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Myoungnyoun Kim · Mitsuhiro T. Nakao · Yoshitaka
Watanabe · Takaaki Nishida

A numerical verification method of bifurcating solutions for
3-dimensional Rayleigh-Bénard problems

Abstract This paper is the three dimensional extension of the two dimensional work [4] and [7] on a computer
assisted proof of the existence of nontrivial steady state solutions for Rayleigh–Bénard convection based on
the fixed point theorem using a Newton like operator. The differences are emerging of complicated types of
bifurcation, direct attack on the problem without stream functions, and increased complexity of numerical
computation. The last one makes it hard to proceed the verification of solutions corresponding to the points
on bifurcation diagram for three dimensional case. Actually, this work should be the first result for the three
dimensional Navier-Stokes problems which seems to be very difficult to solve by theoretical approaches.

1 Introduction

The Rayleigh–Bénard convection describes the instability of fluid between two infinite solid plates with hot
bottom and cool top. The motion of fluid is self-sustained as soon as gravitational energy release overcomes
dissipation losses, which is called Rayleigh’s mechanism by buoyancy (for detailed mechanism, see [1] and
[3]). We will use the Oberbeck–Boussinesq equations as approximate equations for this convection problem
after normalization of variables and parameters:

1
P

[
∂u
∂ t

+(u ·∇)u
]

+∇p = ∆u− (G −RT )ez, (1a)

∇·u = 0, (1b)
∂T
∂ t

+(u ·∇)T = ∆T, (1c)

where u = (u,v,w) is the velocity field, p the pressure, T the temperature, R Rayleigh number, P Prandtl
number, and a parameter G containing gravity factors. We use stress free boundary conditions on the velocity
field and Dirichlet boundary conditions on the temperature ( Tz=0 = 0, Tz=π = π). Under a reference pressure
pa, the equilibrium state comes from the pure heat conduction:

u = 0, T = π − z, p = G (π − z)− 1
2
R(π − z)2 + pa. (2)
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Using the conduction solution (2) and eliminating time derivatives from (1), we obtain the steady state bifur-
cation equations for the perturbation (u,θ , p) to the equilibrium:

−∆u+
1
P

(u ·∇)u+∇p−Rθez = 0, (3a)

∇·u = 0, (3b)
−∆θ +(u ·∇)θ −w = 0. (3c)

Given positive wave numbers a,b ≤ 1, we assume that all fluid motions are essentially confined to

Ω =
{

(x,y,z) ∈ R3 : 0 ≤ x ≤ 2π
a

, 0 ≤ y ≤ 2π
b

, 0 ≤ z ≤ π
}

, |Ω | = 4π3

ab
,

and impose parity conditions on new boundaries as in [5] together with periodic boundary conditions in
horizontal directions [4]. From these boundary conditions, the velocity field, the perturbations of temperature
and pressure can be represented by the Fourier series [5]:

u = ∑
α ̸=0

[uα φ α
1 ,vα φ α

2 ,wα φ α
3 ], θ = ∑

α3 ̸=0
θα φ α

3 , p = ∑
α ̸=0

pα φ α
4 , (4)

where α ≡ (α1,α2,α3) is the three dimensional multi-index of non–negative integers Z0, and uα , vα , wα , θα ,
pα are coefficients of u, θ , p with respect to the base functions φ α

i defined by,

φ α
1 (x,y,z) = Kα sin(aα1x)cos(bα2y)cos(α3z), φ α

2 (x,y,z) = Kα cos(aα1x)sin(bα2y)cos(α3z),
φ α

3 (x,y,z) = Kα cos(aα1x)cos(bα2y)sin(α3z), φ α
4 (x,y,z) = Kα cos(aα1x)cos(bα2y)cos(α3z),

where the normalization factor with respect to the usual L2(Ω) inner product 〈 ·, · 〉 is

Kα =
√

(2−δ0α1)(2−δ0α2)(2−δ0α3)/|Ω |, δi j = Kronecker delta on i, j.

The various kinds of norms for u, θ and p in (4) can be written as:

∥u∥2
0 = ∑

α ̸=0
{u2

α + v2
α +w2

α}, ∥∇u∥2
0 = ∑

α ̸=0
{u2

α + v2
α +w2

α}A2
α ,

∥∥∇2u
∥∥2

0 = ∑
α ̸=0

{u2
α + v2

α +w2
α}A4

α ,

∥θ∥2
0 = ∑

α3 ̸=0
θ 2

α , ∥∇θ∥2
0 = ∑

α3 ̸=0
θ 2

α A2
α ,

∥∥∇2θ
∥∥2

0 = ∑
α3 ̸=0

θ 2
α A4

α ,

∥p∥2
0 = ∑

α ̸=0
p2

α , ∥∇p∥2
0 = ∑

α ̸=0
p2

α A2
α ,

∥∥∇2 p
∥∥2

0 = ∑
α ̸=0

p2
α A4

α ,

where Aα ≡
√

(aα1)2 +(bα2)2 +α2
3 provided that the corresponding righthand sides converge.

