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1 Introduction

In qualitative studies on nonlinear dynamical systems, invariant manifolds are om-
nipresent and play a crucial role in a variety of ways for local as well as global
questions: For instance, local stable and unstable manifolds dictate the saddle-
point behavior in the vicinity of hyperbolic solutions (or surfaces) of a system.
Center manifolds are a primary tool to simplify given dynamical systems in terms
of a reduction of their state space dimension (compare, e.g., the celebrated re-
duction principle of Pliss). Concerning a more global perspective, stable man-
ifolds serve as separatrix between different domains of attractions and allow a
classification of solutions with a specific asymptotic behavior. Systems with a
gradient structure possess global attractors consisting of unstable manifolds (and
equilibria). Finally, so-called inertial manifolds are global versions of the classi-
cal center-unstable manifolds and yield a global reduction principle for typically
infinite-dimensional dissipative equations.

For these reasons, the computation of invariant manifolds is a highly relevant
and interesting problem. However, although the existence of invariant manifolds is
a well-established matter in many different settings, their analytical computation
is possible only in very rare cases. Hence, one needs tools for their approxima-
tion, and at least since the 1990s, several methods have been pursued. We review
some of them with a certain focus on discrete dynamical systems: Maybe the
most self-evident (and theoretically for local questions relevant) approach is Tay-
lor approximation, for which a sufficiently general framework has been introduced
in [39]; moreover, Taylor expansions for large systems and related numerical is-
sues have been discussed in [5,12]. For global approximations, a geometrically
very intuitive approach motivated on attracting properties of unstable manifolds
was suggested in [10], based on set-oriented methods like subdivision and cell-
mapping-continuation. Clearly, the different theoretical methods for constructing
invariant manifolds imply also possibilities for their approximation. Among them
is the frequently used graph transformation due to Hadamard, on which the algo-
rithms developed in [39, Section 11], [13,6,37] (see [17] for an approach using
invariant foliations) are based on, where reference [37] deals with inertial mani-
folds. A second method with a more functional analytical background dates back
to Lyapunov and Perron, and forms the starting point for the contributions in [31]
and [37] (inertial manifolds) — in each case an integral operator has to be appro-
priately discretized. Vaguely related to this approach is the contribution of [30],
in which methods from the numerical approximation of boundary value problems
are applied to compute invariant manifolds. A third theoretical method to con-
struct invariant manifolds of differential equations is Sacker’s perturbation ap-
proach based on the fact that invariant surfaces satisfy a first-order quasi-linear
PDE, the so-called invariance equation. A solution scheme for such problems has
been developed very successfully in [15]. However, for discrete problems, the in-
variance equation is a functional equation and it would be interesting to develop
an analog approach for difference equations. Finally, also [16] deals with differ-
ential equations by considering whole bundles of trajectories and describing an
algorithm to control them in order to approximate invariant manifolds. Various
illustrative examples on this extensive area can be found in the well-written and
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interesting survey paper [24], to which we also refer for a more complete overview
of the corresponding vast literature.

Being aware of these highly successful and effective methods providing a quite
global picture of invariant manifolds, our motivation for the present work is three-
fold: First, many of the methods mentioned above deal with ordinary differen-
tial equations and in order to implement an approximation scheme for invariant
manifold, one has to work with an appropriate time discretization. We deal with
time-discrete problems right from the beginning and therefore our method can
be applied to time-discrete models, as well as to discretized ODEs. Here, it is
a typical issue that difference equations are rarely global homeomorphisms on a
relevant state space, whereas numerical discretizations of ODEs are (at least for
small step-sizes). Second, in many cases, the notion of a dynamical system is not
general enough to model several real world phenomena, since it is often indicated
to assume that the underlying rules are time-dependent. In biological processes,
for instance, it is more realistic to take evolutionary adaptations into account, and
sometimes it is unavoidable to consider random perturbations such as white noise
or to model the control of a process by a human being. The appropriate class to
treat such problems are so-called nonautonomous dynamical systems. Third, we
try to reduce the smoothness assumptions on the equations under consideration.
In fact, we only need their Lipschitz continuity. Such continuous, but not differ-
entiable models occur in a variety of applications ranging from electrical circuits
to linear complementary and cone-wise linear systems (see, e.g., [20] and the ref-
erences therein).

Compared to the autonomous case, the literature on the approximation of in-
variant manifolds for nonautonomous problems is quite sparse. A local method
to obtain Taylor approximations and to apply them in critical stability and bifur-
cation problems has been developed in [35]. However, there are two obstacles in
obtaining a good, i.e., high-order Taylor approximation. First of all, the smooth-
ness of a difference equation yields an upper bound for the differentiability of the
corresponding invariant manifolds. Hence, for only Lipschitzian equations, Taylor
approximations are out of question. In addition, even for C*-equations, the differ-
entiability of invariant manifolds also depends on the spectrum of the linear part
in terms of spectral gap conditions, and it is possible to construct invariant mani-
folds which are only C! (cf. [32, Example 4.2]) although the equations are much
smoother. Thus, a Taylor approximation is of little use in these cases.

Set-oriented methods work for only continuous right-hand sides satisfying a
global Lipschitz condition on a bounded set, and have been generalized to time-
dependent problems in [2]. Compared to our present approach from Section 3, we
got the impression that set-oriented algorithms are more robust in the sense that
convergence is obtained on larger sets. Nevertheless, the computational amount is
smaller for our method, and hence it appears to be faster. In addition, it directly
applies to stable manifolds (without computing the inverse, which might not exist)
and to implicit difference equations as well.

