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Abstract We consider the computation of stable approximations to theexact solutionx† of
nonlinear ill-posed inverse problemsF(x) = y with nonlinear operatorsF : X →Y between two
Hilbert spacesX andY by the Newton type methods

xδ
k+1 = x0−gαk

(

F ′(xδ
k )

∗F ′(xδ
k )
)

F ′(xδ
k )

∗
(

F(xδ
k )− yδ −F ′(xδ

k )(x
δ
k − x0)

)

in the case that only available data is a noiseyδ of y satisfying‖yδ − y‖ ≤ δ with a given small
noise levelδ > 0. We terminate the iteration by the discrepancy principle in which the stopping
indexkδ is determined as the first integer such that

‖F(xδ
kδ
)− yδ‖ ≤ τδ < ‖F(xδ

k )− yδ‖, 0≤ k< kδ

with a given numberτ > 1. Under certain conditions on{αk}, {gα} andF , we prove thatxδ
kδ

converges tox† as δ → 0 and establish various order optimal convergence rate results. It is
remarkable that we even can show the order optimality under merely the Lipschitz condition on
the Fréchet derivativeF ′ of F if x0− x† is smooth enough.

Keywords Nonlinear inverse problems· Newton type methods· the discrepancy principle·
order optimal convergence rates

Mathematics Subject Classification (2000)65J15· 65J20· 47H17

1 Introduction

In this paper we will consider the nonlinear inverse problems which can be formulated as the
operator equations

F(x) = y, (1.1)

whereF : D(F) ⊂ X → Y is a nonlinear operator between the Hilbert spacesX andY with
domainD(F). We will assume that problem (1.1) is ill-posed in the sense that its solution does
not depend continuously on the right hand sidey, which is the characteristic property for most of
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the inverse problems. Such problems arise naturally from the parameter identification in partial
differential equations.

Throughout this paper‖ · ‖ and(·, ·) denote respectively the norms and inner products for
both the spacesX andY since there is no confusion. The nonlinear operatorF is always assumed
to be Fréchet differentiable, the Fréchet derivative ofF at x ∈ D(F) is denoted asF ′(x) and
F ′(x)∗ is used to denote the adjoint ofF ′(x). We assume thaty is attainable, i.e. problem (1.1)
has a solutionx† ∈ D(F) such that

F(x†) = y.

Since the right hand side is usually obtained by measurement, thus, instead ofy itself, the avail-
able data is an approximationyδ satisfying

‖yδ − y‖ ≤ δ (1.2)

with a given small noise levelδ > 0. Due to the ill-posedness, the computation of a stable solution
of (1.1) fromyδ becomes an important issue, and the regularization techniques have to be taken
into account.

Many regularization methods have been considered to solve (1.1) in the last two decades.
Tikhonov regularization is one of the well-known methods that has been studied extensively
(see [17,11,19] and the references therein). Due to the straightforward implementation, iterative
methods are also attractive for solving nonlinear inverse problems. In this paper we will consider
some Newton type methods in which the iterated solutions{xδ

k} are defined successively by

xδ
k+1 = x0−gαk

(

F ′(xδ
k )

∗F ′(xδ
k )
)

F ′(xδ
k )

∗
(

F(xδ
k )− yδ −F ′(xδ

k )(x
δ
k − x0)

)

, (1.3)

wherexδ
0 := x0 is an initial guess ofx†, {αk} is a given sequence of numbers such that

αk > 0, 1≤ αk

αk+1
≤ r and lim

k→∞
αk = 0 (1.4)

for some constantr > 1, andgα : [0,∞)→ (−∞,∞) is a family of piecewise continuous functions
satisfying suitable structure conditions. The method (1.3) can be derived as follows. Supposexδ

k

is a current iterate, then we may approximateF(x) by its linearization aroundxδ
k , i.e. F(x) ≈

F(xδ
k )+F ′(xδ

k )(x− xδ
k ). Thus, instead of (1.1), we have the approximate equation

F ′(xδ
k )(x− xδ

k ) = yδ −F(xδ
k ). (1.5)

If F ′(xδ
k ) has bounded inverse, the usual Newton method defines the nextiterate by solving (1.5)

for x. For nonlinear ill-posed inverse problems, however,F ′(xδ
k ) in general is not invertible.

Therefore, we must use linear regularization methods to solve (1.5). There are several ways to
do this step. One way is to rewrite (1.5) as

F ′(xδ
k )h= yδ −F(xδ

k )+F ′(xδ
k )(x

δ
k − x0), (1.6)

whereh= x− x0. Applying the linear regularization method defined by{gα} we may produce
the regularized solutionhδ

k by

hδ
k = gαk

(

F ′(xδ
k )

∗F ′(xδ
k )
)

F ′(xδ
k )

∗
(

yδ −F(xδ
k )+F ′(xδ

k )(x
δ
k − x0)

)

.

The next iterate is then defined to bexδ
k+1 := x0+hδ

k which is exactly the form (1.3).

In order to usexδ
k to approximatex†, we must choose the stopping index of iteration properly.

Some Newton type methods that can be casted into the form (1.3) have been analyzed in [3,12,
14] under a priori stopping rules, which, however, depend onthe knowledge of the smoothness
of x0− x† that is difficult to check in practice. Thus a wrong guess of the smoothness will lead
to a bad choice of the stopping index, and consequently to a bad approximation tox†. Therefore,
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a posteriori rules, which use only quantities that arise during calculations, should be considered
to choose the stopping index of iteration. One can consult [3,8,4,9,2,14] for several such rules.

One widely used a posteriori stopping rule in the literatureof regularization theory for ill-
posed problems is the discrepancy principle which, in the context of the Newton method (1.3),
defines the stopping indexkδ to be the first integer such that

‖F(xδ
kδ
)− yδ‖ ≤ τδ < ‖F(xδ

k )− yδ‖, 0≤ k< kδ , (1.7)

whereτ > 1 is a given number. The method (1.3) withgα(λ ) = (α +λ )−1 together with (1.7)
has been considered in [3,8]. Note that whengα(λ ) = (α +λ )−1, the method (1.3) is equivalent
to the iteratively regularized Gauss-Newton method [1]

xδ
k+1 = xδ

k −
(

αkI +F ′(xδ
k )

∗F ′(xδ
k )
)−1(

F ′(xδ
k )

∗(F(xδ
k )− yδ )+αk(x

δ
k − x0)

)

. (1.8)

WhenF satisfies the condition like

F ′(x) = R(x,z)F ′(z)+Q(x,z),

‖I −R(x,z)‖ ≤CR‖x− z‖, x,z∈ Bρ(x
†), (1.9)

‖Q(x,z)‖ ≤CQ‖F ′(z)(x− z)‖,

whereCR andCQ are two positive constants, for the method defined by (1.8) and (1.7) withτ
being sufficiently large, it has been shown in [3,8] that ifx0 − x† satisfies the Hölder source
condition

x0− x† = (F ′(x†)∗F ′(x†))νω (1.10)

for someω ∈ X and 0≤ ν ≤ 1/2, then

‖xδ
kδ
− x†‖ ≤ o(δ 2ν/(1+2ν));

while if x0− x† satisfies the logarithmic source condition

x0− x† =
(

− log(F ′(x†)∗F ′(x†))
)−µ ω (1.11)

for someω ∈ X andµ > 0, then

‖xδ
kδ
− x†‖ ≤ O((− lnδ )−µ).

Unfortunately, except the above results, there is no more result available in the literature on the
general method defined by (1.3) and (1.7).

During the attempt of proving regularization property of the general method defined by (1.3)
and (1.7), Kaltenbacher realized that the arguments in [3,8] depend heavily on the special proper-
ties of the functiongα(λ ) = (α +λ )−1, and thus the technique therein is not applicable. Instead
of the discrepancy principle (1.7), she proposed in [13] a new a posteriori stopping rule to termi-
nate the iteration as long as

max
{

‖F(xδ
mδ −1)− yδ‖,‖F(xδ

mδ−1)+F ′(xδ
mδ −1)(x

δ
mδ

− xδ
mδ−1)− yδ‖

}

≤ τδ (1.12)

is satisfied for the first time, whereτ > 1 is a given number. Under the condition like (1.9), it
has been shown that ifx0− x† satisfies the Hölder source condition (1.10) for someω ∈ X and
0≤ ν ≤ 1/2, then there hold the order optimal convergence rates

‖xδ
mδ

− x†‖ ≤Cν‖ω‖1/(1+2ν)δ 2ν/(1+2ν)

if {gα} satisfies some suitable structure conditions,τ is sufficiently large and‖ω‖ is sufficiently
small. Note that any result on (1.12) does not imply that the corresponding result holds for (1.7).
Note also thatkδ ≤ mδ − 1 which means that (1.12) requires more iterations to be performed.
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Moreover, the discrepancy principle (1.7) is simpler than the stopping rule (1.12). Considering
the fact that it is widely used in practice, it is important togive further investigations on (1.7).

In this paper, we will resume the study of the method defined by(1.3) and (1.7) with com-
pletely different arguments. With the help of the ideas developed in [9,19,10], we will show
that, under certain conditions on{gα}, {αk} andF , the method given by (1.3) and (1.7) indeed
defines a regularization method for solving (1.1) and is order optimal for each 0< ν ≤ ν̄ −1/2,
whereν̄ ≥ 1 denotes the qualification of the linear regularization method defined by{gα}. In
particular, whenx0− x† satisfies (1.10) for 1/2≤ ν ≤ ν̄ −1/2, we will show that the order op-
timality of (1.3) and (1.7) even holds under merely the Lipschitz condition onF ′. This is the
main contribution of the present paper. We point out that ourresults are valid for anyτ > 1. This
less restrictive requirement onτ is important in numerical computations since the absolute error
could increase with respect toτ.

This paper is organized as follows. In Section 2 we will statevarious conditions on{gα},
{αk} andF , and then present several convergence results on the methods defined by (1.3) and
(1.7). We then complete the proofs of these main results in Sections 3, 4, and 5. In Section 6, in
order to indicate the applicability of our main results, we verify those conditions in Section 2 for
several examples of{gα} arising from Tikhonov regularization, the iterated Tikhonov regular-
ization, the Landweber iteration, the Lardy’s method, and the asymptotic regularization.

2 Assumptions and main results

In this section we will state the main results for the method defined by (1.3) and the discrepancy
principle (1.7). Since the definition of{xδ

k} involvesF , gα and{αk}, we need to impose various
conditions on them.

We start with the assumptions ongα which is always assumed to be continuous on[0,1/2]
for eachα > 0. We will set

rα(λ ) := 1−λgα(λ ),

which is called the residual function associated withgα .

Assumption 1 1 (a) There are positive constants c0 and c1 such that

0< rα(λ )≤ 1, rα(λ )λ ≤ c0α and 0≤ gα(λ )≤ c1α−1

for all α > 0 andλ ∈ [0,1/2];
(b) rα(λ )≤ rβ (λ ) for any0< α ≤ β andλ ∈ [0,1/2];
(c) There exists a constant c2 > 0 such that

rβ (λ )− rα(λ )≤ c2

√

λ
α

rβ (λ )

for any0< α ≤ β andλ ∈ [0,1/2].

The conditions (a) and (b) in Assumption 1 are standard in theanalysis of linear regulariza-
tion methods. Assumption 1(a) clearly implies

0≤ rα(λ )λ 1/2 ≤ c3α1/2 and 0≤ gα(λ )λ 1/2 ≤ c4α−1/2 (2.1)

with c3 ≤ c1/2
0 andc4 ≤ c1/2

1 . We emphasize that direct estimates onrα (λ )λ 1/2 andgα(λ )λ 1/2

could give smallerc3 andc4. From Assumption 1(a) it also follows for each 0≤ ν ≤ 1 that
rα (λ )λ ν ≤ cν

0αν for all α > 0 andλ ∈ [0,1/2]. Thus the linear regularization method defined
by {gα} has qualification̄ν ≥ 1, where, according to [20], the qualification is defined to bethe

1 Recently we realized that (c) can be derived from (a) and (b).
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largest number̄ν with the property that for each 0≤ ν ≤ ν̄ there is a positive constantdν such
that

rα(λ )λ ν ≤ dναν for all α > 0 andλ ∈ [0,1/2]. (2.2)

Moreover, Assumption 1(a) implies for everyµ > 0 that

rα(λ )(− lnλ )−µ ≤ min
{

(− lnλ )−µ ,c0αλ−1(− lnλ )−µ}

for all 0 < α ≤ α0 andλ ∈ [0,1/2]. It is clear that(− lnλ )−µ ≤ (− ln(α/(2α0)))
−µ for 0 ≤

λ ≤ α/(2α0). By using the fact that the functionλ → c0αλ−1(− lnλ )−µ is decreasing on the
interval(0,e−µ ] and is increasing on the interval[e−µ ,1), it is easy to show that there is a posi-
tive constantaµ such thatc0αλ−1(− lnλ )−µ ≤ aµ (− ln(α/(2α0)))

−µ for α/(2α0)≤ λ ≤ 1/2.
Therefore for everyµ > 0 there is a positive constantbµ such that

rα(λ )(− lnλ )−µ ≤ bµ (− ln(α/(2α0)))
−µ (2.3)

for all 0< α ≤ α0 andλ ∈ [0,1/2]. This inequality will be used to derive the convergence rate
whenx0− x† satisfies the logarithmic source condition (1.11)

The condition (c) in Assumption 1 seems to appear here for thefirst time. It is interesting
to note that one can verify it for many well-known linear regularization methods. Moreover, the
conditions (b) and (c) have the following important consequence.

Lemma 1 Under the conditions (b) and (c) in Assumption 1, there holds

‖[rβ (A
∗A)− rα(A

∗A)]x‖ ≤ ‖x̄− rβ (A
∗A)x‖+ c2√

α
‖Ax̄‖ (2.4)

for all x, x̄ ∈ X, any0< α ≤ β and any bounded linear operator A: X → Y satisfying‖A‖ ≤
1/

√
2.

Proof For any 0< α ≤ β we set

pβ ,α(λ ) :=
rβ (λ )− rα(λ )

rβ (λ )
, λ ∈ [0,1/2].

It follows from the conditions (a) and (b) in Assumption 1 that

0≤ pβ ,α(λ )≤ min

{

1,c2

√

λ
α

}

. (2.5)

Therefore, for anyx, x̄∈ X,

‖[rβ (A
∗A)− rα(A

∗A)]x‖= ‖pβ ,α(A
∗A)rβ (A

∗A)x‖
≤ ‖pβ ,α(A

∗A)[rβ (A
∗A)x− x̄]‖+ ‖pβ ,α(A

∗A)x̄‖
≤ ‖rβ (A

∗A)x− x̄‖+ ‖pβ ,α(A
∗A)x̄‖. (2.6)

Let {Eλ} be the spectral family generated byA∗A. Then it follows from (2.5) that

‖pβ ,α(A
∗A)x̄‖2 =

∫ 1/2

0

[

pβ ,α(λ )
]2

d‖Eλ x̄‖2

≤ c2
2

∫ 1/2

0

λ
α

d‖Eλ x̄‖2 =
c2

2

α
‖(A∗A)1/2x̄‖2

=
c2

2

α
‖Ax̄‖2.