We now define the divergence free and orthogonal system by:

Φα =
[
−aα1α3

Aα Bα
φ α

1 ,−bα2α3

Aα Bα
φ α

2 ,
Bα
Aα

φ α
3

]
, α ∈ I1, Ψ α =

[
bα2

Bα
φ α

1 ,−aα1

Bα
φ α

2 ,0
]
, α ∈ I2,

where Bα ≡
√

(aα1)2 +(bα2)2 and indices subsets are I1 ≡ {[1,0,1]+Z3
0}∪{[0,1,1]+Z3

0}, I2 ≡ [1,1,0]+
Z3

0. Set I0 = I1 ∪ I2 and then define the function spaces V and W with associated usual H1 −norm as follows:

V =
{

u = ∑
α∈I0

{ξα Φα +ηαΨ α} : ∥∆u∥0 < ∞
}
⊂ H2(Ω)3,

W =
{

θ = ∑
α∈I3

θα φ α
3 : ∥∆θ∥0 < ∞

}
⊂ H2(Ω), where I3 ≡ [0,0,1]+Z3

0.

Note that ∥u∥2
0 = ∑α∈I0{ξ 2

α +η2
α}, ∥∇u∥2

0 = ∑α∈I0{ξ 2
α +η2

α}A2
α , ∥∆u∥2

0 = ∑α∈I0{ξ 2
α +η2

α}A4
α for all u ∈V ,

and ∥θ∥2
0 = ∑α∈I3 θ 2

α , ∥∇θ∥2
0 = ∑α∈I3 θ 2

α A2
α , ∥∆θ∥2

0 = ∑α∈I3 θ 2
α A4

α for all θ ∈W .
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2 A priori error estimates

For a fixed number N ≥ 2, define the finite dimensional subspaces VN and WN of V and W by:

VN ≡ { u ∈V : ξα = ηα = 0, if |α | ≡ α1 +α2 +α3 > N }, WN ≡ { θ ∈W : θα = 0, if |α| > N }.

Set X ≡V ×W and XN ≡VN ×WN . Define the projections PN : V →VN and QN : W →WN as in [7]:

〈∇(u−PNu),∇v〉 = 0, ∀v ∈VN , 〈∇(θ −QNθ),∇ϑ 〉 = 0, ∀ϑ ∈WN , (5)

with respect to the inner product 〈 ·, · 〉 on L2(Ω) or properly extended spaces. Due to orthogonal relations of
base functions in X , these projections PN and QN are truncation operators:

PNu = ∑
α∈I0,N≡I0∩I,N

{ξα Φα +ηαΨ α} , QNθ = ∑
α∈I3,N≡I3∩I,N

θα φ α
3 ,

where I,N ≡
{

α ∈ Z3
0 : |α| ≤ N

}
. The sum |α | of multi-index α ∈ Z3

0 can be considered as the result of
the inner product between two vectors [a−1,b−1,1] and [aα1,bα2,α3]. This consideration with the Cauchy-
Schwartz inequality gives us

|α| ≤ ∥ [a−1,b−1,1]∥ · ∥ [aα1,bα2,α3]∥ = C0Aα , C0 ≡
√

a−2 +b−2 +1. (6)

Note that C0 depends only on the wave numbers a and b, so we can say that it depends only on Ω . From these
characterization of projections and special estimation (6), we have

Theorem 1 For any (u,θ) ∈ X and (PNu,QNθ) ∈ XN in (5), the following holds:

∥u−PNu∥0 ≤
C2

0
(N +1)2 ∥∆u∥0, ∥∇(u−PNu)∥0 ≤

C0

N +1
∥∆u∥0, (7a)

∥θ −QNθ∥0 ≤
C2

0
(N +1)2 ∥∆θ∥0, ∥∇(θ −QNθ)∥0 ≤

C0

N +1
∥∆θ∥0. (7b)

Proof Due to (6), we have 1 ≤ C0
N+1 Aα if |α | > N. Hence we can establish the following estimates:

∥u−PNu∥2
0 = ∑

α∈I0−I0,N

{ξ 2
α +η2

α} ≤
C4

0
(N +1)4 ∑

α∈I0−I0,N

{ξ 2
α +η2

α}A4
α ≤

C4
0

(N +1)4 ∥∆u∥2
0,

∥∇(u−PNu)∥2
0 = ∑

α∈I0−I0,N

{ξ 2
α +η2

α}A2
α ≤

C2
0

(N +1)2 ∑
α∈I0−I0,N

{ξ 2
α +η2

α}A4
α ≤

C2
0

(N +1)2 ∥∆u∥2
0,

∥θ −PNθ∥2
0 = ∑

α∈I3−I3,N

θ 2
α ≤

C4
0

(N +1)4 ∑
α∈I3−I3,N

θ 2
α A4

α ≤
C4

0
(N +1)4 ∥∆θ∥2

0,

∥∇(θ −PNθ)∥2
0 = ∑

α∈I3−I3,N

θ 2
α A2

α ≤
C2

0
(N +1)2 ∑

α∈I3−I3,N

θ 2
α A4

α ≤
C2

0
(N +1)2 ∥∆θ∥2

0.

These lead (7) after taking square root of them. ⊓⊔

As usual, the L∞ norms ∥u∥∞ and ∥θ∥∞ of u ∈V and θ ∈W are defined by

∥u∥∞ ≡ sup
x∈Ω

|u(x)|, ∥θ∥∞ ≡ sup
x∈Ω

|θ(x)|, |u| =
√

u2 + v2 +w2, |θ | =
√

θ 2,

u = [u,v,w], u = ∑
α∈I0

uα φ α
1 , v = ∑

α∈I0

vα φ α
2 , w = ∑

α∈I0

wα φ α
3 , θ = ∑

α∈I3

θα φ α
3 .