This paper deals with time-dependent difference equations. For readers unfa-
miliar with the nonautonomous theory, we have included the corresponding exis-
tence theorems for invariant manifolds (we call them invariant fiber bundles), as
well as the crucial steps of their construction using the Lyapunov-Perron method.
Many of the above mentioned methods to approximate invariant manifolds are
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strongly based on the autonomous invariance notion, where invariant sets are sub-
sets of a single state space. The corresponding nonautonomous invariance concept
canonically leads to the extended state space — a vector bundle of single state
spaces. For that reason it is not straight forward to generalize various of the above
methods to the general nonautonomous situation. However, the Lyapunov-Perron
approach has a sufficiently abstract and flexible nature for two reasons:

— One can characterize the full hierarchy of invariant manifolds (or fiber bun-
dles) including strongly stable, stable, center-stable and the corresponding un-
stable manifolds.

— It is successful even for time-dependent problems.

Indeed, in Section 2, invariant manifolds of nonautonomous difference equations
are characterized as fixed points of the Lyapunov-Perron operator in an infinite-
dimensional sequence space. In Section 3, we provide an error estimate enabling
us to replace this problem with a finite-dimensional system of nonlinear equations
representing the truncated Lyapunov-Perron fixed point problem. This system can
be solved using numerical methods for systems of nonlinear algebraic equations.
We suggest and have successfully employed various Newton-like methods to com-
pute single points on the invariant manifolds. Due to the relatively high dimension
of these problems (= 50-100), inexact Newton-methods with an iterative solution
of the resulting linear problem in each Newton-step proved to be the most effi-
cient ones. To compute whole fibers, continuation (path-following) techniques are
appropriate. We naively implemented a classical continuation, as well as a pseudo-
arclength algorithm (cf. [1]) for that purpose. A Levenberg-Marquardt algorithm
turned out to be sufficiently robust in order to use larger step-sizes as increments
for the continuation parameter.

Finally, several examples are discussed in Section 4 of this paper. To demon-
strate the performance of our algorithms, we investigate an autonomous planar
test example where the invariant manifolds are explicitly known and, depending
on the spectrum of the linear part, are of strongly stable, stable and strongly un-
stable type. To further illustrate our technique we take a nonautonomous version
of a popular model from population dynamics (see [26]) and compare our ap-
proach to set-oriented subdivision methods from [2]. The global unstable manifold
of the well-known Hénon map is approximated using pseudo-arclength continua-
tion. The Colpitts oscillator from [28] serves as model equation with a non-smooth
right-hand side. We apply an explicit Euler discretization and numerically obtain
its stable and center manifold. As a concluding more complex example we con-
sider a 2-dimensional attractive invariant manifold of a 6-dimensional difference
equation. It has been obtained as Bubnov-Galerkin discretization of a nonautono-
mous Chafee-Infante PDE (a prototypical nonlinear heat equation in 1d), with
linearly implicit Euler discretization in time, and is intended to approximate its
inertial manifold (cf. [38, Chapter 8]).

2 Difference equations and invariant fiber bundles
Throughout the paper, X is a general Banach space over the reals (K = R) or

complex numbers (K = C), equipped with norm ||-||, and L(X) the Banach alge-
bra of bounded linear operators. All considerations hold for infinite-dimensional
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linear spaces X — understandably, until it comes to explicit implementations of
algorithms on a computer, where some prior spatial (Bubnov-Galerkin, finite dif-
ference, or finite element) discretization is needed.

A discrete interval 1 is the intersection of a real interval with the integers Z.
We write [7,t],, := [1,f]NZ for 7,1 € R, and with T € (0, |, we abbreviate

+T)] T <oo _ [t—T,1] T <oo
]I+T - [177’- YA 9 1I-(T = s Y17 ’
< {[va)Z? T=oo L) (_mvﬂzv T =

Since our focus is on nonautonomous problems, the classical notion of a semi-
group (or dynamical system) has to be replaced by a discrete 2-parameter semi-
group, i.e., amapping @ : {(1,7,€) eI xTx X : 7 <t} — X with the properties

o(t,7.8)=¢&, o(t,s,0(s,7,8)) =0(t,7,8) forallt<s<r,{eX; (1)

we speak of a 2-parameter group, if ¢ is defined on I x I x X and (1) holds for all
T,s,t € 1. The product I x X is called extended state space and a subset S C T x X
is said to be a nonautonomous set with t-fiber S(t) := {x € X : (t,x) € S}. Such a
nonautonomous set is called positively invariant, if @(¢,7,5(t)) C S(¢) for 7 <t
and invariant, if equality holds in the last inclusion.

Suppose from now on that the discrete interval I is unbounded above or below.
We deal with explicit nonautonomous difference equations in semi-linear form

Xt+1 :A(I)X1+F(I,X[)7 (2)

with functions A : T — L(X) and F : I x X — X. For later reference, let ¢ be the
general solution of (2), recursively given as 2-parameter semigroup

fort =
o(t,7,8) := {A(,_l)(p(t— 1,T,§)—§F(t—1,(p(t— 1,7,&)) for; > z

The following general pseudo-hyperbolic exponential dichotomy notion will
be essential for the flexibility in our approach:

Hypothesis 1 Ler 0 < oy < o, Ky ,K_ > 1 and A : 1 — L(X). We assume that
there exist sequences P_, P, : 1 — L(X) of projections with P_(t) + Py (t) =1 on],

A(t+1)P_(tr) = P_(1)A(t) forallt €1,
A(t)|rp_))  R(P-(t)) — R(P-(t+1)) isinvertible forallt €1,  (3)
|D(1,5)P(s5)]| < Kyol™*  foralls<t,
|D(r,5)P-(s)|| < K_a'™* forallt <s,
where ®(t,s) .= [[._LA(r) and &(s,t) := H’r;lyA(r)\I;(lk (i fors <t.