Combining this with (2.6) gives the desired assertion. ✷
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For the sequence of positive numbers{αk}, we will always assume that it satisfies (1.4).
Moreover, we need also the following condition on{αk} interplaying withrα .

Assumption 2 There is a constant c5 > 1 such that

rαk(λ )≤ c5rαk+1(λ )

for all k andλ ∈ [0,1/2].

We remark that for some{gα} Assumption 2 is an immediate consequence of (1.4). How-
ever, this is not always the case; in some situations, Assumption 2 indeed imposes further condi-
tions on{αk}. As a rough interpretation, Assumption 2 requires for any two successive iterated
solutions the errors do not decrease dramatically. This maybe good for the stable numerical
implementations of ill-posed problems although it may require more iterations to be performed.
Note that Assumption 2 implies

‖rαk(A
∗A)x‖ ≤ c5‖rαk+1(A

∗A)x‖ (2.7)

for anyx∈ X and any bounded linear operatorA : X →Y satisfying‖A‖ ≤ 1/
√

2.
Throughout this paper, we will always assume that the nonlinear operatorF : D(F)⊂ X →Y

is Fréchet differentiable such that

Bρ(x
†)⊂ D(F) for someρ > 0 (2.8)

and

‖F ′(x)‖ ≤ min
{

c3α1/2
0 ,β 1/2

0

}

, x∈ Bρ(x
†), (2.9)

where 0< β0 ≤ 1/2 is a number such thatrα0(λ ) ≥ 3/4 for all λ ∈ [0,β0]. Sincerα0(0) = 1,
suchβ0 always exists. The scaling condition (2.9) can always be fulfilled by rescaling the norm
in Y.

The convergence analysis on the method defined by (1.3) and (1.7) will be divided into two
cases:

(i) x0− x† satisfies (1.10) for someν ≥ 1/2;
(ii) x0− x† satisfies (1.10) with 0≤ ν < 1/2 or (1.11) withµ > 0.

Thus different structure conditions onF will be assumed in order to carry out the arguments. It
is remarkable to see that for case (i) the following Lipschitz condition onF ′ is enough for our
purpose.

Assumption 3 There exists a constant L such that

‖F ′(x)−F ′(z)‖ ≤ L‖x− z‖ (2.10)

for all x,z∈ Bρ(x†).

As the immediate consequence of Assumption 3, we have

‖F(x)−F(z)−F ′(z)(x− z)‖ ≤ 1
2

L‖x− z‖2

for all x,z∈ Bρ(x†). We will use this consequence frequently in this paper.
During the convergence analysis of (1.3), we will meet some terms involving operators such

as rαk(F
′(xδ

k )
∗F ′(xδ

k )). In order to make use of the source conditions (1.10) forx0 − x†, we
need to switch these operators withrαk(F

′(x†)∗F ′(x†)). Thus we need the following commutator
estimates involvingrα andgα .
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Assumption 4 There is a constant c6 > 0 such that

‖rα(A
∗A)− rα(B

∗B)‖ ≤ c6α−1/2‖A−B‖, (2.11)

‖ [rα(A
∗A)− rα(B

∗B)]B∗‖ ≤ c6‖A−B‖, (2.12)

‖A[rα (A
∗A)− rα(B

∗B)]B∗‖ ≤ c6α1/2‖A−B‖, (2.13)

and
‖ [gα(A

∗A)−gα(B
∗B)]B∗‖ ≤ c6α−1‖A−B‖ (2.14)

for anyα > 0 and any bounded linear operators A,B : X →Y satisfying‖A‖,‖B‖ ≤ 1/
√

2.

This assumption looks restrictive. However, it is interesting to note that for several important
examples we indeed can verify it easily, see Section 6 for details. Moreover, in our applications,
we only need Assumption 4 withA = F ′(x) andB = F ′(z) for x,z∈ Bρ(x†), which is trivially
satisfied whenF is linear.

Now we are ready to state the first main result of this paper.

Theorem 1 Let {gα} and{αk} satisfy Assumption 1, (1.4), Assumption 2, and Assumption 4,
let ν̄ ≥ 1 be the qualification of the linear regularization method defined by{gα}, and let F
satisfy (2.8), (2.9) and Assumption 3 withρ > 4‖x0− x†‖. Let {xδ

k} be defined by (1.3) and let
kδ be the first integer satisfying (1.7) withτ > 1. Let x0− x† satisfy (1.10) for someω ∈ X and
1/2≤ ν ≤ ν̄ −1/2. Then

‖xδ
kδ
− x†‖ ≤Cν‖ω‖1/(1+2ν)δ 2ν/(1+2ν)

if L‖u‖ ≤ η0, where u∈ N (F ′(x†)∗)⊥ ⊂Y is the unique element such that x0− x† = F ′(x†)∗u,
η0 > 0 is a constant depending only on r,τ and ci , and Cν is a positive constant depending only
on r, τ, ν and ci , i = 0, · · · ,6.

Theorem 1 tells us that, under merely the Lipschitz condition onF ′, the method (1.3) together
with (1.7) indeed defines an order optimal regularization method for each 1/2≤ ν ≤ ν̄ −1/2; in
case the regularization method defined by{gα} has infinite qualification the discrepancy princi-
ple (1.7) provides order optimal convergence rates for the full rangeν ∈ [1/2,∞). This is one of
the main contribution of the present paper.

We remark that under merely the Lipschitz condition onF ′ we are not able to prove the
similar result as in Theorem 1 ifx0− x† satisfies weaker source conditions, say (1.10) for some
ν < 1/2. Indeed this is still an open problem in the convergence analysis of regularization meth-
ods for nonlinear ill-posed problems. In order to pursue theconvergence analysis under weaker
source conditions, we need stronger conditions onF than Assumption 3. The condition (1.9) has
been used in [3,8] to establish the regularization propertyof the method defined by (1.8) and
(1.7), where the special properties ofgα(λ ) = (λ +α)−1 play the crucial roles. In order to study
the general method (1.3) under weaker source conditions, weneed the following two conditions
onF .

Assumption 5 There exists a positive constant K0 such that

F ′(x) = F ′(z)R(x,z),

‖I −R(x,z)‖ ≤ K0‖x− z‖

for any x,z∈ Bρ(x†).

Assumption 6 There exist positive constants K1 and K2 such that

‖[F ′(x)−F ′(z)]w‖ ≤ K1‖x− z‖‖F′(z)w‖+K2‖F ′(z)(x− z)‖‖w‖

for any x,z∈ Bρ(x†) and w∈ X.
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Assumption 5 has been used widely in the literature of nonlinear ill-posed problems (see
[17,11,9,19]); it can be verified for many important inverseproblems. Another frequently used
assumption onF is (1.9) which is indeed quite restrictive. It is clear that Assumption 6 is a direct
consequence of (1.9). In order to illustrate that Assumption 6 could be weaker than (1.9), we
consider the identification of the parameterc in the boundary value problem

{

−∆u+ cu= f in Ω
u= g on ∂Ω (2.15)

from the measurement of the stateu, whereΩ ⊂ R
n,n ≤ 3, is a bounded domain with smooth

boundary∂Ω , f ∈ L2(Ω) andg∈H3/2(∂Ω). We assumec† ∈ L2(Ω) is the sought solution. This
problem reduces to solving an equation of the form (1.1) if wedefine the nonlinear operatorF to
be the parameter-to-solution mappingF : L2(Ω) → L2(Ω),F(c) := u(c) with u(c) ∈ H2(Ω) ⊂
L2(Ω) being the unique solution of (2.15). SuchF is well-defined on

D(F) :=
{

c∈ L2(Ω) : ‖c− ĉ‖L2 ≤ γ for some ˆc≥ 0 a.e.
}

for some positive constantγ > 0. It is well-known thatF has Fréchet derivative

F ′(c)h=−A(c)−1(hF(c)), h∈ L2(Ω), (2.16)

whereA(c) : H2∩H1
0 → L2 is defined byA(c)u :=−∆u+cuwhich is an isomorphism uniformly

in a ballBρ(c†)⊂D(F) aroundc†. LetV be the dual space ofH2∩H1
0 with respect to the bilinear

form 〈ϕ ,ψ〉 = ∫

Ω ϕ(x)ψ(x)dx. ThenA(c) extends to an isomorphism fromL2(Ω) to V. Since
(2.16) implies for anyc,d ∈ Bρ(c†) andh∈ L2(Ω)

(

F ′(c)−F ′(d)
)

h=−A(c)−1((c−d)F ′(d)h
)

−A(c)−1(h(F(c)−F(d))) ,

and sinceL1(Ω) embeds intoV due to the restrictionn≤ 3, we have

‖(F ′(c)−F ′(d))h‖L2 ≤ ‖A(c)−1((c−d)F ′(d)h
)

‖L2 + ‖A(c)−1(h(F(c)−F(d)))‖L2

≤C‖(c−d)F ′(d)h‖V +C‖h(F(c)−F(d))‖V

≤C‖(c−d)F ′(d)h‖L1 +C‖h(F(c)−F(d))‖L1

≤C‖c−d‖L2‖F ′(d)h‖L2 +C‖F(c)−F(d)‖L2‖h‖L2. (2.17)

On the other hand, note thatF(c)−F(d) =−A(d)−1((c−d)F(c)), by using (2.16) we obtain

F(c)−F(d)−F ′(d)(c−d) =−A(d)−1((c−d)(F(c)−F(d))) .

Thus, by a similar argument as above,

‖F(c)−F(d)−F ′(d)(c−d)‖L2 ≤C‖c−d‖L2‖F(c)−F(d)‖L2.

Therefore, ifρ > 0 is small enough, we have‖F(c)− F(d)‖L2 ≤ C‖F ′(d)(c− d)‖L2, which
together with (2.17) verifies Assumption 6. The validity of (1.9), however, requiresu(c)≥ κ > 0
for all c∈ Bρ(c†), see [7].

In our next main result, Assumption 5 and Assumption 6 will beused to derive estimates
related toxδ

k −x† andF ′(x†)(xδ
k −x†) respectively. Although Assumption 6 does not explore the

full strength of (1.9), the plus of Assumption 5 could make our conditions stronger than (1.9)
in some situations. One advantage of the use of Assumption 5 and Assumption 6, however, is
that we can carry out the analysis on the discrepancy principle (1.7) for anyτ > 1, in contrast to
those results in [3,8] whereτ is required to be sufficiently large. It is not yet clear if only one of
the above two assumptions is enough for our purpose. From Assumption 6 it is easy to see that

‖F(x)−F(z)−F ′(z)(x− z)‖ ≤ 1
2
(K1+K2)‖x− z‖‖F ′(z)(x− z)‖ (2.18)
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and

‖F(x)−F(z)−F ′(z)(x− z)‖ ≤ 3
2
(K1+K2)‖x− z‖‖F ′(x)(x− z)‖. (2.19)

for anyx,z∈ Bρ(x†).
We still need to deal with some commutators involvingrα . The structure information onF

will be incorporated into such estimates. Thus, instead of Assumption 4, we need the following
strengthened version.

Assumption 7 (a) Under Assumption 5, there exists a positive constant c7 such that

∥

∥rα
(

F ′(x)∗F ′(x)
)

− rα
(

F ′(z)∗F ′(z)
)
∥

∥≤ c7K0‖x− z‖ (2.20)

for all x,z∈ Bρ(x†) and all α > 0.
(b) Under Assumption 5 and Assumption 6, there exists a positive constant c8 such that

‖F ′(x)
[

rα
(

F ′(x)∗F ′(x)
)

− rα
(

F ′(z)∗F ′(z)
)]

‖
≤ c8(K0+K1)α1/2‖x− z‖+ c8K2

(

‖F ′(x)(x− z)‖+ ‖F′(z)(x− z)‖
)

(2.21)

for all x,z∈ Bρ(x†) and all α > 0.

Now we are ready to state the second main result in this paper which in particular says that the
method (1.3) together with the discrepancy principle (1.7)defines an order optimal regularization
method for each 0< ν ≤ ν̄ −1/2 under stronger conditions onF . We will fix a constantγ1 >
c3r1/2/(τ −1).

Theorem 2 Let{gα} and{αk} satisfy Assumption 1, (1.4), Assumption 2 and Assumption 7,let
ν̄ ≥ 1 be the qualification of the linear regularization method defined by{gα}, and let F satisfy
(2.8), (2.9), Assumption 5 and Assumption 6 withρ > 2(1+c4γ1)‖x0−x†‖. Let{xδ

k} be defined
by (1.3) and let kδ be the first integer satisfying (1.7) withτ > 1. Then there exists a constant
η1 > 0 depending only on r,τ and ci , i = 0, · · · ,8, such that if(K0 +K1+K2)‖x0− x†‖ ≤ η1

then
(i) If x0−x† satisfies the Ḧolder source condition (1.10) for someω ∈X and0< ν ≤ ν̄−1/2,

then

‖xδ
kδ
− x†‖ ≤Cν‖ω‖1/(1+2ν)δ 2ν/(1+2ν), (2.22)

where Cν is a constant depending only on r,τ, ν and ci , i = 0, · · · ,8.
(ii) If x0 − x† satisfies the logarithmic source condition (1.11) for someω ∈ X andµ > 0,

then

‖xδ
kδ
− x†‖ ≤Cµ‖ω‖

(

1+

∣

∣

∣

∣

ln
δ

‖ω‖

∣

∣

∣

∣

)−µ
, (2.23)

where Cµ is a constant depending only on r,τ, µ , and ci , i = 0, · · · ,8.

In the statements of Theorem 1 and Theorem 2, the smallness ofL‖u‖ and (K0 +K1 +
K2)‖x0− x†‖ are not specified. However, during the proof of Theorem 1, we indeed will spell
out all the necessary smallness conditions onL‖u‖. For simplicity of presentation, we will not
spell out the smallness conditions on(K0+K1+K2)‖x0− x†‖ any more; the readers should be
able to figure out such conditions without any difficulty.

Note that, without any source condition onx0 − x†, the above two theorems do not give
the convergence ofxδ

kδ
to x†. The following theorem says thatxδ

kδ
→ x† as δ → 0 provided

x0 − x† ∈ N (F ′(x†))⊥. In fact, it tells more, it says that the convergence rates can even be
improved too(δ 2ν/(1+2ν)) if x0− x† satisfies (1.10) for 0≤ ν < ν̄ −1/2.
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Theorem 3 (i) Let all the conditions in Theorem 1 be fulfilled. Ifν̄ > 1 and x†− x0 satisfies the
Hölder source condition (1.10) for someω ∈ N (F ′(x†))⊥ and1/2≤ ν < ν̄ −1/2, then

‖xδ
kδ
− x†‖ ≤ o(δ 2ν/(1+2ν))

asδ → 0.
(ii) Let all the conditions in Theorem 2 be fulfilled. If x0− x† satisfies (1.10) for someω ∈

N (F ′(x†))⊥ and0≤ ν < ν̄ −1/2, then

‖xδ
kδ
− x†‖ ≤ o(δ 2ν/(1+2ν))

asδ → 0.