For a fixed α ∈ I0, the vector ξα Φα +ηαΨ α can be written of the form: [uα φ α
1 ,vα φ α

2 ,wα φ α
3 ] with

uα ≡−aα1α3

Aα Bα
ξα +

bα2

Bα
ηα , vα ≡−bα2α3

Aα Bα
ξα − aα1

Bα
ηα , wα ≡ Bα

Aα
ξα , u2

α + v2
α +w2

α = ξ 2
α +η2

α .
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Now, the square sum fα ≡ (uα φ α
1 )2 + (vα φ α

2 )2 + (wα φ α
1 )2 can be bounded on Ω as follows, setting

f1 ≡ cos2(aα1x), f2 ≡ cos2(bα2y), f3 ≡ cos2(α3z),

fα = K2
α [u2

α(1− f1) f2 f3 + v2
α f1(1− f2) f3 +w2

α f1 f2(1− f3)]

≤ K2
α [u2

α + v2
α +w2

α ][(1− f1) f2 f3 + f1(1− f2) f3 + f1 f2(1− f3)] ≤ K2
α [ξ 2

α +η2
α ],

since, for each i, fi on Ω takes value in the interval [0,1]. Thus, we have ∥ξα Φα +ηαΨ α∥∞ ≤ Kα
√

ξ 2
α +η2

α
for any α ∈ I0.

Lemma 2 For any (u,θ) ∈ X, it holds that

∥u∥∞ ≤ π
3

√
6− 2π2

5
C1∥∆u∥0 < 1.50015C1 ∥∆u∥0,

∥θ∥∞ ≤ π
3

√
6− 36ζ (3)

π2 +
π2

5
C1∥∆θ∥0 < 1.98398C1 ∥∆θ∥0,

where C1 ≡C2
0 |Ω |−

1
2 depends only on Ω and ζ (s) ≡ ∑∞

n=1
1
ns is the Riemann zeta function for s > 1.

Proof From the above argument, ∥u∥∞ ≤ ∑α∈I0 ∥ξα Φα +ηαΨ α∥∞ ≤ ∑α∈I0 Kα
√

ξ 2
α +η2

α . And the Cauchy-
Schwartz inequality shows that

∥u∥∞ ≤ ∑
α∈I0

Kα

√
ξ 2

α +η2
α ≤

√
∑

α∈I0

K2
α A−4

α

√
∑

α∈I0

{ξ 2
α +η2

α}A4
α ≤

√
C∥∆u∥0, C ≡ ∑

α∈I0

K2
α A−4

α .

The indices subset I0 can be decomposed into four mutually disjoint subsets:

I1,1,0
0 ≡ [1,1,0]+Z2

0 ×{0}, I1,0,1
0 ≡ [1,0,1]+Z0 ×{0}×Z0,

I0,1,1
0 ≡ [0,1,1]+{0}×Z2

0, I1,1,1
0 ≡ [1,1,1]+Z3

0.

And the numbers n(k) of non-negative integer solutions of |α | = k and the values K2
α on these subsets are:

n(k)
∣∣∣
I0−I1,1,1

0

= k−1, n(k)
∣∣∣
I1,1,1
0

=
(k−1)(k−2)

2
, K2

α

∣∣∣
I0−I1,1,1

0

=
4
|Ω | , K2

α

∣∣∣
I1,1,1
0

=
8
|Ω | .

Due to (6) and the above relations, we can bound C as follows:

C ≤ C4
0 ∑

α∈I0

K2
α |α |−4 =

4C4
0

|Ω |

[
3

∞

∑
k=2

k−1
k4 +2

∞

∑
k=3

(k−1)(k−2)
2k4

]
= 4C2

1

∞

∑
k=1

(k−1)(k +1)
k4

= 4C2
1

∞

∑
k=1

[
1
k2 − 1

k4

]
= 4C2

1

[
π2

6
− π4

90

]
=

π2

9

[
6− 2π2

5

]
C2

1 ,

which proves the first part of the lemma.
Next, taking account that ∥θ∥∞ ≤ ∑α∈I3

∥∥θα φ α
3

∥∥
∞ = ∑α∈I3 Kα |θα |, similar to the above, we have

∥θ∥∞ ≤ ∑
α∈I3

Kα |θα | ≤
√

∑
α∈I3

K2
α A−4

α

√
∑

α∈I3

θ 2
α A4

α ≤
√

C̃∥∆θ∥0, with C̃ ≡ ∑
α∈I3

K2
α A−4

α .

The indices subset I3 can be decomposed into four mutually disjoint subsets:

I0,0,1
3 ≡ [0,0,1]+{0}2 ×Z0, I1,0,1

3 ≡ I1,0,1
0 , I0,1,1

3 ≡ I0,1,1
0 , I1,1,1

3 ≡ I1,1,1
0 .

