on the eigenvalue should also be fulfilled
for the limit function. This follows straightforwardly from the continuous dependence of λ on r,

i.e λh(rh)
h→0
→ λ(r) which was shown in Theorem 1. Hence we have r̂ ∈ Uc.

The density of ∪h→0Uh in U in the L∞-norm can be shown as follows.
Let r ∈ U and define rh as

rh =
n∑

i=1

(

1

|ai − ai−1|

∫ ai

ai−1

r(s) ds

)

χi,

where χi is the characteristic function of [ai−1, ai], i = 1, . . . , n. We have rh ∈ Uh and rh → r in
L∞(I) if h→ 0. Restricting both spaces about the eigenvalue constraint the density result also holds
for the spaces ∪h→0Uh,c in Uc.

We now consider a sequence of optimal solutions r∗h to problems (24) and denote its limit function
by r∗. It remains to show that r∗ is an optimal solution of (19). Therefore, we consider an arbitrary
r̃ ∈ Uc. A sequence r̃h ∈ Uh,c can be found such that

‖r̃h − r̃‖L∞(I) → 0.

Since r∗h is an optimal solution of problem (24) we have

J(r∗h) ≤ J(r̃h).

Since ‖r∗h − r∗‖L∞(I) → 0 and ‖r̃h − r̃‖L∞(I) → 0 and J is continuous in r for suitable functions we
obtain in the limit

J(r∗) ≤ J(r̃)

for any r̃ ∈ U . This shows that r∗ is an optimal solution of (19). �

5 A priori estimates

In this section we show a priori estimates for the convergence of the eigenvalues. Our development is
based on results found in Kolata [8] and Babuška & Osborn [2].

In the previous chapter we have introduced the weak formulation of the operators by (20) and
(21). We have a : V × Ṽ → C

2 and b : V × Ṽ → C
2 and for the eigenvalue problem

λa(φ, η) = b(φ, η) for η = (η1, η2) ∈ Ṽ . (25)

To obtain a form mapping into the scalar field C we now set

ã(φ, η) = m(φ1, η1) +m(φ2, η2)

and

b̃(φ, η) = l(φ1, φ2, η1) +m(φ1, η2),

13



14 F. Strauß and V. Heuveline and B. Schweizer

where φ ∈ V, η ∈ Ṽ and

m(φ1, η1) =

∫

µφ1η̄1 ds+
1

2

∫

Ipφ
′
1η̄

′
1 ds,

l(φ1, φ2, η1) = i

∫

Ipωφ
′
1η̄

′
1 ds−

∫

EIaφ
′′
2η̄

′′
1 ds.

Using suitable functions η ∈ Ṽ we obtain the two equations of our system (25). Indeed for η = (φ2, 0)
we have

λm(φ1, φ2) = l(φ1, φ2, φ2)

and for η = (0, φ1)

λm(φ2, φ1) = m(φ1, φ1).

We now want to verify the continuity and positivity assumptions stated in Kolata [8] which enables
subsequently the desired estimates. For our case the assumptions are

1. |ã(u, v)| ≤ ‖u‖V ‖v‖Ṽ , |b̃(u, v)| ≤ ‖u‖V ‖v‖Ṽ ,

2. infu∈V supv∈Ṽ |b̃(u, v)| = β1 > 0,

3. supu∈V |b̃(u, v)| > 0, 0 6= v ∈ Ṽ .

From Lemma 1 and 2 assumption (1) follows straightforwardly. To verify that the assumptions (2) and
(3) hold we use suitable test functions. For an arbitrary φ = (φ1, φ2) ∈ V we consider η = (0, φ1) ∈ Ṽ .
Then

b̃(φ, η) = m(φ1, φ1).

The latter form is coercive as was shown in the proof of Lemma 1 (equation 13) and this holds for
any φ ∈ V . Hence assumption (2) is fulfilled.
Conversely, for any 0 6= η = (η1, η2) ∈ Ṽ we choose φ = (0, η1). Then we have

b̃(φ, η) = k(η1, η1).

as defined in Lemma 2. In this lemma the coercivity of the form k is shown (equation 16) which
guarantees that assumption (3) is satisfied.

