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Abstract We consider the computation of stable approximations toettact solutionx’ of
nonlinear ill-posed inverse problerfgx) = y with nonlinear operators : X — Y between two
Hilbert spaceX andY by the Newton type methods

X1 = %o~ G, (F/0R)F/0€) ) F'06)" (FO) =y = F'08) (¢ —0))

in the case that only available data is a ngief y satisfying||y® — y|| < & with a given small
noise leveld > 0. We terminate the iteration by the discrepancy principle/lich the stopping
indexk; is determined as the first integer such that

IF () =Yl ST <|FOQ) —¥°l,  0<k<ks

with a given number > 1. Under certain conditions ofug}, {gq} andF, we prove thab(ffé

converges to" as & — 0 and establish various order optimal convergence ratdtsesuis
remarkable that we even can show the order optimality un@eeipnthe Lipschitz condition on
the Fréchet derivative’ of F if xg— x' is smooth enough.

Keywords Nonlinear inverse problemsNewton type methodsthe discrepancy principle
order optimal convergence rates

Mathematics Subject Classification (200065J15- 65J20- 47H17

1 Introduction

In this paper we will consider the nonlinear inverse protdestich can be formulated as the
operator equations

F(x) =Yy, (1.1)

whereF : D(F) € X — Y is a nonlinear operator between the Hilbert spaXesndY with
domainD(F). We will assume that probleri(1.1) is ill-posed in the sehsg its solution does
not depend continuously on the right hand sigehich is the characteristic property for most of
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the inverse problems. Such problems arise naturally frarptrameter identification in partial
differential equations.

Throughout this papef- || and(-,-) denote respectively the norms and inner products for
both the spaceX andY since there is no confusion. The nonlinear operatralways assumed
to be Fréchet differentiable, the Fréchet derivativd-oat x € D(F) is denoted a§’(x) and
F’(x)* is used to denote the adjoint Bf(x). We assume thatis attainable, i.e. problem (1.1)
has a solutiox' € D(F) such that

F(x') =y.

Since the right hand side is usually obtained by measurenters, instead of itself, the avail-
able data is an approximatigfl satisfying

Iy’ -yl <o (1.2)

with a given small noise levé > 0. Due to the ill-posedness, the computation of a stabldiealu
of (T.J) fromy® becomes an important issue, and the regularization teshsibave to be taken
into account.

Many regularization methods have been considered to s@lg in the last two decades.
Tikhonov regularization is one of the well-known methodatthas been studied extensively
(seel[1¥,11,19] and the references therein). Due to thigtfarward implementation, iterative
methods are also attractive for solving nonlinear inversélems. In this paper we will consider
some Newton type methods in which the iterated solut{o«j$ are defined successively by

X1 = %0~ g (F/0R)F ) ) F'09)" (FO&) -y —F)0¢ —x0)),  (1.3)
wherexg := Xo is an initial guess of', {a} is a given sequence of numbers such that

ax >0, 1< —<r and limoa, =0 (1.4)
Ok+1 k—rco

for some constant> 1, andgg : [0,0) — (—, ) is a family of piecewise continuous functions
satisfying suitable structure conditions. The mettiod)(d¢a® be derived as follows. Suppo@e

is a current iterate, then we may approximBig) by its linearization around{f, i.e. F(x) ~
F(x2) +F'(x)(x—x2). Thus, instead of (111), we have the approximate equation

F/(Q)(x—x) =y° —F(xP). (1.5)

If F’(x{f) has bounded inverse, the usual Newton method defines théeraxé by solving[(1]5)
for x. For nonlinear ill-posed inverse problems, howe\Fél(,xf) in general is not invertible.
Therefore, we must use linear regularization methods teeddl.5). There are several ways to
do this step. One way is to rewrife (I..5) as

F/(x)h=y° —F(x2)+F () (X — %), (1.6)

whereh = x— xg. Applying the linear regularization method defined{m, } we may produce
the regularized solutioh? by

h? = gay (F/0€)F/0)) F'06)" (¥ = FOR) +F (0€) (€ —0))

The next iterate is then defined to k@l = Xo + h? which is exactly the form{1]3).

In order to useq‘(s to approximate”, we must choose the stopping index of iteration properly.
Some Newton type methods that can be casted into the forihiave been analyzed inl[3.12,
14] under a priori stopping rules, which, however, depentherknowledge of the smoothness
of xo — x' that is difficult to check in practice. Thus a wrong guess efsmoothness will lead
to a bad choice of the stopping index, and consequently ta approximation t™. Therefore,



a posteriori rules, which use only quantities that arisenducalculations, should be considered
to choose the stopping index of iteration. One can consiB#39, 2, 14] for several such rules.

One widely used a posteriori stopping rule in the literatfreegularization theory for ill-
posed problems is the discrepancy principle which, in theed of the Newton method(1.3),
defines the stopping indédey to be the first integer such that

IFR) =Yl <13 < |[FOR) —Y°ll, 0<k<ks, (1.7)

wheret > 1 is a given number. The methdd (I1.3) wih(A) = (a + A)~* together with [(T7)
has been considered [1[[3, 8]. Note that wiggfA ) = (a +A)~1, the method(113) is equivalent
to the iteratively regularized Gauss-Newton mettiod [1]

B =%~ (ad +F 0 FO) (FO FOd) ) g —x0)).  (L8)
WhenF satisfies the condition like
F'(x) = R(x,2)F'(2) + Q(x,2),
Il — R(x,2)|| < Crllx— 2|, x,z€ By(x"), (1.9)
IQ(x,2)|| < CqllF'(2)(x—2)]l,

whereCr andCq, are two positive constants, for the method defined byl (1.8)(@&df) with
being sufficiently large, it has been shown [if([3,8] thaxgf- x' satisfies the Holder source
condition

xo— X' = (F'(xX')*F'(x")’w (1.10)

for somew € X and 0< v < 1/2, then
||Xf<55 ~X1|| < o(82/(L+2v)y.
while if xg — x' satisfies the logarithmic source condition
xo—x" = (—log(F'(x")"F'(x"))) " w (1.12)
for somew € X andp > 0, then
IXg, ="l < O((=In&)~#).

Unfortunately, except the above results, there is no ma@travailable in the literature on the
general method defined Hy (1L.3) abhd{1.7).

During the attempt of proving regularization property of theneral method defined iy (11.3)
and [1.7), Kaltenbacher realized that the argumentsir} f&8end heavily on the special proper-
ties of the functiorgy (A) = (a +A)~L, and thus the technique therein is not applicable. Instead
of the discrepancy principleé(1.7), she proposedin [13]wa a@osteriori stopping rule to termi-
nate the iteration as long as

max{||F (&, 1) = Y ILIIF @y 1) + F' 08, 1) 0@, — 3, ) -Vl <16 (2.12)

is satisfied for the first time, where> 1 is a given number. Under the condition like {1.9), it
has been shown thatif — x' satisfies the Holder source condition (1.10) for same X and
0< v <1/2, then there hold the order optimal convergence rates

||X§n5 _XTH < CVHle/(1+2v)52v/(l+2v)
if {gq} satisfies some suitable structure conditianis, sufficiently large and w|| is sufficiently
f tisf table struct dit ff tly | ff tl

small. Note that any result oh (1]112) does not imply that theesponding result holds fdr (1.7).
Note also thaks < ms — 1 which means thaf {1.12) requires more iterations to beopmed.
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Moreover, the discrepancy principle(IL.7) is simpler tHam stopping rule{1.12). Considering
the fact that it is widely used in practice, it is importangige further investigations of (1.7).

In this paper, we will resume the study of the method define@) and [Z.7) with com-
pletely different arguments. With the help of the ideas ¢gwed in [9/19,10], we will show
that, under certain conditions dgq }, {ax} andF, the method given by (1.3) and (1..7) indeed
defines a regularization method for solviiig{1.1) and is oog¢imal for each 6< v < v —1/2,
wherev > 1 denotes the qualification of the linear regularizationhodtdefined by{gq}. In
particular, wherxy — x' satisfies[(1.70) for 22 < v < v —1/2, we will show that the order op-
timality of (.3) and[(1.7) even holds under merely the Lhisccondition onF’. This is the
main contribution of the present paper. We point out thatresults are valid for any > 1. This
less restrictive requirement aris important in numerical computations since the absoluts e
could increase with respect to

This paper is organized as follows. In Section 2 we will statgous conditions odgq },
{ax} andF, and then present several convergence results on the nsedlefided by[(113) and
(@1). We then complete the proofs of these main results ati®es 3, 4, and 5. In Section 6, in
order to indicate the applicability of our main results, vegify those conditions in Section 2 for
several examples dfgq } arising from Tikhonov regularization, the iterated Tikloerregular-
ization, the Landweber iteration, the Lardy’s method, dredasymptotic regularization.

2 Assumptions and main results

In this section we will state the main results for the methefire:d by [1.B) and the discrepancy
principle [L.T). Since the definition ¢k?} involvesF, go and{ax}, we need to impose various
conditions on them.

We start with the assumptions gg which is always assumed to be continuoug@r,/2]
for eacha > 0. We will set

ra(A):==1-Aga(A),
which is called the residual function associated wgigh

Assumption 1 a (a) There are positive constantg and ¢ such that
0<rg(A) <1, rg(AM)A<cga and 0<gy(A)<cia?

forall a >0andA €0,1/2];
(b) ra(A) <rg(A) forany0 < a < B andA €[0,1/2];
(c) There exists a constant & 0 such that

[A
rg(A) —rq(A) <cz Erﬁ(/\)
foranyO< a < B andA €[0,1/2].

The conditions (a) and (b) in Assumptigh 1 are standard irattaysis of linear regulariza-
tion methods. Assumptidd 1(a) clearly implies

0<rg(MAY?2<cza¥? and 0<gg(A)AY2 <cua Y2 (2.1)

with c3 < cé/z andcy < ci/z. We emphasize that direct estimatesrgfiA)AY/2 andgg (A )A Y2
could give smalleicz andcs. From Assumptiof]1(a) it also follows for each<Ov < 1 that
ra(A)AY <cgaV forall a >0 andA € [0,1/2]. Thus the linear regularization method defined
by {gq } has qualificatiorv > 1, where, according td [20], the qualification is defined tdtee

1 Recently we realized that (c) can be derived from (a) and (b).
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largest numbev with the property that for each9 v < v there is a positive constad} such
that

ra(A)AY <dya’ foralla >0andA €[0,1/2]. (2.2)
Moreover, Assumptiohl1(a) implies for evemy> O that

ra(A)(=InA)H <min{(=InA)"H coaA~*(—=InA)~H}

for all 0 < o < ap andA € [0,1/2]. Itis clear that(—InA)~H < (—~In(a/(2ap)))* for 0 <

A < a/(2ap). By using the fact that the functioh — coaA ~1(—InA)~H is decreasing on the
interval (0,e ] and is increasing on the intenfa*, 1), it is easy to show that there is a posi-
tive constanty, such thatoaA ~1(—InA)~H < a, (—In(a/(2a0))) * for a/(2a0) < A < 1/2.
Therefore for everyr > 0 there is a positive constaly; such that

ra(A)(~INA)H < by (~In(a/(2a0))) * (2:3)

forall 0 < o < ag andA € [0,1/2]. This inequality will be used to derive the convergence rate
whenx — x' satisfies the logarithmic source conditibn (1.11)

The condition (c) in Assumptiol 1 seems to appear here fofitietime. It is interesting
to note that one can verify it for many well-known linear rigization methods. Moreover, the
conditions (b) and (c) have the following important conssee.