Remark I In the autonomous case (i.e., A(t) = Ao is constant), the linearized sys-
tem (2) admits an exponential dichotomy for growth rates oy < o_, if the modulus
of each spectral point of Ay does not lie in [, &¢_]. Similarly, if A is @-periodic,
one has to consider spectral points of the monodromy operator ®(®,0).
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Because of the regularity condition (3), we know in the numerically approach-
able case d := dimX < o that the ranks of the projection Py (), € I, are constant,
and we can define

dy :==dimR(Py(t)) forallt el

For the sake of a compact and convenient notation it is advantageous to introduce
the Green’s function for x,1| = A(t)x;, given by

G(t,r):_{ ((tf) (7) forr<t

D(t,7)Py (1) fort>1

Having this at hand, we can establish our abstract functional analytical framework.
Giveny>0,7€land T € (0, °°]Z suchthat T—7 €l or 74T €1, respectively, it
is not difficult to see that the following spaces of exponentially bounded sequences

X2 (1) :={¢:H<T>Hx: sup 7* f|¢<>|<oo}

el (T)

become Banach spaces w.r.t. the respective norms

19117y := sup ¥ max{[[P- ()¢ ()], 1P+ (1) ()]} - )

relE (T)

Note that the condition sup, ;7 Y o(t)]] < oo is always fulfilled for finite
values T < eo. Hence, X;(T) = {¢ : I (T) — X} = X" ! in this case.
Often an element ¢(p) € X%Y(T) depends on parameters p, and we slightly

abuse our notation by writing ¢(z,p) € X instead of the cumbersome ¢ (p)(z).
This notational simplification will be used throughout the paper.

Hypothesis 2 Let F : 1 x X — X be a mapping satisfying

F(1,0)=0 onl Q)
and the local Lipschitz estimate

|F(t,x)—F(t,%)|| <L(r)|[x—x|| forallt €1, x,x€B.(0),r>0,

where the function L : [0,00] — [0, 0] is nondecreasing.
Remark 2 The assumption (5) is legitimate in problems where the behavior near
fixed reference solutions is in the center of interest. However, in certain more
global scenarios, e.g., in the situation of slow or inertial manifolds, it is possible

to weaken (5) and replace it by a condition of the form (cf. [33,34])

sup ol [|[F(2,0)]| < ee.
1€IE (o0)
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Of central importance in this section are the following discrete Lyapunov-Perron
operators T : X, (T) x X — X, (T), which, for given & € X, read as

T+T

T (9,8) = @(, )P ()€ + Z, G(r+1F(r,0(r),

7—1
Tr (9.8) =P, 1)P-(1)6+ Y, G(,r+1)F(r¢(r)),

r=7—-T

respectively. Note that 7 = oo is explicitly allowed. Since the dependence of ﬂTi
on 7T is of minor importance in this paper, we have suppressed it. The correspond-
ing respective fixed point problems

T+T

¢ = (-, 7)P (7)€ + )_: G(-,r+ 1)F(r,¢(r)) in X (T), (LP))
T—1

0=, 7)P_(1)E+ 7ZLTG(-,r+ DF(r,¢(r)) inX,(T)  (LP)

are denoted as discrete Lyapunov-Perron equations. They are related to the dy-
namical behavior of (2) as follows:

Proposition 1 Lett €, £ € X, vy € (a4, a_) and suppose Hypotheses 1-2 hold.
Ifo e X;S,(OO) is a sequence satisfying

L(s0Pregt o) 9(0)]) < o,

then the following assertions are equivalent:

(a) ¢ solves the nonautonomous difference equation (2) with P+ (7)¢(7) =&,
(b) ¢ is a fixed point of the Lyapunov-Perron equations (LPL).

Proof We restrict to the case ¢ € X y(e0), since the dual situation ¢ € X ()
can be treated similarly, and define R := sup,, [|¢(¢)||. Let us consider sequences

9+(1) := P (1)@ (¢) for 1 € I (co).
(a) = (b) If ¢ solves the difference equation (2), then ¢, is a solution of the
initial value problem

X1 = AP (0)x + Py (t+ 1)F (£,0(1)), x(1) =& ©6)

and the discrete variation of constants formula yields ¢ (1) = Py (1) 77 (1,9.&)
for all > 1. Moreover, by Hypotheses 1-2 and the triangle inequality, we have

G -
1P+ 1) [F(£,00))]I1Y"™" < K_L(R) [|9(1) | v"~" < 2K_L(R) [|9]|7,,
for all T <t, and hence the inhomogeneous part of equation

Xep1 =A()P-(1)x+P_(t+1)F(t,9(t)) 7
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is exponentially bounded. By [33, Lemma 3.1(a)] this equation admits a unique
solution ¢_ € X (o), which additionally has the form ¢_(r) = P_(t) 7 (t,9,&)
for all T <r. Then ¢ = ¢_ + ¢ solves the fixed point problem (LP;).