We define a projection operator P̃h, V → V h, analogously to Definition 1 for the form b̃ as

b̃h(P̃hφ, ηh) = b̃(φ, ηh), ∀η ∈ Ṽ h.

Indeed, we have P̃h = Ph. since by definition

l(φh
1 , φ

h
2 , η

h
1 ) +m(φh

1 , φ
h
2 , η

h
2 ) = l(φ1, φ2, η

h
1 ) +m(φ1, η

h
2 )

which holds for all test functions η ∈ Ṽh. Choosing the test functions as above, i.e. ηh = (φh
2 , 0) and

ηh = (0, φh
1 ) we obtain the two equations of the Definition of Ph for the form b.

Now we can apply the result of Kolata and we can deduce

‖u− Phu‖ ≤ c inf
χ∈Vh

‖u− χ‖.

We now set u = Tφ with T being the compact operator as introduced previously and φ ∈ V . We
obtain

‖(T − Th)φ‖ = ‖(I − Ph)Tφ‖ ≤ c inf
χ∈Vh

‖Tφ− χ‖. (26)

14
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Figure 2: Shape of test rotor and beam element approximation.

Under adequate regularity properties for the operator T , we may apply the standard interpolation
results due to Bramble-Hilbert (see [2] for more details) which lead to

inf
χ∈Vh

‖Tφ− χ‖ ≤ ch. (27)

Based on the inequalities (26) and (27) the a priori theory developed by Babuška and Osborn [2]
can be directly used in our framework and lead to the following approximation result.

Theorem 5.1 Let λ be an eigenvalue of (25) with algebraic multiplicity σ. Then, for sufficiently
small h, there are exactly σ eigenvalues {λh,i}i=1,···,σ of the discrete problem (23) counted according
to their algebraic multiplicity, such that

∣
∣
∣
∣
∣
λ−

1

σ

σ∑

i=1

λh,i

∣
∣
∣
∣
∣
≤ cλh

2. (28)

This convergence result is illustrated by a numerical example. We consider a rotor which is described
by the shape function r(s) = a sin(πs/l) + c with total length l, shape parameters a, c > 0 and
s ∈ [0, l]. The continuous rotor is now divided into several beam elements. For the discretized rotor
the eigenvalue problem is formulated and solved numerically. We focus on the smallest two eigenvalues
and look at the relative error for each discretization. As error function for the relative error erel,i for
eigenvalue λi we consider

erel,i =
|λ∗ − λh

i |

|λ∗|
.

The ’exact’ value λ∗ is obtained by calculating once the eigenvalues considering a discretization which
is fine enough. In Figure 3 we see the behaviour of the logarithmic error function. To show the
quadratic convergence in terms of the discretization parameter proven in (28), we add the graph of
log(ch2) to the figure, (where h = 1/N and N the number of elements). Indeed for a suitable c, in our
case e.g. c = 2, we observe in Figure 3 the quadratic convergence.

15
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Figure 3: Error function of first (left) and second (right) smallest eigenvalue.
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[6] Haslinger, J., Mäkinen, R.: Introduction to shape optimization : theory, approximation and
computation. SIAM (2003)

[7] Kato, T.: Perturbation theory for linear operators. Springer-Verlag (1966)

[8] Kolata, W.: Approximation in variationally posed eigenvalue problems. Numer. Math. 29, 159–
171 (1978)

[9] Strauß, F.: Design optimization of rotating bodies. Ph.D. thesis, Ruprecht-Karls-Universität
Heidelberg (2005)

[10] Yamamoto, T., Ishida, Y.: Linear and Nonlinear Rotordynamics. Wiley (2001)

16



IWRMM-Preprints seit 2004

Nr. 04/01 Andreas Rieder: Inexact Newton Regularization Using Conjugate Gradients as Inner
IteractionMichael

Nr. 04/02 Jan Mayer: The ILUCP preconditioner
Nr. 04/03 Andreas Rieder: Runge-Kutta Integrators Yield Optimal Regularization Schemes
Nr. 04/04 Vincent Heuveline: Adaptive Finite Elements for the Steady Free Fall of a Body in a

Newtonian Fluid
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