Lemma 1 Under the conditions (b) and (c) in Assumptidn 1, there holds

Ilrp(A"A) —ra (A"A)X|| < [IX—rg(A"A)X|| + %IIAfﬂ (2.4)

for all x,x € X, any0 < a < 8 and any bounded linear operator:AX — Y satisfying||A|| <

1/v/2.
Proof For any 0< a < 3 we set

rg(A)—ra(A)
rg(A) 7

It follows from the conditions (a) and (b) in Assumptigh 1ttha

0<pga(A) < min{l, cz\/g} . (2.5)

Ilrp(A"A) —ra (A"A) X[ = [ Pg.a (A" A)rg (A A)X]
<|IPg.a(A"A)[rg(A"A)X—=X][| + [ pg.a (A"A)X]|
<|Irg(A"A)X =X + [ Pg.a (A"A)X]. (2.6)

Pp.alA) = A €[0,1/2].

Therefore, for any, x € X,

Let {E, } be the spectral family generated AyA. Then it follows from [2Z.5) that
* 2 1/2 2 2
IPpa(AWT? = [ [pga(h)] dIErT]
1/2 ) c2 i
<& [ LdIERI = Z) (AP
_ S aq?
= 2||AX].

Combining this with[(216) gives the desired assertion. m|



For the sequence of positive numbéis }, we will always assume that it satisfiés (1.4).
Moreover, we need also the following condition e} interplaying withr .

Assumption 2 There is a constantsc> 1 such that

Fop (A) < Csfay, 1 (A)
forallk andA € [0,1/2].

We remark that for somégy } Assumptiori 2 is an immediate consequencédofi (1.4). How-
ever, this is not always the case; in some situations, Assanip indeed imposes further condi-
tions on{ay}. As a rough interpretation, Assumptih 2 requires for any swccessive iterated
solutions the errors do not decrease dramatically. This beagood for the stable numerical
implementations of ill-posed problems although it may iegjmore iterations to be performed.
Note that Assumptiop] 2 implies

[I7ai (A"A)X]| < cs| [T, (A"A)X]| (2.7)

for anyx € X and any bounded linear operator X — Y satisfying||A|| < 1/v/2.
Throughout this paper, we will always assume that the nealioperatoF : D(F) C X =Y
is Fréchet differentiable such that

Bo(x") c D(F) forsomep >0 (2.8)

and
IF' ) gmin{cgag/z, 01/2}, x € By(x), (2.9)

where 0< Bp < 1/2 is a number such thag,(A) > 3/4 for all A € [0, o]. Sincerg,(0) =1,
suchpBp always exists. The scaling conditidn (2.9) can always bidlad by rescaling the norm
iny.

The convergence analysis on the method define@ by (1.3 anpwil be divided into two
cases:

(i) xo— x' satisfies[[T.70) for some > 1/2;
(i) xo—x" satisfies[(Z.0) with & v < 1/2 or {T.11) withu > 0.

Thus different structure conditions énwill be assumed in order to carry out the arguments. It
is remarkable to see that for case (i) the following Lipscieibndition onF’ is enough for our
purpose.

Assumption 3 There exists a constant L such that
IF'(x) —F'()]l < Llx—Z] (2.10)
for all x,z€ By (x").

As the immediate consequence of Assumpiibn 3, we have
’ 1 2
IF) ~F (@) -F(@)(x-2)] < 5LIIx~2]

forallx,ze Bp(xT). We will use this consequence frequently in this paper.

During the convergence analysis bf {1.3), we will meet soanens involving operators such
asrq (F'(x2)*F'(x2)). In order to make use of the source conditions (1.10)xfor x', we
need to switch these operators with) (F'(x")*F’(x)). Thus we need the following commutator
estimates involvingy andgg.



Assumption 4 There is a constantgc> 0 such that

[ra(A"A) —rq(B*B)|| < csar~ /2| A—BJ|, (2.11)
[ Ira(A"A) —rq(B*B)| B*|| < cs|A—B], (2.12)
|Alra (A*A) —rq(B*B)] B*|| < csa™/?|A—B]|, (2.13)
and
{90 (A*A) — ga(B*B)]|B*|| < csa *[|A—B]| (2.14)

for anya > 0 and any bounded linear operatorsB: X — Y satisfying|A|, ||B|| < 1/v2.

This assumption looks restrictive. However, it is inteiregto note that for several important
examples we indeed can verify it easily, see Section 6 faildeMoreover, in our applications,
we only need Assumptidi 4 with = F/(x) andB = F’(2) for x,z € B, (x"), which is trivially
satisfied wherf is linear.

Now we are ready to state the first main result of this paper.

Theorem 1 Let {gy} and {ay} satisfy Assumption] 1, (1.4), Assumpfidn 2, and Assumipfion 4
let v > 1 be the qualification of the linear regularization method deél by{g,}, and let F
satisfy [Z:8),[(Z19) and Assumptibh 3 wjth> 4]|xo — x| Let {x°} be defined by[(13) and let
ks be the first integer satisfyin§{1.7) with> 1. Let % — x' satisfy [Z.1D) for some» € X and
1/2<v<v-1/2.Then

ngé _ XTH <C, ||w||1/(1+2v)52v/(1+2v)

if L||ul| < no, where uc .4 (F'(x")*)*+ C Y is the unique element such thgtxx" = F/(x")*u,
No > 0is a constant depending only onrand g, and G, is a positive constant depending only
onr,t,vandg,i=0,---,6.

Theoreni 1 tells us that, under merely the Lipschitz conditioF’, the method(113) together
with (I.7) indeed defines an order optimal regularizatiothoe for each 12 <v <v —1/2;in
case the regularization method defined{lgy } has infinite qualification the discrepancy princi-
ple (I.7) provides order optimal convergence rates forthledngev € [1/2, ). This is one of
the main contribution of the present paper.

We remark that under merely the Lipschitz conditionf&nwe are not able to prove the
similar result as in Theorel 1 i — x satisfies weaker source conditions, gay {{1.10) for some
v < 1/2. Indeed this is still an open problem in the convergenclyaisaof regularization meth-
ods for nonlinear ill-posed problems. In order to pursuecir@vergence analysis under weaker
source conditions, we need stronger conditionf dhan Assumptioh]3. The condition{1.9) has
been used in[8]8] to establish the regularization propeithe method defined by (1.8) and
(1), where the special propertiesgaf(A) = (A + a)~* play the crucial roles. In order to study
the general method (1.3) under weaker source conditioneged the following two conditions
onF.

Assumption 5 There exists a positive constang 8uch that

F'(x) = F'(2R(x,2),
[ = R(%,2)|| < Kolx—Z|

for any xz€ By (x").
Assumption 6 There exist positive constantg End K, such that
I[F'(x) = F'(2)]w]| < Kallx—2z||[|[F'(2Jw]| + K[[F'(2) (x—2)|[[|w]|

for any xz € B, (x") and we X.



Assumptior[ b has been used widely in the literature of nealirill-posed problems (see
[17/1119.19]); it can be verified for many important invepseblems. Another frequently used
assumption ofr is (1.9) which is indeed quite restrictive. It is clear thatstimptioh b is a direct
consequence of (1.9). In order to illustrate that Assunmd@acould be weaker thah (1.9), we
consider the identification of the parameteén the boundary value problem

{—Au+cu:f in Q (2.15)

u=g ondQ

from the measurement of the statewhereQ c R",n < 3, is a bounded domain with smooth
boundandQ, f € L?(Q) andgc H¥?(0Q). We assume' € L?(Q) is the sought solution. This
problem reduces to solving an equation of the fdrml(1.1) ithefine the nonlinear operatérto
be the parameter-to-solution mappiRg L2(Q) — L?(Q),F (c) := u(c) with u(c) € H3(Q) C
L?(Q) being the unique solution df(Z115). Su€lis well-defined on

D(F):={ceL?Q): |lc—¢|. < yforsomec™> 0 a.e}
for some positive constagt> 0. It is well-known thaf has Fréchet derivative
F'(ch=—-A(c) *(hF(c)), hel?Q), (2.16)

whereA(c) : H2NHE — L2 is defined byA(c)u := —Au+ cuwhich is an isomorphism uniformly
in aballB,(c") ¢ D(F) aroundc. LetV be the dual space &f>NHZ with respect to the bilinear
form (¢, y) = [, ¢ (X)W(x)dx ThenA(c) extends to an isomorphism frob?(Q) to V. Since
(2.18) implies for any,d € By (c') andh € L2(Q)

(F'(c)~F'(d)) h=—A(c) *((c—d)F'(d)h) — A(c)* (h(F(c) —F(d))),
and since.1(Q) embeds int&/ due to the restriction < 3, we have

I(F'(c) = F'(d))hll.2 < |A(C) * ((c—d)F'(d)h) [l 2 +[|A(e) * (h(F (¢) — F(d))) .2

<Cli(c—d)F'(d)hllv +Cl[h(F(c) — F(d))llv
< Cl(c=d)F'(d)hll +Cl[h(F(c) — F(d))[lL2
< Clc—d||2[[F'(d)hll 2 +ClIF(c) — F(d)l|z[|hl] 2. (2.17)

On the other hand, note thitc) — F(d) = —A(d)~*((c—d)F(c)), by using [2.16) we obtain
F(c) —F(d) —F'(d)(c—d) = ~A(d)*((c—d) (F(c) = F(d))).

Thus, by a similar argument as above,
IF(c) = F(d) = F'(d)(c—d)[| 2 < Cllc—d| 2[|F (c) — F(d) ] -

Therefore, ifp > 0 is small enough, we havg=(c) — F(d)||,2 < C||F’(d)(c — d)||.2, which
together with[(2.17) verifies Assumptibh 6. The validity[@f), however, requiragc) > k >0
for all c € By(c'), seel[7].

In our next main result, Assumptigh 5 and Assumpfibn 6 willused to derive estimates
related tox? — x" andF’(x") (x2 — xT) respectively. Although Assumptigh 6 does not explore the
full strength of [1.D), the plus of Assumptiéh 5 could make oconditions stronger thah (1.9)
in some situations. One advantage of the use of Assumptiord5Aasumption 6, however, is
that we can carry out the analysis on the discrepancy pta@p1) for anyr > 1, in contrast to
those results ir [3]8] whereis required to be sufficiently large. It is not yet clear if poine of
the above two assumptions is enough for our purpose. Fronmdysson® it is easy to see that

IF(x)—F(2-F(@)(x-2) < %(KH Ka)lIx—2[[|F'(z) (x— 2)]| (2.18)



and

I\)IO.)

[F(x)—F(2) = F'(29(x=2)|| < 5(Ki+K2)[[x—Z|[[F"(x) (x— 2)||. (2.19)
for anyx,z e B, (x").

We still need to deal with some commutators involvigg The structure information oR
will be incorporated into such estimates. Thus, insteadssuinption 4, we need the following
strengthened version.

