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Abstract

This paper is concerned with the design and analysis of a fully adaptive eigen-

value solver for linear symmetric operators. After transforming the original problem

into an equivalent one formulated on ℓ2, the space of square summable sequences,

the problem becomes sufficiently well conditioned so that a gradient type iteration

can be shown to reduce the error by some fixed factor per step. It then remains to

realize these (ideal) iterations within suitable dynamically updated error tolerances.

It is shown under which circumstances the adaptive scheme exhibits in some sense

asymptotically optimal complexity.

1 Introduction

1.1 Background

In a Gelfand triple H d→֒ X d→֒ H′ of Hilbert spaces, where H is densely embedded in X ,

and the dual pairing induced by the inner product 〈., .〉 of X , let

L : H → H′ (1.1)

be a linear operator that takes H onto its normed dual H′. We wish to find, under certain

assumptions on L, an eigenpair (λ, u) of the problem

Lu = λEu (1.2)

corresponding to the smallest eigenvalue λ. Here E : u 7→ 〈·, u〉 canonically embeds H in

H′. Of course, (1.2) is to be understood in the weak sense, i.e.

〈v,Lu〉 = λ〈v, Eu〉, v ∈ H, (1.3)
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by DFG, the DFG Priority Program SPP1145 and by the EU NEST project BigDFT.

1

http://arxiv.org/abs/0711.1070v1


In view of the above choice of the dual pairing 〈·, ·〉 we shall from now on simply write

〈v, w〉 instead of 〈v, Ew〉 for v, w ∈ H.

For typical applications, one can think of X as an L2-space over some domain Ω and

H as a Sobolev space H t of positive real order t (or as a closed subspace of a Sobolev

space, determined e.g. by homogeneous boundary conditions).

We shall be concerned with the case that the operator L is symmetric, i.e.

〈Lv, w〉 = 〈v,Lw〉, for all v, w ∈ H (1.4)

and bounded and strongly positive, i.e. there exist positive constants cL, CL such that

cL||v||2H ≤ 〈Lv, v〉 =: ||v||2L ≤ CL||v||2H, v ∈ H. (1.5)

Note that if the (real) spectrum of L is bounded from below by a negative number, L
can be shifted by a suitable parameter µ such that L−µE satisfies (1.5). With this slight

modification, this assuption is met by e.g. the electronic Schrödinger operator [ReSi], one

particle Schrödinger operators in R
3 with certain potentials [Weid, HiSi] and eigenvalue

problems for strongly elliptic (satisfying a Garding inequality) differential operators on

bounded domains as well as by eigenvalue problems for Fredholm integral operators.

Note that (1.5) also implies that L is a norm-isomorphism from H onto H′ whose

condition is bounded by CL/cL.

We shall exclusively deal with eigenvalue problems for which the infimum of the spec-

trum is an isolated eigenvalue λ. For simplicity we shall actually assume that

λ := inf
〈Lu, u〉
〈u, u〉

is a simple eigenvalue with corresponding eigenvector u, and that that the rest of the

spectrum is bounded from below by Λ > λ, which means that

〈Lv, v〉
〈v, v〉 ≥ Λ holds for all v ∈ H with 〈Lu, v〉 = 0. (1.6)

The conventional approach is to discretize (1.2), e.g. by finite elements or finite differences,

which gives rise to a finite dimensional discrete problem

Ahuh = µChuh (1.7)

where, for a given basis of the trial space, Ah, Ch are the corresponding stiffness matrix

of L and the mass matrix, respectively, and uh denotes the coefficient vector of the ap-

proximate eigenvector. Now the issue becomes to solve (1.7) efficiently within a suitable

accuracy tolerance associated with the discretization. There is a vast literature on this

issue, see e.g. Parlett [Parl], Golub/Van Loan [GvL], which are standard text books in
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numerical linear algebra, or Chatelin [Chat], Babuska-Osborn [BabO] concerning Galerkin

discretizations and Dyaknov [Dyak], Knyazev/Neymair [BPK] for preconditioned iteration

schemes. See also [RSZ] for further references and comments.

In this paper we follow a different line. While the subsequent analysis will apply to

finite dimensional problems of the form (1.7) as well, our primary interest is to avoid the

separation of the discretization and solution process. Rather, we will design an abstract

iteration scheme that solves the original infinite dimensional problem within a given ac-

curacy tolerance, where the iterates of this scheme are taken, in principle, from all of H.

We will then show how to realize these updates (up to a perturbation) in a finite dimen-

sional setting, particularly directing our attention to carrying out this task at possibly

low computational cost. After completion of this work, we became aware of related work

in [GG] where an adaptive finite element scheme for elliptic eigenvalue problems is shown

to converge without giving complexity estimates though.

In principle, such infinite dimensional iterations can be formulated in different ways,

focussing either on the convergence of Rayleigh quotients or of eigendirections. While the

first option - although with the same motivation as in the present work - has been adopted

in [RSZ], we address here the algorithmic realization of the second option. In fact, in

[RSZ], from a somewhat different perspective, we focus on convergence of preconditioned

iteration schemes per se, whereas in the present paper we develop and analyze a convergent

adaptive algorithm. Our analysis given here provides (a posteriori) criteria for adaptive

updates and yields complexity estimates that prove the (asymptotic) optimality of the

scheme.

We note that problems of the kind (1.3) may be treated by means of inverse iteration

or better by Davidson or Jacobi Davidson type methods as well. These approaches require

the solution of a linear system in each iteration step. For this purpose one may apply the

adaptive solution strategies proposed in [CDD1, CDD2, CDD3] based again on various

types of (infinite dimensional) iteration schemes. In contrast to this strategy, in the present

approach we will intertwine the outer loop, e.g. inverse iteration or Jacobi-Davidson and

the iterative solver in the inner loop by updating the Rayleigh quotient in each inner

iteration step. In fact, the present approach can be viewed as a preconditioned steepest

descent method for minimizing the Rayleigh quotient. At any rate, one should stress that

for large systems of linear equations the use of iterative methods would be inevitable,

anyway.

As in Jacobi Davidson or in Krylov space methods, one can also apply subspace

acceleration techniques to improve the present scheme by computing Ritz values of a rather

small system. This requires the computation of scalar products like those appearing in the

Rayleigh quotient. Since we deal with infinite matrices in the present paper we can only

compute these values approximatively, see also Section 4.3 for further details. Regarding
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these possible improvements, we content ourselves here with brief indications and further

studies are required.

We proceed now with showing how the problem (1.2) is transformed into an equivalent

one formulated over a sequence space which is, however, in some sense better conditioned.

To this end, we begin with collecting a few facts that are relevant for carrying out this

program. Moreover, this will motivate the assumptions made in subsequent sections.

1.2 Transformed Problems

Instead of projecting the problem (1.2) to a (fixed) finite dimensional subspace Hh ⊂ H
of H , we shall transform (1.2) into an equivalent problem defined on the sequence space

ℓ2(I) of square summable sequences of some possibly infinite index set I endowed with

the inner product

〈v,w〉 =
∑

i∈I
viwi, for all v,w ∈ ℓ2(I)

and induced norm ‖ · ‖. Note that we use the same symbols for the inner product on ℓ2(I)
as for the dual pairing on H′ ×H.

The key ingredient is a suitable Riesz basis Ψ = {ψi : i ∈ I} of H, i.e. there exist

positive constants cΨ, CΨ such that

cΨ||v|| ≤ ||
∑

i∈I
viψi||H ≤ CΨ||v||, for all v ∈ ℓ2(I). (1.8)

Then (1.2) is equivalent to

Au = λCu, (1.9)

where

A :=
(
〈Lψj, ψi〉

)
i,j∈I , C :=

(
〈ψj, ψi〉

)
i,j∈I . (1.10)

For the operator A the properties (1.5) of L together with (1.8) imply (see e.g. [D])

that

||A||ℓ2→ℓ2 ≤ CLC
2
Ψ, ||A−1||ℓ2→ℓ2 ≤ c−1

L c−2
Ψ , (1.11)

for the problem on ℓ2(I), which in turn means that

cLc
2
Ψ||v||2 ≤ ||v||2A ≤ CLC

2
Ψ||v||2, (1.12)

where ‖ · ‖2A := 〈A·, ·〉. Thus, A-ellipticity is equivalent to bounded invertibility of A on

ℓ2(I). One could say that the transformation has a built-in preconditioning effect: The

original L has been transformed to an operator A which is well conditioned on ℓ2(I)
according to (1.12), a fact that will play a crucial role in solving (1.9) numerically.

As for the properties of C, in the above setting the operator C stems from the inner

product on X and is therefore symmetric, bounded and positive definite. The boundedness
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of C as a linear operator on ℓ2(I) results from the continuous embedding of H in X .

However C is typically not coercive on ℓ2(I).
The role ofC is further illuminated when specifying the setting slightly to the following

situation which may actually serve as a guiding example. In fact, consider again the

example H = H t,X = L2. Here, a suitable choice of the basis Ψ is a wavelet-type basis.

In fact, such wavelet bases are available by now for a wide range of domains and exhibit

an important property, namely that a scaled version of Ψ is also a Riesz basis for the

pivot space X . That means, setting

D := diag(di := 〈ψi, ψi〉1/2 = ||ψi||X : i ∈ I),

the collection

Ψ◦ := {d−1
i ψi : i ∈ I}

satisfies

c′Ψ||Dv|| ≤ ||
∑

i∈I
viψi||X ≤ C ′

Ψ||Dv||, Dv ∈ ℓ2(I), (1.13)

where c′Ψ, C
′
Ψ are again fixed positive constants. It is well-known that for X = L2 and

H = H t one has di = 〈ψi, ψi〉1/2 ∼ 2−t|i|, where |i| denotes the dyadic level of the

wavelet ψi. Moreover, the matrices A and D−1CD−1 are spectrally equivalent, i.e. there

are constants c∗, C∗ such that

c∗||v||D−1CD−1 ≤ ||v||A ≤ C∗||v||D−1CD−1, v ∈ ℓ2(I). (1.14)

Remark 1. In both of the above settings, C is symmetric positive definite and bounded

but typically not coercive on ℓ2(I). However, C is coercive on the space {x : Dx ∈ ℓ2(I)}
equipped with the proper norm in the second example.