Theorem 1, Theorem 2 and Theorem 3 will be proved in Sections 3, 4 and 5 respectively. In
the following we will give some remarks.

Remark 1A comprehensive overview on iterative regularization methods for nonlinear ill-posed
problems may be found in the recent book [14]. In particular,convergence and convergence rates
for the general method (1.3) are obtained in [14, Theorem 4.16] in case of a priori stopping rules
under suitable nonlinearity assumptions onF .

Remark 2In [18] Tautenhahn introduced a general regularization scheme for (1.1) by defining
the regularized solutionsxδ

α as a fixed point of the nonlinear equation

x= x0−gα
(

F ′(x)∗F ′(x)
)

F ′(x)∗
(

F(x)− yδ −F ′(x)(x− x0)
)

, (2.24)

whereα > 0 is the regularization parameter. Whenα is determined by a Morozov’s type dis-
crepancy principle, it was shown in [18] that the method is order optimal for each 0< ν ≤ ν̄/2
under certain conditions onF . We point out that the technique developed in the present paper
can be used to analyze such method; indeed we can even show that, under merely the Lipschitz
condition onF ′, the method in [18] is order optimal for each 1/2≤ ν ≤ ν̄ −1/2, which improves
the corresponding result.

Remark 3Alternative to (1.3), one may consider the inexact Newton type methods

xδ
k+1 = xδ

k −gαk

(

F ′(xδ
k )

∗F ′(xδ
k )
)

F ′(xδ
k )

∗
(

F(xδ
k )− yδ

)

(2.25)

which can be derived by applying the regularization method defined by{gα} to (1.5) with the
current iteratexδ

k as an initial guess. Such methods have first been studied by Hanke in [5,6]
where the regularization properties of the Levenberg-Marquardt algorithm and the Newton-CG
algorithm have been established without giving convergence rates when the sequence{αk} is
chosen adaptively during computation and the discrepancy principle is used as a stopping rule.
The general methods (2.25) have been considered later by Rieder in [15,16], where{αk} is
determined by a somewhat different adaptive strategy; certain sub-optimal convergence rates
have been derived whenx0− x† satisfies (1.10) withη < ν ≤ 1/2 for some problem-dependent
number 0< η < 1/2, while it is not yet clear if the convergence can be established under weaker
source conditions. The convergenceanalysis of (2.25) is indeed far from complete. The technique
in the present paper does not work for such methods.

Throughout this paper we will use{xk} to denote the iterated solutions defined by (1.3)
corresponding to the noise free case. i.e.

xk+1 = x0−gαk

(

F ′(xk)
∗F ′(xk)

)

F ′(xk)
∗ (F(xk)− y−F′(xk)(xk− x0)

)

. (2.26)

We will also use the notations

A := F ′(x†)∗F ′(x†), Ak := F ′(xk)
∗F ′(xk), A

δ
k := F ′(xδ

k )
∗F ′(xδ

k ),

B := F ′(x†)F ′(x†)∗, Bk := F ′(xk)F
′(xk)

∗, B
δ
k := F ′(xδ

k )F
′(xδ

k )
∗,
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and

ek := xk− x†, eδ
k := xδ

k − x†.

For ease of exposition, we will useC to denote a generic constant depending only onr. τ and
ci , i = 0, · · · ,8, we will also use the conventionΦ .Ψ to mean thatΦ ≤CΨ for some generic
constantC. Moreover, when we sayL‖u‖ (or (K0+K1+K2)‖e0‖) is sufficiently small we will
mean thatL‖u‖ ≤ η (or (K0+K1+K2)‖e0‖ ≤ η) for some small positive constantη depending
only onr, τ andci , i = 0, · · · ,8.

3 Proof of Theorem 1

In this section we will give the proof of Theorem 1. The main idea behind the proof consists of
the following steps:

• Show the method defined by (1.3) and (1.7) is well-defined.
• Establish the stability estimate‖xδ

k − xk‖ . δ/
√

αk. This enables us to write‖eδ
kδ
‖ .

‖ekδ ‖+ δ/√αkδ .

• Establishαkδ ≥Cν (δ/‖ω‖)2/(1+2ν) under the source condition (1.10) for 1/2≤ ν ≤ ν̄ −
1/2. This is an easy step although it requires nontrivial arguments.

• Show‖ekδ ‖≤Cν‖ω‖1/(1+2ν)δ 2ν/(1+2ν), which is the hard part in the whole proof. In order
to achieve this, we pick an integerk̄δ such thatkδ ≤ k̄δ andαk̄δ

∼ (δ/‖ω‖)2/(1+2ν). Suchk̄δ will
be proved to exist. Then we connect‖ekδ ‖ and‖ek̄δ

‖ by establishing the inequality

‖ekδ ‖. ‖ek̄δ
‖+ 1

√αk̄δ

(

‖F(xkδ )− y‖+ δ
)

. (3.1)

The right hand side can be easily estimated by the desired bound.
• In order to establish (3.1), we need to establish the preliminary convergence rate estimate

‖eδ
kδ
‖. ‖u‖1/2δ 1/2 whenx0− x† = F ′(x†)∗u for someu∈ N (F ′(x†)∗)⊥ ⊂Y.

Therefore, in order to complete the proof of Theorem 1, we need to establish various esti-
mates.

3.1 A first result on convergence rates

In this subsection we will derive the convergence rate‖eδ
kδ
‖ . ‖u‖1/2δ 1/2 under the source

condition
x0− x† = F ′(x†)∗u, u∈ N (F ′(x†)∗)⊥. (3.2)

To this end, we introducẽkδ to be the first integer such that

αk̃δ
≤ δ

γ0‖u‖ < αk, 0≤ k< k̃δ , (3.3)

whereγ0 is a number satisfyingγ0 > c0r/(τ −1), andc0 is the constant from Assumption 1 (a).
Because of (1.4), such̃kδ is well-defined.

Theorem 4 Let{gα} and{αk} satisfy Assumption 1(a), Assumption 2, (2.12) and (1.4), and let
F satisfy (2.8), (2.9) and Assumption 3 withρ > 4‖x0−x†‖. Let{xδ

k} be defined by (1.3) and let
kδ be determined by the discrepancy principle (1.7) withτ > 1. If x0− x† satisfies (3.2) and if
L‖u‖ is sufficiently small, then
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(i) For all 0≤ k≤ k̃δ there hold

xδ
k ∈ Bρ(x

†) and ‖eδ
k‖ ≤ 2(c3+ c4γ0)r

1/2α1/2
k ‖u‖. (3.4)

(ii) kδ ≤ k̃δ , i.e. the discrepancy principle (1.7) is well-defined.
(iii) There exists a generic constant C> 0 such that

‖eδ
kδ
‖ ≤C‖u‖1/2δ 1/2.

Proof We first prove (i). Note thatρ > 4‖x0 − x†‖, it follows from (3.2) and (2.9) that (3.4)
is trivial for k = 0. Now for any fixed integer 0< l ≤ k̃δ , we assume that (3.4) is true for all
0≤ k< l . It follows from the definition (1.3) of{xδ

k} that

eδ
k+1 = rαk(A

δ
k )e0−gαk(A

δ
k )F ′(xδ

k )
∗
(

F(xδ
k )− yδ −F ′(xδ

k )e
δ
k

)

. (3.5)

Using (3.2), Assumption 3, Assumption 1(a), (2.1) and (1.2)we obtain

‖eδ
k+1‖ ≤ ‖rαk(A

δ
k )F ′(xδ

k )
∗u‖+ ‖rαk(A

δ
k )[F ′(x†)∗−F ′(xδ

k )
∗]u‖

+ c4α−1/2
k ‖F(xδ

k )− yδ −F ′(xδ
k )e

δ
k‖

≤ c3α1/2
k ‖u‖+L‖u‖‖eδ

k‖+
1
2

c4L‖eδ
k‖2α−1/2

k + c4δα−1/2
k .

Note thatδα−1
k ≤ γ0‖u‖ for 0≤ k< k̃δ . Note also thatαk ≤ rαk+1 by (1.4). Therefore, by using

(3.4) withk= l −1, we obtain

‖eδ
l ‖ ≤ r1/2α1/2

l



(c3+ c4γ0)‖u‖+L‖u‖
‖eδ

l−1‖√αl−1
+

1
2

c4L

(

‖eδ
l−1‖√αl−1

)2




≤ 2(c3+ c4γ0)r
1/2α1/2

l ‖u‖
if L‖u‖ is so small that

2
(

r1/2+(c3+ c4γ0)c4r
)

L‖u‖ ≤ 1. (3.6)

By using (3.5), (2.1), Assumption 3, (1.2), Assumption 1(a), (3.4) withk = l −1 and (3.6), we
also obtain

‖eδ
l ‖ ≤ ‖rαl−1(A

δ
l−1)e0‖+ c4δα−1/2

l−1 +
1
2

c4L‖eδ
l−1‖2α−1/2

l−1

≤ ‖e0‖+ c4γ1/2
0 ‖u‖1/2δ 1/2+(c3+ c4γ0)c4r1/2L‖u‖‖eδ

l−1‖

≤ ‖e0‖+ c4γ1/2
0 ‖u‖1/2δ 1/2+

1
2

ρ

Therefore, by usingρ > 4‖e0‖, we have

‖eδ
k‖ ≤

3
4

ρ + c4γ1/2
0 ‖u‖1/2δ 1/2 < ρ

if δ > 0 is small enough. Thus (3.4) is also true for allk = l . As l ≤ k̃δ has been arbitrary, we
have completed the proof of (i).

Next we prove (ii) by showing thatkδ ≤ k̃δ . From (3.5) and (3.2) we have for 0≤ k< k̃δ that

F ′(x†)eδ
k+1− yδ + y= F ′(xδ

k )rαk(A
δ

k )
[

F ′(xδ
k )

∗+
(

F ′(x†)∗−F ′(xδ
k )

∗
)]

u

+
[

F ′(x†)−F ′(xδ
k )
]

rαk(A
δ

k )
[

F ′(xδ
k )

∗+
(

F ′(x†)∗−F ′(xδ
k )

∗
)]

u

−
[

F ′(x†)−F ′(xδ
k )
]

gαk(A
δ

k )F ′(xδ
k )

∗
[

F(xδ
k )− yδ −F ′(xδ

k )e
δ
k

]

−gαk(B
δ
k )B

δ
k

[

F(xδ
k )− y−F′(xδ

k )e
δ
k

]

− rαk(B
δ
k )(y

δ − y).
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By using Assumption 3, Assumption 1(a), (2.1), (1.2) and (3.4), and noting thatδ/αk ≤ γ0‖u‖,
we obtain

‖F ′(x†)eδ
k+1− yδ + y‖ ≤ δ + c0αk‖u‖+2c3L‖u‖α1/2

k ‖eδ
k‖+L2‖u‖‖eδ

k‖2

+ c4L‖eδ
k‖δα−1/2

k +
1
2

c4L2α−1/2
k ‖eδ

k‖3+
1
2

L‖eδ
k‖2

≤ δ +(c0+ ε1)αk‖u‖,

where

ε1 =
[

2r1/2(c3+ c4γ0)(2c3+ c4γ0)+2(c3+ c4γ0)
2r
]

L‖u‖

+4
[

(c3+ c4γ0)
2r +(c3+ c4γ0)

3c4r3/2
]

L2‖u‖2.

From (1.2), (3.2) and (2.9) we have‖F ′(x†)e0− yδ + y‖ ≤ δ + ‖A u‖ ≤ δ + c0α0‖u‖. Thus, by
using (1.4),

‖F ′(x†)eδ
k − yδ + y‖ ≤ δ + r (c0+ ε1)αk‖u‖, 0≤ k≤ k̃δ .

Consequently

‖F(xδ
k̃δ
)− yδ‖ ≤ ‖F ′(x†)eδ

k̃δ
− yδ + y‖+ ‖F(xδ

k̃δ
)− y−F′(x†)eδ

k̃δ
‖

≤ δ + r (c0+ ε1)αk̃δ
‖u‖+ 1

2
L‖eδ

k̃δ
‖2

≤ δ + r
(

c0+ ε1+2(c3+ c4γ0)
2rL‖u‖

)

αk̃δ
‖u‖

≤ δ + r
(

c0+ ε1+2(c3+ c4γ0)
2rL‖u‖

)

γ−1
0 δ

≤ τδ

if L‖u‖ is so small that

ε1+2(c3+ c4γ0)
2rL‖u‖ ≤ (τ −1)γ0− c0r

r
.

By the definition ofkδ , it follows thatkδ ≤ k̃δ .
Finally we are in a position to derive the convergence rate in(iii). If kδ = 0, then, by the

definition ofkδ , we have‖F(x0)− yδ‖ ≤ τδ . This together with Assumption 3 and (1.2) gives

‖F ′(x†)e0‖ ≤ ‖F(x0)− y−F′(x†)e0‖+ ‖F(x0)− y‖ ≤ 1
2

L‖e0‖2+(τ +1)δ .

Thus, by using (3.2), we have

‖e0‖= (e0,F
′(x†)∗u)1/2 = (F ′(x†)e0,u)

1/2 ≤ ‖F ′(x†)e0‖1/2‖u‖1/2

≤
√

1
2

L‖u‖‖e0‖+
√

τ +1‖u‖1/2δ 1/2.

By assuming thatL‖u‖ ≤ 1, we obtain‖eδ
kδ
‖= ‖e0‖. ‖u‖1/2δ 1/2.

Therefore we will assumekδ > 0 in the following argument. It follows from (3.5), (2.1),
Assumption 3 and (3.4) that for 0≤ k< k̃δ

‖eδ
k+1‖ ≤ ‖rαk(A

δ
k )e0‖+ c4δα−1/2

k +
1
2

c4L‖eδ
k‖2α−1/2

k

≤ ‖rαk(A
δ

k )e0‖+ c4(γ0‖u‖δ )1/2+(c3+ c4γ0)c4r1/2L‖u‖‖eδ
k‖. (3.7)
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By (3.2), (2.12) in Assumption 4, and Assumption 3 we have

‖rαk(A
δ

k )e0− rαk(A )e0‖= ‖[rαk(A
δ

k )− rαk(A )]F ′(x†)∗u‖
≤ c6‖u‖‖F ′(xδ

k )−F ′(x†)‖
≤ c6L‖u‖‖eδ

k‖. (3.8)

Thus

‖eδ
k+1‖ ≤ ‖rαk(A )e0‖+ c4(γ0‖u‖δ )1/2+

(

c6+(c3+ c4γ0)c4r1/2
)

L‖u‖‖eδ
k‖

≤ ‖rαk(A )e0‖+ c4(γ0‖u‖δ )1/2+
1

4c5
‖eδ

k‖ (3.9)

if we assume further that

4c5

(

c6+(c3+ c4γ0)c4r1/2
)

L‖u‖ ≤ 1. (3.10)

Note that (2.9) and the choice ofβ0 imply ‖rα0(A )e0‖ ≥ 3
4‖e0‖. Thus, with the help of (2.7), by

induction we can conclude from (3.9) that

‖eδ
k‖ ≤

4
3

c5‖rαk(A )e0‖+C‖u‖1/2δ 1/2, 0≤ k≤ k̃δ .