Assumption 7 (a) Under Assumptidnl 5, there exists a positive constastich that
ra (F'0*F'(¥) —ra (F'(2"F'(2) || < crKollx— 7| (2.20)

for all x,z€ By(x") and alla > 0.
(b) Under Assumptionl 5 and Assumptidn 6, there exists aip@sionstant g such that

IF'09 [ra (F'(0"F'(¥) —ra (F'(2'F'(2)] |
< ca(Ko+ Ka)a/?||x— 2| + caa (|IF'(x) (x— 2)|| + | F'(2) (x— 2)]|) (2.21)

forall x,z€ By(x") and alla > 0.

Now we are ready to state the second main result in this pamiehwn particular says that the
method[(1.B) together with the discrepancy principlel(dief)nes an order optimal regularization
method for each & v < v —1/2 under stronger conditions ¢h We will fix a constanty >
carl/2/(1—1).

Theorem 2 Let{g,} and{ax} satisfy Assumptidd 1, (1.4), Assumpfibn 2 and Assumiptien 7,
v > 1 be the qualification of the linear regularization method defl by{g, }, and let F satisfy
2.8), [2.9), Assumptidd 5 and Assumpfidn 6 waith 2(1+cay1)|| %o — x| Let{x?} be defined
by (1.3) and let k be the first integer satisfyin§ (1.7) with> 1. Then there exists a constant
n1 > 0 depending only on rr and g, i = 0,---,8, such that if(Ko + Ky + Ko)||xo — X'|| < n1
then

(i) If xo — x" satisfies the Hlder source conditioi {1.10) for somec X and0< v <v—1/2,
then

I =Xl < Cu ol 1200520/ 312), @22)

where G is a constant depending only onm,v and G, i =0,---,8.
(ii) If xo — x' satisfies the logarithmic source conditidn (1.11) for scme X andu > 0,
then

6. — X7 < Cullo] <1+ - D (2.23)

where G, is a constant depending only onm, i, and G, i = ,8.

In the statements of Theordmh 1 and Theotédm 2, the smallnek§udfand (Ko + Ky +
K2)||%o — xT|| are not specified. However, during the proof of Theofém 1, waeed will spell
out all the necessary smallness conditiond.¢u||. For simplicity of presentation, we will not
spell out the smallness conditions @iy -+ K1 + Kz)||xo — xT|| any more; the readers should be
able to figure out such conditions without any difficulty.

Note that, without any source condition ap— x', the above two theorems do not give
the convergence offfa to x". The following theorem says tharEé — x" asd — 0 provided

xo — X' € A (F'(x")™. In fact, it tells more, it says that the convergence rates ezen be
improved too(32V/(1+2)) if xo — x' satisfies[{Z.10) for & v < v —1/2.
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Theorem 3 (i) Let all the conditions in Theorefd 1 be fulfilled Vif> 1 and X — xq satisfies the
Holder source conditiori{1.10) for soneec .4 (F/(x"))*+ and1/2 < v < v —1/2, then

”XE(; _ XT|| < 0(52v/(1+2v))

asd — 0.
(i) Let all the conditions in Theorefd 2 be fulfilled. § x x satisfies[[1.10) for som® <
AN (F'(x")+ and0 < v < v —1/2, then

||XE§ —XTH < 0(52v/(l+2v))
asd — 0.

Theorentll, Theorefd 2 and Theorgm 3 will be proved in SectipdsaBd 5 respectively. In
the following we will give some remarks.

Remark 1A comprehensive overview on iterative regularization methifor nonlinear ill-posed
problems may be found in the recent bookl[14]. In partic”lanvergence and convergence rates
for the general method (1.3) are obtained.in [14, Theore®]4nicase of a priori stopping rules
under suitable nonlinearity assumptionskon

Remark 2In [18] Tautenhahn introduced a general regularizatiomswhfor [1.1) by defining
the regularized solutiong, as a fixed point of the nonlinear equation

X=X~ a (F'(0°F'()) F' (9" (F(0 — Y = F () (x— %)), (2.29)

wherea > 0 is the regularization parameter. Whens determined by a Morozov's type dis-
crepancy principle, it was shown in[18] that the method eooptimal for each & v < v/2
under certain conditions oR. We point out that the technique developed in the presergmpap
can be used to analyze such method; indeed we can even showrttier merely the Lipschitz
condition onF’, the method in[18] is order optimal for eacf2< v < v —1/2, which improves
the corresponding result.

Remark 3Alternative to [1.B), one may consider the inexact Newtgretsnethods
X1 =3 — G (FO0Q)F09) ) F0@)" (F o) —¥°) (2.25)

which can be derived by applying the regularization methefiheéd by{g,} to (.8) with the
current iteratexf(S as an initial guess. Such methods have first been studied blgeHa [5[6]
where the regularization properties of the Levenberg-Mardt algorithm and the Newton-CG
algorithm have been established without giving convergeates when the sequengey} is
chosen adaptively during computation and the discreparingiple is used as a stopping rule.
The general method§ (2]25) have been considered later lieRie [15/16], where{ag} is
determined by a somewhat different adaptive strategyairegub-optimal convergence rates
have been derived wheg — x' satisfies[[T.70) witm < v < 1/2 for some problem-dependent
number 0< n < 1/2, while itis not yet clear if the convergence can be esthbtisinder weaker
source conditions. The convergence analysis of {2.25)lesdd far from complete. The technique
in the present paper does not work for such methods.

Throughout this paper we will usfx} to denote the iterated solutions defined byl(1.3)
corresponding to the noise free case. i.e.

X1 = X0 — G (F'(4)"F' (%)) F' (40" (F (%) =y = F' (%) (= X%0)) .~ (2.26)
We will also use the notations

o =F X)F X, ohoi=Fx)F (), 4=

B:=F OF'MN* Bo=F (x)F (%), %

) (%),
JF/(4)",

i

=
F'(

=
2o Ao
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and

&= X', e :=x —x.

For ease of exposition, we will usgto denote a generic constant depending only.onand
¢,i=0,---,8, we will also use the conventioh < ¥ to mean thatP < CY¥ for some generic
constantC. Moreover, when we saly||u|| (or (Ko + K1+ K2)]|eg|]) is sufficiently small we will
mean that ||u|| < n (or (Ko + K1+ K2)||eo|| < n) for some small positive constantdepending
only onr, T andc;,i=0,---,8.

3 Proof of Theorem[1

In this section we will give the proof of Theordrh 1. The maisadbehind the proof consists of
the following steps:

e Show the method defined Hy (1..3) abd{1.7) is well-defined.

» Establish the stability estimatpq — x|l < /1/0k. This enables us to writgef || <
€Il + 8/ /Ty

e Establishay,; > Cy(8/ w||)%**2") under the source condition (1]10) fof2A< v < v —
1/2. This is an easy step although it requires nontrivial argpis

o Show||ey,|| < Cy [|w||¥/1+2V)52V/(1+2) 'which is the hard part in the whole proof. In order

to achieve this, we pick an integley such thaks < k; andai; ~ (8/|w]|)?/+2v). Suchk will
be proved to exist. Then we connélei, || and||g || by establishing the inequality

1
[T,
The right hand side can be easily estimated by the desireddbou

o In order to establisi (31 1), we need to establish the praknyi convergence rate estimate
&2, 11 < [[ull*/28%/% whenxo —x' = F'(x")*u for someu € 4" (F'(x")*)= C Y.

1exsll < Nl Il + (IF (%) =¥l +0). (3.1)

Therefore, in order to complete the proof of Theofém 1, wedrteeestablish various esti-
mates.

3.1 A first result on convergence rates

In this subsection we will derive the convergence g || < [|u[|*/25%? under the source
condition
xo— X =F'(x")*u, ue ./ (F'(x")")* (3.2)

To this end, we introducles to be the first integer such that

5 ~

o < —— < O, 0 <k<Kks, (3.3)
K= yollull

whereyp is a number satisfyingy > cor /(T — 1), andcy is the constant from Assumptian 1 (a).

Because of[(1]4), sudky is well-defined.

Theorem 4 Let{gq} and{ay} satisfy Assumptidd 1(a), Assumption 2, (2.12) (1.4))etn
F satisfy [Z.8),[[Z19) and Assumptiah 3 with> 4o — X'||. Let{x®} be defined by{113) and let
ks be determined by the discrepancy princigle1.7) witk 1. If xo — x satisfies[[312) and if
L|lul| is sufficiently small, then
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(i) Forall 0< k < ks there hold

124 1/2

X €Bp(xX') and [|&f]| < 2(cz+Cap)r [Ju (3.4)

(i) ks < ks, i.e. the discrepancy principlE(1.7) is well-defined.
(iiiy There exists a generic constant€0 such that

eIl < Clul|*/25%/2.

Proof We first prove (i). Note thap > 4|xo — x'[|, it follows from (3.2) and[(219) thaf(3.4)
is trivial for k = 0. Now for any fixed integer & | < ks, we assume thaf (3.4) is true for all
0<k< . It follows from the definition[(TI3) of 2 } that

o1 = (H0)e0— Ga (A)F (€)" (FO) —¥° ~F' (el ). (35)
Using [3.2), Assumptionl 3, Assumptibh 1(&), (2.1) dndl(W@)obtain
68, 1ll < [Ira (A)F'( 5)*U|\+Ilrak(%‘5)[ ") —F' o) ul
+cat IR Q) — ¥’ F ()|

1/2

-1/2 -1/2
Sh ||u||+L|\u|\|\eKH+§c4LHeK||2ak Pt cader Y

Note thatéalzl < yol|u|| for 0 < k < k5. Note also thaty, < ray, 1 by (T.2). Therefore, by using
(3:4) withk =1 — 1, we obtain

2
4] CH
1661 < 122 | (ca cay)ul + Lju 192 4 Lo (19

Va2 Vai-1
< 2(03+C4V0)r1/20|1/2||u||
if L|ju|| is so small that
2(r1/2+ (c3+c4yo)c4r) Lfjul| < 1. (3.6)
By using [3.5),[(Z.11), Assumptidd 3, (1.2), Assumption 1@)4) withk =1 — 1 and [3.6), we

also obtain
16811 < ey 2 (4% ool +caday Y2+ Scal ey 2 2
< lleo]l + cayp’*|Iull/28Y2 + (c3 + cayo)car 2L ull ey |
< lleol + cay} *ul[ #2842+ Zp
Therefore, by using > 4||e||, we have

3
el < Zp+cay”ul 52 < p

if &> 0 is small enough. Thu§(3.4) is also true forlat |. As| < ks has been arbitrary, we
have completed the proof of (i). . .
Next we prove (ii) by showing thdds < ks. From [3.5) and(3]2) we have forOk < ks that

F )l =P +y = F 0€)ra (o47) [F @) + (F/(X) = F/()") | u
+ [F/O) = F )] ra(42) [F0Q) + (F10)* = F )" ) u
- [Feh -Fog >}gak< OF )" [FOR) —y° — F (et |
- 0 ()5 [
—ra (B ~Y).
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By using Assumptiofil3, Assumptidh 1(d). (2.1}, {1.2) dndl\3and noting thad/ax < yol|u]|,
we obtain

1/2
IF/ ("), 1 — 2 + il < & +coak|ul] + 2caL||u] oy %@ + L2 ull e 1>

el legllda M2+ Je a2 e+ SLel?
< 3+ (Co+ &1) ak|lull,
where
&zPW%%+me%+mm+ﬂ%+mm%“WH
+4 [(Cg +Ca¥0)?r + (C3+ c4y0)3c4r3/2} L2|[ul|?.
From [1.2),[(3.2) and(219) we hay&’(x")ep —y° +y|| < &+ ||«7ul| < & + coap||u||. Thus, by

using [1.4),
IF'(x")eR —y? +yll < 8+ (co+er) allull, O<k<Kks.