Note also that if the basis functions ψi are pairwise orthogonal with respect to the pivot

inner product 〈·, ·〉, then C is actually a diagonal matrix.

The spectrum of the generalized eigenvalue problem Au = λCu coincides with the

original spectrum of (1.2). In particular, since C is positive definite (but not necessarily

coercive) on ℓ2(I), 2.1 is equivalent to C−1/2AC−1/2y = λy. The minimal eigenvalue is

then given by

0 < λ = min
v

〈Lv, v〉
〈v, v〉 = min

y

〈C−1/2AC−1/2y,y〉
〈y,y〉 = min

x

〈Ax,x〉
〈Cx,x〉 , (1.15)

so that the minimal eigenvalue of the transformed problem equals the one of the original

problem and λ is simple. Denoting by u ∈ ℓ2(I) the corresponding eigenvector, one has

〈Av,v〉
〈Cv,v〉 ≥ Λ, for all v ∈ ℓ2(I) with 〈Av,u〉 = 0. (1.16)

The properties collected above will guide us later when formulating the precise condi-

tions all subsequent developments will be based upon.
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1.3 Objectives and Layout

The above considerations indicate how to arrive at transformed equivalent eigenproblems

on sequence spaces (1.9) that are better conditioned in the sense that the spectrum of

the resulting matrix A is enclosed in a bounded interval of the positive real semi-axis. In

particular, the resulting ellipticity on certain orthogonal complements will be seen to give

rise to iteration schemes that reduce the error of the approximate smallest eigenvalue and

also the deviation of the corresponding approximate eigenspace from the exact one by

at least some fixed factor less than one. This is the case for the full infinite dimensional

problem as well as for any finite dimensional discretization resulting from projecting onto

spans of subsets of the Riesz basis Ψ.

Once the fixed error reduction has been established for the full infinite dimensional

problem, the principal idea is to mimic this ideal iteration on the infinite dimensional

problem (that still contains all information) by ultimately carrying out these iterations

only approximately. One then faces the following two tasks:

(i) Find appropriate stage dependent tolerances within which each iteration is to be

solved so as to still guarantee convergence to the exact solution;

(ii) Devise numerical schemes that realize the approximate application in the involved

operators within the given target accuracy at possibly low computational cost.

In this paper we explore the potential of such an adaptive solution strategy on a

primarily theoretical level. Our central objective is to analyze the intrinsic complexity

of accuracy oriented eigenvalue computations. In particular, we shall show under which

circumstances such a scheme has asymptotically optimal complexity in the following sense:

If the solution u belongs to some approximation space As, which means that N terms in

the expansion of u suffice to approximate u in H within accuracy of order N−s, then the

computational work for realizing a target ε remains bounded by a fixed multiple of ε−1/s,

when ε tends to zero.

While the present work is certainly inspired by prior work on adaptive solution schemes

for operator equations (see e.g. [CDD2, CDD3]), there are some noteworthy differences.

On one hand the iteration is nonlinear, on the other hand, one approximates coefficient

arrays that are only determined up to normalization.

The layout of the paper is as follows. After summarizing the fundamental properties

of the problem in Section 2, we formulate in Section 3 an iterative scheme for the compu-

tation of the smallest eigenvalue of the infinite dimensional problem (1.2) (or equivalently

(1.9)) and a corresponding eigenspace. Moreover, we analyze the convergence of this ide-

alized iteration making essential use of the ellipticity of A − λC on certain orthogonal

complements. Section 4 is devoted to the numerical realization of the idealized scheme
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based on the approximate realization of residuals. We first show under which circum-

stances and for which accuracy tolerances such perturbed schemes converge to the exact

solution of (1.9). Then, in a second step, we analyze the complexity of such schemes un-

der the assumption that the involved operators A,C are in a certain sense quasi-sparse.

We note that this property is known to hold for a wide range of operators. The main

result is that the proposed adaptive scheme exhibits in some sense asymptotically opti-

mal complexity. While the underlying adaptive scheme is to be viewed as one possible

prototype realization with certain asymptotic properties, we conclude the section with

indicating ways of quantitative improvements. Finally, in Section 5 we briefly indicate a

typical application background.

2 Problem formulation

Motivated by the above considerations, we will in the remainder of this paper restrict our

treatment to determining the smallest eigenvalue λ and the associated eigenvector u of

the generalized eigenvalue problem

Au = λCu, (2.1)

formulated on the infinite dimensional space ℓ2(I). As in the previous examples we will

only consider the case where A,C are symmetric, positive definite matrices defined on

ℓ2(I) endowed as above with the norm ‖x‖2 :=
∑

i∈I |xi|2 =: 〈x,x〉. Let us again stress

that the index set I could (and actually will) be infinite.

Further, we will impose the following conditions on our problem (2.1) reflecting the

properties we have identified in the framework discussed before.

Property 1. There exist positive constants γ,Γ such that

γ ||x||2 ≤ ||x||2A ≤ Γ ||x||2, (2.2)

where || · ||A := 〈A·, .·〉 1
2 denotes the A-(energy)-norm, see (1.12).

Property 2. For the minimal generalized simple eigenvalue λ of 2.1, there holds

0 < λ = min
x

〈Ax,x〉
〈Cx,x〉 , (2.3)

while there exists a Λ > λ one has for all x with 〈Au,x〉 = 0

〈Ax,x〉
〈Cx,x〉 ≥ Λ > λ. (2.4)
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Remark 2. In the framework discussed in the previous section it was already observed

that C is bounded. Note that this actually follows from Properties 1, 2, namely one has

for CC := Γ/λ that

||x||C ≤ CC ||x||. (2.5)

On the other hand, it follows from (2.2) together with (1.15) that C is coercive on all

of ℓ2 if and only if L is bounded with respect to the X -inner product, a condition that is

usually not fulfilled, for instance when L is a differential operator.

3 Basic Algorithm - A Richardson-style method for

calculating the smallest eigenvalue

In this section, we shall now formulate an “ideal iteration scheme” for (2.1). This scheme

and the tools used to prove convergence will be utilized later in the analysis for our

adaptive algorithm to be introduced in Section 4; therefore, the convergence analysis will

be given in detail. Let λ̃ and Λ̃ be lower and upper bounds for λ and Λ, respectively. Then

the iteration reads as follows.

3.1 Basic Algorithm:

MINIT

Require: initial value x0 ∈ ℓ2(I), ‖x0‖ = 1,

α = 2((1− λ̃/Λ̃)γ + Γ)−1

Iteration:

For n = 0, 1, . . . do

Calculate the Rayleigh quotient λ(n) = 〈Axn,xn〉
〈Cxn,xn〉

;

Calculate the residual rn = Axn − λ(n)
Cxn.

Let x̂n+1 = xn − αrn;

Normalize xn+1 = 〈x̂n+1, x̂n+1〉−
1

2 x̂n+1.

endfor

This algorithm resembles a preconditioned Richardson iteration x̂n+1 = Φ(n)xn with

a stage dependent iteration matrix

Φ(n) := I− α(A− λ(n)C)

depending on the n-th iterate xn and a relaxation parameter α. On the other hand,

defining the (generalized) Rayleigh quotient λ(x) = 〈Ax,x〉
〈Cx,x〉 one has ∇λ(xn) =

2
〈Cxn,xn〉rn,

so that a steepest descent step with stepsize βn takes the form

xn −
2βn

〈Cxn,xn〉
rn.
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Thus, the above iteration could be viewed as a steepest descent method for the general-

ized Rayleigh quotient. This iteration scheme is also known as a preconditioned inverse

iteration scheme PINVIT, see e.g. [KN, RSZ]. Note that the preconditioning is already

provided through the formulation as a well-conditioned problem in ℓ2(I).
This algorithm can be improved by subspace acceleration techniques. For instance,

the Rayleigh quotient might be minimized according to

xn+1 := argmin {λ(v) : v ∈ span {xn, rn}, ||v|| = 1}. (3.1)

This corresponds to optimal line search in a steepest descent step. However, in order

to have a technically simpler exposition of the principal mechanisms of our approach

we confine the subsequent discussion first to the above simple Richardson type iteration

and will take up possible improvements along with computational consequences later in

Section 4.3.

In the remainder of this section, we will analyze the properties of Algorithm MINIT

and in particular prove convergence to the smallest eigenvector, provided the starting

vector lies sufficiently close to the target u. The main results will then be compiled in

Theorem 1 at the end of this section.

3.2 Error reduction

We shall show that for suitable damping parameters α the above (ideal) iteration (on the

full infinite dimensional space ℓ2(I)) provides approximations to the searched eigenpair

with a guaranteed fixed error reduction per step.

3.2.1 Preliminary considerations

Setting δn := δ(xn) := xn − u for the normalized iterates xn, we will show that the error

components that are orthogonal to u tend to zero in the Euclidean ℓ2(I)-norm. Denoting

by Px = 〈x,u〉
〈u,u〉u the ℓ2-orthogonal projection of x into the eigenspace U0 containing the

eigenvector u, the orthogonal error component is given by δ
⊥
n = (I−P)δn, we introduce

‖δ⊥
n ‖ = ||(I−P)δn|| = ‖(I−P)xn‖ =: sin∠(xn,u) . (3.2)

Note that ‖δ⊥
n ‖ does not depend on the normalization of u. We shall now show that we

have an at least linear reduction of the orthogonal error component of the iterates xn of

(3.1), i.e.

||δ⊥
n+1|| ≤ ξ ||δ⊥

n ||, (3.3)

with ξ < 1, provided the initial vector has a sufficiently small angle with the solution u

corresponding to the smallest eigenvalue λ.
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Towards this end, we first note that xn⊥ rn, so that we have for the non-normalized

iterates

||x̂n+1||2 = ||xn − αrn||2 = ||xn||2 + α2||rn||2 ≥ ||xn||2 = 1. (3.4)

Hence, the error of the ℓ2-normalized iterates xn+1 can be estimated by

||δ⊥
n+1|| =

1

||x̂n+1||
||(I−P)x̂n+1|| ≤ ||(I−P)x̂n+1|| =: ||δ̂⊥

n+1||. (3.5)

To go further, we decompose δ̂
⊥
n+1 as follows

||δ̂⊥
n+1|| = ||(I−P)Φ(n)xn|| = ||(I−P)

(
(I− α(A− λ(n)C)

)
xn||

≤ ||(I−P) (I− α(A− λC))δn ||+ ||α(λ(n) − λ)(I−P)Cxn||, (3.6)

where we have used that

Mu := (A− λC)u = 0 .