This together with (3.8) and (3.10) implies

‖eδ
k‖ ≤ 2c5‖rαk(A

δ
k )e0‖+C‖u‖1/2δ 1/2, 0≤ k≤ k̃δ . (3.11)

The combination of (3.7), (3.11) and (3.10) gives

‖eδ
k+1‖ ≤

3
2
‖rαk(A

δ
k )e0‖+C‖u‖1/2δ 1/2, 0≤ k< k̃δ . (3.12)

We need to estimate‖rαk(A
δ

k )e0‖. By (3.2), Assumption 1(a) and Assumption 3 we have

‖rαk(A
δ

k )e0‖2 =
(

rαk(A
δ

k )e0, rαk(A
δ

k )F ′(x†)∗u
)

=
(

rαk(A
δ

k )e0, rαk(A
δ

k )
[

F ′(xδ
k )

∗+
(

F ′(x†)∗−F ′(xδ
k )

∗
)]

u
)

≤ ‖F ′(xδ
k )rαk(A

δ
k )e0‖‖u‖+L‖u‖‖eδ

k‖‖rαk(A
δ

k )e0‖.

Thus
‖rαk(A

δ
k )e0‖ ≤ ‖F ′(xδ

k )rαk(A
δ

k )e0‖1/2‖u‖1/2+L‖u‖‖eδ
k‖.

With the help of (3.5), (1.2), Assumption 1(a) and Assumption 3 we have

‖F ′(xδ
k )rαk(A

δ
k )e0‖ ≤ ‖F ′(xδ

k )e
δ
k+1‖+ ‖gαk(B

δ
k )B

δ
k

(

F(xδ
k )− yδ −F ′(xδ

k )e
δ
k

)

‖

≤ ‖F(xδ
k+1)− yδ‖+2δ + ‖F(xδ

k+1)− y−F′(xδ
k+1)e

δ
k+1‖

+ ‖[F ′(xδ
k+1)−F ′(xδ

k )]e
δ
k+1‖+ ‖F(xδ

k )− y−F′(xδ
k )e

δ
k‖

≤ ‖F(xδ
k+1)− yδ‖+2δ +L‖eδ

k‖2+2L‖eδ
k+1‖2.

Therefore

‖rαk(A
δ

k )e0‖ ≤ ‖u‖1/2‖F(xδ
k+1)− yδ‖1/2+

√
2‖u‖1/2δ 1/2+

√

2L‖u‖‖eδ
k+1‖

+
(

L‖u‖+
√

L‖u‖
)

‖eδ
k‖.
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Combining this with (3.11) and (3.12) yields

‖rαk(A
δ

k )e0‖ ≤ ‖u‖1/2‖F(xδ
k+1)− yδ‖1/2+C‖u‖1/2δ 1/2

+
1
2

[(

3
√

2+4c5

)

√

L‖u‖+4c5L‖u‖
]

‖rαk(A
δ

k )e0‖.

Thus, if
(

3
√

2+4c5

)

√

L‖u‖+4c5L‖u‖ ≤ 1,

we then obtain
‖rαk(A

δ
k )e0‖. ‖u‖1/2‖F(xδ

k+1)− yδ‖1/2+ ‖u‖1/2δ 1/2.

This together with (3.12) gives

‖eδ
k‖. ‖u‖1/2‖F(xδ

k )− yδ‖1/2+ ‖u‖1/2δ 1/2

for all 0< k≤ k̃δ . Consequently, we may setk= kδ in the above inequality and use the definition
of kδ to obtain‖eδ

kδ
‖. ‖u‖1/2δ 1/2. ✷

3.2 Stability estimates

In this subsection we will consider the stability of the method (1.3) by deriving some useful
estimates on‖xδ

k − xk‖, where{xk} is defined by (2.26). It is easy to see that

ek+1 = rαk(Ak)e0−gαk(Ak)F
′(xk)

∗ (F(xk)− y−F′(xk)ek
)

. (3.13)

We will prove some important estimates on{xk} in Lemma 3 in the next subsection. In particular,
we will show that, under the conditions in Theorem 4,

xk ∈ Bρ(x
†) and ‖ek‖ ≤ 2c3r1/2α1/2

k ‖u‖ (3.14)

for all k≥ 0 providedL‖u‖ is sufficiently small.

Lemma 2 Let all the conditions in Theorem 4 and Assumption 4 hold. If L‖u‖ is sufficiently
small, then for all0≤ k≤ k̃δ there hold

‖xδ
k − xk‖ ≤ 2c4

δ√
αk

(3.15)

and
‖F(xδ

k )−F(xk)− yδ + y‖ ≤ (1+ ε2)δ , (3.16)

where

ε2 := 2c4

(

(c6+ rc4γ0)+ (4c3+3c4γ0)r
1/2+4(c3+ c4γ0)r

)

L‖u‖

+4c3c4

(

c6r1/2+(c4+ c6)c3r
)

L2‖u‖2.

Proof For each 0≤ k≤ k̃δ we set

uk := F(xk)− y−F′(xk)ek, uδ
k := F(xδ

k )− y−F′(xδ
k )e

δ
k . (3.17)

It then follows from (3.5) and (3.13) that

xδ
k+1− xk+1 = I1+ I2+ I3+ I4, (3.18)
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where

I1 :=
[

rαk(A
δ

k )− rαk(Ak)
]

e0,

I2 := gαk(A
δ

k )F ′(xδ
k )

∗(yδ − y),

I3 :=
[

gαk(Ak)F
′(xk)

∗−gαk(A
δ

k )F ′(xδ
k )

∗
]

uk,

I4 := gαk(A
δ

k )F ′(xδ
k )

∗(uk−uδ
k).

By using (3.2), (2.11), (2.12), Assumption 3 and (3.14) we have

‖I1‖ ≤ ‖rαk(A
δ

k )− rαk(Ak)‖‖F ′(x†)∗−F ′(xk)
∗‖‖u‖

+ ‖[rαk(A
δ

k )− rαk(Ak)]F
′(xk)

∗u‖
≤ c6L2‖u‖‖ek‖‖xδ

k − xk‖α−1/2
k + c6L‖u‖‖xδ

k − xk‖

≤ c6

(

L‖u‖+2c3r
1/2L2‖u‖2

)

‖xδ
k − xk‖.

With the help of (2.1) and (1.2) we have

‖I2‖ ≤ c4
δ√
αk

.

By applying Assumption 1(a), (2.14), Assumption 3 and (3.14) we can estimateI3 as

‖I3‖ ≤ ‖gαk(Ak)[F
′(xδ

k )
∗−F ′(xk)

∗]uk‖+ ‖[gαk(Ak)−gαk(A
δ

k )]F ′(xδ
k )

∗uk‖

≤ (c1+ c6)L‖uk‖‖xδ
k − xk‖α−1

k ≤ 1
2
(c1+ c6)L

2‖ek‖2‖xδ
k − xk‖α−1

k

≤ 2(c1+ c6)c
2
3rL2‖u‖2‖xδ

k − xk‖.

For the termI4, we have from (2.1) that

‖I4‖ ≤
c4√
αk

‖uδ
k −uk‖.

By using Assumption 3, (3.4) and (3.14) one can see

‖uk−uδ
k‖ ≤ ‖F(xδ

k )−F(xk)−F ′(xk)(x
δ
k − xk)‖+ ‖[F ′(xδ

k )−F ′(xk)]e
δ
k‖

≤ 1
2

L‖xδ
k − xk‖2+L‖eδ

k‖‖xδ
k − xk‖ ≤

1
2

L
(

3‖eδ
k‖+ ‖ek‖

)

‖xδ
k − xk‖

≤ (4c3+3c4γ0) r1/2α1/2
k L‖u‖‖xδ

k − xk‖. (3.19)

Therefore
‖I4‖ ≤ (4c3+3c4γ0)c4r1/2L‖u‖‖xδ

k − xk‖.
Thus, ifL‖u‖ is so small that

(

c6+(4c3+3c4γ0)c4r1/2
)

L‖u‖+2
(

c3c6r1/2+ c2
3(c1+ c6)r

)

L2‖u‖2 ≤ 1
2
,

then the combination of the above estimates onI1, I2, I3 andI4 gives for 0≤ k< k̃δ that

‖xδ
k+1− xk+1‖ ≤ c4

δ√
αk

+
1
2
‖xδ

k − xk‖.

This implies (3.15) immediately.
Next we prove (3.16). We have from (3.18) that

F ′(xδ
k )(x

δ
k+1− xk+1)− yδ + y= F ′(xδ

k )(I1+ I2+ I3+ I4)− yδ + y. (3.20)
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From (3.2), (2.12), (2.13), Assumption 3, (3.14) and (3.15)it follows that

‖F ′(xδ
k )I1‖ ≤ ‖F ′(xδ

k )[rαk(A
δ

k )− rαk(Ak)][F
′(x†)∗−F ′(xk)

∗]u‖
+ ‖F ′(xδ

k )[rαk(A
δ

k )− rαk(Ak)]F
′(xk)

∗u‖
≤ c6L2‖u‖‖ek‖‖xδ

k − xk‖+ c6L‖u‖α1/2
k ‖xδ

k − xk‖

≤
(

2c4c6L‖u‖+4c3c4c6r1/2L2‖u‖2
)

δ .

By using Assumption 1(a) and (1.2) it is easy to see

‖F ′(xδ
k )I2− yδ + y‖= ‖rαk(B

δ
k )(y

δ − y)‖ ≤ δ . (3.21)

In order to estimateF ′(xδ
k )I3, we note that

F ′(xδ
k )I3 =

[

F ′(xδ
k )−F ′(xk)

]

gαk(Ak)F
′(xk)

∗uk+
[

rαk(B
δ
k )− rαk(Bk)

]

uk. (3.22)

Thus, it follows from (2.1), Assumption 3, (2.11), (3.14) and (3.15) that

‖F ′(xδ
k )I3‖ ≤ ‖

[

F ′(xδ
k )−F ′(xk)

]

gαk(Ak)F
′(xk)

∗uk‖

+ ‖
[

rαk(B
δ
k )− rαk(Bk)

]

uk‖

≤ (c4+ c6)α
−1/2
k L‖xδ

k − xk‖‖uk‖

≤ 1
2
(c4+ c6)α

−1/2
k L2‖ek‖2‖xδ

k − xk‖

≤ 4(c4+ c6)c
2
3c4rL2‖u‖2δ .

For the termF ′(xδ
k )I4 we have from Assumption 1(a), (3.19) and (3.15) that

‖F ′(xδ
k )I4‖ ≤ ‖uk−uδ

k‖ ≤ 2(4c3+3c4γ0)c4r1/2L‖u‖δ .

Combining the above estimates, we therefore obtain

‖F ′(xδ
k )(x

δ
k+1− xk+1)− yδ + y‖ ≤ (1+ ε3)δ , 0≤ k< k̃δ ,

where

ε3 :=2c4

(

c6+(4c3+3c4γ0)r
1/2
)

L‖u‖+4c3c4

(

c6r1/2+(c4+ c6)c3r
)

L2‖u‖2.

This together with Assumption 3, (3.4), (3.15) and (1.4) implies for 0≤ k< k̃δ that

‖F ′(xδ
k+1)(x

δ
k+1− xk+1)− yδ + y‖

≤ ‖F ′(xδ
k )(x

δ
k+1− xk+1)− yδ + y‖+L‖xδ

k+1− xδ
k‖‖xδ

k+1− xk+1‖

≤ (1+ ε3)δ +2c4L(‖eδ
k+1‖+ ‖eδ

k‖)
δ√αk+1

≤ (1+ ε4)δ ,

where
ε4 := ε3+8(c3+ c4γ0)c4rL‖u‖.

Thus
‖F ′(xδ

k )(x
δ
k − xk)− yδ + y‖ ≤ (1+ ε4)δ , 0≤ k≤ k̃δ .
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Therefore, noting thatδ/αk ≤ rγ0‖u‖ for 0≤ k≤ k̃δ , we have

‖F(xδ
k )−F(xk)− yδ + y‖ ≤ ‖F(xδ

k )−F(xk)−F ′(xδ
k )(x

δ
k − xk)‖

+ ‖F ′(xδ
k )(x

δ
k − xk)− yδ + y‖

≤ 1
2

L‖xδ
k − xk‖2+(1+ ε4)δ

≤ 2c2
4L

δ
αk

δ +(1+ ε4)δ

≤ (1+ ε4+2rc2
4γ0L‖u‖)δ .

The proof of (3.16) is thus complete. ✷

3.3 Some estimates on noise-free iterations

Lemma 3 Let all the conditions in Theorem 4 be fulfilled. If L‖u‖ is sufficiently small, then for
all k ≥ 0 we have

xk ∈ Bρ(x
†) and ‖ek‖ ≤ 2c3r1/2α1/2

k ‖u‖. (3.23)

If, in addition, Assumption 1(b) is satisfied, then

2
3
‖rαk(A )e0‖ ≤ ‖ek‖ ≤

4
3

c5‖rαk(A )e0‖ (3.24)

and
1

2c5
‖ek‖ ≤ ‖ek+1‖ ≤ 2‖ek‖. (3.25)

Proof By using (3.2), (2.1), (2.12) and Assumption 3, we have from (3.13) that

‖ek+1− rαk(A )e0‖ ≤ ‖[rαk(Ak)− rαk(A )]F ′(x†)∗u‖+ c4√
αk

‖F(xk)− y−F′(xk)ek‖

≤ c6L‖u‖‖ek‖+
c4

2
√

αk
L‖ek‖2. (3.26)

Since (2.1) and (3.2) imply‖rαk(A )e0‖ ≤ c3α1/2
k ‖u‖, we have

‖ek+1‖ ≤ c3α1/2
k ‖u‖+ c6L‖u‖‖ek‖+

c4

2
√

αk
L‖ek‖2.