(b) = (a) Conversely, let ¢ € X', (o) be a solution of the Lyapunov-Perron
equation (LP;"). Then the discrete variation of constants formula implies that ¢
is the unique forward solution of the initial value problem (6). Furthermore, also
[33, Lemma 3.1(a)] guarantees that ¢_ is an exponentially bounded solution of
the linear inhomogeneous system (7). ]

Under stronger global conditions, we can establish the existence of unique
solutions for the Lyapunov-Perron equations:

Proposition2 Lert €1, & € X, T € (0,00|,, suppose Hypotheses 1-2 hold with

o — 0Oy

) ®)

0:=max{K_,K; } L(c0) <

and choose & € (¢, %((x, — oy)|. Then, for v € [ar + 0,0 — ©], the Lyapunov-
Perron equations (LP;) have a unique solution ¢ (&) € XT{E},(T) which satisfy

lox@)||F < X% 1po (e,

T o—4
and in addition, the sequences ¢; (&) do not depend on .

In order not to overextend our notation, we also suppress the dependence of the
sequences ¢;- (&) € X7, (T) on the initial time 7 € I.

Proof Let Tt €T and & € X. We only sketch a proof and refer to [33] for the details.
Thereto, consider the Lyapunov-Perron operator 7" :X%,(T) xX — X;j,(T). It

can be verified as in [33, Lemma 3.2] that %i is well-defined and satisfies the
two Lipschitz estimates

Lip, 77F < L <1, Lip, 775 < Kx. )

From the first inequality in (9), we get that 7= (-, ) is a contraction on X;S,(T),
uniformly in £, and Banach’s fixed point theorem implies that there exists a unique
fixed point ¢ (&) € X%Y(T). Moreover, the second inequality in (9) yields the

claimed bound on ¢F (). [ ]

We are in the position to introduce a nonautonomous counterpart to (global)
invariant manifolds of autonomous difference equations (maps). A fiber bundle is
a nonautonomous set S, where each fiber S(¢), ¢ € [, is graph of a function.

Theorem 1 (invariant fiber bundles) Assume Hypothesis 1-2 hold with (8) and
choose ¢ € (é, %(a, - Oc+)]. Then the following statements are true:

(a) If 1 is unbounded above, then the so-called pseudo-stable fiber bundle

ST={(1,8) €Ix X1 9(17,8) € Xy (e0) fory € [ay +0,a- 0]}
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is a positively invariant fiber bundle of (2) possessing the representation
ST={(7,&+s%(1,&)) eIxX:t€L,& € R(PL(7))}
with a uniquely determined mapping s* : 1 x X — X, given by

sT(1,E) =P_ (1) (1,&) forallTtel, & €X. (10)

Furthermore, s* satisfies Lip, sT < K(;IE;L and one has s*(7,0)=0on L

(b) If1 is unbounded below, then the so-called pseudo-unstable fiber bundle

_— _ there exists a solution ¢ : 1 — X of (2) with
§ = {(T’é) elxx: ¢(t) =& and ¢ € X () for y € [y + 0,0 —G]}

is an invariant fiber bundle of (2) possessing the representation
ST={(t,n+s(t,n))elxX:1€l,n eR(P_(1))}

with a uniquely determined mapping s~ : 1 x X — X, given by

s (T,n) =P(1)¢.(1,n) foralltel neX. (11)
Furthermore, s~ satisfies Lip, s~ < K;EL and one has s~ (1,0) =0on L
Proof See [33, Theorem 3.5]. [ |

Remark 3 1t can be shown that time-periodic difference equations (2) admit fiber
bundles S* with periodic fibers S*(¢). In particular, for autonomous equations
these fibers are constant and we obtain the usual invariant manifolds.

Remark 4 Under very similar assumptions supplementing Hypothesis 2 (cf. [33,
34]) the above theorem also holds for implicit difference equations of the form

Xt+1 :A(t)x, +F(t,xt,x,+1),

which, for instance, have been obtained from fully-implicit discretizations of dif-
ferential equations. Here, ST consists of solutions, which exist and are exponen-
tially bounded in forward time. With obvious modifications, our later tools also
work and are applicable for such problems.

The nonautonomous sets ST and S~ generalize the classical invariant manifolds
corresponding to pseudo-hyperbolic equilibria; to be more specific and to provide
a dynamic insight, S* is called

— center-stable fiber bundle in case o > 1; it contains solutions bounded in
forward time,

— stable fiber bundle in the hyperbolic situation o < 1 < ¢_; it contains expo-
nentially decaying forward solutions, and

— strongly stable fiber bundle in case o < 1.

Under the assumption of I being unbounded below, S~ is called

— center-unstable fiber bundle in case o < 1; it contains solutions which exist
and are bounded in backward time,
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— unstable fiber bundle in the hyperbolic situation oy < 1 < o_; it contains
solutions existing and exponentially decaying in backward time; and
— strongly unstable fiber bundle in case 1 < a.

Detached from the idea of describing dynamics near isolated solutions, the sets
S* yield the global set of all solutions with a specific boundedness behavior in
forward or backward time. Hence, in case ot < 1 one can interpret S~ as discrete
inertial manifold (cf. [34]) and (8) as corresponding spectral gap condition.

3 Computation of invariant fiber bundles

The relations (10) and (11) are central for our approach to approximate the fiber
bundles ST. Indeed, in order to compute the functions sT defining S*, we solve the
Lyapunov-Perron equations (LP%) for T < 0. The corresponding error estimate
for the distance between the fixed points ¢:-(7,&) and ¢ (7, &) is given in

Proposition 3 Lert <1, & € X, T €N, suppose that Hypotheses 1-2 hold with (8),
choose 6 € (¢,%(a_ — o)) and set L := L(c). Then the function s* :1x X — X
defining the fiber bundle S* satisfies

K2K L
(o + ((X++G> (12)

|s*(7,&) — <¢Tréu_ Z)zniuén

Remark 5 (spectral ratio condition) Keeping in mind that ¢ is supposed to be
small, one can choose & close to 0 and the decay rate *H’ in (12) essentially

_—0
depends on the ratio gf Thus, we obtain a good approx1mation for small values
of T > 0 in (12), provided g—f < 1. In the autonomous situation, this means that
consecutive spectral points have moduli with small quotients.