Moreover, using the fact that rangeP ⊆ kerM so that

M = M(I −P), (3.7)

we conclude, upon using (I−P)2 = I−P and

(A− λC))δn = Mδn = M(I−P)δn = Mδ
⊥
n ,

that

||δ̂⊥
n+1|| ≤ || (I−P) (I− αM) δ⊥

n ||+ CC α |λ(n) − λ|. (3.8)

We now estimate the two parts in the right hand side of (3.8) separately in the next two

subsections.

3.2.2 Linear part of the iteration scheme

The main goal of this subsection will be to show the following property of the iteration

matrix, from which in Lemma 4, an estimate for the left part of (3.8) will easily be derived.

Lemma 1. Under the assumptions stated above, the matrix

M := A− λC (3.9)

is bounded and ℓ2-elliptic on the set

V0 = {x ∈ ℓ2(I) : 〈x,u〉 = 0}, (3.10)

that is, there exist θ,Θ > 0 such that

θ ||x||2 ≤ 〈Mx,x〉 ≤ Θ ||x||2 for all x ∈ V0. (3.11)
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For the proof of Lemma 1, we need the following general facts included for the conve-

nience of the reader in form of the next two lemmata.

Lemma 2. Let (X , 〈·, ·〉) be any inner product space with norm || · ||2 := 〈·, ·〉. Moreover,

assume that x, v ∈ X fulfil the conditions ||v|| = ||x|| and 〈x, v〉 ≥ 0. Then, for P = 〈.,v〉
〈v,v〉v,

we have
1√
2
||x− v|| ≤ ||(I − P )x|| ≤ ||x− v||.

Proof: First, we note that it suffices to show the equivalence for ||v|| = ||x|| = 1 and

v 6= x. The second inequality is clear due to the fact that P is an ℓ2-orthogonal projector.

For the inverse estimate, let α0 = 〈x, v〉 ≥ 0. We then have ||x− v||2 = ||x||2 + ||v||2 −
2α0 = 2− 2α0 and ||(I − P )x||2 = 1− α2

0, which together gives

||(I − P )x||2
||v − x||2 =

1 + α0

2
≥ 1

2
.

�

Lemma 3. Let 〈·, ·〉1, 〈·, ·〉2 be two equivalent inner products on a Hilbert space H, i.e.

they induce equivalent norms in H, G a symmetric operator with respect to 〈·, ·〉2 (i.e.

〈Gx, y〉2 = 〈x,Gy〉2 for all x, y ∈ H) and u ∈ kerG. Then, if G is 〈·, ·〉2-elliptic on the

〈·, ·〉1-orthogonal complement of u, that is

〈Gx, x〉2 ≥ c〈x, x〉2 (3.12)

holds for all x with 〈x, u〉1 = 0, then G is also 〈·, ·〉2-elliptic on the 〈·, ·〉2-orthogonal
complement of u, i.e. (3.12) holds for all x with 〈x, u〉2 = 0 with a possibly different

constant c.

Proof: Let x ∈ H fulfil 〈x, u〉2 = 0. Decomposing x = P1x + x⊥1 , where Pix = 〈x,u〉i
〈u,u〉iu

denotes the i-orthogonal projector, we obtain Gx = Gx⊥1 and therefore

〈Gx, x〉2 = 〈x⊥1 , Gx〉2 = 〈Gx⊥1 , x⊥1〉2 >∼ ||x⊥1 ||22 ∼ ||x⊥1 ||21.

To prove the assertion, it remains to see that ||x⊥1||1 ∼ ||x⊥2||2 = ||x||2, where x⊥2 =

x − 〈x,u〉2
〈u,u〉2u = x. This latter fact follows from Lemma 2 above, where we can choose v to

be a multiple of u such that ||v||1 = ||x||1 and 〈x, v〉1 ≥ 0, giving

||x⊥1||1 ∼ ||x− v||1 ∼ ||x− v||2 ≥ ||(I − P2)(x− v)||2 = ||x⊥2 ||2.

This confirms the assertion. �
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Proof of lemma 1. For the ellipticity, we show the claim for all x with 〈x,u〉A = 0;

setting 〈·, ·〉1 = 〈·, ·〉A in Lemma 3 proves then the coercivity on V0. Indeed, for all such

x, we have
||x||2

A

||x||2
C

≥ Λ, by assumption 2, and therefore

〈(A− λC)x,x〉 = ‖x‖2A − λ‖x‖2C (3.13)

=
Λ− λ

Λ
‖x‖2A +

λ

Λ
‖x‖2A − λ‖x‖2C (3.14)

≥ Λ− λ

Λ
γ‖x‖2 + λ

Λ
Λ‖x‖2C − λ‖x‖2C (3.15)

=
Λ− λ

Λ
γ‖x‖2. (3.16)

By

0 < 〈(A− λC)w,w〉 ≤ 〈Aw,w〉 ≤ Γ‖w‖2, (3.17)

the boundedness of M on V0 follows.

�

Lemma 4. Let Φ := (I − P)(I − αM) : V0 → V0 denote the matrix in the left part of

(3.8). Then setting the parameter α := 2((1 − λ/Λ)γ + Γ)−1 in the Richardson method

gives

||Φ||V0→V0 ≤ β < 1.

Proof: Due to the continuity and ellipticity of M on V0, we have

(1− αΘ)||x||2 ≤ 〈(I− αM) x,x〉 ≤ (1− αθ)||x||2, ∀ x ∈ V0. (3.18)

The same inequality applies to Φ owing to the fact that P is symmetric and therefore

〈(I−P)(I− αM)x,x〉 = 〈(I− αM)x, (I−P)x〉 = 〈(I− αM)x,x〉, ∀ x ∈ V0.

We now let β = Θ−θ
Θ+θ

< 1. Then, choosing α := 2
Θ+θ

= 2((1− λ/Λ)γ + Γ)−1 (recalling the

choice of Θ and θ from the proof of Lemma 1), equation (3.18) gives −β ≤ 〈Φ x,x〉 ≤ β

and therefore ||Φ||V0→V0 ≤ β < 1. �

3.2.3 Estimates for Rayleigh quotients and residuals

It remains to estimate the Rayleigh quotients in the right hand side of equation (3.8).

Lemma 5. Let x ∈ ℓ2(I) with ||x|| = 1 and as before let λ(x) denote the corresponding

Rayleigh quotient. Then we have

λ(x)− λ ≤ 2Γ

γ
λ(x) ||δ(x)⊥||2, (3.19)
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where the constants in inequality (3.19) are those from the norm estimate (2.2) and

δ
⊥(x) = (I−P)(x− u) as above.

Proof: Suppose that ux is an eigenvector belonging to the smallest eigenvalue λ of the

eigenvalue problem (2.1) which is normalized in such a way that ||ux|| = ||x|| and 〈x,ux〉 ≥
0. Straightforward computation yields

λ(x)− λ =
1

||x||2C
(
||x− ux||2A − λ||x− ux||2C

)
. (3.20)

Keeping the normalization of x and (2.2) in mind and since there are no absolute

values involved there, we infer from (3.20) that

λ(x)− λ ≤ 1

||x||2C
||x− ux||2A =

||x||2
||x||2C

||x− ux||2A ≤ ||x||2A
γ||x||2C

||x− ux||2A

=
λ(x)

γ
||x− ux||2A ≤ Γ

γ
λ(x)||x− ux||2.

Since Lemma 2 says that

||x− ux|| ≤
√
2||(I−P)x|| =

√
2||(I−P)(x− ux)||,

the assertion (3.19) follows as well. �

Remark 3. As before let δ = δ(x) := x − u and fix 0 < a < γ/2Γ. If ||δ(x)⊥|| ≤ √
a,

one has for the corresponding Rayleigh quotient

λ(x) ≤ λ
(
1− 2Γa

γ

)−1
=: K. (3.21)

Taking e.g. a = γ/4Γ one has K = 2λ.

Proof: From Lemma 5 we infer that λ(x) ≤ λ
(
1− 2Γ

γ
||δ(x)⊥||2

)−1 ≤ λ
(
1− 2Γa

γ

)−1
. �

An immediate consequence of (3.21) can be stated as follows.

Remark 4. Under the property of Section 2 the operator C is coercive on any sufficiently

small fixed angular neighborhood of the direction u, i.e. for K from (3.21) one has

〈Cx,x〉 ≥ γ/K whenever ||x|| = 1, ||(u− x)⊥|| ≤
√
a. (3.22)

The next observation is that the orthogonal error components are controlled by the

residuals. To this end, note that

M⊥ : V0 → V0, x 7→ (I−P)Mx

is bounded and elliptic so that ||M−1
⊥ || is a bounded positive number.

13



Lemma 6. For any x ∈ ℓ2(I) with ||x|| = 1, let r(x) := (A − λ(x)C)x be the corre-

sponding residual with respect to the Rayleigh quotient λ(x) := 〈Ax,x〉
〈Cx,x〉 and, as before, let

x⊥ = (I−P)x so that in particular δ(x)⊥ = (I−P)(x−u) = (I−P)x. Assume that for

the constant a from Remark 3

||δ(x)⊥|| ≤ min
{√

a,
1

2

{(
1 +

γ

ΓKCC||M−1
⊥ ||

)1/2

− 1
}}

. (3.23)

Then for M := 2||M−1
⊥ || one has

‖δ(x)⊥‖ ≤ M‖r(x)⊥‖ ≤ M ||r(x)|| ≤ M
(
||M||+ 2KΓCC

γ
||δ(x)⊥||

)
||δ(x)⊥||.

(3.24)

Proof: Since

r(x) = M(x− u) + (λ− λ(x))Cx = M(I−P)(x− u) + (λ− λ(x))Cx,

we conclude, on account of Lemma 5 and Remark 3, that

||r(x)|| ≤ ||M|| ||δ⊥(x)||+ 2KΓCC

γ
||δ⊥(x)||2, (3.25)

which confirms the upper estimate in (3.24).