And n(k) and K2
α on these subsets are:

n(k)
∣∣∣
I0,0,1
3

= 1, n(k)
∣∣∣
I1,0,1
3 ∪I0,1,1

3

= k−1, n(k)
∣∣∣
I1,1,1
3

=
(k−1)(k−2)

2
,

K2
α

∣∣∣
I0,0,1
3

=
2
|Ω | , K2

α

∣∣∣
I1,0,1
3 ∪I0,1,1

3

=
4
|Ω | , K2

α

∣∣∣
I1,1,1
3

=
8
|Ω | .
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Thus, the bound C̃ can be obtained as follows:

C̃ ≤ C4
0 ∑

α∈I3

K2
α |α |−4 =

2C4
0

|Ω |

[
∞

∑
k=1

1
k4 +4

∞

∑
k=2

k−1
k4 +4

∞

∑
k=3

(k−1)(k−2)
2k4

]
= 2C2

1

∞

∑
k=1

2k2 −2k +1
k4

= 2C2
1

∞

∑
k=1

[
2
k2 − 2

k3 +
1
k4

]
= 2C2

1

[
π2

3
−2ζ (3)+

π4

90

]
=

π2

9

[
6− 36ζ (3)

π2 +
π2

5

]
C2

1 ,

which completes the proof. ⊓⊔

Since Ω is a rectangle with side lengths 2π
a , 2π

b , and π , we can also use the result in [6] as follows
(0 < a,b ≤ 1):

∥θ∥∞ ≤ |Ω |−
1
2

[
γ0∥θ∥0 +

γ1πc1√
3

∥∇θ∥0 +
γ2π2c2

3

∥∥∇2θ
∥∥

0

]
,

c1 =
√

4(a−2 +b−2)+1 ≥
√

3C0,

c2 =

√
c4

1 +
4
5
[16(a−4 +b−4)+1] ≥

√
19
15

c2
1 ≥ 3

√
19
15

C2
0 ,

γ2π2c2

3
≥ 5.59879γ2

π
3

√
6− 36ζ (3)

π2 +
π2

5
C2

0 ≥ 2.31862
π
3

√
6− 36ζ (3)

π2 +
π2

5
C2

0 .

Here, we have used the fact taht γ2 is estimated as 0.41413 in [6]. Thus the coefficients in Lemma 2 are at
least twice finer than those in [6].

Corollary 3 Under the same assumptions of Theorem 1, the following holds for the same constant C1 in
Lemma 2:

∥u−PNu∥∞ ≤ 2C1

√
1
N
− 1

3(N +1)3 ∥∆u∥0 <
2C1√

N
∥∆u∥0, (8a)

∥θ −QNθ∥∞ ≤ 2C1

√
1
N
− 1

2(N +1)2 +
1

6N3 ∥∆θ∥0 <
2C1√

N
∥∆θ∥0. (8b)

Proof We can proceed as that of Lemma 2 and need to change C for each case. For ∥u−PNu∥∞,

C ≡ ∑
α∈I0−I0,N

K2
α A−4

α ≤C4
0 ∑

α∈I0−I0,N

K2
α |α |−4 = 4C2

1

[
3

∞

∑
k=N+1

k−1
k4 +2

∞

∑
k=N+1

(k−1)(k−2)
2k4

]

= 4C2
1

∞

∑
k=N+1

(k−1)(k +1)
k4 = 4C2

1

∞

∑
k=N+1

[
1
k2 − 1

k4

]
< 4C2

1

[∫ ∞

N

1
x2 dx−

∫ ∞

N+1

1
x4 dx

]
= 4

[
1
N
− 1

3(N +1)3

]
C2

1 <
4
N

C2
1 .

Similarly, we have the following estimates for ∥θ −QNθ∥∞:

C̃ ≡ ∑
α∈I3−I3,N

K2
α A−4

α ≤C4
0 ∑

α∈I3−I3,N

K2
α |α |−4 = 2C2

1

[
∞

∑
k=N+1

1
k4 +4

∞

∑
k=N+1

k−1
k4 +4

∞

∑
k=N+1

(k−1)(k−2)
2k4

]

= 2C2
1

∞

∑
k=N+1

2k2 −2k +1
k4 = 2C2

1

∞

∑
k=N+1

[
2
k2 − 2

k3 +
1
k4

]
< 2C2

1

[∫ ∞

N

2
x2 dx−

∫ ∞

N+1

2
x3 dx+

∫ ∞

N

1
x4 dx

]
= 2

[
2
N
− 1

(N +1)2 +
1

3N3

]
C2

1 = 4
[

1
N
− 1

2(N +1)2 +
1

6N3

]
C2

1 <
4
N

C2
1 .

The last inequality holds due to the assumption N ≥ 2. ⊓⊔
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3 A fixed point formulation

The steady state solution of (3) can be written of the form:

−∆u+∇p = f(u,θ), (9a)
∇·u = 0, (9b)

−∆θ = g(u,θ), (9c)

where the right hand sides of (9) are defined by

f(u,θ) = − 1
P

(u ·∇)u+Rθez, g(u,θ) = −(u ·∇)θ +w.

If u ∈ V , then PNu satisfies (9b) and −∆PNu converges to −∆u in L2 sense. Taking inner product for both
sides of (9a) with −∆PNu, we have

〈−∆u,−∆PNu〉 = 〈−∆u,−∆PNu〉+ 〈 p,∆∇·PNu〉 = 〈−∆u,−∆PNu〉+ 〈 p,∇·∆PNu〉
= 〈−∆u,−∆PNu〉+ 〈∇p,−∆PNu〉 = 〈 f,−∆PNu〉.

This identity converges to 〈−∆u,−∆u〉 = 〈 f,−∆u〉 which means ∥∆u∥0 ≤ ∥f∥0. And taking inner product
for both sides of (9c) with −∆θ , we have 〈−∆θ ,−∆θ 〉 = 〈g,−∆θ 〉 and ∥∆θ∥0 ≤ ∥g∥0.