Note that (3.2) and (2.9) imply‖e0‖ ≤ c3α1/2
0 ‖u‖. By induction one can conclude the assertion

(3.23) if L‖u‖ is so small that 2(c6r1/2+ c3c4r)L‖u‖ ≤ 1.
If we assume further that

5c5

(

c6+ c3c4r1/2
)

L‖u‖ ≤ 1, (3.27)

the combination of (3.26) and (3.23) gives

‖ek+1− rαk(A )e0‖ ≤
(

c6+ c3c4r1/2
)

L‖u‖‖ek‖ ≤
1

5c5
‖ek‖. (3.28)

Note that Assumption 1(b) andαk ≤ αk−1 imply ‖rαk(A )e0‖ ≤ ‖rαk−1(A )e0‖. Note also that
Assumption 1(a) and (2.9) imply (3.24) withk= 0. Thus, from (3.28) and (2.7) we can conclude
(3.24) by an induction argument. (3.25) is an immediate consequence of (3.28) and (3.24). ✷



19

Lemma 4 Let all the conditions in Lemma 2 and Assumption 1(c) hold. Ifkδ > 0 and L‖u‖ is
sufficiently small, then for all k≥ kδ we have

‖ekδ ‖. ‖ek‖+
1√
αk

(

‖F(xkδ )− y‖+ δ
)

. (3.29)

Proof It follows from (3.13) that

xkδ − xk = [rαkδ −1(A )− rαk−1(A )]e0+[rαkδ −1(Akδ−1)− rαkδ −1(A )]e0

−
[

rαk−1(Ak−1)− rαk−1(A )
]

e0

−gαkδ −1(Akδ−1)F
′(xkδ−1)

∗ [F(xkδ −1)− y−F′(xkδ−1)ekδ−1
]

+gαk−1(Ak−1)F
′(xk−1)

∗ [F(xk−1)− y−F′(xk−1)ek−1
]

. (3.30)

Thus, by using (3.2), (2.12), Assumption 3, (2.1), (3.23) and (3.27), we have

‖xkδ − xk‖ ≤ ‖[rαkδ −1(A )− rαk−1(A )]e0‖+ c6L‖u‖
(

‖ek−1‖+ ‖ekδ−1‖
)

+
c4

2
√αkδ −1

L‖ekδ−1‖2+
c4

2
√αk−1

L‖ek−1‖2

≤ ‖[rαkδ −1(A )− rαk−1(A )]e0‖+
1

5c5

(

‖ek−1‖+ ‖ekδ−1‖
)

. (3.31)

Sincek≥ kδ , we haveαk−1 ≤αkδ−1. Since Assumption 1(b) and (c) hold, we may apply Lemma
1 with x= e0, x̄= ekδ , α = αk−1, β = αkδ−1 andA= F ′(x†) to obtain

‖[rαkδ −1(A )− rαk−1(A )]e0‖ ≤ ‖rαkδ −1(A )e0−ekδ ‖+
c2√αk−1

‖F ′(x†)ekδ ‖.

Note that (3.28) implies

‖ekδ − rαkδ −1(A )e0‖ ≤
1

5c5
‖ekδ−1‖.

Note also that Assumption 3 implies

‖F ′(x†)ekδ ‖ ≤ ‖F(xkδ )− y‖+ 1
2

L‖ekδ ‖
2.

Thus

‖[rαkδ −1(A )− rαk−1(A )]e0‖ ≤
1

5c5
‖ekδ−1‖+

C√
αk

(

‖F(xkδ )− y‖+L‖ekδ‖
2) .

Since Lemma 2, Theorem 4 and the factkδ ≤ k̃δ imply

‖ekδ ‖. ‖eδ
kδ
‖+ δ

√αkδ

. ‖u‖1/2δ 1/2,

we have

‖[rαkδ −1(A )− rαk−1(A )]e0‖ ≤
1

5c5
‖ekδ−1‖+

C√
αk

(

‖F(xkδ )− y‖+L‖u‖δ
)

.

Combining this with (3.31) and using Lemma 3 gives

‖xkδ − xk‖ ≤
4
5
‖ekδ ‖+C‖ek‖+

C√
αk

(

‖F(xkδ )− y‖+ δ
)

.

This completes the proof. ✷
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3.4 Completion of proof of Theorem 1

Lemma 5 Assume that all the conditions in Lemma 3 are satisfied. Then

‖F ′(x†)ek‖. ‖rαk(A )A 1/2e0‖+α1/2
k ‖rαk(A )e0‖ (3.32)

for all k ≥ 0.

Proof We first use (3.13) to write

F ′(x†)ek+1 = F ′(x†)rαk(A )e0+F ′(x†)
[

rαk(Ak)− rαk(A )
]

e0

−F ′(x†)gαk(Ak)F
′(xk)

∗ [F(xk)− y−F′(xk)ek
]

. (3.33)

Thus, it follows from (3.2), Assumption 3, Assumption 1(a),(2.12), (2.13), (3.23) and (3.24) that

‖F ′(x†)ek+1‖. ‖F ′(x†)rαk(A )e0‖+L‖ek‖‖[rαk(Ak)− rαk(A )]F ′(x†)∗u‖
+ ‖F ′(xk)[rαk(Ak)− rαk(A )]F ′(x†)∗u‖+(1+L‖ek‖α−1/2

k )L‖ek‖2

. ‖rαk(A )A 1/2e0‖+L2‖u‖‖ek‖2+α1/2
k L‖u‖‖ek‖+L‖ek‖2

. ‖rαk(A )A 1/2e0‖+α1/2
k ‖rαk(A )e0‖.

This together with (2.7) and (1.4) implies (3.32). ✷

Lemma 6 Under the conditions in Lemma 2 and Lemma 3, ifε2 ≤ (τ − 1)/2 then for the kδ
determined by (1.7) withτ > 1 we have

(τ −1)δ . ‖rαk(A )A 1/2e0‖+α1/2
k ‖rαk(A )e0‖ (3.34)

for all 0≤ k< kδ ,

Proof By using (3.16), Lemma 3 and Lemma 5, we have for 0≤ k< kδ that

τδ ≤ ‖F(xδ
k )− yδ‖ ≤ ‖F(xδ

k )−F(xk)− yδ + y‖+ ‖F(xk)− y‖

≤ (1+ ε2)δ + ‖F ′(x†)ek‖+
1
2

L‖ek‖2

≤ (1+ ε2)δ +C‖rαk(A )A 1/2e0‖+Cα1/2
k ‖rαk(A )e0‖.

Sinceτ > 1, by the smallness conditionε2 ≤ (τ −1)/2 onL‖u‖ we obtain (3.34). ✷

Proof of Theorem 1. If kδ = 0, then the definition ofkδ implies‖F(x0)− yδ‖ ≤ τδ . From The-
orem 4 we know that‖e0‖. ‖u‖1/2δ 1/2. Thus

‖F ′(x†)e0‖ ≤ ‖F(x0)− y−F′(x†)e0‖+ ‖F(x0)− yδ‖+ δ

≤ 1
2

L‖e0‖2+(1+ τ)δ . δ .

Sincee0 =A νω for some 1/2≤ ν ≤ ν̄ −1/2, we may use the interpolation inequality to obtain

‖eδ
kδ
‖= ‖e0‖= ‖A ν ω‖ ≤ ‖ω‖1/(1+2ν)‖A 1/2+νω‖2ν/(1+2ν)

= ‖ω‖1/(1+2ν)‖F ′(x†)e0‖2ν/(1+2ν)

. ‖ω‖1/(1+2ν)δ 2ν/(1+2ν),

which gives the desired estimate.
Therefore, we may assume thatkδ > 0 in the remaining argument. By usinge0 = A

νω for
some 1/2≤ ν ≤ ν̄ −1/2 and Lemma 6 it follows that there exists a positive constantCν such
that

(τ −1)δ <Cναν+1/2
k ‖ω‖, 0≤ k< kδ .
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Now we define the integer̄kδ by

αk̄δ
≤
(

(τ −1)δ
Cν‖ω‖

)2/(1+2ν)
< αk, 0≤ k< k̄δ .

Thenkδ ≤ k̄δ . Thus, by using Lemma 2 and Lemma 4, we have

‖eδ
kδ
‖. ‖ekδ ‖+

δ
√αkδ

. ‖ek̄δ
‖+

‖F(xkδ )− y‖+ δ
√αk̄δ

+
δ

√αkδ

.

Note that Lemma 2 and the definition ofkδ imply

‖F(xkδ )− y‖ ≤ ‖F(xδ
kδ
)− yδ‖+ ‖F(xδ

kδ
)−F(xkδ )− yδ + y‖. δ .

This together with (3.24),kδ ≤ k̄δ and‖rαk(A )e0‖. αν
k ‖ω‖ then gives

‖eδ
kδ
‖. αν

k̄δ
‖ω‖+ δ

√αkδ

+
δ

√αk̄δ

. αν
k̄δ
‖ω‖+ δ

√αk̄δ

. (3.35)

Using the definition of̄kδ and (1.4), we therefore complete the proof. ✷

4 Proof of Theorem 2

In this section we will give the proof of Theorem 2. The essential idea is similar as in the proof of
Theorem 1. Thus we need to establish similar results as thoseused in Section 3. However, since
we do not have source representatione0 = F ′(x†)∗u any longer and sinceF satisfies different
conditions, we must modify the arguments carefully. We willindicate the essential steps without
spelling out all the necessary smallness conditions on(K0+K1+K2)‖e0‖. We first introduce the
integernδ by

αnδ ≤
(

δ
γ1‖e0‖

)2

< αk, 0≤ k< nδ . (4.1)

Recall thatγ1 is a constant satisfyingγ1 > c3r1/2/(τ −1).

Proof of Theorem 2. In order to complete the proof of Theorem 2, we need to establish various
estimates. We will divide the arguments into several steps.

Step 1. We will show that for all 0≤ k≤ nδ

xδ
k ∈ Bρ(x

†), ‖eδ
k‖. ‖e0‖, (4.2)

‖F ′(x†)eδ
k‖. α1/2

k ‖e0‖ (4.3)

and thatkδ ≤ nδ for the integerkδ defined by the discrepancy principle (1.7) withτ > 1.
To see this, we note that, for any 0≤ k< nδ with xδ

k ∈ Bρ(x†), (3.5) and Assumption 5 imply

eδ
k+1 = rαk(A

δ
k )e0−

∫ 1

0
gαk(A

δ
k )A δ

k

(

R(xδ
k − teδ

k ,x
δ
k )− I

)

eδ
k dt

+gαk(A
δ

k )F ′(xδ
k )

∗(yδ − y).

Therefore, with the help of Assumption 1(a) and (2.1), we have

‖eδ
k+1‖ ≤ ‖e0‖+

1
2

K0‖eδ
k‖2+ c4δα−1/2

k ≤ (1+ c4γ1)‖e0‖+
1
2

K0‖eδ
k‖2.

Thus, if 2(1+c4γ1)K0‖e0‖ ≤ 1, then, by usingρ > 2(1+c4γ1)‖e0‖ and an induction argument,
we can conclude‖eδ

k‖ ≤ 2(1+ c4γ1)‖e0‖< ρ for all 0≤ k≤ nδ . This establishes (4.2).
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Next we show (4.3). It follows from (3.5), Assumption 1(a), (1.2), (2.19) and (4.1) that for
0≤ k< nδ

‖F ′(xδ
k )e

δ
k+1‖. α1/2

k ‖e0‖+ δ + ‖F(xδ
k )− y−F′(xδ

k )e
δ
k‖

. α1/2
k ‖e0‖+(K1+K2)‖eδ

k‖‖F ′(x†)eδ
k‖.

By Assumption 6 we have

‖[F ′(x†)−F ′(xδ
k )]e

δ
k+1‖ ≤ K1‖eδ

k‖‖F ′(x†)eδ
k+1‖+K2‖eδ

k+1‖‖F ′(x†)eδ
k‖.

The above two inequalities and (4.2) then imply

‖F ′(x†)eδ
k+1‖. α1/2

k ‖e0‖+K1‖e0‖‖F ′(x†)eδ
k+1‖+(K1+K2)‖e0‖‖F ′(x†)eδ

k‖.

Thus, if(K1+K2)‖e0‖ is sufficiently small, we can conclude (4.3) by an induction argument. As
direct consequences of (4.2), (4.3) and Assumption 6 we have

‖F ′(xδ
k )e

δ
k‖. α1/2

k ‖e0‖, 0≤ k≤ nδ (4.4)

and
‖F ′(xδ

k+1)(x
δ
k+1− xδ

k )‖. α1/2
k ‖e0‖, 0≤ k< nδ . (4.5)

In order to showkδ ≤ nδ , we note that (3.5) gives

F ′(x†)eδ
k+1− yδ + y= F ′(xδ

k )rαk(A
δ

k )e0+
(

F ′(x†)−F ′(xδ
k )
)

rαk(A
δ

k )e0

−
(

F ′(x†)−F ′(xδ
k )
)

gαk(A
δ

k )F ′(xδ
k )

∗
(

F(xδ
k )− yδ −F ′(xδ

k )e
δ
k

)

−gαk(B
δ
k )B

δ
k

(

F(xδ
k )− y−F′(xδ

k )e
δ
k

)

− rαk(B
δ
k )(y

δ − y).

Thus, by using (1.2), Assumption 1(a), (2.1), Assumption 6,(2.18), (4.2), (4.4) and (1.4) we have
for 0≤ k< nδ

‖F ′(x†)eδ
k+1− yδ + y‖ ≤ δ + c3α1/2

k ‖e0‖+ c3K1‖e0‖‖eδ
k‖α1/2

k +K2‖e0‖‖F ′(xδ
k )e

δ
k‖

+K1‖eδ
k‖
(

δ +
1
2
(K1+K2)‖eδ

k‖‖F ′(xδ
k )e

δ
k‖
)

+ c4K2α−1/2
k ‖F ′(xδ

k )e
δ
k‖
(

δ +
1
2
(K1+K2)‖eδ

k‖‖F ′(xδ
k )e

δ
k‖
)

+
1
2
(K1+K2)‖eδ

k‖‖F ′(xδ
k )e

δ
k‖

≤ δ +(c3+C(K1+K2)‖e0‖)α1/2
k ‖e0‖

≤ δ + r1/2(c3+C(K1+K2)‖e0‖)α1/2
k+1‖e0‖.

Recall thatγ1 > c3r1/2/(τ −1). Thus, with the help of (4.2), (4.3) and the definition ofnδ , one
can see that, if(K1+K2)‖e0‖ is sufficiently small, then

‖F(xδ
nδ
)− yδ‖ ≤ ‖F(xδ

nδ
)− y−F′(x†)eδ

nδ
‖+ ‖F′(x†)eδ

nδ
− yδ + y‖

≤ δ + r1/2(c3+C(K1+K2)‖e0‖)α1/2
nδ ‖e0‖

+
1
2
(K1+K2)‖eδ

nδ
‖‖F ′(x†)eδ

nδ
‖

≤ δ + r1/2(c3+C(K1+K2)‖e0‖)α1/2
nδ ‖e0‖

≤ δ + r1/2(c3+C(K1+K2)‖e0‖)γ−1
1 δ

≤ τδ .
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This implieskδ ≤ nδ .
Step 2. We will show, for the noise-free iterated solutions{xk}, that for allk≥ 0

‖rαk(A )e0‖. ‖ek‖. ‖rαk(A )e0‖, (4.6)

‖ek‖. ‖ek+1‖. ‖ek‖ (4.7)

and for all 0≤ k≤ l

‖ek‖. ‖el‖+
1√
αl

‖F(xk)− y‖. (4.8)

In fact, from (3.13) and Assumption 5 it is easy to see that

‖ek+1− rαk(Ak)e0‖ ≤
1
2

K0‖ek‖2. (4.9)

If 2K0‖e0‖ ≤ 1, then by induction we can see that{xk} is well-defined and

‖ek‖ ≤ 2‖e0‖ for all k≥ 0. (4.10)

This together with (4.9) and (2.20) gives

‖ek+1− rαk(A )e0‖. ‖[rαk(Ak)− rαk(A )]e0‖+K0‖ek‖2 . K0‖e0‖‖ek‖. (4.11)

Thus, by Assumption 2 and the smallness ofK0‖e0‖ we obtain (4.6) by induction. (4.7) is an
immediate consequence of (4.11) and (4.6).