As for the lower estimate, recall that by the definition of M⊥,

M⊥δ(x)
⊥ = (I−P)(A− λ(x)C)δ(x)⊥ + (I−P)(λ(x)− λ)Cδ(x)⊥,

giving

‖M−1
⊥ ‖−1

δ(x)⊥‖ ≤ ‖M⊥δ(x)
⊥‖ ≤ ‖(I−P)(A− λ(x)C)δ(x)⊥‖ + ‖(λ(x)− λ)Cδ(x)⊥‖.

(3.26)

Now straightforward calculations yield

(A− λ(x)C)δ(x)⊥ = r(x)− (A− λ(x)C)Px = r(x)− 〈x,u〉
〈u,u〉(λ− λ(x))Cu,

which gives

‖(I−P)(A− λ(x)C)δ(x)⊥‖ ≤ ||r(x)⊥||+ CC |λ− λ(x)|. (3.27)

Invoking now Lemma 5, (3.19) together with Remark 3 and (3.26), yields

‖M−1
⊥ ‖−1‖δ(x)⊥‖ ≤ ||r(x)⊥||+ 2ΓKCC

γ

(
1 + ||δ(x)⊥||

)
||δ(x)⊥||2. (3.28)

Hence, whenever
2ΓKCC

γ

(
1 + ||δ(x)⊥||

)
||δ(x)⊥|| ≤ 1

2
‖M−1

⊥ ‖−1, (3.29)

which is the case when (3.23) holds, we obtain

‖δ(x)⊥‖ ≤ 2‖M−1
⊥ ‖ ||r(x)⊥||, (3.30)

which is lower estimate in (3.24) with M := 2‖M−1
⊥ ‖. �
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3.2.4 Convergence of the scheme

In summary, the above observations allow us to establish the following local convergence

properties of the Richardson eigenvalue iteration.

Theorem 1. Let the damping parameter α in the basic algorithm MINIT from Section

3.1 be chosen according to Lemma 4, so that the bound β for ||Φ||V0→V0 in Lemma 4

satisfies β < 1. Furthermore assume that the initial error satisfies

||δ⊥
0 || ≤ min

{
a1/2,

1− β

2c̃K

}
=: d, (3.31)

where c̃ := 2αΓCC/γ. Then the following statements hold:

a) For ξ := (β + 1)/2 < 1 one has

||δ⊥
n+1|| ≤ ξ ||δ⊥

n ||, (3.32)

i.e. one has monotone linear error reduction with respect to the ℓ2-norm. Moreover, for

any ǫ > 0 there is an nǫ such that for n ≥ nǫ one can choose ξ < β + ǫ in (3.32), i.e.

one has an asymptotic error reduction of a rate ≤ β. The orthogonal error components

δ
⊥
n also converge to zero in the A-norm.

b) There exists a uniform constant C such that the error of the Rayleigh quotients λ(xn)

is bounded by

λ(xn)− λ ≤ C||δ⊥
n ||2 → 0. (3.33)

c) There exist constants M,M ′ > 0 and n0 ∈ N such that

‖δ⊥
n ‖ ≤ M‖r⊥n ‖ ≤ M ||rn|| ≤ M ′||δ⊥

n ||, n ≥ n0. (3.34)

Moreover, there exists ζ < 1 and n1 ∈ N such that

||rn+1|| ≤ ζ ||rn||, n ≥ n1. (3.35)

Proof: Recalling (3.5), (3.6) and employing Lemmata 4 and 5 provides

||δ⊥
n+1|| ≤ ||Φ||V0→V0 ||δ⊥

n ||+ α
2ΓCC

γ
λ(xn) ||δ⊥

n ||2

≤ (β + c̃ λ(xn) ||δ⊥
n ||)||δ⊥

n || =: ξ ||δ⊥
n ||, (3.36)

with c̃ := 2αΓCC/γ. It remains to show that ξ < 1 for ||δ⊥
0 || sufficiently small. In fact, we

know from Remark 3 that

λ(x0) ≤ K, (3.37)

provided that δ0 = δ(x0) satisfies ||δ⊥
0 || ≤

√
a (cf. (3.31)). Moreover, by (3.36) for n = 0,

we have

||δ⊥
1 || ≤ (β + c̃K||δ⊥

0 ||)||δ⊥
0 ||.
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Now note that (3.31) implies that c̃K||δ⊥
0 || ≤ (1− β)/2 so that

β + c̃K||δ⊥
0 || ≤ 1 + β

2
=: ξ < 1, (3.38)

which yields

||δ⊥
1 || < ||δ⊥

0 ||, λ(x1) ≤ K.

One easily shows now with the aid of Lemma 5 and (3.36) inductively that

||δ⊥
n+1|| ≤ ξn||δ⊥

n ||, ξn := β + c̃K||δ⊥
n || ≤ ξ < 1, λ(xn) ≤ K, n ∈ N. (3.39)

This guarantees monotone convergence of the iteration. It is obvious from the above

arguments that with ||δ⊥
n || → 0 the values of ξn drop down to β, showing the first assertion.

Convergence in the A-norm is now an immediate consequence of (2.2) and (3.32)

provided that δ0 satisfies (3.31). This proves a).

The convergence of the Rayleigh quotients λ(xn) now follows immediately from (3.19)

and (3.39), giving (3.33), confirming b).

Concerning c), we have seen above that under the assumption (3.31) the estimates

(3.39) hold. Thus, using the rough estimate a ≤ 1 one obtains

2ΓKCC

γ

(
1 + ||δ⊥

n ||
)
||δ⊥

n || ≤ 1

2
‖M−1

⊥ ‖−1, n ≥ n0, (3.40)

where

n0 :=

⌈
log(γ/(8ΓKCC‖M−1

⊥ ‖)
log ξ

⌉
.

Hence, for n ≥ n0, the hypotheses of Lemma 6 are satisfied for x = xn, which provides

the lower estimate of (3.34) again with M = 2||M−1
⊥ || as in Lemma 6. The upper estimate

is also an immediate consequence of Lemma 6 and (3.39).

As for the remaining claim, we find that

||rn+1|| = ||(A− λn+1C)xn+1||
= ||x̂n+1||−1 ||(A− λ(n+1)C)(xn − αrn)||
= ||x̂n+1||−1 ||(A− λ(n)C)xn

−α(A− λC)rn + (λ(n) − λ(n+1))Cxn − α(λ− λ(n+1))Crn||.

On account of Lemma 5, (3.19), (3.21), and the fact that ||x̂n+1|| ≥ 1 for the unnormalized

iterates, we obtain further

||rn+1|| ≤ ||(I− α(A− λC))|| ||rn||+
2CCΓK

γ
||δ⊥

n ||2
(
2||xn||+ α||rn||

)

≤
(
β +

M22CCΓK

γ

(
2 + α||rn||

)
||rn||

)
||rn||,
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whereM is from (3.24) and where we have also used Lemma 4, the continuity ofC and the

estimate (3.24) just proven before. Recall that we have β < 1, thus showing the assertion

for ||rn|| small enough. The fact that ||rn|| indeed becomes small follows from the upper

estimate in (3.24) and (3.32) as well. �

4 Adaptive strategies for the eigenvalue problem

There are two points that we would like to stress from the start. First, all the above

considerations are independent of the index set I underlying the space ℓ2(I) being finite or
infinite as long as our assumptions on A,C are satisfied. If the basic Richardson iteration

is considered on a fixed finite dimensional space, i.e. if we consider a fixed discretization of

the original problem (1.2) like (1.7), the proposed scheme may not be the most favorable

one since it offers at best linear error reduction. Nevertheless, the property (2.2) reflects

the fact that one has been able to precondition the problem sufficiently well in the sense

that a fixed error reduction is achieved independently of the (fixed) size of I.
On the other hand, if one is interested in solving the original problem (1.2) within a

desired target accuracy ε at possibly low cost (which means to understand how the cost

depends on ε when ε tends to zero), the game changes completely. Following [CDD2] one

may think of performing the iteration on the infinite eigenvalue problem (2.1) which is

still equivalent to (1.2). In fact, solving (2.1) within target accuracy ε provides a solution

to (1.2), due to the norm equivalence (2.2) and the mapping property (1.5), that has up

to a constant factor the same accuracy in the (continuous) energy norm. Now, of course,

the matrices A,C are infinite so that even when the current iterate xn has finite support,

the next iterate xn+1 cannot be computed exactly. The idea is therefore to compute each

update only approximately within a suitable dynamically varying accuracy tolerance in

such a way that, on one hand, the convergence to the exact solution is preserved, while

on the other hand, the computational cost of each perturbed iteration is possibly low.

In the following sections we shall carry out this program based on the above Richardson

type iteration. It will be seen that, regardless of the order of the iteration, when applied

to a fixed finite dimensional trial space, such an adaptive scheme may perform at an

asymptotically optimal complexity.

We will proceed in two steps. First, each iteration step requires the approximate cal-

culation of the residual (A−λ(xn)C)xn which can be broken down to two types of tasks,

namely:

(I) to approximate matrix/vector products Ax, Cx (where now A,C are in principle

infinite),
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(II) to approximate the Rayleigh quotient λ(x) = 〈Ax,x〉
〈Cx,x〉 .

Of course, (II) can be reduced to (I) but there are interesting alternatives. We distinguish

the two cases at this point because, depending on the situation, the accuracy requirements

may be somewhat different due to the fact that relative accuracy tolerances are needed

in (II) unless C has particularly favorable properties that essentially permit the exact

calculation of 〈Cx,x〉. We shall return to this issue later in more detail.

Let us therefore suppose at this point that we have for B ∈ {A,C} a routine with the

following property at hand:

APPLY (B,x, η) → w such that

||Bx−w|| ≤ η.

We shall postpone the actual description of APPLY to a later section. Given such a

routine we shall first analyze which tolerances η are needed to ensure convergence of a

correspondingly perturbed iteration. As a second step we shall then discuss the complexity

of a corresponding numerical realization.

4.1 A perturbed iteration

We shall now collect the main ingredients of a perturbed version of MINIT from Section

3.1, assuming that the routine APPLY from above is available. The first one concerns

the approximation of a given x ∈ ℓ2(I) by one with possibly short support.