Now, setting F(u,θ) ≡ (f(u,θ),g(u,θ)), the weak form of (9) is written as :

〈∇(u,θ),∇(v,ϑ)〉 = 〈F(u,θ),(v,ϑ)〉, ∀(v,ϑ) ∈ X .

We call the solution operator S for (9) as Stokes operator. Thus (u,θ) = S F(u,θ) means

〈∇S F(u,θ),∇(v,ϑ)〉 = 〈F(u,θ),(v,ϑ)〉, ∀(v,ϑ) ∈ X . (10)

Note that we always have S −1(u,θ) = (−∆u+∇p,−∆θ) with an associated pressure p = p(u,θ).
Usually, we use Newton’s method (see [4]) to get an approximate solution (uN ,θN) ∈ XN of (9) and define

the approximate pressure pN by
∇pN ≡ fN(uN ,θN)+∆uN ,

where fN is the truncation up to I,N of the expansion of f. For the solution (u,θ) of (9) with its associated
pressure p, let (ū, θ̄) ≡ (u−uN ,θ −θN) and p̄ ≡ p− pN . Then we have the following residual equations:

−∆ ū+∇p̄ = f(uN + ū,θN + θ̄)+∆uN −∇pN , (11a)
∇·ū = 0, (11b)

−∆θ̄ = g(uN + ū,θN + θ̄)+∆θN , (11c)

Set F̄(ū, θ̄)≡ (f(uN + ū,θN + θ̄)+∆uN −∇pN ,g(uN + ū,θN + θ̄)+∆θN)≡ (f̄(ū, θ̄), ḡ(ū, θ̄)), then the Stokes
operator S gives us a fixed point problem from (11):

(ū, θ̄) = S F̄(ū, θ̄) ≡ K (ū, θ̄). (12)

Since X ⊂ H1(Ω)4, K is a compact operator on X . Hence by Schauder’s fixed point theorem, if we find a
nonempty, closed, convex, and bounded set U ⊂ X satisfying K U ⊂U , then there exists a solution of (12) in
U which is called a candidate set.

Define PN : X → XN by PN = (PN ,QN), then (5) can be simplified as: for (u,θ) ∈ X

〈∇((u,θ)−PN(u,θ)),∇(v,ϑ)〉 = 0, ∀(v,ϑ) ∈ XN . (13)

Then (12) can be decomposed into two parts:

PN(ū, θ̄) = PNK (ū, θ̄), (14a)
(I −PN)(ū, θ̄) = (I −PN)K (ū, θ̄). (14b)
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The Fréchet derivative F ′(u,θ) of F at (u,θ) has the form: for any (ū, θ̄) ∈ X ,

F ′(u,θ)(ū, θ̄) ≡
(
f′(u,θ)(ū, θ̄),g′(u,θ)(ū, θ̄)

)
,

f′(u,θ)(ū, θ̄) ≡ − 1
P

[(u ·∇)ū+(ū ·∇)u]+Rθ̄ez,

g′(u,θ)(ū, θ̄) ≡ −
[
(u ·∇)θ̄ +(ū ·∇)θ

]
+ w̄.

Now, define LN : XN → XN by
LN ≡ PN

[
I −S F ′(uN ,θN)

]∣∣∣
XN

,

and assume LN is regular or one-to-one and onto. And we can express LN as:

LN = PNS [S −1 −F ′(uN ,θN)]
∣∣∣
Xn

= PNS L0, L0 ≡ [S −1 −F ′(uN ,θN)]
∣∣∣
Xn

.

Define the Newton–like iteration operator N : X → XN for (12) and the new map T as follows:

N ≡ PN −L −1
N PN(I −K ), T ≡ N +(I −PN)K .

The second part of T is expected to be small or contractive if the truncation number N is sufficiently large.
The operator N is also compact since it maps X into the finite dimensional space XN , and so is T .
Lemma 4 The problem (14) is equivalent to the following fixed point problem:

(ū, θ̄) = T (ū, θ̄). (15)

Proof Assume (ū, θ̄) ∈ X satisfies (14), then N (ū, θ̄) = PN(ū, θ̄) which means

T (ū, θ̄) = PN(ū, θ̄)+(I −PN)K (ū, θ̄) = PN(ū, θ̄)+(I −PN)(ū, θ̄) = (ū, θ̄).

Thus (ū, θ̄) satisfies (15). On the other hand, if (ū, θ̄) satisfies (15), then

PN(ū, θ̄) = PNT (ū, θ̄) = PNN (ū, θ̄) = PN(ū, θ̄)−L −1
N PN(I −K )(ū, θ̄)

⇒ L −1
N PN(I −K )(ū, θ̄) = 0⇒PN(I −K )(ū, θ̄) = 0⇒PN(ū, θ̄) = PNK (ū, θ̄),

(I −PN)(ū, θ̄) = (I −PN)T (ū, θ̄) = (I −PN)K (ū, θ̄).

Here the second implication is due to the assumption on the regularity of LN . ⊓⊔
From Lemma 4, we have an alternative verification condition of the form: T U ⊂ U for a candidate set U
which is nonempty, closed, convex, and bounded in X .