Proof Due to analogy, we only prove the assertion for s~ and ¢, . Choose a finite
positive integer T, y € (0 + 0,0 — &], and thanks to 0 < %(a, — oty ), we can
selecta d € [ +0,7). Let T€ L, § € X be fixed and ¢ € X (T), 9, € X (o)
be the unique solutions of the Lyapunov-Perron equations (LP; ) and (LPy), re-
spectively. Here we have suppressed the dependence on &. Then, on the finite
interval [t — T, 7], one evidently has ¢, , ¢, |11;(T) €X s (T), and we obtain from
Proposition 2 that

T—1-T
[P+ O [0 @ =97 W][|E7 <) ¥ @lesrt DR+ DF (50 (1)) 67
t—1
4 7ZT<I>tr+1P+(r+1)[ (r,0= () = F(r, 67 (r))]|| 877
T—1-T 1—1
St G Lt~ WE A LCR G D

K.L [(8\" KL _
< —++<}/) H(P;HW-F as H(])m (I){HmS forallz € [t—T,7],,
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and similarly,

K. L _
5 19 — 07 ||,s forallre[c—T,7);.

[P-(1) [9< (£) — 07 (][] 87" <

a__

By definition of the ||-||; 5-norm and due to ¥, 6 € [a; + 0, a_ — G], we arrive at

i KL/S\T, .~ .. _ .
o7 ~0llos < 525 () loxllost 5 o 0z s

and consequently (note the inequality ¢ < o),

|P(1) [0 (£) — 07 ()] || 77" < KL (3) o< ||, forallze[t—T,1]

P T “o—(\y = llry iz
Therefore, the claim follows from Proposition 2(b), if we use (11) and set t = 7,
0 =a;+ 0, y=o_ — o in the above estimate. [ |

3.1 Computation of single points

Having these error estimates at hand, we are in a position to solve the truncated
fixed point equations (LP;") instead of (LPL) for some fixed T > 0. So we reduce
the infinite-dimensional problem (LPZ) to a nonlinear algebraic equation.

To approximate the pseudo-unstable fiber bundle S™, we fix an initial point
& € X and proceed with another simplification. Multiplying the Lyapunov-Perron
equation (LPj ) with projections P, (¢) and P_(t) implies

t—1

i)=Y, @ r+D)P(r+DF(ry"(r)+y (1)),

- 7—1
Yo (1) = ()P (1)E - Z, P(t,r+1)P-(r+ )F (ry™ (r) + ¥ (),

respectively, where we have abbreviated y=(¢) = Py (t)¢; (¢,&). In particular, we
have the relation y~ (1) = P_(7)&. The discrete variation of constants formula
guarantees that y~ is a backward solution of the difference equation

X1 =A)P_(t)x, +P_(t+ 1)F(t,x, + v (1)),
and we simplified (LP; ) to the following algebraic system of nonlinear equations

t—1
v = ), @@ r+DP(r+ DF(ny*(n+y (1) =0

r=1-T
forallr € [t—T,1|,,
V(1) — A Y () — P+ DF (6w () +y (1) =0
forallt € [t—T,7—1],,

v (1) =P (7)§.

(13)
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The first equation in (13) degenerates into W (7 —T) =0 for t = 7 — T, which
causes no confusion, since (13) is used to obtain Py (¢)¢ (¢,&) only for r = 7.
Next we further transform (13) into a form more appropriate for implementa-
tion on a computer. Thereto, we suppose d := dimX < oo and conclude that (13)
becomes a (1 + T)d-dimensional problem. We fix T € I, choose respective bases
eT,...,eL of R(P4(7)) and ey ,...,e; of R(P_(7)) (note that d; and d_ are
independent of 7) and introduce scalar variables xi,...,x(j,1)q according to

dy
Yn = ij+d+(n71>€f =y (t—T+n-1),
j=1

d_

YntTH1 = Y Xjsd (n-1)+d, (71)¢; =¥ (=T +n—1)
=

foralln=1,...,T + 1. With this notation we can write (13) as
-1

Yerrr — Y, P+ Tr+TH )P (r+ T+ DF(r+ T,y 41 +yr2r42) =0
r=—T

forallr € [-T,0],,

Verar4s — A+ T)yrori2 — P-(t + T+ D)F(t+ T, y11711 +Yi2r12) =0
forallr € [-T,—1],,

yar42 = P_ (7)€,

or in an even more compact notation abstractly as
G (x,&)=0 withxe KD and & e K-

Each computation of G~ (-, &) involves %(dJFT +d +d_) evaluations of F.
For the corresponding dual approximation method of the pseudo-stable fiber
bundle S*, we set y* () = Py (1), (¢,€), and (LP}) reduces to

¥ (1) =P ()¢,
Y+ 1) =AY () =P+ DF (v () +y (1) =0
forallr € [t,7+T —1],,

T+T (14)
v () + Z D(t,r+1)P_(r+ 1D)F by (r)+y (r) =0
—_
t forallr € [t,7+T],.
With the above notation, we now introduce scalars xi, ..., x(1;1)q according to
dy

Yn = ZXjerJr(”,])e;r = W+(T+Vl— 1),

j=1
d_

Ynt+T+1 = xj+d7(n71)+d+(T+l)ej7 = l[/i(T-i-I’l— 1)
=1
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foralln=1,...,T 41, and write (14) as

J1 :P-‘r(f)&v
Vet —A@ =1+ 0)y = Pr(t + O)F (t =1+ T,y + yi147) =0
forallr € [1,T],,

T
Visrs2+ Y P+ T,r+ T+ )P (r+ T+ 1)F(r+,y.41+yri742) =0

r=t

forallt € [0,T],,

which we formally also write as
Gt (x,&)=0 withxe KI+D4 and & e K%,

Now, each computation of G*(-,&) involves 55 [2d, T +d_(T + 1)(T +2)] eval-
uations of the nonlinearity F.