APPROX(x, η) → z: produces for a given (finitely supported) x and any η > 0 a finitely

supported z such that

||x− z|| ≤ η, #supp z ≤ argmin||w−x||≤η/2#suppw. (4.1)

This routine can be realized by replacing as many entries of the input as possible by

zero, as long as the sum of their squares does not exceed η2. One could of course use the

tolerance η in the argmin which would mean to compute a best N -term approximation of

x. This in turn would require exact sorting of the coefficients introducing an additional

log-factor of the support size of x, see [CDD1] for details. Being content with quasi-sorting

based on binary binning one can avoid the log-factor at the expense of a slightly larger

support, see e.g. [B].

In addition to approximate matrix/vector products we need approximate Rayleigh

quotients and hence scalar products. Recall that we have to perform such routines for

normalized inputs ||x|| = 1, which will be henceforth assumed. A straightforward way to
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approximate the scalar products would be as follows:

SCAL(B,x, η) → s: Given any η > 0, the routine outputs a scalar s such that

|〈Bx,x〉 − s| ≤ η (4.2)

as follows:

• APPROX(x, η/(2||B||))→ z;

• APPLY (B,x, η/2)|suppz → w;

• s = 〈z,w〉.

Here APPLY (B,x, η/2)|suppz means that the output of APPLY can be restricted

to supp z. To which extent this can be used to economize on the computational effort

depends on the realization of APPLY and will therefore be postponed to Section 4.3.

It is easily seen that s given as above does satisfy (4.2). Note that ||A|| := sup||x||=1 ||Ax|| ≤
Γ.

We also remark that one can think of different ways of approximating 〈Bx,x〉. For
instance, one could decompose x by determining xj of smallest support so that ||x−xj || ≤
2jη1/2, say, noting that xJ = 0 for J := ⌈| log2 η1/2|⌉. Then, setting zj := xj − xj+1

J∑

j=0

〈zj,wj〉, wj := APPLY (B,x, ǫj)|supp zj , , j = 0 . . . , J, (4.3)

is an approximation to 〈x,Bx〉 of the order η, provided that
∑J

j=0 2
jǫj ∼ η1/2. The appar-

ent advantage is that highly accurate matrix applications need to be computed only on

typically small supports of coarse zj’s. It will be shown in Section 4.3 that such a strategy

does offer asymptotic savings. Of course, as long as the matrix/vector products Ax,Cx

have to be approximated within a similar accuracy tolerance anyway in the iteration, one

might as well stick with the simpler version of SCAL shown above which we will do for

the time being.

Given the routine SCAL we can proceed to approximating the Rayleigh quotients

λ(x). We shall devise a routine:

RAY L(x, η) → λ̄: Given η > 0 and any finitely supported x with ||x|| = 1, RAY L outputs

λ̄ auch that

|λ(x)− λ̄| ≤ η. (4.4)
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In many cases it is even possible to apply C exactly at acceptable cost, e.g. when C

is diagonal, see e.g. Remark 1. In this case we need no further assumption on C beyond

boundedness in ℓ2(I) and can simply take

RAY L(x, η) =
SCAL(A,x, η〈Cx,x〉)

〈Cx,x〉 . (4.5)

If, on the other hand, C can only be applied appoximately with the aid of some routine

APPLY , the routine SCAL is slightly more involved. Denoting by cC := γ/K the local

coercivity constant for C from Remark 3, the following realization works.

Lemma 7. Assume that ||(u− x)⊥|| ≤ √
a holds. Carrying out the following steps:

• SCAL(A,x, ηcC/2) → s̃A, SCAL(C,x, c
2
Cη/(6Γ)) → s̃C;

• λ̄ := s̃A/s̃C,

verifies (4.4), provided that

η ≤ min {γ/cC, 3Γ/cC}. (4.6)

Proof: To see the validity of (4.4), let sA := 〈Ax,x〉, sC := 〈Cx,x〉 and note first

that
sA
sC

− s̃A
s̃C

=
1

sC
(sA − s̃A)−

s̃A
sC s̃C

(sC − s̃C),

so that

|λ(x)− λ̄| ≤ ηcC
2sC

+
s̃A
sC s̃C

c2Cη

6Γ
. (4.7)

Now note that under the assumption (4.6) one has (recalling that ||x|| = 1)

|sA − s̃A| ≤ ηcC
2

=
ηcC||x||2

2
≤ ηcCsA

2γ
≤ 1

2
sA,

so that s̃A ≤ 3sA
2

≤ 3Γ
2
. Likewise, upon using (3.22), one obtains for η satisfying (4.6) that

|sC − s̃C | ≤ sC/2 so that s̃C ≥ sC/2 ≥ cC/2. Combining these estimates yields

s̃A
sC s̃C

≤ 6Γ

2c2C
,

which, on account of (4.7), confirms the claim (4.4). �

Remark 5. On account of Remark 3, the tolerance in the evaluation of the scalar product

remains proportional to the target accuracy η in the routine RAY L for either version

provided that ||(u− x)⊥|| ≤ √
a.
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We are now able to describe a routine for approximating the scaled residual α(A −
λ(x)C)x:

RES(x, η) → rη: Given any η > 0 and any x with ||x|| = 1, the routine RES outputs a

finitely supported vector rη such that

||rη − α(A− λ(x)C)x|| ≤ η. (4.8)

The routine RES can be realized as follows:

1) RAY L(x, η/(4CCα)) → λ̄;

2) RES(x, η) = α
(
APPLY (A,x, η/(2α))− λ̄APPLY (C,x, η/(4λ̄α))

)

Of course, when the approximate evaluation of the scalar product involving A simply

relies on the application of APPLY one only needs to carry out this latter routine once

in RES with respect to the minimal tolerance required in RAY L and in step 2) of the

above scheme.

Remark 6. From now on we shall always assume that the parameter α in the basic

Richardson iteration is chosen according to Lemma 4, ensuring that β < 1.

The following lemma will help to understand the perturbed Richarson iteration.

Lemma 8. Assume that the approximation ū to u satisfies ||δ(ū)⊥|| ≤ ε̄ ≤ d, where d

is the constant from (3.31), and let ξ be given by (3.38). Then, setting ηj := (1− ξ)ε̄2−j,

v0 := ū, and doing for j = 0, 1, 2, 3, . . .

vj − RES(vj , ηj) → v̂j+1, (4.9)

one has

||δ(vj)
⊥|| ≤ ε̄, j = 0, 1, 2, . . . (4.10)

and

||δ(vj)
⊥|| ≤ ξjε̄/β, j = 0, 1, 2, . . . (4.11)

Proof: Setting rη := RES(vj , η), we have, by definition,

v̂j+1 − u = vj − u− αr(vj) + (αr(vj)− rηj )

= vj − u− α(A(vj − u)− λC(vj − u)) + α(λ(vj)− λ)Cvj

+ (αr(vj)− rηj )

= (I− αM)(vj − u) + α(λ(vj)− λ)Cvj + (αr(vj)− rηj ). (4.12)
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Therefore we obtain, on account of Lemma 4, Lemma 5, and the accuracy of rηj

||δ(vj+1)
⊥|| ≤ β||δ(vj)

⊥||+ 2α||C||Γ
γ

λ(vj)||δ(vj)
⊥||2 + ηj

=
(
β +

2α||C||Γ
γ

λ(vj)||δ(vj)
⊥||

)
||δ(vj)

⊥||+ ηj. (4.13)

Now recall from Remark 3 that λ(vj) ≤ K as long as ||δ(vj)
⊥|| ≤ √

a ≤ d (which is, in

particular, valid by assumption at the initialization step v0 = ū).

From (3.39) we then know that

‖δ(v1)
⊥‖ ≤

(
β +

α||C||Γ
γ

K||δ(ū)⊥||
)
||δ(ū)⊥||+ (1− ξ)ε̄ ≤ ξ||δ(v0)

⊥||+ (1− ξ)ε̄ ≤ ε̄,

where ξ < 1 is given by (3.38). Hence, we conclude that ||δ(v1)
⊥|| ≤ ε̄. One easily

concludes inductively that (4.10) holds (actually with strict inequality for j ≥ 1).

More precisely, repeating the reasoning in (4.13), we obtain upon elementary calcula-

tions and using that ξ = (1 + β)/2,

||δ(vj+1)
⊥|| ≤ ξj+1ε̄+

j∑

i=0

ξj−iηi ≤ ε̄ξj+1/β, (4.14)

which was to be shown. �

Now recall from Lemma 6 that, once the orthogonal error component drops below

another possibly smaller threshold

δ̄ :=
1

2

{(
1 +

γ

ΓK||C|| ||M−1
⊥ ||

)1/2

− 1
}
, (4.15)

the orthogonal error component of the approximate eigenvectors behaves essentially as

the residual.

Remark 7. If δ̄ < d at most

m0 =




log
(

βδ̄
ǫ

)

log ξ




iterations of the form (4.9) suffice to provide an approximation xm0 to u satisfying

||δ(xm0)
⊥|| ≤ min {d, δ̄}. (4.16)

We are now ready to formulate the main adaptive eigensolver. On account of Remark

7 we shall assume for simplicity without loss of generality that the initial guess already

satisfies the somewhat more stringent accuracy tolerance (4.16).
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MINIEIG(A,C, ε)→ (λ(ε),u(ε))

(i) Initialization: Choose ε0 ≤ min {d, δ̄} (see (3.31), (4.15)) and ||x0|| = 1 s.t. ‖δ(x0)
⊥‖ ≤ ε0;

set ε̄ := ε0, ū := x0;

(ii) Iteration block: set ū → v, (1 − ξ)ε̄ → η, j = 0;

do

RES(v, η) → rη; v − rη → v̂; v̂/||v̂|| → v; η/2 → η, j + 1 → j;

until j ≥ log(c1β)/ log ξ or η + ||rη|| ≤ c1ε̄/M for a fixed c1 ≤ min {2/(5ε0), (
√
3 + 5/2)−12−3/2};

(iii) Coarsening: do w = APPROX(v, 3c1ε̄/
√
2);

normalize ū = w

‖w‖ ; if ε̄/2 ≤ ε, stop and set λ(ε) = RES(ū, ε), u(ε) := ū;

else ε̄/2 → ε̄; go to (ii) .