In order to show (4.8), we first consider the casek> 0. Note thatxk−xl has a similar expres-
sion as in (3.30), so we may use (2.20), Assumption 5 and (4.10) to obtain

‖xk− xl‖. ‖rαk−1(A )e0− rαl−1(A )e0‖+K0‖e0‖(‖ek−1‖+ ‖el−1‖)
+K0‖ek−1‖2+K0‖el−1‖2

. ‖[rαk−1(A )− rαl−1(A )]e0‖+K0‖e0‖(‖ek−1‖+ ‖el−1‖) . (4.12)

By Lemma 1 withx= e0, x̄= ek, α = αl−1, β = αk−1 andA= F ′(x†), we have

‖[rαk−1(A )− rαl−1(A )]e0‖. ‖rαk−1(A )e0−ek‖+
1√αl−1

‖F ′(x†)ek‖.

With the help of (2.18), (4.10), and the smallness of(K1+K2)‖e0‖, we have

‖F ′(x†)ek‖ ≤ ‖F(xk)− y‖+ 1
2
‖F ′(x†)ek‖. (4.13)

Therefore‖F ′(x†)ek‖ ≤ 2‖F(xk)− y‖. This together with (4.11) and (4.7) then implies

‖[rαk−1(A )− rαl−1(A )]e0‖. K0‖e0‖‖ek‖+
1√
αl

‖F(xk)− y‖.

Combining this with (4.12) gives

‖xk− xl‖. K0‖e0‖‖ek‖+ ‖el‖+
1√
αl

‖F(xk)− y‖

which implies (4.8) ifK0‖e0‖ is sufficiently small.
For the casek = 0, we can assumel ≥ 1. Since (4.8) is valid fork= 1, we may use (4.7) to

conclude that (4.8) is also true fork= 0.
Step 3. We will show for allk≥ 0 that

‖F ′(x†)ek‖. ‖rαk(A )A 1/2e0‖+α1/2
k ‖rαk(A )e0‖. (4.14)
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To this end, first we may use the similar manner in deriving (4.3) to conclude

‖F ′(x†)ek‖. α1/2
k ‖e0‖. (4.15)

Note that Assumption 6 and (4.10) imply

‖[F ′(x†)−F ′(xk)]ek‖ ≤ (K1+K2)‖ek‖‖F ′(x†)ek‖
. (K1+K2)‖e0‖‖F ′(x†)ek‖.

Therefore
‖F ′(xk)ek‖. ‖F ′(x†)ek‖. (4.16)

In particular this implies

‖F ′(xk)ek‖. α1/2
k ‖e0‖. (4.17)

By using (3.33), (2.21), Assumption 6, (2.18) and Assumption 1(a) we obtain

‖F ′(x†)ek+1‖. ‖rαk(A )A 1/2e0‖+(K0+K1)‖e0‖‖ek‖α1/2
k

+K2‖e0‖
(

‖F ′(x†)ek‖+ ‖F′(xk)ek‖
)

+(K1+K2)‖ek‖‖F ′(xk)ek‖+K1(K1+K2)‖ek‖2‖F ′(xk)ek‖
+K2(K1+K2)‖ek‖‖F ′(xk)ek‖2α−1/2

k .

Thus, with the help of (4.6), (4.15), (4.16), (4.17) and (4.10), we obtain

‖F ′(x†)ek+1‖. ‖rαk(A )A 1/2e0‖+α1/2
k ‖rαk(A )e0‖+K2‖e0‖‖F ′(x†)ek‖.

The estimates (4.14) thus follows by Assumption 2 and an induction argument ifK2‖e0‖ is
sufficiently small.

Step 4. Now we will establish some stability estimates. We will show for all 0≤ k≤ nδ that

‖xδ
k − xk‖.

δ√
αk

(4.18)

and
‖F(xδ

k )−F(xk)− yδ + y‖ ≤ (1+C(K0+K1+K2)‖e0‖)δ . (4.19)

In order to show (4.18), we use again the decomposition (3.18) for xδ
k+1−xk+1. We still have

‖I2‖ ≤ c4δ/
√

αk. By using (2.20) the termI1 can be estimated as

‖I1‖. K0‖e0‖‖xδ
k − xk‖.

In order to estimateI3, we note that Assumption 5 implies

I3 =
∫ 1

0

[

gαk(Ak)Ak−gαk(A
δ

k )A δ
k

]

[R(xk− tek,xk)− I ]ekdt

+

∫ 1

0
gαk(A

δ
k )F ′(xδ

k )
∗
[

F ′(xδ
k )−F ′(xk)

]

[R(xk− tek,xk)− I ]ekdt

=
∫ 1

0

[

rαk(A
δ

k )− rαk(Ak)
]

[R(xk− tek,xk)− I ]ekdt

+

∫ 1

0
gαk(A

δ
k )A δ

k

[

I −R(xk,x
δ
k )
]

[R(xk− tek,xk)− I ]ekdt.

Thus, by using (2.20) and (4.10), we obtain

‖I3‖. K2
0‖ek‖2‖xδ

k − xk‖. K2
0‖e0‖2‖xδ

k − xk‖.
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In order to estimateI4, we again use Assumption 5 to write

I4 = gαk(A
δ

k )F ′(xδ
k )

∗
[

F(xk)−F(xδ
k )−F ′(xδ

k )(xk− xδ
k )
]

+gαk(A
δ

k )F ′(xδ
k )

∗
[

F ′(xδ
k )−F ′(xk)

]

ek

=

∫ 1

0
gαk(A

δ
k )A δ

k

[

R(xδ
k + t(xk− xδ

k ),x
δ
k )− I

]

(xk− xδ
k )dt

+gαk(A
δ

k )A δ
k

[

I −R(xk,x
δ
k )
]

ek.

Hence, we may use (4.2) and (4.10) to derive that

‖I4‖. K0‖xδ
k − xk‖2+K0‖ek‖‖xδ

k − xk‖. K0‖e0‖‖xδ
k − xk‖.

Combining the above estimates we obtain for 0≤ k< nδ

‖xδ
k+1− xk+1‖.

δ√
αk

+K0‖e0‖‖xδ
k − xk‖.

Thus, ifK0‖e0‖ is sufficiently small, we can obtain (4.18) immediately.
Next we show (4.19) by using (3.20). We still have (3.21). In order to estimate‖F ′(xδ

k )I1‖,
‖F ′(xδ

k )I3‖ and‖F ′(xδ
k )I4‖, we note that Assumption 6, (4.10), (4.15) and (4.18) imply

‖[F ′(xk)−F ′(x†)](xδ
k − xk)‖

≤ K1‖ek‖‖F ′(x†)(xδ
k − xk)‖+K2‖F ′(x†)ek‖‖xδ

k − xk‖
. K1‖e0‖‖F ′(x†)(xδ

k − xk)‖+K2‖e0‖δ ,

which in turn gives
‖F ′(xk)(x

δ
k − xk)‖. ‖F ′(x†)(xδ

k − xk)‖+ δ . (4.20)

Similarly, we have
‖F ′(xδ

k )(x
δ
k − xk)‖. ‖F ′(x†)(xδ

k − xk)‖+ δ . (4.21)

Thus, by using (2.21), (4.18), (4.20) and (4.21) we have

‖F ′(xδ
k )I1‖. (K0+K1)‖e0‖α1/2

k ‖xδ
k − xk‖

+K2‖e0‖
(

‖F ′(xδ
k )(x

δ
k − xk)‖+ ‖F ′(xk)(x

δ
k − xk)‖

)

. (K0+K1+K2)‖e0‖δ +K2‖e0‖‖F ′(x†)(xδ
k − xk)‖.

Moreover, by employing (3.22), (2.20), Assumption 6, (2.18), (4.10), (4.17), (4.18) and (4.20),
‖F ′(xδ

k )I3‖ can be estimated as

‖F ′(xδ
k )I3‖. (K0+K1)‖xδ

k − xk‖‖uk‖+α−1/2
k K2‖F ′(xk)(x

δ
k − xk)‖‖uk‖

. (K0+K1+K2)(K1+K2)‖e0‖2δ

+K2(K1+K2)‖e0‖2‖F ′(x†)(xδ
k − xk)‖.

while, by using Assumption 6, (2.18), (4.2), (4.10), (4.4),(4.18), (4.20) and (4.21),‖F ′(xδ
k )I4‖

can be estimated as

‖F ′(xδ
k )I4‖ ≤ ‖F(xδ

k )−F(xk)−F ′(xk)(x
δ
k − xk)‖+ ‖[F ′(xδ

k )−F ′(xk)]e
δ
k‖

. (K1+K2)‖xδ
k − xk‖‖F ′(xk)(x

δ
k − xk)‖

+K1‖xδ
k − xk‖‖F ′(xδ

k )e
δ
k‖+K2‖F ′(xδ

k )(x
δ
k − xk)‖‖eδ

k‖
. (K1+K2)‖e0‖δ +(K1+K2)‖e0‖‖F ′(x†)(xδ

k − xk)‖.
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Combining the above estimates we get

‖F ′(xδ
k )(x

δ
k+1− xk+1)− yδ + y‖

≤ (1+C(K0+K1+K2)‖e0‖)δ +C(K1+K2)‖e0‖‖F ′(x†)(xδ
k − xk)‖. (4.22)

This in particular implies

‖F ′(xδ
k )(x

δ
k+1− xk+1)‖. δ +(K1+K2)‖e0‖‖F ′(x†)(xδ

k − xk)‖.

On the other hand, similar to the derivation of (4.20), by Assumption 6, (4.2), (4.4) and (4.18)
we have for 0≤ k< nδ that

‖F ′(x†)(xδ
k+1− xk+1)‖. K2‖e0‖δ + ‖F ′(xδ

k )(x
δ
k+1− xk+1)‖.

Therefore
‖F ′(x†)(xδ

k+1− xk+1)‖. δ +(K1+K2)‖e0‖‖F ′(x†)(xδ
k − xk)‖.

Thus, if(K1+K2)‖e0‖ is small enough, then we can conclude

‖F ′(x†)(xδ
k − xk)‖. δ , 0≤ k≤ nδ . (4.23)

Combining this with (4.22) gives for 0≤ k< nδ

‖F ′(xδ
k )(x

δ
k+1− xk+1)− yδ + y‖ ≤ (1+C(K0+K1+K2)‖e0‖)δ . (4.24)

Hence, by using (4.24), Assumption 6, (4.2), (4.5), (4.18),(4.21) and (4.23), we obtain for 0≤
k≤ nδ

‖F ′(xδ
k )(x

δ
k − xk)− yδ + y‖ ≤ (1+C(K0+K1+K2)‖e0‖)δ .

This together with (2.18), (4.2) and (4.10) implies (4.19).
Step 5. Now we are ready to complete the proof. By using the definition of kδ , (4.19), (2.18)

and (4.14) we have for 0≤ k< kδ

τδ ≤ ‖F(xδ
k )− yδ‖ ≤ ‖F(xδ

k )−F(xk)− yδ + y‖+ ‖F(xk)− y‖
≤ (1+C(K0+K1+K2)‖e0‖)δ +C‖F ′(x†)ek‖
≤ (1+C(K0+K1+K2)‖e0‖)δ +C‖rαk(A )A 1/2e0‖+Cα1/2

k ‖rαk(A )e0‖.

Sinceτ > 1, by assuming(K0+K1+K2)‖e0‖ is small enough, we can conclude for 0≤ k< kδ
that

(τ −1)δ . ‖rαk(A )A 1/2e0‖+α1/2
k ‖rαk(A )e0‖. (4.25)

Whenx0− x† satisfies (1.10) for someω ∈ X and 0< ν ≤ ν̄ −1/2, by using (4.25), (4.8),
(4.6), (4.18), (4.19) and the definition ofkδ , we can employ the similar argument as in the last
part of the proof of Theorem 1 to conclude (2.22).

Whenx0−x† satisfies (1.11) for someω ∈ X andµ > 0, we have from Assumption 1(a) and
(2.3) that

‖rαk(A )A 1/2e0‖+α1/2
k ‖rαk(A )e0‖ ≤

(

c0b1/2
2µ +bµ

)

α1/2
k (− ln(αk/(2α0)))

−µ ‖ω‖.

This and (4.25) imply that there exists a constantCµ > 0 such that

(τ −1)δ <Cµα1/2
k (− ln(αk/(2α0)))

−µ ‖ω‖, 0≤ k< kδ .

If we introduce the integer̂kδ by

α1/2
k̂δ

(

− ln(αk̂δ
/(2α0))

)−µ
≤ (τ −1)δ

Cµ‖ω‖ < α1/2
k (− ln(αk/(2α0)))

−µ , 0≤ k< k̂δ ,
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then kδ ≤ k̂δ . Thus, by using (4.8), (4.18), (4.19), the definition ofkδ and the fact‖ek‖ .

‖rαk(A )e0‖ . (− ln(αk/(2α0)))
−µ‖ω‖, we can use the similar manner in deriving (3.35) to

get

‖eδ
kδ
‖.

(

− ln(αk̂δ
/(2α0))

)−µ
‖ω‖+ δ

√αk̂δ

.
δ

√αk̂δ

. (4.26)

By elementary argument we can show from (1.4) and the definition of k̂δ that there is a constant
cµ > 0 such that

αk̂δ
≥ r−1αk̂δ−1 ≥ cµ

(

δ
‖ω‖

)2(

1+

∣

∣

∣

∣

ln
δ

‖ω‖

∣

∣

∣

∣

)2µ
.