We denote the unique solution of the nonlinear algebraic equations (13) and
(14) (cf. Proposition 2) by ¥+ (&), resp., and get

Algorithm 1 (approximation of s*(7,&)) Choose a desired accuracy € > 0 and
values T€ I, & € R(Py (7)), 0 € (£, 4(0- — ).

(1) Setn:=0, 'Poi :=0 and an integer T > 0 so large that
OK2KiL o+ o) ’ B
(c—10)

(2) apply an iterative numerical method to (13) and (14), respectively, in order to

obtain an approximation ‘I’njil from ¥:*

(3) if |¥F —¥F|| > §, then increase n by 1 and go to (2)

@) set§(7,8) =¥, (7).

By construction of this algorithm, the distance between the approximate invariant

fiber bundle §*(7,&) and s*(7, &) satisfies

|s*(,&) =5 (7,8)|| < e. (15)

From a numerical perspective, the crucial point in Algorithm 1 is of course
an appropriate choice of the iterative method in step (2) to solve the parameter-
dependent nonlinear equations (13) and (14), respectively, i.e.,

€
o_—o0o 2

1P (D)€ (

GE(x,&)=0. (16)

The function G* inherits its smoothness properties from the nonlinearity F, and
due to Hypothesis 1, in general G* is only globally Lipschitz continuous in the
first variable. Therefore, a universally applicable approach to solve (16) is to trans-
form this equation into a fixed-point problem and use fixed-point iteration. Clearly,
this method is only linearly convergent and one prefers methods with better con-
vergence properties. Newton-like methods are formally applicable to (16), if G*
is at least differentiable and a more detailed description of the algorithms used
here can be found in the beginning of the following Section 4.
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Remark 6 (nonsmooth methods) By Rademacher’s theorem, the Lipschitz func-
tions G* are differentiable almost everywhere and the last two decades saw a
strong interest in generalized Newton methods for nonsmooth equations (see [36]
for a survey). They are typically of the form

Xn+1 :xn*Vn_IGi(xmé)v VneaIGi(xm§>a (17)

where the set 9| G* (x,,&) is the generalized Jacobian of G*(-,£) at x,, defined
by [7], and V,, is arbitrarily taken from 0 G* (x,,& ). Unfortunately, for only Lip-
schitzian mappings G, the iteration (17) needs not to converge (see [27] for a
counter-example). Locally superlinear convergence results have been obtained
by [40] under the assumption that G* is semismooth (see [29]). This class con-
tains functions with piecewise linear, differentiable or convex components, and is
closed under addition and multiplication.

Remark 7 (structure of the Jacobian) In Figure 1 we sketched the structure of the
Jacobian DG (x, I3 ), where zero elements are not included. While it is not sparse,
it indicates that such problems might be appropriate for decomposition methods.

* * *
* % * * % *
* % * * % % * %
* % * * % ok % * % %
* % * ¥k ok ok kK ok K X
* % * ¥ ok ok ok ok ok K ok ok K X
ok ok ok ok ok ok ok ok x ok k| * * %
¥k ok ok kK k ok K % * * %
* % ok % * % ok % * * %
* % % * % % * * %
* % * % * % %
* * *

Fig. 1 Structure of the Jacobians D; G (x, &) (left) and D1G ™~ (x, &) (right) for T =5

3.2 Computation of fibers

The Algorithm 1 is designed to approximate single points on fixed fibers of in-
variant fiber bundles. To obtain individual fibers as a whole, one could compute
various points and interpolate afterwards.

An alternative approach is the use of continuation methods: For given initial
time 7 € I, Algorithm 1 yields an approximation of s*(t,&) for a fixed value
of &. In order to compute s=(7,&) for different values of &, it is contiguous to
use a continuation (or path following) algorithm applied to (16) (see [1] for an
overview). For our further description of this procedure, we suppose that G is
sufficiently smooth and the parameter & is scalar, i.e., we deal with 1-dimensional
fibers. Upon differentiating the identity (16) and due to our particular parameter
dependence, a so-called Davidenko differential equation is obtained:

D1Gi(x(€)a§)d);(§) - {Z:;w-l)d

if sT is considered

18
if s~ is considered (18)
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This is an implicit ordinary differential equation and our desired function x is a
solution satisfying the initial condition x(7) = &y, where the initial point &) can be
obtained using Algorithm 1. However, for various reasons it is not advantageous to
tackle (18) directly using an ODE solver. One alternative is a classical continuation
method as described in the following algorithm:

Algorithm 2 (classical path-following) Choose an accuracy € > 0, T > 0, step-
size bounds 0 < Ay < Amax, an initial step-size A > Ay, values 7 € I, & € R and

gmax > 60 .

(1) Setn:= 0 and compute a solution xo of G*(x, &) = 0 using Algorithm 1
() set& 1 =&, +h
(3) solve G*(x,&,41) = 0 with x,, as initial iterate to obtain x, 1
@) if |G* (xp11,&)[| < € then
increase n by 1,
set & = min {hmax, 1.5}
else h =0.5h
(5) if h > hyip and € < Eax, then go to (2).