Consequently

HF(X%) -¥|I < HF’(XT)% -Y+yl+ IIF(X%) -y- F'(XT)(%II
152
S6+r(00+81)%|\u|\+§L||eR6|\
< 3+1 (Co+ &1+ 2(c3+Cay)?rL|ul]) o, |u]

< &+ (Go+ &1+ 2(Ca+ Cayo)rLu) yp 1
<71d

if L|ju|| is so small that

T—1)yw—Cor
61+ 2(0+ )L ul < L2

By the definition ofky, it follows thatks < Ré.
Finally we are in a position to derive the convergence ratéiiin If ks = 0, then, by the
definition ofks, we have||F (xo) — y°| < 16. This together with Assumptidd 3 arfld (IL.2) gives

1
IF’ (<M eoll < [IF (x0) —y— F'(x")eoll + [[F (x0) — I < §L|\90||2+ (T+1)o.
Thus, by using[(3]2), we have
lleoll = (eo, F'(x")*u)™? = (F'(x")eo, u)™/? < [|F" (X" )eo|| /2 ]| /2

1
</ sLlulllleol + VT + 1)u)l¥/25%2.

By assuming thait||u]| < 1, we obtainj|ef || = [leo]| < [|ul|*/25"/2.
Therefore we will assumk; > 0 in the following argument. It follows froni(3.5).(2.1),
Assumptiori B and (314) that forQ k < ks

- 1 _
el < lIra (Aol +cadey 2+ Seal e a2

< |Ira (<40l + ca(yol|ul|8)*/? + (c3 + Cavo)car 2L ull 6. 3.7)
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By (3.2), [2.12) in Assumptionl4, and Assumptidn 3 we have

P e (4)e0 — Ty ()0l = [[[Fay (4O) — Ve ()F (XT)*u
< csl|ull[F"(x¢) — F'(x")|
< celL[lul[€]l- (3.8)

Thus
el < lIra, (el +calvol|ul|8)/2+ (co+ (ca+cayo)car/2) Lijul e
< ray( ool -+ calol 82+ (3.9)
if we assume further that

4cs (c6+ (C3+c4y@)c4r1/2) Lfuf <1 (3.10)

Note that[[2.B) and the choice B§ imply ||rq,(<)eo|| > 3||eo||. Thus, with the help of(2]7), by
induction we can conclude fron (3.9) that

[CHES Csl\fak( )eol| +Clull?8"2, 0 <k <ks.
This together with[(3]8) an@ (3.1.0) implies
&R < 2¢5]ra (40)e0ll +Cl|ul| 252, 0 <k <ks. (3.11)
The combination of (3]7)[(3.11) arld (3110) gives
3 o
6 1ll < 5 lIra (A)eol| +Cllul[*/25Y2, 0 <k <ks. (3.12)

We need to estimatgr o, (4 )eo||. By 3.2), Assumptiofil1(a) and Assumption 3 we have

Ira(42)eol2 = (ra (42 )eo. ra (A0 (<) u)
= (ra(ei®)e0.ra (A0) [F'0Q) + (F/6) = F'0€)) | u)
< IF'O&)ray () olllull + Lilul el I (4 )eol .

Thus
e (4 )eoll < IIF" () ay (4ol /2| ul] ¥+ L ull [ €R]]-
With the help of[[3.5),[(1]2), Assumptidh 1(a) and Assumpiiove have

IF'OQ)ra, (A0)e0ll < IF'(R)el, ] + l0a (#2) 7 (F0€) —y° —F el |
< IFO,0) Yl + 28+ [F O, 0) —y - F(kaefﬂn
I OE2) — F Q)16 all + IF Q) —y—F 0E)ef |

<[IF(xR4) — Y2l + 20+ LII@SHZHLII@KHHZ-
Therefore
Ira (A)eoll < [[UllY2[IF (%, 1) — YO IM2 + V2| [ul[Y26%2 + /2L [ul] | &, 4|

+ (Llul + /2T 16l
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Combining this with[(3.111) and (3.1.2) yields
Ira (4)eoll < [ullYZ|F (€, 1) — V2|2 + ClJul| /5™
1
+5 [ (3v2+des) VIl + dost|ull | ey (A2)eol

Thus, if
(3\/§+405) VUl + 4esLjuf| < 1,

we then obtain
Ira (24)e0ll S [IUllY2)IF (xR, 1) — Y2 IY/2 + [Jul| /28" 2,

This together with[(3.12) gives
61l < Null*/2[IF (4) = yo Il 2+ u| Y252

for all 0 < k < k5. Consequently, we may set= k5 in the above inequality and use the definition
of ks to obtain||e? || < |u["/25"2. O

3.2 Stability estimates

In this subsection we will consider the stability of the nmeth{1.3) by deriving some useful
estimates offx? — x|, where{x} is defined by[[Z.26). It is easy to see that

i1 = Ny (Fk)€0 — Gay () F' (%)™ (F () —y — F' (X)) - (3.13)

We will prove some important estimates i} in Lemmd3 in the next subsection. In particular,
we will show that, under the conditions in Theorgm 4,

x€By(x")  and & <2car2a?||u] (3.14)
for all k > O providedL ||u| is sufficiently small.

Lemma 2 Let all the conditions in Theorefl 4 and Assumpfibn 4 hold ||l|Lis sufficiently
small, then for all0 < k < ks there hold

5
6— —_—
(1% ><k||§2c4\/01_k (3.15)
and
IFC) = F(x) =Y +y| < (1+&)3, (3.16)
where

£ 1= 2C4 ((ce +rCa¥b) + (4c3 + 3cayo)r? + 4(ca + c4yo)r) L ull
+ 4¢3, (cer1/2+ (Ca+ ce)c3r) L2[|ul).
Proof For each < k < ks we set
Uc=F () —y—F(%)ae W i=F0g)—y—F(¢)e. (3.17)
It then follows from [3.5) and (3.13) that

X 1~ Xir1 =1+l + I3+ la, (3.18)
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where
I = [rakwf) - rak@sz)} &,
I2 := ga, "Z{k ) (¥° —y),
ls = |gay (AF (xk> — Ga (A0 ()" | uk
la = G (A )F' )" (U — U).
By using [3:2),[(2.11)[(2.12), Assumptibh 3 ahd (3.14) weeha
1l < e (48) = ra (A | IF/(<F)* = F' () |
+llra (4) — Y (FA)IF () Ul
< coL | ull el 1% — el 2+ GoL fjul] € —
< 06 (Lllull +2car™2L2)1ull?) %€ =l
With the help of [Z.11) and (11 2) we have

2]l <ca

T
By applying Assumptiohll(a)_(2.114), Assumpt[dn 3 and (Bvid can estimatk; as
1311 < 119 (<) [F" )" — F” (%) *Juil | + 1| G () — Gen (4N F () * i
< (ca+ o)L | ull [ —xllag * < :—Zl(cl+ce)L2||a<H2HxE—kaa[l
< 2(c1+ o) L2 ull?Ixg — ]
For the termly, we have from[(Z]1) that

]l < —==lug — u-

\/_
By using Assumptiofl3[(3]4) and (3]114) one can see
[luk— Ul < 1IF O6) — F (%) — F' (6 O — )l + (| [F' () — F (x|
< UG 2+ Lledl 5§ — el < 5L (31611 + el ) 106~
< (4cz + 3cayo) 2oL ull||xC — - (3.19)

Therefore
1]l < (4os + 3cay) car 2Ll ¢ — X
Thus, ifL||ul| is so small that

1
(c6+ (4c3+304y0)c4r1/2) Liul|+2 (c3c6r1/2+c§(c1+C6)r) L?||ul|® < >

then the combination of the above estimate$;01p, I3 andl, gives for 0< k < Ré that

1
[Xiep1 =Xl < Co—a + 20 .

Jax | 2

This implies [3.1b) immediately.
Next we prove[(3.16). We have froln (3118) that

F/() (41— Xir1) =Y +Y=F'(x) (l1+ 12+ 13+ 12) —y° +. (3.20)
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From (3.2),[(2.1R) [(2.13), Assumptibh B, (3.14) and (Biffllows that

IF O]l < [IF' () ey (940) — Ty ()] [F' (X")™ = F (%) ul
+IIF Q) [r e () = Py (A)IF ()|
1/2

< ceL[|ull e 1% — x| + caL || ull 1% — ]|
< (2c4ceL|\uH +4c3c4c6r1/2L2||u||2) 3.
By using Assumptiofl1(a) and (1.2) it is easy to see
IF' 012 =Y +YIl = [|ra (Z0) (Y - )|l < &. (3.21)

In order to estimat&’(x?)ls, we note that
F/ ()13 = F/(XE)—F/(Xk)} Gon () F' (%) i+ [fak(%f) — oy (Zi) | Ui (3.22)
Thus, it follows from[[2.1L), Assumptidd 3, (2J11]), (31 14)§8.15) that
IF O@)1all < I [F/08) = (%) | g () (4" ue
+ | [rai(80) = ra (0| ud
ca+Co)ay 2LIx¢ — i lu

(
1 ~1/2
5(Ca+co)a ALl 2 —x

<
<
< 4(ca+ Co)C5CarL?||ul|?S.
For the tern’(x2)14 we have from Assumptidd 1(a). (3]119) and(3.15) that
IF"()1all < [lue— UR ]l < 2(4cs + 3cayo)car 2L |ul|S.
Combining the above estimates, we therefore obtain
IF' (@) ()1 —Xir1) — Y2+l < (1+€3)8, 0<k<ks,

where

£3:=2C4 (ce + (4c3+ 3c4y0)r1/2) L||ul| + 4csca (cer1/2+ (Ca+ ce)cgr) L2||ul2.
This together with Assumptidd 3.(3.4), (3115) ahd1.4) liepfor 0< k < ks that

HF/(XEH)(XEH — Xk 1) — y° +Y|l
<IF Q) (41— Xicrn) — YO + YU+ LIXC g =X [1X0 1 — X1l

o
<@ S+ 2c4L (|| o
<(1+€3)0+2c4 (|\Q<+1H+||Q<|D\/m
< (1+¢&4)0,
where
&4 := &3+ 8(C3+ Cayp)CarL||u]|.
Thus

IN
A
IN
&

IF'(Q)0% —%) —y°+yl < (1+e2)8, 0
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Therefore, noting thad/ay < rys||ul| for 0 < k < ks, we have

IF () — F (x0) —Y° + Yl < [IF () = F (%) — F'(6) 0 =)
+IIF () (% — %) =¥+

1
< SLIKE —%d®+ (1+20)5
< 2c§L£6+ (1+€4)0

Qg
< (14 &4+ 2rczyol|ul])d.