This together with (4.26) implies the estimate (2.23). ✷

5 Proof of Theorem 3

If x0 = x†, thenkδ = 0 and the result is trivial. Therefore, we will assumex0 6= x†. We definêkδ
to be the first integer such that

‖rαk̂δ
(A )A 1/2e0‖+α1/2

k̂δ
‖rαk̂δ

(A )e0‖ ≤ cδ ,

where the constantc> 0 is chosen so that we may apply Lemma 6 or (4.25) to concludekδ ≤ k̂δ .
By (1.4), sucĥkδ is clearly well-defined and is finite. Moreover, by a contradiction argument it
is easy to show that

k̂δ → ∞ asδ → 0. (5.1)

Now, under the conditions of Theorem 3 (i) we use Lemma 2, Lemma 4 and (3.24), while
under the conditions of Theorem 3 (ii) we use (4.18), (4.19),(4.6) and (4.8), then from the
definition ofkδ we have

‖eδ
kδ
‖. ‖ekδ ‖+

δ
√αkδ

. ‖ekδ ‖+
δ

√αk̂δ

. ‖ek̂δ
‖+ 1

√αk̂δ

(

‖F(xkδ )− y‖+ δ
)

. ‖rαk̂δ
(A )e0‖+

δ
√αk̂δ

.
δ

√αk̂δ

. (5.2)

We therefore need to derive the lower bound ofαk̂δ
under the conditions one0. We set for each

α > 0 and 0≤ µ ≤ ν̄

cµ(α) :=

[

∫ 1/2

0
α−2µ rα(λ )2λ 2µd(Eλ ω ,ω)

]1/2

,

where{Eλ} denotes the spectral family generated byA . It is easy to see for each 0≤ µ < ν̄ that
α−2µ rα (λ )2λ 2µ is uniformly bounded for allα > 0 andλ ∈ [0,1/2] andα−2µ rα (λ )2λ 2µ → 0
asα → 0 for all λ ∈ (0,1/2]. Sinceω ∈ N (F ′(x†))⊥, by the dominated convergence theorem
we have for each 0≤ µ < ν̄

cµ(α)→ 0 asα → 0. (5.3)
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By the definition ofk̂δ , (1.4), Assumption 2, and the conditione0 = A ν ω we have

δ . ‖rαk̂δ −1
(A )A 1/2e0‖+αk̂δ−1‖rαk̂δ −1

(A )e0‖

. ‖rαk̂δ
(A )A 1/2e0‖+αk̂δ

‖rαk̂δ
(A )e0‖

. αν+1/2
k̂δ

(

cν(αk̂δ
)+ cν+1/2(αk̂δ

)
)

This implies

αk̂δ
≥
(

cδ
cν(αk̂δ

)+ cν+1/2(αk̂δ
)

)2/(1+2ν)

. (5.4)

Combining (5.2) and (5.4) gives

‖eδ
kδ
‖.

(

cν(αk̂δ
)+ cν+1/2(αk̂δ

)
)1/(1+2ν)

δ 2ν/(1+2ν)

Since 0≤ ν < ν̄ −1/2, this together with (5.1) and (5.3) gives the desired conclusion.

6 Applications

In this section we will consider some specific methods definedby (1.3) by presenting several
examples of{gα}. We will verify that those assumptions in Section 2 are satisfied for these
examples.

6.1 Example 1

We first consider the functiongα given by

gα(λ ) =
(α +λ )m−αm

λ (α +λ )m , (6.1)

wherem≥ 1 is a fixed integer. This function arises from the iterated Tikhonov regularization of
orderm for linear ill-posed problems. Note that whenm= 1, the corresponding method defined
by (1.3) is exactly the iteratively regularized Gauss-Newton method (1.8). It is clear that the
residual function corresponding to (6.1) is

rα (λ ) =
αm

(α +λ )m.

By elementary calculations it is easy to see that Assumption1(a) and (b) are satisfied withc0 =
(m−1)m−1/mm andc1 = m. Moreover (2.1) is satisfied with

c3 =
1√

2m−1

(

2m−1
2m

)m

and c4 =

(

1−
(

m+1
m+3

)m)√
m.

By using the elementary inequality

1− (1− t)n ≤
√

nt, 0≤ t ≤ 1 (6.2)

for any integern≥ 0, we have for 0< α ≤ β andλ ≥ 0 that

rβ (λ )− rα(λ ) = rβ (λ )
[

1−
(

1− λ/α −λ/β
1+λ/α

)m]

≤ m1/2

√

λ
α

rβ (λ ).
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This verifies Assumption 1(c) withc2 = m1/2. It is well-known that the qualification forgα is
ν̄ = m and (2.2) is satisfied withdν = (ν/m)ν((m−ν)/m)m−ν ≤ 1 for each 0≤ ν ≤ m. For the
sequence{αk} satisfying (1.4), Assumption 2 is satisfied withc5 = rm.

In order to verify Assumption 4, we note that

rα(A
∗A)− rα(B

∗B)

= αm
m

∑
i=1

(αI +A∗A)−i [A∗(B−A)+ (B∗−A∗)B](αI +B∗B)−m−1+i. (6.3)

Thus, by using the estimates

‖(αI +A∗A)−i(A∗A)µ‖ ≤ α−i+µ for i ≥ 1 and 0≤ µ ≤ 1,

we can verify (2.11), (2.12) and (2.13) easily.
Note also thatgα(λ ) = α−1 ∑m

i=1 α i(α +λ )−i. We have, by using (2.12),

‖[gα(A
∗A)−gα(B

∗B)]B∗‖ ≤ α−1
m

∑
i=1

‖α i [(αI +A∗A)−i − (αI +B∗B)−i ]B∗‖

. α−1‖A−B‖,

which verifies (2.14).
Finally we verify Assumption 7 by assuming thatF satisfies Assumption 5 and Assumption

6. We will use the abbreviationF ′
x := F ′(x) for x ∈ Bρ(x†). With the help of (6.3) withA = F ′

x
andB= F ′

z, we obtain from Assumption 5 that

‖rα(F
′∗
x F ′

x)− rα(F
′∗
z F ′

z)‖

≤ αm
m

∑
i=1

‖(αI +F ′∗
x F ′

x)
−iF ′∗

x F ′
x[R(z,x)− I ](αI +F ′∗

z F ′
z)

−m−1+i‖

+αm
m

∑
i=1

‖(αI +F ′∗
x F ′

x)
−i [I −R(x,z)]∗F ′∗

z F ′
z(αI +F ′∗

z F ′
z)

−m−1+i‖

≤ αm
m

∑
i=1

α−i+1‖I −R(z,x)‖α−m−1+i +αm
m

∑
i=1

α−i‖I −R(x,z)‖α−m+i

. ‖I −R(z,x)‖+ ‖I −R(x,z)‖

. K0‖x− z‖

which verifies (2.20). In order to show (2.21), we note that, for anya∈ X andb∈Y satisfying
‖a‖= ‖b‖= 1, (6.3) implies

(F ′
x[rα(F

′∗
x F ′

x)− rα(F
′∗
z F ′

z)]a,b)

≤ αm
m

∑
i=1

α−i+1‖(F ′
z −F ′

x)(αI +F ′∗
z F ′

z)
−m−1+ia‖‖b‖

+αm
m

∑
i=1

α−m−1/2+i‖(F ′
z −F ′

x)(αI +F ′∗
x F ′

x)
−iF ′∗

x b‖‖a‖.
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Thus, by using Assumption 6, we have

(F ′
x[rα(F

′∗
x F ′

x)− rα(F
′∗
z F ′

z)]a,b)

≤ αm
m

∑
i=1

α−i+1K1‖x− z‖‖F′
z(αI +F ′∗

z F ′
z)

−m−1+ia‖

+αm
m

∑
i=1

α−i+1K2‖F ′
z(x− z)‖‖(αI +F ′∗

z F ′
z)

−m−1+ia‖

+αm
m

∑
i=1

α−m−1/2+iK1‖x− z‖‖F′
x(αI +F ′∗

x F ′
x)

−iF ′∗
x b‖

+αm
m

∑
i=1

α−m−1/2+iK2‖F ′
x(x− z)‖‖(αI +F ′∗

x F ′
x)

−iF ′∗
x b‖

. K1α1/2‖x− z‖+K2
(

‖F ′
x(x− z)‖+ ‖F′

z(x− z)‖
)

.

This verifies (2.21).
The above analysis shows that Theorem 1, Theorem 2 and Theorem 3 are applicable for the

method defined by (1.3) and (1.7) withgα given by (6.1). Thus we obtain the following result.

Corollary 1 Let F satisfy (2.8) and (2.9), let{αk} be a sequence of numbers satisfying (1.4),
and let{xδ

k} be defined by (1.3) with gα given by (6.1) for some fixed integer m≥ 1. Let kδ be
the first integer satisfying (1.7) withτ > 1.

(i) If F satisfies Assumption 3 and if x0− x† satisfies (1.10) for someω ∈ X and1/2≤ ν ≤
m−1/2, then

‖xδ
kδ
− x†‖ ≤Cν‖ω‖1/(1+2ν)δ 2ν/(1+2ν)

provided L‖u‖ ≤ η0, where u∈ N (F ′(x†)∗)⊥ ⊂ Y is the unique element such that x0 − x† =
F ′(x†)∗u, η0 > 0 is a constant depending only on r,τ and m, and Cν > 0 is a constant depending
only on r,τ, m andν.

(ii) Let F satisfy Assumption 5 and Assumption 6, and let x0− x† ∈ N(F ′(x†))⊥. Then there
exists a constantη1 > 0 depending only on r,τ and m such that if(K0+K1+K2)‖x0−x†‖ ≤ η1

then
lim
δ→0

xδ
kδ

= x†,

moreover, when x0− x† satisfies (1.10) for someω ∈ X and0< ν ≤ m−1/2, then

‖xδ
kδ
− x†‖ ≤Cν‖ω‖1/(1+2ν)δ 2ν/(1+2ν)

for some constant Cν > 0 depending only on r,τ, m andν; while when x0− x† satisfies (1.11)
for someω ∈ X andµ > 0, then

‖xδ
kδ
− x†‖ ≤Cµ‖ω‖

(

1+

∣

∣

∣

∣

ln
δ

‖ω‖

∣

∣

∣

∣

)−µ

for some constant Cµ depending only on r,τ, m andµ .

Corollary 1 withm= 1 reproduces those convergence results in [3,8] for the iteratively reg-
ularized Gauss-Newton method (1.8) together with the discrepancy principle (1.7) under some-
what different conditions onF . Note that those results in [3,8] requireτ be sufficiently large,
while our result is valid for anyτ > 1. This less restrictive requirement onτ is important in nu-
merical computations since the absolute error could increase with respect toτ. Moreover, when
x0− x† satisfies (1.10) withν = 1/2, Corollary 1 withm= 1 improves the corresponding result
in [3], since we only need the Lipschitz condition onF ′ here.

Corollary 1 shows that the method defined by (1.3) and (1.7) with gα given by (6.1) is or-
der optimal for 0< ν ≤ m−1/2. However, we can not expect better rate of convergence than
O(δ (2m−1)/(2m)) even ifx0− x† satisfies (1.10) withm−1/2< ν ≤ m. An a posteriori stopping
rule without such saturation has been studied in [9,10] for the iteratively regularized Gauss-
Newton method (1.8).
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6.2 Example 2

We consider the functiongα given by

gα(λ ) =
[1/α ]

∑
i=0

(1−λ )i (6.4)

which arises from the Landweber iteration applying to linear ill-posed problems. With such
choice ofgα , the method (1.3) becomes

xδ
k+1 = x0−

[1/αk]

∑
i=0

(

I −F ′(xδ
k )

∗F ′(xδ
k )
)i

F ′(xδ
k )

∗
(

F(xδ
k )− yδ −F ′(xδ

k )(x
δ
k − x0)

)

which is equivalent to the form

xδ
k,0 = x0,

xδ
k,i+1 = xδ

k,i −F ′(xδ
k )

∗
(

F(xδ
k )− yδ +F ′(xδ

k )(x
δ
k,i − xδ

k )
)

, 0≤ i ≤ [1/αk],

xδ
k+1 = xδ

k,[1/αk]+1.

This method has been considered in [12] and is called the Newton-Landweber iteration.
Note that the corresponding residual function is

rα (λ ) = (1−λ )[1/α ]+1. (6.5)

It is easy to see that Assumption 1(a), (b) and (2.1) hold with

c0 =
1
2
, c1 = 2, c3 =

√
2

3
and c4 =

√
2.

Moreover, by (6.2) we have for any 0< α ≤ β that

rβ (λ )− rα(λ ) = rβ (λ )
(

1− (1−λ )[1/α ]−[1/β ]
)

≤
√

λ
α

rβ (λ ).

This verifies Assumption 1(c) withc2 = 1. It is well-known that the qualification of linear
Landweber iteration is̄ν = ∞ and (2.2) is satisfied withdν = νν for each 0≤ ν < ∞.

In order to verify Assumption 2, we restrict the sequence{αk} to be of the formαk := 1/nk,
where{nk} is a sequence of positive integers such that

0≤ nk+1−nk ≤ q and lim
k→∞

nk = ∞ (6.6)

for someq≥ 1. Then forλ ∈ [0,1/2] we have

rαk(λ ) = (1−λ )nk−nk+1rαk+1(λ )≤ 2qrαk+1(λ ).

Thus Assumption 2 is also true.
In order to verify Assumption 4, we will use some techniques from [7,12] and the following

well-known estimates

‖(I −A∗A) j(A∗A)ν‖ ≤ νν( j +ν)−ν , j ≥ 0, ν ≥ 0 (6.7)

for any bounded linear operatorA satisfying‖A‖ ≤ 1.
For anyα > 0, we setk := [1/α]. LetA andB be any two bounded linear operators satisfying

‖A‖,‖B‖ ≤ 1. Then it follows from (6.5) that

rα(A
∗A)− rα(B

∗B) =
k

∑
j=0

(I −A∗A) j [A∗(B−A)+ (B∗−A∗)B] (I −B∗B)k− j . (6.8)



32

By using (6.7) we have

‖rα(A
∗A)− rα(B

∗B)‖.
k

∑
j=0

(

( j +1)−1/2+(k+1− j)−1/2
)

‖A−B‖

.
√

k‖A−B‖. 1√
α
‖A−B‖.

This verifies (2.11).
From (6.8) we also haveA[rα(A∗A)− rα(B∗B)]B∗ = J1+ J2, where

J1 :=
k

∑
j=0

(I −AA∗) jAA∗(B−A)(I −B∗B)k− jB∗,

J2 :=
k

∑
j=0

A(I −A∗A) j(B∗−A∗)(I −BB∗)k− jBB∗.

In order to verify (2.13), it suffices to show‖J1‖ . (k+1)−1/2‖A−B‖ since the estimate onJ2

is exactly the same. We writeJ1 = J(1)1 + J(2)2 , where

J(1)1 :=
[k/2]

∑
j=0

(I −AA∗) jAA∗(B−A)(I −B∗B)k− jB∗,

J(2)1 :=
k

∑
j=[k/2]+1

(I −AA∗) jAA∗(B−A)(I −B∗B)k− jB∗.

With the help of (6.7), we can estimateJ(2)1 as

‖J(2)1 ‖.
k

∑
j=[k/2]+1

( j +1)−1(k+ j −1)−1/2‖A−B‖

. (k+1)−1
k

∑
j=0

(k+1− j)−1/2‖A−B‖. (k+1)−1/2‖A−B‖.

In order to estimateJ(1)1 , we useAA∗ = I − (I −AA∗) to rewrite it as

J(1)1 =
[k/2]

∑
j=0

(I −AA∗) j(B−A)(I −B∗B)k− jB∗

−
[k/2]+1

∑
j=1

(I −AA∗) j(B−A)(I −B∗B)k+1− jB∗

=(B−A)(I −B∗B)kB∗− (I −AA∗)[k/2]+1(B−A)(I −B∗B)k−[k/2]B∗

+
[k/2]

∑
j=1

(I −AA∗) j (B−A)(I −B∗B)k− j(B∗B)B∗.