Appropriate components of the obtained vectors x, approximate s*(7,-) at dis-
crete points &, and the whole fiber S*(7) can be obtained using interpolation.

While the above Algorithm 2 includes a crude step-size control, we refer to [11,
Chapter 5] for a more sophisticated approach. Such a continuation method can
compute fibers S*(7) representable as graphs over the linear spaces R(P*(7)).

On the other hand, to approximate fibers given as embedded manifolds, we
use pseudo-arclength continuation as follows. We define u := (x, ), and choosing
a scalar arclength increment 4 > 0, we work with the extended equation

~ G*(u) 0
EY PR -
6= (S )= (5)
where N (u) := di(u—i) —h.
The vector ii represents the tangential approximation of length 1 of the solution
curve in the current point i, and hence, the equation Ng’(u) = 0 means that the new

point on the path lies on the tangent vector through the current point .
The pseudo-arclength continuation algorithm can then be described as follows.

Algorithm 3 (pseudo-arclength path-following) Choose an accuracy € >0, T >
0, step-size bounds 0 < hpyin < Amax, an initial step-size h > hyp, values 7 € [ and
Smax > 0.

(1) Setn:=0,s:=0and up :=0
(2) compute the direction ii, or choose i in case n =0
(3) compute a solution u,4 of G;t (1) = 0 using an iterative numerical algorithm
4) if [|G*(uyy1)|| < € then

increase n by 1

set 1 = min {Amqx, 1.5}

increase s by h

else h =0.5h

(5) if h > hpip and s < smax, then go to (2).
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Appropriate interpolation of components of the obtained vectors i, approximate
the 7-fiber of the invariant fiber bundle, i.e., this yields an approximation to the
solution curve : R — KU+T)4+1 gatisfying

GE(y(s)) =0 foralls € [0,Smax].

A dual algorithm leads to an approximation on the interval [spin, 0].

3.3 Approximation with one-step methods

We finally mention how our discrete methods can be applied to compute invariant
or integral manifolds of semi-linear ordinary differential equations

x=A(t)x+F(t,x). (19)

As time steps, let (#;)rez denote a strictly increasing sequence of real numbers
with limy_, 4 #y = Fo0. We apply a one-step method

Xiep1 = X+ (k1 — 1) W Ty X L1 — k) (20

(e.g., of Runge-Kutta type) to (19). Then (20) can be written as semi-linear differ-
ence equation of the form (2). Under consistency and convergence assumptions on
(20) this recursion can be shown to satisfy Hypotheses 1-2 for sufficiently small
maximal step-sizes fx4| — tx.

Consequently, we can use the previous methodology in order to compute the
invariant fiber bundles ST of the one-step method (20) applied to our original
continuous problem (19). Results to estimate the difference between the integral
manifolds ST for (19) and the invariant fiber bundles $* of (20) date back to the pi-
oneering contributions [3] (stable and unstable manifolds), [4] (center manifolds)
and also [14] (pseudo-stable and -unstable manifolds); corresponding results for
nonautonomous equations and varying step-sizes can be found in [21].

4 Examples and illustrations

Our approach to the computation of nonautonomous invariant manifolds approx-
imates solutions on pseudo-stable or -unstable fiber bundles. Hence, it is not sur-
prising that these sequences and therefore the solution components for the non-
linear algebraic equation (16) admit exponentially decaying components. More
precisely, this motivates a preconditioning strategy:

Remark 8 The solutions x € R 14 of (16) appear to show the following behav-
ior: There exist d blocks of length T + 1 such that the components of each block
decay exponentially. Thus, in order to avoid numerical instabilities, it is reason-
able to use the following preconditioning strategy. Instead of (16) one considers
the nonlinear system

,yiflG:I:

&) =0 foralli=1,..T+1,n=0,.,d-1.

with an appropriate damping parameter ¥ > 0. Note that here Gji means the jth
component of G*(x, &) € K(+7)4,
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Before illustrating our results we briefly describe the algorithms and codes used
for our numerical computations, i.e., the solvers for the nonlinear system (16).
For implementation purposes, we relied on the MatLab numerical computing en-
vironment (release R2007a). Throughout, the Jacobians of the nonlinear system
(16) have been approximated using forward differences with step-size € = 107°.
The interested reader is strongly encouraged to contact the authors to obtain our
corresponding codes.

IMMOptiBox A helpful MatLab toolbox for optimization and data fitting has been
developed under Hans Bruun Nielsen at the Informatics and Mathematical Mod-
elling department of the Technical University of Denmark. It is called IMMOpti-
Box and can be downloaded under the URL

http://www2.imm.dtu.dk/~hbn/immoptibox/

We worked with Version 1.6 from November 2006. The following algorithms have
been implemented:

— I_LM (based on smarquardt) This function uses a Levenberg-Marquardt
damping of a secant version for the Gauss-Newton method with parameters
params = [temp,£,0.01€,300, 10~°], where temp serves as dummy.

— I_LM_C: Apply I_LM to the preconditioned system (16) from Remark 8.

— I_PDL (based on nonlinsys) This function implements a Powell’s dog-leg al-
gorithm with params = [temp,€,0.01€,300, 10~°] and initial trust region
radius temp = 0.1(1 + ||xo||) with starting vector x.

— I_PDL_C: Apply I_PDL to the preconditioned system (16) of Remark 8.

Kelley The monograph [22] is an excellent source for modern Newton-like meth-
ods. Moreover, the algorithms discussed herein are available for download at

http://www.siam.org/books/fal01/

For given € > 0 we have chosen absolute and relative error tolerances according
to the parameters tol=[0.1€, g]. We refer to [22] for a more detailed description
of the subsequent algorithms including their parameters.