Note that a block of perturbed iterations (ii) is interrupted by a coarsening step (iii)

as soon as a threshold criterion is met. This criterion involves actually two alternatives

that will both be seen to be met after a uniformly bounded finite number of steps in (ii).

One of the stopping tests is an a-posteriori test based on the numerical residual and the

rationale is that it may actually be met earlier than the other test which is based on the

bounds in (4.11) which might be too pessimistic, in particular at later stages when the

reduction constants decrease. The role of the coarsening step is to control the complexity

of the overall scheme in a similar way as in adaptive schemes for operator equations (see

e.g. [CDD2, CDD3]).

Theorem 2. The scheme MINIEIG(A,C, ε) terminates for any given ε > 0 after

finitely many steps and outputs an approximate eigenpair (λ(ε),u(ε)) with u normalized

satisfying

||(u− u(ε))⊥|| ≤ ε, |λ(ε)− λ| ≤ ε, (4.17)

where (λ,u) is an exact ground state eigenpair.

Remark 8. Given u(ε) satisfying the first estimate in (4.17) we can approximate λ within

a tolerance proportional to ε2 instead of (4.17) by applying RAY L(u(ε), ε2) which of course

requires a correspondingly higher cost due to the the required more accurate applications

of SCAL and ultimately of APPLY , see Section 4.3.

Proof of Theorem 2: To analyze the effect of the various perturbations of the exact

iteration suppose that uk := ū is the output of the coarsening step after the k-th cycle

through the coarsening step (iii), i.e. at this stage we have ε̄ = 2−kε0. Moreover, let vj be

the result after j perturbed iterations in the iteration block (ii) starting with v0 = ū = uk.

The corresponding tolerance η = ηj is then given by η = (1 − ξ)ε̄2−j = (1 − ξ)ε02
−k−j.

Invoking Lemma 8, ensures that ||δ(vj)
⊥|| ≤ ε̄ and ||δ(vj)

⊥|| ≤ ε̄ξj/β and hence that the

error reduces at least by a fixed rate. Hence, the stopping criterion in (ii) is met after at

most J := ⌈log(c1β)/ log ξ⌉ steps giving

||δ(vJ)
⊥|| ≤ c1ε̄. (4.18)
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Moreover, the initialization ensures that Lemma 6 applies to the iterates vj, which means

that ||δ(vj)
⊥|| is controlled by the residuals. Thus

||δ(vj)
⊥|| ≤M ||r(vj)|| ≤M(||rηj ||+ ηj). (4.19)

On the other hand, also by Lemma 6,

||rηj || ≤ ‖r(vj)‖+ ηj ≤ M ′||δ(vj)
⊥||+ ηj ≤ M ′ε̄ξj/β + ηj .

Thus ||rηj ||+ηj will also drop below the threshold c1ε̄/M after finitely many steps, and in

fact, possibly earlier than the alternative step bound J , if the bounds in (4.11) are overly

pessimistic.

In summary, the input v in (iii) at this stage satisfies ||(u − v)⊥|| ≤ c1ε̄. Assuming

without loss of generality that 〈u,x〉 > 0, we can invoke Lemma 2 to conclude that

||u◦ − v|| ≤
√
2c1ε̄ =: σ, (4.20)

where u◦ := u/||u||. Since by (iii), we have w = APPROX(v, 3σ/2), we obtain by

triangle inequality ||u◦ −w|| ≤ 5σ/2. Moreover, by definition of the routine APPROX ,

we have 〈w,v − w〉 = 0 so that ||w|| ≥ (1 − (3σ/2)2)1/2. Thus, the normalized vector

ū := w/||w|| satisfies with (1− (3σ/2)2)−1/2 =: 1 + g

||(u− ū)⊥|| ≤ ||u◦ − ū|| ≤ ||u◦ −w||+ ||w− ū||

≤ 5σ

2
+ ||w||

( 1

||w|| − 1
)
≤ 5σ

2
+ ||w||

( 1

(1− (3σ/2)2)1/2
− 1

)

≤ 5σ

2
+ g.

Noting that for b ≤ 1/2 one has (1− b2)−1/2 ≤ 1 + 2b/
√
3, we conclude that g ≤

√
3σ, so

that

||(u− ū)⊥|| ≤ (
√
3 + 5/2)σ =

√
2c1(

√
3 + 5/2)ε̄ ≤ ε̄/2, (4.21)

by our choice of the constant c1. Thus, in summary we have shown that after a uniformly

bounded finite number of perturbed iterations in (ii) with initial accuracy ε̄, one branches

into (iii) whose output is either sufficiently accurate or serves as input for (ii) with im-

proved accuracy ε̄/2. Hence the algorithm terminates after finitely many cycles through

(ii), (iii), namely as soon as 2−kε0 ≤ ε. �

4.2 Complexity estimates

It remains to analyze the computational complexity of the above scheme MINIEIG. The

subsequent analysis follows similar lines as used before in connection with adaptive solvers
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for operator equations. We formulate an ideal benchmark which describes the minimal

cost needed to achieve a desired accuracy tolerance ε for an approximate normalized

eigenvector. This lower bound is simply the number of entries needed in any finitely

supported sequence to approximate u within accuracy ε (or equivalently the normalized

u◦ within a fixed factor). This naturally leads to the notion of best N -term approximation

that we briefly recall first.

Let Σk denote the set of all x ∈ ℓ2(I) which have at most k nonvanishing entries.

Then

σN(x) := inf
z∈ΣN

||x− z||

is the error of best N -term approximation in ℓ2(I). Then

|x|As := sup
N∈N

N sσN (x)

is a (quasi-)seminorm and

As := {x ∈ ℓ2(I) : ||x||As := ||x||+ |x|As <∞}

is a (quasi-)Banach space. Thus, for s > 0, the unit ball of As is the set of all those

sequences in ℓ2(I) whose error of best N -term approximation decays at least as N−s

and hence a compact set in ℓ2(I). Another way to view this is the following: In order to

approximate a given x ∈ As with accuracy ε it takes at most Nε = ε−1/s|x|1/sAs entries to

do so, and in the worst case over the whole unit ball of As the necessary order of entries

is exactly ε−1/s. In what follows this relation

accuracy ε ↔ degrees of freedom ε−1/s| · |As

reflecting s-sparsity of elements in ℓ2(I) will be a central orientation in the subsequent

developments.

Let us pause to mention that As can also be characterized as a weak ℓp space. In fact,

denote by x∗ the nonincreasing rearrangement of x ∈ ℓ2(I), i.e. x∗i+1 = |xji+1
| ≤ x∗i = |xji|,

j = 1, 2, . . .. Then ℓwp (I) is comprized of all those x ∈ ℓ2(I) for which

|x|ℓwp (I) := sup
n≥1

n1/px∗n <∞.

It is not hard to show that (see [DeVore])

As = ℓwp ,
1

p
= s+

1

2
.

Moreover, it is easy to see that ℓp ⊂ ℓwp but for any q < p one has ℓwp ⊂ ℓq, so that s-sparse

sequences are almost just ℓp summable sequences with s and p related as above.

The first key ingredient of the analysis is the following coarsening lemma that explains,

in particular, the role of step (iii) in MINIEIG, see [C, CDD3].
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Lemma 9. Assume that v ∈ As for for some s > 0 and suppose that x ∈ ℓ2(I) is any

finitely supported sequence in ℓ2(I) such that ‖v− x‖ ≤ ε. Moreover fix b > 0 and set

w := argmin||x−z||≤(1+b)ε#supp z. (4.22)

Then there exists a constant C depending only on b and s when s→ 0 such that

‖w‖As ≤ C‖v‖As, (4.23)

and

#suppw ≤ C||v||
1
s

Asε−
1
s , ||v−w‖ ≤ (2 + b)ε ≤ ‖v‖As(#suppw)−s, (4.24)

hold uniformly in ε > 0.

In other words, thresholding a given finitely supported approximation at a slightly

higher tolerance than the accuracy of approximation provides essentially a best N -term

approximation to the (possibly unknown) approximand.

As mentioned before, strictly speaking the cost of determining w is essentially

(#supp x)) log(#suppx)). However, at the expense of a slightly worse target accuracy

than (1+ b)ε one can get away with quasi-sorting based on binary binning at a computa-

tional cost that stays proportional to (#supp x)). For simplicity, we shall therefore ignore

the log-factor in what follows and use that APPROX can be realized in linear complexity

of the input size.

Remark 9. Let us denote again by ūk the result of the k-th application of step (iii) in

MINIEIG. Then, if the ground state u belongs to As for some s > 0, we have

||ūk||As <∼ ||u||As, #supp ūk <∼ (ε02
−k)−1/s||u||1/sAs , ||u◦ − ūk|| ≤ ε02

−k, (4.25)

uniformly in k ∈ N.

Proof: The last relation in (4.25) has been already established in the proof of Theorem

2, see (4.21). The rest is then an immediate consequence of Lemma 9. �

Hence to estimate the computational complexity of MINIEIG(A,C, ε) depending

on ε as ε → 0, it remains to bound the computational work in each block (ii).

Proposition 1. Assume that for some s > 0 one has u ∈ As, and that rη := RES(v, η)

satisfies

||rη||As ≤ C(||u||As + ||v||As),

#supp rη, #flops(rη) ≤ Cη−1/s
(
||u||1/sAs + ||v||1/sAs

)
,

(4.26)
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holds for some constant C independent of η. Here #flops(rη) denotes the number of

arithmetic operations needed to compute rη. Then the output (λ(ε),u(ε)) of MINIEIG(A,C, ε)

satisfies in addition to (4.17)

#suppu(ε), #flops(u(ε)) ≤ Cε−1/s||u||1/sAs , ||u(ε)||As ≤ C||u||As, (4.27)

for some constant C independent of u and ε.

Proof: Applying if necessary the coarsening lemma to the initial guess (starting from a

correspondingly slightly higher initial accuracy) we have |x0|As <∼ |u|As, #supp x0 <∼ ε
−1/s
0 .