Thus, in view of (6.7), we obtain

‖J(1)1 ‖.(k+1)−1/2‖A−B‖+(k− [k/2]+1)−1/2‖A−B‖

+
[k/2]

∑
j=1

(k− j +1)−3/2‖A−B‖

.(k+1)−1/2‖A−B‖.
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We thus verify (2.13). The verification of (2.12) can be done similarly.
Applying the estimate (2.12), we obtain

‖ [gα(A
∗A)−gα(B

∗B)]B∗‖ ≤
k

∑
j=1

‖
[

(I −A∗A) j − (I −B∗B) j]B∗‖

. k‖A−B‖. 1
α
‖A−B‖,

which verifies (2.14).
Finally we verify Assumption 7 by assuming thatF satisfies Assumption 5 and Assumption

6. From (6.8) and Assumption 5 it follows that

rα (F
′∗
x F ′

x)− rα(F
′∗
z F ′

z) =
k

∑
j=0

(I −F ′∗
x F ′

x)
j F ′∗

x F ′
x(R(z,x)− I)(I −F ′∗

z F ′
z)

k− j

+
k

∑
j=0

(I −F ′∗
x F ′

x)
j(I −R(x,z))∗F ′∗

z F ′
z(I −F ′∗

z F ′
z)

k− j .

Thus we may use the argument in the verification of (2.13) to conclude

‖rα(F
′∗
x F ′

x)− rα(F
′∗
z F ′

z)‖. ‖I −R(x,z)‖+ ‖I −R(z,x)‖. K0‖x− z‖.
This verifies (2.20).

By using (6.8) and Assumption 5 we also have for anyw∈ X

F ′
x[rα (F

′∗
x F ′

x)− rα(F
′∗
z F ′

z)]w= Q1+Q2+Q3+Q4,

where

Q1 =
[k/2]

∑
j=0

(I −F ′
xF ′∗

x ) j(F ′
xF ′∗

x )(F ′
z −F ′

x)(I −F ′∗
z F ′

z)
k− jw,

Q2 =
k

∑
j=[k/2]+1

(I −F ′
xF ′∗

x ) j(F ′
xF ′∗

x )(F ′
z −F ′

x)(I −F ′∗
z F ′

z)
k− jw,

Q3 =
[k/2]

∑
j=0

(I −F ′
xF ′∗

x ) jF ′
x(I −R(x,z))∗(F ′∗

z F ′
z)(I −F ′∗

z F ′
z)

k− jw,

Q4 =
k

∑
j=[k/2]+1

(I −F ′
xF ′∗

x ) jF ′
x(I −R(x,z))∗(F ′∗

z F ′
z)(I −F ′∗

z F ′
z)

k− jw.

By employing (6.7) it is easy to see that

‖Q3‖.
[k/2]

∑
j=0

( j +1)−1/2(k− j +1)−1‖I −R(x,z)‖‖w‖. (k+1)−1/2K0‖x− z‖‖w‖.

With the help of (6.7) and Assumption 6, we have

‖Q2‖.
k

∑
j=[k/2]+1

( j +1)−1‖(F ′
z −F ′

x)(I −F ′∗
z F ′

z)
k− j w‖

. K1‖x− z‖
k

∑
j=[k/2]+1

( j +1)−1(k− j +1)−1/2‖w‖

+K2‖F ′
z(x− z)‖

k

∑
j=[k/2]+1

( j +1)−1‖w‖

. (k+1)−1/2K1‖x− z‖‖w‖+K2‖F ′
z(x− z)‖‖w‖.
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By using the argument in the verification of (2.13) and Assumption 6 we obtain

‖Q1‖. ‖(F ′
z −F ′

x)(I −F ′∗
z F ′

z)
kw‖+ ‖(F ′

z−F ′
x)(I −F ′∗

z F ′
z)

k−[k/2]w‖

+
[k/2]

∑
j=1

‖(F ′
z −F ′

x)(I −F ′∗
z F ′

z)
k− j (F ′∗

z F ′
z)w‖

. (k+1)−1/2K1‖x− z‖‖w‖+K2‖F ′
z(x− z)‖‖w‖

+
[k/2]

∑
j=1

(

K1‖x− z‖(k− j +1)−3/2+K2‖F ′
z(x− z)‖(k− j +1)−1

)

‖w‖

. (k+1)−1/2K1‖x− z‖‖w‖+K2‖F ′
z(x− z)‖‖w‖.

Using Assumption 5 and the the similar argument in the verification of (2.13) we also have

‖Q4‖. (k+1)−1/2‖I −R(x,z)‖‖w‖. (k+1)−1/2K0‖x− z‖‖w‖.

Combining the above estimates we thus obtain for anyw∈ X

‖F ′
x[rα (F

′∗
x F ′

x)− rα(F
′∗
z F ′

z)]w‖
. (K0+K1)α1/2‖x− z‖‖w‖+K2‖F ′

z(x− z)‖‖w‖

which implies (2.21).
Therefore, Theorem 1, Theorem 2 and Theorem 3 are applicablefor the method defined by

(1.3) and (1.7) withgα given by (6.4).
The similar argument as above also applies to the situation wheregα is given by

gα(λ ) :=
[1/α ]

∑
i=0

(1+λ )−i

which arise from the Lardy’s method for solving linear ill-posed problems.
In summary, we obtain the following result.

Corollary 2 Let F satisfy (2.8) and (2.9), and let{αk} be a sequence given byαk = 1/nk, where
{nk} is a sequence of positive integers satisfying (6.6) for someq ≥ 1. Let {xδ

k} be defined by
(1.3) with

gα(λ ) =
[1/α ]

∑
i=0

(1−λ )i or gα(λ ) =
[1/α ]

∑
i=0

(1+λ )−i,

and let kδ be the first integer satisfying (1.7) withτ > 1.
(i) If F satisfies Assumption 3, and if x0− x† satisfies (1.10) for someω ∈ X andν ≥ 1/2,

then
‖xδ

kδ
− x†‖ ≤Cν‖ω‖1/(1+2ν)δ 2ν/(1+2ν)

provided L‖u‖ ≤ η0, where u∈ N (F ′(x†)∗)⊥ ⊂ Y is the unique element such that x0 − x† =
F ′(x†)∗u, η0 > 0 is a constant depending only onτ and q, and Cν is a constant depending only
on τ, q andν.

(ii) Let F satisfy Assumption 5 and Assumption 6, and let x0− x† ∈ N(F ′(x†))⊥. Then there
exists a constantη1 > 0 depending only onτ and q such that if(K0 +K1+K2)‖x0− x†‖ ≤ η1

then
lim
δ→0

xδ
kδ

= x†,

moreover, when x0− x† satisfies (1.10) for someω ∈ X andν > 0, then

‖xδ
kδ
− x†‖ ≤Cν‖ω‖1/(1+2ν)δ 2ν/(1+2ν)
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for some constant Cν > 0 depending only onτ, q andν; while when x0− x† satisfies (1.11) for
someω ∈ X andµ > 0, then

‖xδ
kδ
− x†‖ ≤Cµ‖ω‖

(

1+

∣

∣

∣

∣

ln
δ

‖ω‖

∣

∣

∣

∣

)−µ

for some constant Cµ depending only onτ, q andµ .

6.3 Example 3

As the last example we consider the method (1.3) withgα given by

gα(λ ) =
1
λ

(

1−e−λ/α
)

(6.9)

which arises from the asymptotic regularization for linearill-posed problems. In this method, the
iterated sequence{xδ

k} is equivalently defined asxδ
k+1 := xδ (1/αk), wherexδ (t) is the solution

of the initial value problem

d
dt

xδ (t) = F ′(xδ
k )

∗
(

yδ −F(xδ
k )+F ′(xδ

k )(x
δ
k − xδ (t))

)

, t > 0,

xδ (0) = x0.

Note that the corresponding residual function is

rα(λ ) = e−λ/α .

It is easy to see that Assumption 1(a), (b) and (2.1) hold with

c0 = e−1, c1 = 1, c3 =
1√
2e

and c4 =

√

2
e
.

By using the inequality 1−e−t ≤
√

t for t ≥ 0 we have for 0< α ≤ β that

rβ (λ )− rα(λ ) = rβ (λ )
(

1−eλ/β−λ/α
)

≤
√

λ
α
− λ

β
rβ (λ )≤

√

λ
α

rβ (λ ).

This verifies Assumption 1(c) withc2 = 1. It is well-known that the qualification of the linear
asymptotic regularization is̄ν = ∞ and (2.2) is satisfied withdν = (ν/e)ν for each 0≤ ν < ∞.

In order to verify Assumption 2, we assume that{αk} is a sequence of positive numbers
satisfying

0≤ 1
αk+1

− 1
αk

≤ θ0 and lim
k→∞

αk = 0 (6.10)

for someθ0 > 0. Then for allλ ∈ [0,1] we have

rαk(λ ) = e(1/αk+1−1/αk)λ rαk+1(λ )≤ eθ0rαk+1(λ ).

Thus Assumption 2 is also true.
In order to verify Assumption 4 and Assumption 7, we set for every integern≥ 1

rα ,n(λ ) :=

(

1+
λ
nα

)−n

, gα ,n(λ ) :=
1
λ

(

1−
(

1+
λ
nα

)−n
)

.
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Note that, for each fixedα > 0, {rα ,n} and {gα ,n} are uniformly bounded over[0,1], and
rα ,n(λ )→ rα (λ ) andgα ,n(λ )→ gα(λ ) asn→ ∞. By the dominated convergence theorem, we
have for any bounded linear operatorA with ‖A‖ ≤ 1 that

lim
n→∞

‖[rα(A
∗A)− rα ,n(A

∗A)]x‖2

= lim
n→∞

∫ ‖A‖2

0
(rα(λ )− rα ,n(λ ))2d(Eλ x,x) = 0

and

lim
n→∞

‖[gα(A
∗A)−gα ,n(A

∗A)]x‖2

= lim
n→∞

∫ ‖A‖2

0
(gα(λ )−gα ,n(λ ))2d(Eλ x,x) = 0

for any x ∈ X, where{Eλ} denotes the spectral family generated byA∗A. Thus it suffices to
verify Assumption 4 and Assumption 7 withgα andrα replaced bygα ,n andrα ,n with uniform
constantsc6, c7 and c8 independent ofn. Let A and B be any two bounded linear operators
satisfying‖A‖,‖B‖≤ 1. We need the following inequality which says for any integer n≥ 1 there
holds

‖rα ,n(A
∗A)(A∗A)ν‖ ≤ νν αν , 0≤ ν ≤ n. (6.11)

By noting that

rα ,n(A
∗A)− rα ,n(B

∗B)

=
1

nα

n

∑
i=1

rα ,i(A
∗A) [A∗(B−A)+ (B∗−A∗)B] rα ,n+1−i(B

∗B), (6.12)

we thus obtain

‖rα ,n(A
∗A)− rα ,n(B

∗B)‖ ≤
√

2
α
‖A−B‖,

‖[rα ,n(A
∗A)− rα ,n(B

∗B)]B∗‖ ≤ 3
2
‖A−B‖ (6.13)

and
‖A[rα ,n(A

∗A)− rα ,n(B
∗B)]B∗‖ ≤

√
2α‖A−B‖.

Furthermore, by noting thatgα ,n(λ ) = 1
nα ∑n

i=1 rα ,i(λ ), we may use (6.13) to conclude

‖[gα ,n(A
∗A)−gα ,n(B

∗B)]B∗‖ ≤ 1
nα

n

∑
i=1

‖[rα ,i(A
∗A)− rα ,i(B

∗B)]B∗‖

≤ 3
2α

‖A−B‖.

Assumption 4 is therefore verified.
It remains to verify Assumption 7 withgα andrα replaced bygα ,n andrα ,n with uniform

constantsc7 andc8 independent ofn. By using (6.12), Assumption 5 and (6.11) we have

‖rα ,n(F
′∗
x F ′

x)− rα ,n(F
′∗
z F ′

z)‖

≤ 1
nα

n

∑
i=1

‖rα ,i(F
′∗
x F ′

x)(F
′∗
x F ′

x)(R(z,x)− I)rα ,n+1−i(F
′∗
z F ′

z)‖

+
1

nα

n

∑
i=1

‖rα ,i(F
′∗
x F ′

x)(I −R(x,z))∗(F ′∗
z F ′

z)rα ,n+1−i(F
′∗
z F ′

z)‖

≤ ‖I −R(z,x)‖+ ‖I −R(x,z)‖
≤ 2K0‖x− z‖.
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This implies (2.20).
By using (6.12), Assumption 6 and (6.11) we also have for anya∈ X andb∈ Y satisfying

‖a‖= ‖b‖= 1 that

(F ′
x[rα ,n(F

′∗
x F ′

x)− rα ,n(F
′∗
z F ′

z)]a,b)

≤ 1
nα

n

∑
i=1

|(rα ,i(F
′
xF ′∗

x )(F ′
xF ′∗

x )(F ′
z −F ′

x)rα ,n+1−i(F
′∗
z F ′

z)a,b)|

+
1

nα

n

∑
i=1

|(a, rα ,n+1−i(F
′∗
z F ′

z)F
′∗
z (F ′

z −F ′
x)F

′∗
x rα ,i(F

′
xF ′∗

x )b)|

≤
√

2K1α1/2‖x− z‖+K2‖F ′
z(x− z)‖+ 1

2
K2‖F ′

x(x− z)‖.

This implies (2.21).
Therefore, we may apply Theorem 1, Theorem 2 and Theorem 3 to conclude the following

result.

Corollary 3 Let F satisfy (2.8) and (2.9), and let{αk} be a sequence of positive numbers satis-
fying (6.10) for someθ0 > 0. Let{xδ

k} be defined by (1.3) with gα given by (6.9) and let kδ be
the first integer satisfying (1.7) withτ > 1.

(i) If F satisfies Assumption 3, and if x0− x† satisfies (1.10) for someω ∈ X andν ≥ 1/2,
then

‖xδ
kδ
− x†‖ ≤Cν‖ω‖1/(1+2ν)δ 2ν/(1+2ν)

provided L‖u‖ ≤ η0, where u∈ N (F ′(x†)∗)⊥ ⊂ Y is the unique element such that x0 − x† =
F ′(x†)∗u, η0 > 0 is a constant depending only onτ, θ0 andα0, and Cν is a constant depending
only onτ, θ0, α0 andν.

(ii) Let F satisfy Assumption 5 and Assumption 6, and let x0− x† ∈ N(F ′(x†))⊥. Then there
exists a constantη1 > 0 depending only onτ, θ0 andα0 such that if(K0+K1+K2)‖x0−x†‖≤η1

then
lim
δ→0

xδ
kδ

= x†;

moreover, when x0− x† satisfies (1.10) for someω ∈ X andν > 0, then

‖xδ
kδ
− x†‖ ≤Cν‖ω‖1/(1+2ν)δ 2ν/(1+2ν)

for some constant Cν > 0 depending only onτ, θ0, α0 andν; while when x0−x† satisfies (1.11)
for someω ∈ X andµ > 0, then

‖xδ
kδ
− x†‖ ≤Cµ‖ω‖

(

1+

∣

∣

∣

∣

ln
δ

‖ω‖

∣

∣

∣

∣

)−µ

for some constant Cµ depending only onτ, θ0, α0 andµ .
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