The proof of [3.1B) is thus complete. O

3.3 Some estimates on noise-free iterations

Lemma 3 Let all the conditions in Theorelm 4 be fulfilled. IfW| is sufficiently small, then for
all k > 0we have

% €By(x") and [l& < 2car2a?|ul. (3.23)
If, in addition, Assumptionl 1(b) is satisfied, then

2 4
lIray ()0l < lle] < 5oslra (el (3.29)

and
1
s llal < lleal < 2llal (3.25)
5

Proof By using [3.2),[(Z11)[(2.12) and Assumptidn 3, we have fiBm3) that

61 a (o )eol < [t (4) — (I () ul +—ZF 0 —y O

C
*Lled. (3.26)

2,/0k
Since [2.11) and (312) implyfr ¢, (<7 )ep]| < 03ak1/2||u||, we have
Caq

2./0

Note that[[3:2) and (219) implyep|| < c3aé/2|\u|\. By induction one can conclude the assertion
B.23) ifL||u| is so small that @er /2 + cacar)L||ul| < 1.
If we assume further that

< el |ullflex| +

1/2
lexsa]l < caay[lull + coL[|ull[lexl] + 5—==L||ex]|-

5cs (ce+03c4r1/2) Lijul| <1, (3.27)
the combination 0f(3.26) anf (3123) gives
1/2 1
1= ray (@)ool < o5+ cacar™?) Lulfe] < gl (3.28)
Note that Assumptiohl1(b) anm < ay_1 imply ||rq, («)eo|| < ||fa, ,(<7)e||. Note also that

Assumptiorill(a) and (2.9) impli (3124) wik= 0. Thus, from[(3.28) and (2.7) we can conclude
(3:22) by an induction argumeni._(3]25) is an immediate equence of(3.28) and (3124). O
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Lemma 4 Let all the conditions in Lemnid 2 and Assumpfibn 1(c) hol&s & 0 and Ljul| is
sufficiently small, then for all k ks we have

e < |eK||+¢ia_k (IF (4) — vl + ). (3.29)

Proof It follows from (3.13) that
Xeg — %= [T () ~ Ty ()]€0+ [Fay_y (Fheg—1) — Ty, ()]en
- [rakfl("ykfl) - rakfl(d)] €
— a1 (s -1)F (s-1)" [F (Xig—1) =Y — F' (Xigs 1) 6151
+ a1 (F1)F (%e1)" [F(Xie1) =y = F'(X-1)eca] - (3.30)
Thus, by using(3]12)[[(2.12), Assumptioh B, (2.1}, (8.23) 27), we have
P =5 < W 61) vl + bl s + -1

+2¢%LH%4H2 J_
< lFag () — T 1 (ool + 5 (HeK I+ e 1) (3.31)

Sincek > ks, we haveny_1 < ay;_1. Since Assumption] 1(b) and (c) hold, we may apply Lemma
M with x = €y, X= &, @ = Ok_1, B = Ax;—1 andA = F’(x") to obtain

lrang 1 () = Yayy ()]€0]| < [V, s () €0 — &, [l + IF (") e I

C2
vV 0k-1
Note that[(3.2B) implies

s — T, 1 ()60l < = lleg1]l

= Bcs
Note also that Assumptidn 3 implies
1
IF" (X" )exs | < IF (x;) = VI +§LH%H2-

Thus

I[F a2 () =Ty ()]eoll < —yll+Lleg?).

C
H% all+ Nen (IIF (x5 )

~ 5cs
Since Lemmal2, Theorelm 4 and the flagt< ks imply
o
< ||le® < 1/251/2

H%IINH%IHMNIIUII 57,

we have
C

||Q<5 1H+—(H (%) =Yl +L[ul[5).

= 5 Ja
Combining this with[[3.31) and using Lemina 3 gives

a1 () = Tay ()]€0]| <

4 C
5 =%l < gllesll +Clled + T (IF (%) — ¥l + ).

This completes the proof. |
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3.4 Completion of proof of Theorem[d

Lemma 5 Assume that all the conditions in Lemfja 3 are satisfied. Then
IF/ Ol S lIra ()7 ?eol] + i % ra (ol (3.32)
forallk > 0.
Proof We first use[(3.113) to write
F'(Mecss = F/ (X ra () €0+ F' (x1) [ra (o) — o (/)] €0
F' (") (AF' (%) [F () —y — F'(x)e] - (3.33)
Thus, it follows from[[3.2), Assumptidd 3, Assumptidn 1(@.12), (2.18),[(3.23) and (3.P4) that
IF" (M exra | S IF (XN ray (7 )eo| + Ll el [Fay () — Fa (0)]F' (X" u]
+ IF (e () — T ()P (<) "ull + (1+ L e e )L el
S Ira (o) e + L2 ul || + e L ul | x| + L e
S lIra () ?eol| + a ?lIra (ol
This together with[(2]7) an@(1.4) implids(332). m|

Lemma 6 Under the conditions in Lemnid 2 and Lemima 3;,iK (1 — 1)/2 then for the k
determined by[{1]7) with > 1 we have

(1 =28 5 ra () ?eol| + o ? 1y (o (3.34)
forall 0 <k < ks,
Proof By using [3.16), Lemm3 and Leml’ﬁ]a 5, we have fef B < k5 that
18 < [FOR) =Yl < F(R) = F (%) =Y + Yl + [IF (%) -y
< (1+e2)d+|IF' (xX"el| + —L||a<H2

< (14 £)8 +C||rg, () 20| + Cap?||r o ()0 -

Sincet > 1, by the smallness conditiaa < (T —1)/2 onL||u|| we obtain[3.34). ad
Proof of Theorerilllf k5 = 0, then the definition oks implies||F (xo) — y°|| < T8. From The-
orem3 we know thaffey|| < ||u||1/251/2 Thus

IF'(x")eo]l < [[F (x0) —y—F'(x")eo|| +[|IF (x0) = y°|| +&

1
<sSteof?+(1+1)8 58
Sinceey = 7V w for some ¥2 < v <v —1/2, we may use the interpolation inequality to obtain
e 11 = lleoll = [l ]| < [l ¥/ 2.7/ o2/ 32Y)
_ ”w”l/ (1+2v) H ( T)eOHZV/(lJer)
< ”w”l/ (1+2v) 52\// 1+2v)
which gives the desired estimate.
Therefore, we may assume thgt> 0 in the remaining argument. By usieg = <" w for
some ¥2<v < v—1/2 and Lemm&l6 it follows that there exists a positive constansuch

that
(1-1d<Coay 2], 0<k<ks.
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Now we define the integdss by

(T _ 1)5 2/(1+2V> _
< | =——= 0<k<Kks.
%< (e S TEEER

Thenks < ks. Thus, by using Lemnid 2 and Lemfra 4, we have
F -y|+9o o
IF (i) — Wl +8

o
eI S el + ——= < e | +

Note that Lemm&l2 and the definitionkg imply
IF () = Y1l < [IF (05) = Y2l +IF O4;) — F (%) =y +YII S &.

This together with[{3.24%s < ks andHrak(;z%)eoH < ai‘(’||w|| then gives

o
e, 11 < o |l +—— S o el + : (3.35)
ﬁ o, Oies Tka
Using the definition oks; and [1.2), we therefore complete the proof. a

4 Proof of Theorem[2

In this section we will give the proof of Theordrh 2. The esegidea is similar as in the proof of
Theoreni L. Thus we need to establish similar results as theexkin Section 3. However, since
we do not have source representatign= F'(x")*u any longer and sincE satisfies different
conditions, we must modify the arguments carefully. We inillicate the essential steps without
spelling out all the necessary smallness conditiond®@nr- K; + Ky) ||eo]|. We first introduce the
integerns by

5 2
On, < | ——— | <a, 0<k<ns. 4.1
v (sar) < ’ @

Recall thaty; is a constant satisfying > car'/2/(t —1).

Proof of Theorerhl2In order to complete the proof of Theoréin 2, we need to astalbrious
estimates. We will divide the arguments into several steps.
Step 1 We will show that for all 0< k < ng

X2 e Bo(x), [l€dll < lleoll, (4.2)

IF ol < ool (43)
and thatks < ng for the integek;s defined by the discrepancy principle(1.7) with- 1.

To see this, we note that, for any0k < ns with x2 € B, (x), (38) and Assumptidd 5 imply
1
o1 = ra (Ao~ / 0ay (42) 42 (ROE — tef x¢) — 1) el
+gak % y(S y
Therefore, with the help of Assumptiéh 1(a) ahd]2.1), weehav

1/2

1 _ 1
162,41l < Il o]l + §Ko||€f||2+045ak < (1+cayr)lleoll + §Ko||€f<5||2-

Thus, if 21+ cay1)Kol|eo|| < 1, then, by using > 2(1+ ca¥1)||€o|| @and an induction argument,
we can concludéel|| < 2(1+ cay1)||eo|| < p for all 0 < k < ng. This establishe§(4.2).
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Next we show[(413). It follows fron{(3]5), Assumptibh 1(dl.4), [Z.I9) and(4]1) that for
0<k<n;g

IF/OR)ed, 1l S o ®leoll + 8+ [ F () —y— F (e |
< a/fleol| + (Ko + Ko) €] |F' ()€l .
By Assumptiori b we have
ITF (<) = F/ O]k, all < Kall &R IIIF (X )R, 4| + KalleR, 4 1 [IF (X )e]l-
The above two inequalities arld (4.2) then imply

IF' ("€, 11 S an’?|leoll + Kalleo||[[F' (x)el, 1 | + (Ke + K2)[leollIF/(x)el].

Thus, if (K1 +K2)||eo|| is sufficiently small, we can conclude (#.3) by an inductioguanent. As
direct consequences ¢f (#.4), (4.3) and Assumpiion 6 we have

IF')ell| < opg/?lleo]l, 0<k<ns (4.4)
and U
IF' (€, 1) 01— x0) < ot ?leo]|, O <k<ns. (4.5)
In order to shovkz < ng, we note that{(3]5) gives
F/O)ef s =Y +y=F/(¢)ra (4o + (F'(x) — F'() ) ra(4)eo
— (F'0") = F'0) ) g () (x >( 00) -y ~F'(R)ef)

— 00 (#0) 5 (FOQ) -y —F ()& ) ~ra(#0) (6 —).
Thus, by using{1]2), Assumptidh 1(d), (2.1), Assumdiiof2&L8), (4.2),[(4.4) and (1.4) we have
forO<k<ng

1/2 1/2

IF'(<)ed, 1 —Y° + Yl < 3+ cay ||eo||+CsK1||eo||||61<||a +Kalleo [|F'(40) e |

+K1||eK||( 2 Ka+ ) 14 >eK|)
+eea IR ORI (5+ 30+ kIR 0D

1
+ 5 (Ka+ Ko) &I (<) |
< 5+ (C3+C(Ki+Ko)leol) @ 1/2||60H

< 5+1Y2(c3+C(Ky + Ky)|leol|) C‘k 2lleoll-

Recall thaty; > car'/2/(t — 1). Thus, with the help of{4]12)[{4.3) and the definitionngf one
can see that, ifKy + Kz) |leo]| is sufficiently small, then

IF(x5,) = Y2l < IFORy) —y—F'(x)ed Il + [IF'(x)eh, —y° +I

< 6+r1/2<c3+c<K1+Kz)HeoH)a%;ZHeon

1
+5 (Kot Ka)|len, |IIF'(x")ed, |
1/2

< 8 +12(c3+C(Ky+ Kp)|leol|) oy eol|
< 3+1Y2(c3+C(Ky +Ko)|leol|) v 1
<T1d.
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This impliesks < ns.
Step 2 We will show, for the noise-free iterated solutiopg}, that for allk > 0

[ray ()eoll S llexll < (7 ey (o )eoll, (4.6)
el S lleall < llell (4.7)
and for all 0< k < |
1
S + —||F (%) —YI|- 4.8
el < llel \/aH (%) = VIl (4.8)

In fact, from [3.18) and Assumptidi 5 it is easy to see that

i1~ Fa( ool < 3Kl (4.9)
If 2Ko||en|| < 1, then by induction we can see tHak} is well-defined and
lex]] < 2|eo]| forallk > 0. (4.10)
This together with[(419) an@(2.R0) gives
les1— ra ()0l S lllFay () — ay (7)]eol| + Kollel|? < Kolleoll el (4.11)

Thus, by Assumptiohl2 and the smallnesKegfley|| we obtain [[4.5) by induction[{4.7) is an
immediate consequence 6f(4.11) and]|(4.6).