Now, for given real numbers ξ α ,ηα ,θ α ≥ 0, set real intervals as [ξ α ] ≡ [−ξ α ,ξ α ], [ηα ] ≡ [−ηα ,ηα ],
[θ α ] ≡ [−θ α ,θ α ], and define

UN ≡

{ (
∑

α∈I0,N

{ξα Φα +ηαΨ α} , ∑
α∈I3,N

θα φ α
3

)
∈ XN : ξα ∈ [ξ α ],ηα ∈ [ηα ],θα ∈ [θ α ]

}
. (16)

And for given m1,m2 ≥ 0, we define

U∗ ≡

(u,θ) ∈ X⊥
N :

∥u∥0 ≤
C2

0
(N+1)2 m1, ∥∇u∥0 ≤

C0
N+1 m1, ∥u∥∞ ≤ 2C1√

N
m1,

∥θ∥0 ≤
C2

0
(N+1)2 m2, ∥∇θ∥0 ≤

C0
N+1 m2

. (17)

Here X⊥
N is the orthogonal complement of XN in X with respect to the projection PN defined by (13). Now, set

U ≡UN ⊕U∗, then we obtain:
Theorem 5 Let UN , U∗ and U be sets defined as above. If

N U ⊂ UN , (18a)
(I −PN)K U ⊂ U∗. (18b)

then there exists a fixed point of T in U.

Proof Clearly, (0,0)∈U which means U is non-empty. Due to the definition, U is closed, convex and bounded
in X . Under the condition (18), we have

T U ⊂ N U +(I −PN)K U ⊂UN +U∗ = U.

Since T is compact, there exists a fixed point of T in U by Schauder’s fixed point theorem. ⊓⊔
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4 Computable verification conditions

To construct the candidate set U in X satisfying (18), we use an algorithm based on iterative scheme as in [7].

First, set the initial values ξ
(0)
α = η(0)

α = θ (0)
α = 0, and m(0)

1 = m(0)
2 = 0, which means U (0) contains only

one element (0,0). For k ≥ 0, with a fixed inflation factor 0 < δ ≪ 1, set

ξ
(k+ 1

2 )
α = ξ

(k)
α (1+δ ), η(k+ 1

2 )
α = η(k)

α (1+δ ), θ (k+ 1
2 )

α = θ (k)
α (1+δ ), m

(k+ 1
2 )

i = m(k)
i (1+δ ), i = 1,2,

which define δ–inflations U
(k+ 1

2 )
N and U

(k+ 1
2 )

∗ of U (k)
N and U (k)

∗ respectively. Set the δ–inflation U (k+ 1
2 ) of U (k)

as the direct sum of U
(k+ 1

2 )
N and U

(k+ 1
2 )

∗ , i.e., U (k+ 1
2 ) ≡U

(k+ 1
2 )

N ⊕U
(k+ 1

2 )
∗ . Now, U (k+1) can be constructed as

the direct sum of U (k+1)
N and U (k+1)

∗ as follows:

U (k+1)
N ≡ N U (k+ 1

2 ), m(k+1)
1 ≡

∥∥∥f̄(U (k+ 1
2 ))

∥∥∥
0
, m(k+1)

2 ≡
∥∥∥ḡ(U (k+ 1

2 ))
∥∥∥

0
, (19)

where ∥ f (U)∥0 ≡ sup{ ∥ f (u,θ)∥0 : (u,θ) ∈U } for any function f . Note that U (k+1) cannot be calculated
exactly, but its over–estimated enclosure can be obtained and will be set as U (k+1)

N in the actual calculation on
a computer. Thus the verification condition in a computer is:

Theorem 6 For some k, if the following conditions

ξ
(k+1)
α < ξ

(k+ 1
2 )

α , η(k+1)
α < η(k+ 1

2 )
α , θ (k+1)

α < θ (k+ 1
2 )

α , m(k+1)
i < m

(k+ 1
2 )

i , i = 1,2, (20)

hold, then the set U (k+ 1
2 ) contains an element (ū, θ̄) satisfying (ū, θ̄) = T (ū, θ̄).

Proof Due to Theorem 5, it is sufficient to check (18) holds for U (k+ 1
2 ). By the condition (20) and the def-

inition (19), we have N U (k+ 1
2 ) = U (k+1)

N ⊂ U
(k+ 1

2 )
N . And for any (u,θ) ∈ (I −PN)K U (k+ 1

2 ), there exists
(ū, θ̄) ∈U (k+ 1

2 ) such that (u,θ) = (I −PN)S F̄(ū, θ̄). Using Theorem 1, Corollary 3 and (19), we obtain

∥u∥0 =
∥∥(I −PN)Π1S F̄(ū, θ̄)

∥∥
0 ≤

C2
0

(N +1)2

∥∥f̄(ū, θ̄)
∥∥

0 ≤
C2

0
(N +1)2 m(k+1)

1 <
C2

0
(N +1)2 m

(k+ 1
2 )

1 ,

∥∇u∥0 =
∥∥∇(I −PN)Π1S F̄(ū, θ̄)

∥∥
0 ≤

C0

N +1

∥∥f̄(ū, θ̄)
∥∥

0 ≤
C0

N +1
m(k+1)

1 <
C0

N +1
m

(k+ 1
2 )

1 ,

∥u∥∞ =
∥∥(I −PN)Π1S F̄(ū, θ̄)

∥∥
∞ ≤ 2C1√

N

∥∥f̄(ū, θ̄)
∥∥

0 ≤
2C1√

N
m(k+1)

1 <
2C1√

N
m

(k+ 1
2 )