Suppose now that at the k-th stage of (ii) the input ū = ūk−1 satisfies for some constant

C independent of k

#supp ū, #flops(ū) ≤ Cε̄−1/s(||u||1/sAs + ||ū||1/sAs ). (4.28)

By assumption (4.26), the same estimates hold for the intermediate iterates vj in (ii)

(with v0 = ūk−1) with constants however now depending on j. As shown in the proof of

Theorem 2 each block (ii) has at most a uniformly bounded number J of iterations, so

that (4.28) still holds for the input to step (iii) with some constant C = C(J), J being

the upper bound of the number of iterations in (ii). As pointed out in Remark 9, the ap-

plication of APPROX produces then ū = ūk satisfying again (4.28) for ε̄k = ε̄k−1/2 with

a constant coming from the coarsening lemma that is independent of k. Thus summing

the computational cost of each block (ii) and using a straightforward geometric series

argument confirms the claim. �

Thus, it remains to verify (4.26) for the approximate residuals. According to the ingre-

dients of the approximate residuals provided by the routine RES, given in the previous

section, the key issue here is the efficient approximate application of the matrices A and C

through the routine APPLY . It is well known by now that for a wide range of (local and

global) operators and suitable wavelet bases the corresponding operator representations

in wavelet coordinates are nearly sparse. A precise formulation of this property that is

fulfilled in many concrete cases, reads as follows, see e.g. [CDD4, DHS].

s∗-compressibility: Let s∗ be a positive real. Bs∗ denotes the set of matrices (over I×I)
with the following properties: B ∈ Bs∗ if for every k ∈ N, there is a matrix Bk with at

most 2k entries in each row and column satisfying ||B−Bk|| ≤ C2−ks∗αk, where (αk)
∞
k=0

is an ℓ1-sequence of positive numbers. Elements in Bs∗ are called s∗-compressible.

One can show that any B ∈ Bs∗ maps the As-spaces boundedly into themselves

for s < s∗, cf. [CDD1], Section 3. For elements in B ∈ Bs∗ a concrete realization of

APPLY (B, ·, ·) has been developed in [CDD1] whose properties are given in the following

lemma.
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Lemma 10. Assume that B ∈ Bs∗. Given a tolerance δ > 0 and a vector x with finite

support, the algorithm APPLY (B,x, δ) produces a vector w which satisfies

||Bx−w|| ≤ δ.

Moreover, for s < s∗ one has:

(i) The output vector w satisfies

||w||As . ||x||As; suppw . ||x||
1
s

Asδ−
1
s .

(ii) The number of entries of B to be computed to obtain w is . ||x||
1
s

Asδ−
1
s ;.

For the proof, again see [CDD1].

If for s < s∗ the number of arithmetic operations needed to compute w does not exceed

C||x||
1
s

Asδ−
1
s +2 suppx (using quasi-sorting instead of exact sorting which would entail an

additional log-factor), the matrix B is called s∗-computable, [S, GS]. For the verification

of s∗-computibility for a wide class of operators, see [S, GS].

s∗-sparsity: The matrix B is called s∗-sparse if there exists a scheme APPLY satisfying

the properties listed in Lemma 10 whose computational complexity remains proportional

to the output size.

Clearly s∗-computable matrices are examples of s∗-sparse matrices. It is important to

note though that there are further important examples. Recalling the form of L in remark

1, the matrix A may actually be the product of several matrices. An APPLY -scheme for

such products can easily be obtained by composing individual APPLY -schemes designed

e.g. for compressible matrices, see [CDD2] for the treatment of least squares formulations.

Another important case concerns the application of C in a fairly general setting.

Actually C represent the inverse C = S−1 of an (elliptic) operator S in the sense of

(1.5). Thus the APPLY -scheme for C may just mean the adaptive approximate solution

of an operator equation for an H-elliptic operator S : H → H′. In many cases its output

has been shown to satisfy the properties in Lemma 10 and thus gives rise to an s∗-sparse

APPLY -scheme.

In summary, it is important to keep in mind that the actual realizations of APPLY

for A and C may be completely different but should satisfy the properties of Lemma 10.

Property 3. The matrices A and C are s∗-sparse for some s∗ > 0 (For C this is trivially

the case when C can be applied exactly in linear time).
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The main result of this paper can now be formulated as follows.

Theorem 3. Assume that A and C are s∗-sparse for some s∗ > 0 and that the parameters

α, β are chosen according to Lemma 4. Then for any ε > 0, the schemeMINIEIG(A,C, ε)

after finitely many steps produces an approximate eigenpair (λ(ε),u(ε)) with normalized

u satisfying

||(u− u(ε))⊥|| ≤ ε, |λ− λ(ε)| ≤ ε, (4.29)

where (λ,u) is the exact ground state solution of (2.1).

Moreover, if u ∈ As for some s < s∗, then one has

#flopsu(ε), #supp u(ε) <∼ ε−1/s||u||1/sAs , ||u(ε)||As <∼ ||u||As, (4.30)

where the constants are independent of ε and u but depend only on s when s approaches

s∗.

Proof: (4.29) has been already shown in Theorem 2. To prove the rest of the claim we

employ Proposition 1 which requires confirming the property (4.26). Towards this end,

recall from Section 4.1 that the realization of RES(x, η) requires the approximate appli-

cation of A, C within tolerances that are uniformly bounded from below and above by

fixed multiples of η (see (4.8)) as well as the computation of RAY L(x, η/(4α)). Now, this

latter routine requires the evaluation of the routine SCAL for A and, unless C can be

applied exactly, for C. By Remark 5 and Lemma 7, the tolerances needed in the SCAL

routines remain uniformly proportional to the target accuracy in RAY L(x, η/(4α)) which

is proportional to η. Since all these routines rely on the scheme APPLY with respect to

tolerances proportional to η, the relations (4.26) follow from Lemma 10. This finishes the

proof. �

4.3 Possible quantitative improvements

The scheme analyzed above should be viewed as one possible realization of an adaptive

strategy. To achieve quantitative improvements of schemes of the above type one might

try to exploit the fact that the (exact) Rayleigh quotient exhibits essentially the square

accuracy of the corresponding approximate eigendirection. We shall only sketch such

strategies whose details would essentially follow analogous lines as discussed above.

Recall that the evaluation of the scalar products requires the tightest accuracy tol-

erances (although still proportional to the target accuracy of RES). Thus there are two

angles that might help to reduce computational complexity, namely:

a) Trying to speed up the calculation of scalar products;

b) Reducing the number of calls of RAY L.
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4.3.1 Fast evaluation of scalar products

As for a), the naive approach outlined above rests on the accurate calculation of a com-

plete matrix/vector product although one computes at the end only a single number.

We have already mentioned a possible approach in (4.3) that might help reducing the

computational complexity.

Recalling that an approximate eigendirection of accuracy ε would give rise to a (pre-

cise) Rayleigh quotient that approximates λ within accuracy of the order of ε2 (see Lemma

5), a first natural idea is to postprocess the result ofMINIEIG(A,C, ε), satisfying (4.29),

so as to obtain an approximation to λ of order ε2. In fact, in view of Lemma 5, it would

make sense to compute

λ∗(ε) = RAY L(u(ε), ε2), so that |λ∗(ε)− λ| ≤ (1 + C)ε2, with C := 2ΓK/γ,

see (3.19) and (3.21). However, using the simple version of the routine SCAL described

below (4.2), the computational complexity could be of the order of ε−2/s when u ∈ As.

Let us now point out that this cost can be reduced significantly by employing more refined

versions of SCAL along the lines of (4.3). To this end, suppose thatB is an s∗-compressible

matrix and recall e.g. from [CDD1, DHS] the following key idea of constructing anAPPLY

scheme for an approximate matrix/vector computation. Fix any s̄ < s∗. Given ζ > 0 and

v of finite support, let vζ := APPROX(v, ζ) and set

v−1(ζ) := v − vζ , vj(ζ) := v2js̄ζ − v2(j+1)s̄ζ , j = 0 . . . , J(ζ) := ⌈log2(||v||/ζ)/s̄⌉ .

Then, one has

J(ζ)∑

j=−1

vj(ζ) = v, ||v−1(ζ)|| ≤ ζ, ||vj(ζ)|| ≤ (1 + 2s̄)2js̄ζ, j = 1, . . . , J(ζ). (4.31)

Moreover, it is shown in [DHS] that (when Bj are the compressed versions of B ∈ Bs∗

from the definition of s∗-compressibility)

wζ :=

J(ζ)∑

j=0

Bjvj(ζ) satisfies ||Bv−wζ || ≤ C ′ζ, (4.32)

for some uniform constant C ′ independent of ζ . For simplicity we shall work with C ′ = 1

which can always be arranged through the definition of the Bj or by replacing ζ by cζ in

the decomposition of v.

The announced improved version of SCAL is based on the following observation.

Proposition 2. Assume that B ∈ Bs∗ and s̄ < s∗ is fixed. Setting

ǫj := αj(1 + 2s̄)−12−s̄jδ1/2, j = 0, . . . , J(
√
δ), ǫ−1 := α−1

√
δ,

∞∑

j=−1

αj = 1, (4.33)
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where the summable (to one) coefficients αj are again from the definition of s∗-compressibility

and have algebraic decay, and defining

s(δ,v) :=

J(
√
δ)∑

j=−1

〈vj(
√
δ),wǫj〉, (4.34)

where the wǫj are given by (4.32), one has

|s(δ,v)− 〈Bv,v〉| ≤ δ. (4.35)

Moreover, whenever supp v ≤ Cδ−1/2s|v|1/sAs for some s ≤ s̄ < s∗, then the number

of operations ops(v, δ) needed to compute s(δ,v) is bounded by a constant multiple of(
|v|Asδ−

1
2s

) s̄+2s
s+s̄

, where the constant depends only on C.

Proof: By (4.31) we can write

|s(δ,v)− 〈Bv,v〉| =
∣∣∣
J(

√
δ)∑

j=−1

〈vj(
√
δ),wǫj −Bv〉

∣∣∣ ≤
J(

√
δ)∑

j=−1

αjδ ≤ δ,

where we have used Cauchy-Schwarz and (4.33) in the last step, confirming (4.35).