In order to show{(418), we first consider the clse 0. Note thaixy — X has a similar expres-
sion as in[(3.30), so we may u$e (2.20), Assumgtion 5 [and)(4oldbtain

%=X S [l ()€ — Fay_y () ol| + Kol €ol| (Il €1 + l|& -]}
+Koll&-1/1% +Koll@-1]|?
S ra s (7)) = Yoy, ()] o]l + Kol ol | (|| &1l + @) (4.12)

By Lemma[1 withx = ey, X= &, a = a_1, B = ax_1 andA = F’(x"), we have

Ilras () = Tay_y ()]€0ll S [[Fany (7 )€0 — &l + IF (<"

1
Vai-1
With the help of [2.18)[{4.10), and the smallnesskf + K)||ey||, we have

1
IF"(<M)ex]l < IF () = Il + §||F/(XT)Q<||~ (4.13)
Thereforgl|F’(x")ex|| < 2||F () — y||. This together with[(4.11) anf(4.7) then implies

Iy () = oy ()] €0l| < Kol|€ol || &l + \/ia—llF(Xk) =Yl

Combining this with[(4.12) gives
1
_ < R _
=11 < Kolleollle + el + == IF (%) -yl

which implies [4.8) ifKo|| || is sufficiently small.

For the casé& = 0, we can assumle> 1. Since[(4.B) is valid fok = 1, we may us€ (417) to
conclude thaf{4]8) is also true fke= 0.

Step 3We will show for allk > 0 that

IF' (x| < lIrae ()7 e0]| + o ?||F e (7 )eol]. (4.14)
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To this end, first we may use the similar manner in deriviin@)(o conclude

IF'(<")el| < o lleol] (4.15)
Note that Assumptio]6 and (4]10) imply
IIF" (") — F' (0| < (Ka+Ka) [ex][[|F"(x")ex|
< (K14 Ka)|leol [[F' (X )ex]|-
Therefore
IF (el < IIF" (el (4.16)
In particular this implies
IF' e S ai?leoll (4.17)
By using [3.38),[(Z2.21), Assumptidnh €, (2118) and Assunmgiiita) we obtain

1/2
IF (Macrall S 7 ()7 20| + (Ko+ Ka) ol el

+Kalea]| (IF" (X" )exl + [IF () ex])
+ (Ka 4+ Ka) el [ F () el + Ka (K + Ka) | 2| (%)
+Ka(Kq + Ko) [l el | F’ () x| 2t 2.

Thus, with the help of(416)_(4.15), (4]16), (4.17) ahd 0}, ve obtain
IF' el S Ira ()Y 2eol + o[y (7 )eol| + Kool | F' (X e

The estimated (4.14) thus follows by Assumptidn 2 and andtido argument ifKy||ep]| is
sufficiently small.

Step 4 Now we will establish some stability estimates. We will ghfor all 0 < k < ng that

1% =%l < (4.18)

\/_

and
IF(x0) = F(x) =Y+l < (1+C(Ko+ K1+ Kp) || eo]|) 8. (4.19)

In order to show[(4.18), we use again the decomposELEI(SOIS!({f+1 — Xy 1- We still have
|12]] < cad/+/Ak. By using [2.2D) the terrh, can be estimated as

1]l < Kolleof 1% — X

In order to estimatés, we note that Assumptidd 5 implies
l3= /01 [gak(xsz)xsz— gak(;sz‘s)g{kﬂ (RO — te, X) — 1] &t
+./0'19ak(%5)p(x5)* [F’(XE) - F’(xk)} RO — e, X) — 1] adt
= /01 [rak(%(s) - fak(ﬂfk)} (RO — te, x) — ] et
+ /0 ' oy (A) [l - R(xk,xg)} [R( — te, %) — 1] &dlt.

Thus, by using[(2.20) anf(4.]10), we obtain

1)l < K&l —xll < K& lleoll % — -
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In order to estimatéy, we again use Assumptidh 5 to write
la = Ga (FA)F ()" [F (%) — FOE) = F () 0~ )|
+ Ga(FA)F 06)" [F/0€) — F'(x0)] e
= [ G a2 [ROG 100 8) 1] G5
+ G (A) A || = RO E) | e
Hence, we may us€ (4.2) and (4.10) to derive that

1l S Kollx® —il1? + Kol lexl| 1 — |l < Kolleoll 1 —xdll-

Combining the above estimates we obtain fat R < ng

[RAPES RS \/—+Ko|\eo||||Xk Xl

Thus, ifKgl/e|| is sufficiently small, we can obtaif (4]118) immediately.
Next we show[(Z:19) by using(3.120). We still hae (3.21). tdes to estimateélF’(x2)14,

[F/(x2)13]| and||F’(x2)l4||, we note that Assumptidn 6. (4110), (4.15) and (¥.18) imply
ITF' (%) — F' (<] (0@ — %) |
< Kalal [F' (") (0 — %) [l + KallF" (X e[ —
< Kaleof [IF (<) (4 — %) [l + K2l o] 8,

which in turn gives

IF" (%) 0% = %Il S IIF" (M) O = %) + &. (4.20)
Similarly, we have

IF" ) (% = x| < IF' (X (0 =) | + 8. (4.21)

Thus, by using(2.21)[(4.18], (4]20) and (4.21) we have
IF/ (@)1l S (Ko-+ Ka) leoll et 2% —
+ Kl eoll (IIF'0) 0 =011+ IF' (%) 0 — %))
< (Ko+ K1 +Ka)|leol| 8+ Kal ol | F(x") (¢ —x0)]|-
Moreover, by employind (3.22)_(2.20), Assumptidn[6, (2,18.10), [4.1V),[(4.18) and (4.R0),

|IF'(x2)13]| can be estimated as

IF 03] < (Ko+ Ka) [ — il U] + o ™ KallF” (%60) 0 — ) ||| i
< (Ko+Ki + Ka) (K1 + Kp)[|eo||?5

+Ka (K1 + Ka) o] |?IF(x") 0 = %)
while, by using Assumption] 6{ (218, (%.2). (4. 10). {4 @.I8), [£2D) and{Z21)F’(x0)l4]|

can be estimated as
IF (x)1all < IF ) = F (%) — F' () (% — %)l + [I[F'(x) — F ()]
< (K +Ka) 1% = Xll1IF (%) 04 — %) |
+Ke X =4l IF' )l | + Kl F'(x¢) (¢ — x| | &€
< (Ky +Ko)|leo]| 8+ (Ko + Ka)[eal[IF(X") (% — %) -
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Combining the above estimates we get
IF"0) (0%, — X1 1) = Y2+
< (1+C(Ko+ K1+ Kz)leo] )8 +C(Ky +Ka) [ eol|[IF"(x") (04 — ). (4.22)
This in particular implies
IF" () 01 =X )| S 8+ (Ka+Ka) [leol|[F(X") 0 =)

On the other hand, similar to the derivation [of (4.20), by Wsption[®, [4.2),[(414) and (4.118)
we have for O< k < ng that

IF (<) (41 =Xt | S Kalleoll &+ [[F(}) ()41 — X 1).

Therefore
IF" (") (41 = X )l S 8+ (K +Ka) ol IF(x) (06 — %) -
Thus, if (K1 + K3)||eo|| is small enough, then we can conclude

IFONR =% S8,  0<k<ns (4.23)

Combining this with[(4.22) gives for & k < ns
IF" ) (41 = Xkr2) = Y2+l < (14 C(Ko+Ki + Ka) | eol|) &. (4.24)
Hence, by usind({4.24), Assumptibh B, (4.2), {4.E), (1.1821) and[(4.23), we obtain forQ

k <ng
IF () (4 — %) —Y°+ Y| < (14 C(Ko+Ki +Ky)|eo]|) 3.
This together with[(2.18)[[(4.2) and (4]110) implies (4.19).
Step 5Now we are ready to complete the proof. By using the defimitibks, (4.19), (2.18)
and [4.1#) we have for € k < k5

8 < [IF(Q) =2l < [F ) — F (%) — Y2+l + [F (%) —
< (1+C(Ko+ K1+ Ka)||eo] )5+ CJ| F' (x|
< (1+C(Ko+ K1 + Ko)||€o]]) 8 + Cl|ra ()7 €| + Cat?ra (7 )&

Sincet > 1, by assumingKop + Ki + Kz)||&]| is small enough, we can conclude fork < K
that
_ < 1/2 1/2
(1-1)0 < Ira (&)« “eo|| + o “||ray (7)o (4.25)

Whenxo — x satisfies[(1.710) for some € X and 0< v < v —1/2, by using[(4.25)[(4]8),
(4.8), [4.18),[(4.19) and the definition kf, we can employ the similar argument as in the last
part of the proof of Theorefd 1 to conclude(2.22).

Whenxo — X' satisfies[{1.111) for som®@ € X andu > 0, we have from Assumptidgd 1(a) and

Z.3) that
ey )/ e+ ag ? ra, (o Jeol| < (coby? +by ) i (~In(a/ (200))) ol
This and[(4.2b) imply that there exists a cons@nt> 0 such that
(1—1)8 < Cua? (—In(a/(200))) * @], 0<k<ks.
If we introduce the integd}5 by

(1-1)0 12

i . )
OIR16/2 (_In(ak(s/(Zao))) §m<ak (—In(a/(2a0)) ", 0<k< ks,
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thenks < ks. Thus, by using[(418)[{4.18)[ (4119), the definitionlgf and the fact|e| <
Ira, (7)ol < (—In(ak/(2a0))) H||w]||, we can use the similar manner in derivifg (3.35) to
get

0 < o

/Gka GR6 ’

By elementary argument we can show frdém{1.4) and the defindf R(; that there is a constant

Cy > 0 such that
c>rtay o o>e | — ) 1+
R AN |

This together with[(4.26) implies the estimdie (2.23). m|

e, < (~In(ag, /(200))) "o + (4.26)

ﬂ

o
In—
[|eol|

5 Proof of Theorem[3

If xo = x', thenks = 0 and the result is trivial. Therefore, we will assurge~ x'. We defineks
to be the first integer such that

1/2
Iray, () el + g ?lIrag, (o] < o,

where the constamt> 0 is chosen so that we may apply Lerima € or (4.25) to condiydeks.
By (1.4), suchks is clearly well-defined and is finite. Moreover, by a contcdidin argument it
is easy to show that

ks > o asd—0. (5.1)

Now, under the conditions of Theordrh 3 (i) we use Leniha 2, LaMmand[(3.24), while
under the conditions of Theorelm 3 (ii) we use (4.1B), (4.18)) and [(4.B), then from the
definition ofks we have

o o
e < el + === < llexsl +

Vg~ ag

L (IF (%) ~ I + )

S lIrag, (el +

< lleg I+

o
/aké'

We therefore need to derive the lower boundx@g‘ under the conditions oey. We set for each
a>0and0< u<v

< (5.2)

1/2

1/2
cu(a) = [/ a Hrg(AM)2PAHA(E 0, 0)|
Jo
where{E, } denotes the spectral family generatedddylt is easy to see for each-Ou < v that
a~2Hrq(A)2A2H is uniformly bounded for alr > 0 andA € [0,1/2] anda~2Hrq(A)2A%* — 0
asa — 0 forall A € (0,1/2]. Sincew € .4 (F'(x"))*, by the dominated convergence theorem

we have foreach & u < v
cu(a) -0 asa —0. (5.3)
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By the definition ofks, (T.4), Assumptiofil2, and the conditieg= <7 w we have
55 ey, , () 0l + gy _ylray,_, (el
< ey, ()7 2e0]| + i I, ()l
S 0’{(:1/2 (CV(%S) + Cv+1/2(aké))

This implies

5 2/(1+2v)
v

ay > . 5.4
ks = (cv(a%>+cvﬂ/z<a%>> 54
Combining [5.2) and (514) gives

311 < (cy(as )+ Coo ol 1/(1+2v) 52v/(1+2v)
&, ks +1/2\is

Since 0< v < v — 1/2, this together with[(5]1) anf{5.3) gives the desired asioh.