1 ,

∥θ∥0 =
∥∥(I −QN)Π2S F̄(ū, θ̄)

∥∥
0 ≤

C2
0

(N +1)2

∥∥ḡ(ū, θ̄)
∥∥

0 ≤
C2

0
(N +1)2 m(k+1)

2 <
C2

0
(N +1)2 m

(k+ 1
2 )

2 ,

∥∇θ∥0 =
∥∥∇(I −QN)Π2S F̄(ū, θ̄)

∥∥
0 ≤

C0

N +1

∥∥ḡ(ū, θ̄)
∥∥

0 ≤
C0

N +1
m(k+1)

2 <
C0

N +1
m

(k+ 1
2 )

2 ,

where Π1 : X → V and Π2 : X → W are the natural projections from X to V and W , respectively. These

estimates mean that (u,θ) ∈U
(k+ 1

2 )
∗ and (I −PN)K U (k+ 1

2 ) ⊂U
(k+ 1

2 )
∗ holds. ⊓⊔

To determine the finite dimensional set U (k+1)
N in (19), we need to compute N on U . At first, from definitions

of LN and K , we can rewrite N as follows:

N = L −1
N [LNPN −PN +PNK ] = L −1

N PNS F0, F0 ≡ F̄ −F ′(uN ,θN)PN .

For any fixed (ū, θ̄) ∈U , set (uh,θh) ≡ N (ū, θ̄) and operate LN on both sides, then

PNS L0(uh,θh) = LN(uh,θh) = PNS F0(ū, θ̄).

Using the projection property (13) of PN , we can derive

〈∇S L0(uh,θh),∇(vN ,ϑN)〉 =
〈

∇S F0(ū, θ̄),∇(vN ,ϑN)
〉
, ∀(vN ,ϑN) ∈ XN
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Due to (10), this can be written as

〈L0(uh,θh),(vN ,ϑN)〉 =
〈

F0(ū, θ̄),(vN ,ϑN)
〉
, ∀(vN ,ϑN) ∈ XN . (21)

The left hand side of (21) can be written as:

〈L0(uh,θh),(vN ,ϑN)〉 =
〈
S −1(uh,θh)−F ′(uN ,θN)(uh,θh),(vN ,ϑN)

〉
= 〈∇(uh,θh),∇(vN ,ϑN)〉−

〈
F ′(uN ,θN)(uh,θh),(vN ,ϑN)

〉
.

This gives us the interval version of the Jacobian matrix in Newton’s method with respect to the base functions
Φα , Ψ α , and φ α

3 . The right hand side of (21) forms an interval vector whose elements can be enclosed with
upper and lower bounds. Thus the operator LN is regular when the solution (uh,θh)∈ XN for (21) exists under
the guaranteed computation with interval arithmetic.

In order to compute m(k+1)
i in (19), we need to estimate

∥∥f̄(u,θ)
∥∥

0 and ∥ḡ(u,θ)∥0 for any (u,θ) ∈ U .
Pick up an element (u,θ) ≡ (uh +u∗,θh +θ∗) ∈U with (uh,θh) ∈UN , (u∗,θ∗) ∈U∗, then we have

f̄(u,θ) = f(uN +uh +u∗,θN +θh +θ∗)+∆uN −∇pN

= f(uN +uh,θN +θh)+∆uN −∇pN

− 1
P

[((uN +uh) ·∇)u∗ +(u∗ ·∇)(uN +uh)+(u∗ ·∇)u∗]+Rθ∗ez,

ḡ(u,θ) = g(uN +uh +u∗,θN +θh +θ∗)+∆θN

= g(uN +uh,θN +θh)+∆θN

− [((uN +uh) ·∇)θ∗ +(u∗ ·∇)(θN +θh)+(u∗ ·∇)θ∗]+w∗.

These forms enable us to estimate the desired norms as follows:∥∥f̄(u,θ)
∥∥

0 ≤ ∥f(uN +uh,θN +θh)+∆uN −∇pN∥0

+
1
P

[∥uN +uh∥∞∥∇u∗∥0 +∥u∗∥0∥∇(uN +uh)∥∞ +∥u∗∥∞∥∇u∗∥0]+R∥θ∗∥0

≤ ∥f(uN +uh,θN +θh)+∆uN −∇pN∥0

+
1
P

[
C0

N +1
∥uN +uh∥∞ +

C2
0

(N +1)2 ∥∇(uN +uh)∥∞

]
m1 +

2C0C1

(N +1)
√

N
m2

1 +R
C2

0
(N +1)2 m2,

∥ḡ(u,θ)∥0 ≤ ∥g(uN +uh,θN +θh)+∆θN∥0

+ [∥uN +uh∥∞∥∇θ∗∥0 +∥u∗∥0∥∇(θN +θh)∥∞ +∥u∗∥∞∥∇θ∗∥0]+∥w∗∥0

≤ ∥g(uN +uh,θN +θh)+∆θN∥0

+
C0

N +1
∥uN +uh∥∞m2 +

C2
0

(N +1)2 ∥∇(θN +θh)∥∞m1 +
2C0C1

(N +1)
√

N
m1m2 +

C2
0

(N +1)2 m1.