As for the work count, we shall estimate now first the number of operations needed

to compute a single entry of wζ . Now note that (since v ∈ As for any s > 0) for ∆j :=

supp vj(ζ) one has

#∆j <∼ (2js̄ζ)−1/s|v|1/sAs . (4.36)

Further, recall that each row of Bj has at most 2j entries, so that the computation of one

entry of a contribution Bjvj(ζ) takes, in view of (4.36), at most 2j operations as long as

j ≤ j∗ when j∗ = j∗(ζ) is the largest integer for which

2j
∗ ≤ |v|1/sAs 2−j∗s̄/sζ−1/s ⇐⇒ j∗ =

⌊
(s+ s̄)−1 log2

( |v|As

ζ

)⌋
. (4.37)

Thus the computation of a single entry of the partial sum
∑j∗

j=0Bjvj(ζ) takes the order

of

2j
∗

<∼ ζ−1/(s+s̄)|v|1/(s+s̄)
As . (4.38)

Likewise the number of computations required for a single entry of the remaining sum∑J(ζ)
j=j∗(ζ)Bjvj(ζ) is, by (4.36), of the order of

ζ−1/s|v|1/sAs

J∑

j=j∗

2−js̄/s <∼ ζ−1/s|v|1/sAs 2
−j∗s̄/s <∼ |v|1/(s+s̄)

As ζ−1/(s+s̄). (4.39)

Therefore

#ops(for computing one entry of wζ) <∼ ζ−1/(s+s̄)|v|1/(s+s̄)
As . (4.40)
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We shall now estimate the work required by the computation of 〈v(j),wǫj〉. Note first that

#supp v−1(
√
δ) <∼ δ−1/2s|v|1/sAs , #supp vj(

√
δ) <∼ 2−s̄j/sδ−1/2s|v|1/sAs .

Hence, using (4.40) with ζ = ǫj , the computation of 〈vj(
√
δ),wǫj〉 in (4.34) takes, in view

of (4.34), the order of

#supp vj(
√
δ)|v|1/(s+s̄)

As ǫ
−1/(s+s̄)
j ≤ α

− 1
s+s̄

j (1+2s̄)
1

s+s̄ |v|
2s+s̄
s(s+s̄)

As 2−js̄2/(ss̄+s̄2)δ
− 1

2s

(
s̄+2s
s+s̄

)

(4.41)

operations. Summing over j and recalling that the αj decay polynomially completes the

proof. �

Corollary 1. Assume that the hypotheses of Theorem 3 are valid. Given ε > 0, let u(ε)

be the output of MINIEIG(A,C, ε) and let λ∗(ε) = RAY L(u(ε), ε2) where RAY L is

based on a version of SCAL derived in an obvious manner from (4.34). Then one has

|λ− λ∗(ε)| ≤ (1 + 2ΓK/γ))ε2, (4.42)

and, whenever u ∈ As for some s ≤ s̄, the computational complexity #ops(λ∗(ε)) of λ∗(ε)

remains bounded by

#ops(λ∗(ε)) <∼ |u|
2s+s̄
s(s+s̄)

As ε
− 1

s

(
s̄+2s
s+s̄

)

, (4.43)

where the constant is independent of u and s.

Proof: The estimate (4.42) is an immediate consequence of (3.19) and the first rela-

tion in (4.29). The complexity estimate, in turn, follows from Proposition 2 applied to

v = u(ε) with δ := ε2 together with (4.30). �

Since g(s) := (s̄ + 2s)/(s̄ + s) increases in s and g(s̄) = 3/2, the computational

complexity of computing λ∗(ε), and hence the smallest eigenvalue λ within a tolerance of

order ε2, grows at most like ε−3/2s, which is of course much better than the cost ε−2/s that

would result from applying the original simple version of SCAL. In fact, when s is very

small one almost recovers cost of ε−1/s needed to approximate u ∈ As within tolerance ε.

Note also that the coarsened versions of v needed in the computation of wǫj are

essentially the same as those in (4.34), so that they can be reused. Nevertheless, this

version of RAY L is quantitatively still more involved as the original simple one based

on approximating Bv at the respective target accuracy. Since these vectors are needed

anyway in the course of MINIEIG it seems preferable to use the latter more elaborate

version only at the end once u(ε) has been obtained.
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4.3.2 Modified iterations

As for b), another option is to modify the ideal iteration itself, again trying to exploit

the fact that the approximation rate of the (exact) Rayleigh quotients is faster than that

of the eigendirections. We only give a very rough sketch of the idea. Instead of the final

accuracy one could run MINIEIG first with some intermediate accuracy ε outputting

again u(ε) satisfying (4.29). One could then fix λ̄ = λ∗(ε), set x0 := u(ε) and iterate

xi+1 = xi − α(A− λ̄C)xi,

so that, by straightforward calculations, one obtains

(xi+1 − u)⊥ = (xi − u)⊥ − Φ(xi − u)⊥ + α(λ̄− λ)(I−P)Cxi,

and hence by recursion

||(xi − u)⊥|| ≤ βiε+
(1 + 2KΓα/γ)ε2

1− β
||C||. (4.44)

Thus, in principle, after | log ε| steps one has quadratic accuracy of (xi − u)⊥ without

further applications of RAY L. However, the iterates xi are no longer orthogonal to the

residuals r̄i := (A− λ̄C)xi. Observing that 〈r̄i,xi〉 = (λ(xi)− λ̄)〈Cxi,xi〉, we have

||xi+1||2 = ||xi||2+α2||r̄i||2−2α(λ(xi)−λ̄)||xi||2C ≥ ||xi||2+α2||r̄i||2−2α(λ(xi)−λ̄)||C||||xi||2,

so that we cannot guarantee any more that the iterates have increasing norms. Neverthe-

less, since |λ(xj)− λ̄| is expected to be of the order ε2 and ||x0|| = 1, there is still a fixed

positive constant b ≥ 1/2 say, so that after J ∼ | log ε| steps, one still has ||xJ || ≥ b, so

that renormalizing the Jth iterate preserves quadratic accuracy. This way, one expects to

catch up quadratic accuracy of the approximate eigendirections without any intermediate

computation of Rayleigh quotients. One can then continue such a block of iterations with

initial guess xJ/||xJ || that approximates u now within a tolerance of the order of ε2 so

that a corresponding approximate eigenvalue can be computed within tolerance ε4 with

the aid of the above fast computation of scalar products, etc. We leave the details to the

reader.

Concerning optimal line search (3.1) and subspace acceleration techniques, we mention

that this requires the solution of a two-dimensional (or more generally small) generalized

eigenvalue problem. However, setting up the corresponding matrices requires the compu-

tation of scalar products. Since, generally, we cannot compute these quantities exactly, a

careful assessment of the perturbation effects would be necessary. Also, the possibilities

for realizing enhanced accuracy at reduced cost mentioned above might be relevant in this

context.
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5 Remarks concerning an application -

The Schrödinger equation

We conclude with some brief comments concerning a scenario that has actually motivated

part of this work.

We consider the time-independent electronic Schrödinger equation Hψ = E0ψ, where

H : H1((R3 × {±1
2
})N) → H−1((R3 × {±1

2
})N) is the Hamilton operator of the molec-

ular N -electron system under consideration, and E0 denotes the lowest eigenvalue of H

corresponding to the ground state of the system. The spectrum of H is real and bounded

from below by a certain µ ∈ R (cf. e.g. [Yser] and references therein), so that the shifted

Hamiltonian H ′ := H − µE satisfies the conditions (1.4) and (1.5) of Section 1. Letting

Φ = {φν |ν ∈ I} be an orthonormal basis of L2((R
3 × {±1

2
})N), we have to solve the

eigenvalue equation

Hc = E0c (5.1)

where the entries Hν′,ν of the “matrix Hamiltonian” in this formulation are given by

Hν′,ν = 〈Hψν′, ψν〉.

In view of our discussion in Section 1, the problem is posed in ℓ2(I), which gives the

so-called complete CI formulation for the Schrödinger equation. To obtain a Riesz ba-

sis for H1, we can utilize a reference operator F =
∑N

i=1 Fi, where the Fi : H1(R3 ×
{±1

2
}) → H−1(R3 × {±1

2
}) are single particle operators with a complete eigenvalue ba-

sis. The self consistent Fock operator from the Hartree Fock equations, see e.g. [Helg],

can be modified to fit the present purpose. This operator is also bounded as an operator

H1((R3 × {±1
2
}N) → H−1((R3 × {±1

2
})N) and its spectrum is bounded from below, so

that F ′ := F − µE satisfies (1.5). In this case the eigenfunctions φν and the eigenvalues

σν of F ,F ′ can easily be computed from those of the single particle operator Fi,

F ′φν = σνφν , ν ∈ J .

If we choose

Ψ = {ψν := σ
− 1

2
ν φν |ν ∈ I}

this basis satisfies (1.8). The generalized eigenvalue problem (2.1) then resembles the

symmetry-transformed variant of the Schrödinger equation with

C :=
(
〈σ− 1

2
ν φν, σ

− 1
2

ν′ φν′〉
)
ν,ν′∈I and A := C

1
2H′C

1
2 = C

1
2 (H− µI)C

1
2 , (5.2)

where the conditions (2.2) and (2.3) are valid.
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With the above notation, ||x||C then gives the L2((R
3 × {±1

2
})N)-error of the wave

function ϕ :=
∑

ν∈I xνψν =
∑

ν∈I cνφν . For estimating the H1((R3 × {±1
2
})N)-error of

the wave function ϕ, note that the canonical H1((R3 × {±1
2
})N)-norm is equivalent to

the norms induced by the inner products 〈〈., .〉〉 := 〈H ′·, ·〉L2 and 〈F ′·, ·〉L2, defined by the

Hamiltonian and the reference operator respectively, which gives

||x||2A = 〈C 1
2H′ C

1
2x,x〉 = 〈H′ C

1
2x,C

1
2x〉

=
∑

ν∈I

∑

ν′∈I
cνcν′〈H ′φν , φν′〉 = 〈H ′ ϕ, ϕ〉 ≃ ||ϕ||2H1,

and

||x||2 = ||C 1
2x||C−1 = ||c||C−1 = ||ϕ||F ′ ≃ ||ϕ||H1.

This serves also as a typical example where C is not coercive on ℓ2(I) (because ||.||C is

equivalent to the L2-norm), cf. Remark 1. The norms ||.||A and ||.||2 ≃ ||.||A on ℓ2(I) can
now be used to estimate the convergence of the CI solution with respect to the H1-norm.
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