6 Applications

In this section we will consider some specific methods defime.3) by presenting several
examples of{gq}. We will verify that those assumptions in Section 2 are fietisfor these
examples.

6.1 Example 1

We first consider the functiogy given by

(a+A)"—a™m

ga()\):W7

(6.1)
wherem > 1 is a fixed integer. This function arises from the iteratdchdnov regularization of
ordermfor linear ill-posed problems. Note that when= 1, the corresponding method defined
by (1.3) is exactly the iteratively regularized Gauss-Newmethod[(118). It is clear that the
residual function corresponding o (b.1) is
am
A)=———.

el = @
By elementary calculations it is easy to see that Assumfiliahand (b) are satisfied witly =
(m—1)™1/mMandc; = m. Moreover[[2.11) is satisfied with

1 2m—1\" m+1\™
= d =(1-(——= vm.
e \/2m—1< 2m ) and ¢ < <m+3) ) m

By using the elementary inequality

1-(1-t)"<v/nt, 0<t<1 (6.2)

for any integen > 0, we have for &< o < 3 andA > 0 that

ta(A) —ra(A) = r5(A) {1— (1-%)? - ml/z\/grﬁ(/\).
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This verifies Assumptiofll 1(c) with, = m%/2. It is well-known that the qualification fag, is
v = mand [2.2) is satisfied witd, = (v/m)"((m—v)/m)™ " < 1 for each 0< v < m. For the
sequencé ay} satisfying [I.#), Assumptidd 2 is satisfied with=r™.

In order to verify Assumptiohl4, we note that

rq(A"A) —rq(B*B)

=qgm Zl(al +A*A) A (B—A) + (B* — A")B|(al +B*B) "™ 1, (6.3)

Thus, by using the estimates
[(al +AA) T (A*AH|| < a™H fori>1and0< pu <1,

we can verify[[2.11) [(2.12) anH(Z2]13) easily.
Note also thaga(A) =a~1s™, a'(a +A)~'. We have, by using(2.12),

192 (A°A) — 9o (B"B)|B7|| < Glilai[(al +A'A) " —(al +B'B) B
Sa t|A-B,

which verifies[(2.14).

Finally we verify Assumptiofil7 by assuming tHatsatisfies Assumptidia 5 and Assumption
6. We will use the abbreviatioR, := F’(x) for x € B, (x"). With the help of [6.B) withA = F,
andB = F,, we obtain from Assumptidf 5 that

Ira(FCF) —ra(RR)

m i .
<oy e+ FeR) RCRIRE) (el + FR)
i=
m i .
™ (@l + R 1~ R R Rl R )
i=

m . . m . .
<qm Za*'”HI —R(zx)|a~™ ¥ 4 g™ zia"HI —R(x,2)[ja™

I
5 ”l - R(Z,X)H + HI - R(XaZ)H
S Kol[x—Z]

which verifies [[2.20). In order to shoW (2]21), we note that,dnya € X andb € Y satisfying
lall = ||bl| = 1, (6:3) implies

(Fxlra(FCFx) —ra(F;"F,)]a b)
m

< am_zla’”ll\(':z' —F)(al +FF) ™ al||bj
i=

m . .
+amzla*mfl/2+'|\<a' —F)(al +FeF) 'Rl all.
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Thus, by using Assumptidd 6, we have
(Klra(FCR) —ra(F"Fy)la b)

m . .
<am ZG"*lKlIIX— Z|IF (a1 +F7F) ™

i=
m i .
+ “m.Z"f'HKZHFz/(X— 2)||||(al + FF)) ™ g

m . .
£ @ G Fi(al + )R]

m ) .
+ Gm_zla’m’l/z“KzllFx’(X— 2)||[|(al + K F)T'RCD|

S Ko x—2| + Kz (IFi(x = 2)| + | Fp(x—2)]]) -

This verifies[[2.211).
The above analysis shows that Theofém 1, Thebdiem 2 and ThEbage applicable for the

method defined by (11.3) and {1.7) witly given by [6.1). Thus we obtain the following result.

Corollary 1 Let F satisfy[(2B) and(219), Idtax} be a sequence of numbers satisfyingl(1.4),
and let{x?} be defined by{113) with,ggiven by [6.1L) for some fixed integer>l. Let ks be
the first integer satisfyind (1.7) with> 1.
(i) If F satisfies Assumptidd 3 and i x x satisfies[[1.110) for som® € X and1/2 < v <
m—1/2, then
”XE(; _ XTH <C, ||w||1/(1+2v)52v/(1+2v)

provided L|u|| < no, where uc .4 (F'(x")*) C Y is the unique element such thatxx" =
F’(x")*u, no > Ois a constant depending only onrand m, and ¢ > Qis a constant depending
only onr,7, mandv.

(ii) Let F satisfy Assumptidil 5 and Assumpfion 6, anddet x' € N(F/(x"))*. Then there
exists a constan; > 0 depending only on i1 and m such that ifKo + Ky + K2) ||x0 — xTH <m
then s .

fms =
moreover, wheng« x' satisfies[(1.10) for som® € X and0 < v < m—1/2, then

”XE(; _ XTH <C, ||w||1/(1+2v)52v/(1+2v)

for some constant,C> 0 depending only on rr, m andv; while when x — x' satisfies[[T.211)
for somew € X andu > 0, then
o —H
In— D
[[of

Corollary[d withm= 1 reproduces those convergence resultslin [3, 8] for thatitely reg-
ularized Gauss-Newton methdd (1.8) together with the dgamncy principle(1]7) under some-
what different conditions off. Note that those results ihl[3, 8] requirebe sufficiently large,
while our result is valid for any > 1. This less restrictive requirement oris important in nu-
merical computations since the absolute error could irser@ath respect ta. Moreover, when
xo — X' satisfies[(1.10) withv = 1/2, Corollary[1 withm= 1 improves the corresponding result
in [3], since we only need the Lipschitz condition Bhhere.

Corollary[d shows that the method defined by}(1.3) (1.%) w4 given by [6.1) is or-
der optimal for 0< v < m—1/2. However, we can not expect better rate of convergence than
0O(6m-1/m)y even ifxo — x' satisfies[[T.10) wittm— 1/2 < v < m. An a posteriori stopping
rule without such saturation has been studied_|n _[9, 10] ier iteratively regularized Gauss-
Newton method(1]8).

1. — X1 < Cullo] <1+

for some constant g£depending only on 1, m andy.
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6.2 Example 2

We consider the functiogy given by
(1/a] i
Ga(A)= > (1-4) (6.4)
2
which arises from the Landweber iteration applying to lindlaposed problems. With such
choice ofgg, the method{1]3) becomes
/ol V! NP 5y B B (D
K== 5 (1-F0Q)F00) F o0 (FOd) - = F 010 )
which is equivalent to the form
Xﬁo = XOa
X1 =X~ F 0 (FOQ) -+ F O —x)) . 0<i<[1/a
XE+1 = Xg,[l/ak]Jrl

This method has been considered in/[12] and is called the diewandweber iteration.
Note that the corresponding residual function is

ra(A) = (1—A)l/a+, (6.5)
It is easy to see that Assumptioh 1(a), (b) dndl(2.1) hold with
1 V2

C():éa

Moreover, by[(6.R) we have for any<Da <  that

rp(A) —ra(A) =rg(A) (1— (1—/\)[1/“1*[1#31) < \/grﬁ(/\).

This verifies Assumptiofil1(c) witle, = 1. It is well-known that the qualification of linear
Landweber iteration ig = « and [2.2) is satisfied witH, = vV for each 0< v < .

In order to verify Assumptioh]2, we restrict the sequefieg} to be of the formoy := 1/ny,
where{ny} is a sequence of positive integers such that

c1 =2, C3= 73 and c;=V2.

0<ng1—nk<g and klimnk =00 (6.6)
—»00

for someq > 1. Then forA € [0,1/2] we have
Fa(A) = (1=A) % 1rg (X)) < 2%, (A).

Thus Assumptiohl2 is also true.
In order to verify Assumptiohl4, we will use some techniquest [7/12] and the following
well-known estimates

I = A A AAY <vV(j+v)™Y, j=20,v=0 (6.7)

for any bounded linear operat@rsatisfying||A|| < 1.
For anya > 0, we sek:=[1/a]. LetAandB be any two bounded linear operators satisfying
[IAll, |IB]| < 1. Then it follows from[(6.F) that

ra(A*A) —rq(B*B) iI—A" [A*(B—A)+ (B*—A)B] (1 —-B*B)*I.  (6.8)
J
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By using [6.7) we have
k
Ira(AA) - ra(BB)| S 3 ((1+1) 2+ (k1-1) ) [A-B
=

1
<VK|A-B|| < —=|A—B|.
VK| ||N\/a|\ I

This verifies[(2.11).
From [6.8) we also hav&[rq (A*A) — r4(B*B)| B* = J1 + Jp, where

k . .
= Z)(l — AAY)AA (B—A)(1 —B*B)< 1B,
=

J = _iA(I —A*A) (B — A") (1 — BB )*1BB".

In order to verify [Z.1B), it suffices to shoji; || < (k+1)~%/2||A— B|| since the estimate ah
is exactly the same. We writg = Jil) + Jéz) , Where
[k/2 _ .
I = Z)(l — AAY)IAA(B—A)(1 — B*B)* 1B,
=
2 a - -
3= S (1-AA)AN(B-A)(I-B'B)IB".
j=k/2+1

With the help of[[6.)7), we can estima]g) as

k
PN S (4D Yk+j-1) Y2A-B|
j=[k/2]+1
k
St D7 (ke 1= ) V2A-BI S (k+ 172 A-B.
J:

In order to estimatéil), we useAA" = — (I — AA") to rewrite it as

k/2 _
Iy = Z)(I AAYI(B—A)(I — B*B)* 1B
j7

k/2]+
Z (I — AA) (B—A)(I — B*B)<t1-IB*
=1
( )( )kB* (l _AA*)[k/Z]Jrl(B_A)(I _ B*B)kf[k/Z]B*
[k/2]

+ Z (I — AKX (B—A)(I —B*B)* /(B*B)B".