Note that upper bounds of L2 and L∞ norms for (uN + uh,θN + θh) ∈ UN ⊂ XN can be computed by interval
arithmetic, and these calculation may have additional inflations due to crude estimates. Thus we estimate∥∥(I −PN)Π1S F̄(ū, θ̄)

∥∥
0,

∥∥∇(I −PN)Π1S F̄(ū, θ̄)
∥∥

0,
∥∥(I −PN)Π1S F̄(ū, θ̄)

∥∥
∞

∥∥(I −QN)Π2S F̄(ū, θ̄)
∥∥

0,
and

∥∥∇(I −QN)Π2S F̄(ū, θ̄)
∥∥

0 after decomposition of Π1S F̄(ū, θ̄) and Π2S F̄(ū, θ̄) into finite and infi-
nite parts, which gives us more accurate values of them and efficient estimates in real computations.

5 Numerical results

For the interval arithmetic, we use the PROFIL package [2] on Linux Intel Pentium 4 (3.8 GHz) machine.
We set a2 = 1

8 , b2 = 3
8 and P = 10 in the numerical experiments with 1% inflation factor. Then the

critical Rayleigh number Rc = 6.75 can be attained at some special mode α (see [5] for detail). We show
several approximation results in figures 1-3. In these figures, the isothermal lines are drawn after adding the
conduction solution (2) on the left, and contour lines of speed with streamlines are shown on the right. Note
that streamlines for each type never change their shape during the change of relative Rayleigh numbers in
short range. We present figures at the same relative Rayleigh number R/Rc = 1.1 for easy comparison.
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Fig. 1 Isothermal lines, and contour lines of speed with streamlines for roll type at R/Rc = 1.1.

Fig. 2 Isothermal lines, and contour lines of speed with streamlines for rectangular type at R/Rc = 1.1.

Fig. 3 Isothermal lines, and contour lines of speed with streamlines for hexagonal type at R/Rc = 1.1.

In Table 1, Table 2 and Table 3, we illustrate the verification results for each type of solutions with several
relative Rayleigh numbers. In these tables, we show the relative Rayleigh number R/Rc, the truncation
number N, the converged step k, L∞ norms of approximate solutions (uN ,θN), L∞ norms of finite parts (uh,θh),
and the bounds m1, m2 of infinite parts. The converged step means the inflated candidate set at step k − 1

2
includes the new one at step k, namely, the verification was completed at the concerning iteration steps. In the
roll type case (Table 1), the problem size becomes much smaller due to the elimination of one space variable
which comes from the fact that the solutions are independent of that variable. For other types (Table 2, Table
3), we can find out the basic symmetry of solutions which make it possible to reduce the size of unknown
coefficients.

From these tables, we can make a bifurcation diagram Fig. 4 with respect to the relative Rayleigh number
R/Rc and sum ∥∇uN∥∞ +∥∇θN∥∞ of approximate solutions’ L∞ norms.

6 Conclusion

We could verify several kinds of bifurcating solutions. This should be the first result on the fact that there ac-
tually exist exact solutions around approximate solutions drawn in the figures corresponding to the interesting
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R/Rc N k ∥∇uN∥∞ ∥∇θN∥∞ ∥∇uh∥∞ ∥∇θh∥∞ m1 m2

1.01 16 12 0.74 0.31 5×10−11 2×10−10 1.44×10−10 1.92×10−10

1.05 18 29 1.66 0.72 2×10−8 2×10−8 4.06×10−9 3.57×10−9

1.5 44 19 5.58 2.47 3×10−11 3×10−10 1.72×10−11 3.33×10−11

Table 1 Verification results for roll type solutions.

R/Rc N k ∥∇uN∥∞ ∥∇θN∥∞ ∥∇uh∥∞ ∥∇θh∥∞ m1 m2

1.01 16 7 0.93 0.38 2×10−11 3×10−11 2.37×10−12 1.01×10−11

1.05 16 10 2.20 0.96 2×10−8 2×10−7 2.91×10−9 1.09×10−8

1.1 24 11 3.26 1.47 4×10−10 3×10−9 8.33×10−13 5.84×10−12

1.2 28 33 4.99 2.27 2×10−10 2×10−9 4.60×10−12 3.96×10−11

Table 2 Verification results for rectangular type solutions.

R/Rc N k ∥∇uN∥∞ ∥∇θN∥∞ ∥∇uh∥∞ ∥∇θh∥∞ m1 m2

1.01 16 7 1.12 0.47 2×10−10 6×10−10 4.53×10−11 1.93×10−10

1.05 16 15 2.70 1.21 2×10−6 2×10−6 3.22×10−8 1.08×10−7

1.1 24 19 4.09 1.88 4×10−9 3×10−8 2.50×10−11 1.68×10−10

Table 3 Verification results for hexagonal type solutions.

1.01 1.05 1.1 1.2 1.5
R/R

c
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Fig. 4 Bifurcation diagram. × for hexagonal, ◦ for rectangular, and ∗ for roll type cases.

natural phenomena. Due to the limit of our computational power up to now, we proved only small part (Fig. 4)
of bifurcation diagram except for the roll type solutions. This could be enhanced using parallel computation
after update of PROFIL package into parallel version (not available now) or increasing physical memories for
computation on some large scale computers.

More interesting problem would be the verification of the bifurcation point such that suggested in [5],
which is more complicated problem than the usual. We believe that these interesting and important problems
could be resolved in the near future.
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Normalized Leonard pairs and Askey-Wilson relations

MHF2005-17 Raimundas VIDŪNAS
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MHF2006-15 Raimundas VIDŪNAS
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