Thus, in view of [6.¥), we obtain

13 S(k+1)"Y2|A—B|| + (k— [k/2] + 1) ¥3|A—B|

/2 "
+ 2 (k=j+1) 7 A-B|
A

S(k+1)"Y2|A-B].
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We thus verify[[2.13). The verification df (2]12) can be doindilarly.
Applying the estimatd (2.12), we obtain

k ) .
119 (A"A) — ga(B"B)|B7|| < ZH [(1—A"A) —(1-B"B)!] B"||
J:

1
SKIA-B] S < A-B],

which verifies[(2.14).
Finally we verify Assumptiofl7 by assuming tHatsatisfies Assumptidid 5 and Assumption
[6. From [6.8) and Assumptidn 5 it follows that

k . .
ra (FCF) = ra(F;°F;) = zo(l ~RORRCR(RZX) — (1 = R )<
J:

k . .
+ ZO(I ~FCR) (=R, 2) R Ry (1 = F Ry,
j=

Thus we may use the argument in the verificatio of (2.13) tehale
Ira(FCF) —ra(F RIS IT=RX,2)[ + [ = Rz X)[| < Kollx—Z|.

This verifies[[2.20).
By using [6.8) and Assumptidn 5 we also have for any X

Felra (Fx'Fx) —ra(FF)lw = Q1+ Q2+ Q3+ Qq,

where
/2] ) .
Q=Y (I =FKFE)FEFOF -F)(—FF)< w,
J:
k ) )
Q=5 (-REER)FE-FRI-FF)w

Q=5 (-FKREFI-Rx2) (FF)(-FF) w
j=[k/2]+1

By employing [6.7) it is easy to see that

k/2]
Qs < _Z)(J' +1) (k= j+ 1) = Rx Wl S (k+ 1)Kol x— 2| [w].
J:

With the help of [6.J7) and Assumptih 6, we have

k .
1Qall S 5 (1) (R = RO = Ry R)* i

=241

k
SKilx=2 S (+1) k= j+1) 2w

j=lk72+1
k ) L

+KFRx=2 5 (i+1)w]

j=[k/2)+1

S (k1) 72Ky 1= 2| W] + Kel|F; (x = 2) ][]
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By using the argument in the verification 6f (2.13) and Asstiomi@ we obtain

I1Qull S NI(F; = F) (1 = B Fy) wi| + [[(Fy — Fo) (1 — Ry Ry)K /2w
k/2 _
+ Z I(Fy = F) (I = R R)R T (R Ry )w|
J:

S (k1) Y2Kyx — 2] [wi] + K2l |F; (x = 2) | | wi]

k/2]
+ 3 (KXl 402l Fix- 2407
J:

S (k+1) 2K [x— 2| w] + Kal[F; (x—2)|||wi]]
Using Assumptionl5 and the the similar argument in the vetifim of [2.18) we also have
1Qall < (k+ 1)1 =R, 2)|[|w]| S (k+ 1)Ko |x— Z]]|w]]
Combining the above estimates we thus obtain fonamyX

IFlra (o) —ra (R Ry Jw]
S (Kot Ka)a /2| x— 2] wi| + Kel|F; (x— )| | wi|

which implies [2.211).
Therefore, Theoreiln 1, Theorér 2 and Thedrém 3 are applitatiee method defined by
([@.3) and[(1.l7) withg, given by [6.4).

The similar argument as above also applies to the situati@reg, is given by

[1/af _
Ga(A):= 3 (1+A)"

which arise from the Lardy’s method for solving linear ilbged problems.
In summary, we obtain the following result.

Corollary 2 Let F satisfy[(Z.B) and(29), and Iét } be a sequence given by = 1/n, where
{nc} is a sequence of positive integers satisfylngl(6.6) for sqmel. Let {x°} be defined by
(L.3) with
(A) [l/a}( ) (A) [1/04( )"
ga(A) = 1-A or Ja(A) = 1+A)7,
=2 2

and let ks be the first integer satisfying (1.7) with> 1.
(i) If F satisfies Assumptidd 3, and i§ x x" satisfies[(T.10) for som®@ € X andv > 1/2,
then
”XS _XTH < CV||w||1/(1+2v)52v/(l+2v)
5 <

provided L|u|| < no, where uc .4 (F'(x")*)* C Y is the unique element such thatxx" =
F’(x")*u, no > Ois a constant depending only arand g, and G is a constant depending only
onTt, qandv.

(i) Let F satisfy Assumptidnl 5 and Assumpf{ion 6, anddet x' € N(F'(x"))*. Then there
exists a constany; > 0 depending only om and g such that ifKg + K1 + K3)||xo — x'|| < 1
then

lim x2 =X,
50 9

moreover, wheng«— x' satisfies[(1.110) for som® € X andv > 0, then

”XS _ TH <CV||w||1/(1+2v)52v/(l+2v)
5 =
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for some constantC> 0 depending only o, g andv; while when x — x' satisfies[[T.2/1) for
somew € X andy > 0, then
b} —H
In— D
[[of

%€, —xT]| < Gyl ] <1+

for some constant Cdepending only om, g andy.

6.3 Example 3

As the last example we consider the metHod](1.3) witlyiven by

Ga(A) = ,\1 (1-e?/) (6.9)

which arises from the asymptotic regularization for lindlguosed problems. In this method, the
iterated sequenci} is equivalently defined ag, ; 1= x?(1/ay), wherex?(t) is the solution
of the initial value problem

CRn=F Q) (¥ —FOQ)+F )06 (1)), t>0
x°(0) = Xo.
Note that the corresponding residual function is
ra(A) =e /9,

It is easy to see that Assumptibh 1(a), (b) dndl(2.1) hold with

1 2
—1

=€, =1 cG=— andc:\/:
Co 1 3 V2o 4 o

By using the inequality - e < v/t fort > 0 we have for &< a < 3 that

rg(A) —ra(A) =rg(A) (1—9’\/‘”/") < \/%—%fﬁ(/\) < \/gfﬁ(/\)-

This verifies Assumptiohl 1(c) with, = 1. It is well-known that the qualification of the linear
asymptotic regularization i =  and [2.2) is satisfied witd, = (v/e)¥ for each 0< v < .
In order to verify Assumptiofi]2, we assume tHal} is a sequence of positive numbers
satisfying
1 1
0<—-—-—X< d i =0 6.10
T Okt1 Qk % an kimak ( )

for somef, > 0. Then for allA € [0,1] we have

Moy ()\) = e(l/ak+171/ak))\ layyg ()\) < eeorak+1 ()\ )

Thus Assumptiohl2 is also true.
In order to verify Assumptionl4 and Assumptidn 7, we set fargintegem > 1

Fan(A) = <1+ n)\_a)n’ Jan(A) = )\1 (1— <1+ n)\_a>n> )
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Note that, for each fixedr > 0, {rqn} and {gan} are uniformly bounded ovel0,1], and
ran(A) = rqg(A) andgg n(A) = ga(A) asn — . By the dominated convergence theorem, we
have for any bounded linear operatowith ||A|| < 1 that
. * * 2
A@mH [Fa(A"A) = ran(AA)X|
_ IA]1Z 2
= lim (ra(A)—ran(A))°d(Exx,x) =0

n—o /o

and

1im | [ga (A°A) — g n(A° A
A )
= lim [ (9a(A) ~ Gan(A))2d(Erx,x) =0

n—o /o

for any x € X, where{E, } denotes the spectral family generatedAA. Thus it suffices to
verify Assumptiori # and Assumpti@h 7 with, andr, replaced bygq n andrg n with uniform
constantscg, ¢; and cg independent ofi. Let A andB be any two bounded linear operators
satisfying||Al|, ||B|| < 1. We need the following inequality which says for any intege 1 there
holds

Iran(A"A)(A'A)Y| < vVa", 0<v<n (6.11)

By noting that
ran(A"A) —rqn(B*B)
1

=g i;ra,i (A*A)[A*(B—A) + (B* — A")B|rg.n.1-i(B*B), (6.12)

we thus obtain
2
Iran(A"A) ~ran(BB)| < |/ = [A-B],
3
l[ran(A"A) = ran(B'B)JB| < |A-B| (6.13)

and
[Alra,n(A"A) —ran(B"B)|B*(| < v2a|[A—B|.

Furthermore, by noting th@fy n(A) = % S 1rai(A), we may use(6.13) to conclude
* * * 1 d * * *
119a.n(A"A) ~Gan(B"B)]B[| < — ZH[fa,i(A A) —rai(B"B)|BY||
i=

3
< —||A-Bj.
< A8

Assumptiori ¥ is therefore verified.
It remains to verify Assumptioh] 7 withy andrq replaced bygq n andrg n with uniform
constants; andcg independent of. By using [6.1R), Assumptidd 5 arld (6111) we have

[ran(FcFe) = Tan(F Rl

1 d * * *
< M.Zlﬂra,i(':)é FO(RCF)(REZX) = Drana-i(RR)|
i=

1 - * * * *
+M;Hr‘“(':x/ RO =R(X.2)"(F;"F;)rans1-i(FR) |

< F=R@X) [+l =R 2)|
< 2Kol|x—2Z]].
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This implies [2.2D).
By using [6.1P), Assumptidnl 6 and (6]11) we also have foramyX andb € Y satisfying
lall = [[bll = 1 that

(F[ran(FyFY) —ran(FSFD)]a,b)
10 . ) *
< le(ra,i(FX’Fx’ VFLF) (FL— Frane1 i (FEFDa,b)|
i=
1 n Ix=/ 13 ! / 1% .
+ﬁi;|(a,ra,n+lfi(|:z F)F(F) — FO)F rai(FeF)b)|

1
< V2Kea 2 |x— 7| + Ko Fy(x— 2)|| + SKe||Fx(x=2)].

This implies [Z.211).
Therefore, we may apply Theorémh 1, Theofdm 2 and Theblem @ntalude the following
result.

Corollary 3 Let F satisfy[(ZB) and(219), and I¢ti} be a sequence of positive numbers satis-
fying (6.10) for some > 0. Let {x?} be defined by{1l3) with,ggiven by [6.D) and letkbe
the first integer satisfyindg (1.7) with> 1.

(i) If F satisfies Assumptidd 3, and i§ x x" satisfies[(T.10) for som®@ € X andv > 1/2,

then
”XE _XTH <CV||w||1/(1+2v)52v/(1+2v)
5 <

provided L|u|| < no, where uc .4 (F'(x")*)* C Y is the unique element such thatxx" =
F’(x")*u, no > Ois a constant depending only an 8y andap, and G, is a constant depending
only ont, 6y, ag andv.

(ii) Let F satisfy Assumptidil 5 and Assumpfion 6, anddet x' € N(F/(x"))*. Then there
exists a constant; > 0 depending only om, 8y andag such that if Ko+ Kz + Kz)||xo — x| < n1
then s .

lim =x";
6%0Xk5

moreover, wheng« x' satisfies[(T.110) for som® € X andv > 0, then

||Xi(<55 _ XTH <C, ||w||1/(1+2v)52v/(1+2v)

for some constant> 0 depending only om, 8y, oo andv; while when x — x' satisfies[[1.11)
for somew € X andyu > 0, then
o —H
In— D
[[of

for some constant gdepending only om, 6y, ap and .

1. — X1 < Cullo <1+
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