— K_NSold (based on nsold): A Newton-Armijo nonlinear solver, where the Ja-
cobians are factored using Gaussian elimination in the following variants:
— K_NS01d0: params [40,-1,0.5,1]
— K_NSoldl: params [40,1,0,1] (Newton method)
— K_NSo0ld2: params [40,-1,1,1] (chord method)
— K_NSo0ld3: params = [40,1,1,1] (Shamanskii method with one step per
Jacobian evaluation)

— K_NSoli (based on nsoli): Inexact Newton-Armijo iteration with Eisenstat-
Walker forcing term and parabolic line search via three point interpolation. We
implemented the following variants:

K NSolil: params = [40,40,0.9,1,20] (GMRES as iteration)

K_NSoli2: params = [40,40,0.9,2,20] (GMRES(m) as iteration)

K_NS01i3: params [40,40,0.9,4,20] (TFQMR as iteration)

K_NSoli4: params [40,40,0.9,3,20] (BICGSTAB as iteration)

— K_BrSola (based on brsola): globally convergent Broyden’s method solver
using Armijo rule with one vector storage and params = [40, 40].
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MatLab itself offers the routine fsolve as part of its Optimization toolbox to
solve systems of nonlinear equations.

— M_DL: Trust-region dog-leg method (NonlEqnAlgorithm=’dogleg’)
— M_GN: Gauss-Newton method (NonlEqnAlgorithm=’gn’)

— M_GN1: LineSearchType=’quadcubic’ (line search algorithm uses a
safeguarded mixed quadratic and cubic polynomial interpolation and ex-
trapolation method)

— M_GN2: LineSearchType=’cubicpoly’ (safeguarded cubic polynomial
method which generally requires fewer function evaluations but more gra-
dient evaluations. Thus, if gradients are being supplied and can be calcu-
lated inexpensively, the cubic polynomial line search method is preferable)

— M_LM: Levenberg-Marquardt method (NonlEqnAlgorithm=’1m’)

— M_LM1: LineSearchType=’quadcubic’

— M_LM2: LineSearchType=’cubicpoly’

4.1 A discrete test example

We start with an example which is so simple that we analytically know its invariant
manifolds and can explicitly determine parameters needed for the error estimates.
For appropriate choice of the linear part we can interpret its pseudo-stable mani-
fold as stable, strongly stable and strongly unstable manifold, respectively.

Let a,b be real numbers with 0 < |a| < |b| and consider the 2-dimensional
autonomous difference equation’

Xt+1 :ax,—l—xtz (21)
Vi1 = by, + (a® — b)x? + 2ax.y, +y?

This problem fits into the framework of Section 2 with diagonal linear part

a(
A= (55):

possessing an exponential dichotomy with ;. = |a|, a_ = |b|, K1 = 1 and

10 00
7= o0) r= (1)

Moreover, the nonlinearity for (21) is given by

x2
F()C7y) - ((az—b)x2+2axy+y2) :

1" An analogous analysis can be done for the system

Xey1 = ax; +x2 4+ 2bxy, 4 (b —a)y?
Yer1 = by +y7

with pseudo-stable and -unstable manifold given by s* (x) = 0, s~ () = y?, respectively.
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If we equip R? with the norm || (x,y)|| := max {|x|,[y|}, then the induced matrix
norm of the Jacobian is given by

IDF (x,)|| = 2max { || + |(a® — b)x+2ay], lax+y|},

and using the mean value theorem, we arrive at the Lipschitz estimate

||F(x’y) 7F()f,)_1)|| < 2pM<a7b>

‘(i:;‘)H for all x, £y, 7 € [~p, p),

with the real constant

l4+a*>+a—b, ifa>>b,a>0

max {1+a’*—a—b,|1—al}, ifa*>>b,a<0
1—a’>+a+b, ifa’><b,a>0
max{l+b—a2—a,\1—|—a|}, ifa> <b,a<0

M(a,b) :=

In order to fulfill our assumptions from Theorem 1, we set p = gﬂ}@a}j), obtain

— Oy o — 0Oy
<
4.5 4

and choose 6 = %. It is not difficult to see that the pseudo-stable and pseudo-
unstable manifold of (21), respectively, is given by

sT(x) = 2%, s (y)=0.

(=L=2pM(a,b) = &=

In order to solve the nonlinear systems G (x,&) = 0 for s*, we individually ap-
plied and tested various algorithms to the hyperbolic, strongly stable and strongly
unstable case. From a numerical perspective, these cases get increasingly difficult.

4.1.1 The hyperbolic case

The system parameters a, b, the error tolerance € and the constants ¢,0,p,T de-
scribed above, are given by the following table. In particular, T > 0 is chosen
according to Proposition 3 such that the error is less than € on the interval [—1,1].
a b € | L o 0 T
-12 2 10° | 1/3 03 0.051282 22

We introduce various parameters describing the performance of the algorithms:

— &in, Emax: Starting at initial points £ < 0 < &, we used the classical contin-
uation Algorithm 2 to obtain the maximal convergence interval [Epin, Emax] for
the different methods, where € is given as above, 7 = 0.1, Ay, = 0.1/ 2°. Here,
Emax 1s the maximal value such that |G (x,€nax )| < € and h > g, and Epin
is defined correspondingly.

— res: Arithmetic mean of the />-residual

1 n
res = - ; 1G*(x8)],

over n uniformly distributed points &; in an interval I (note that for the evalua-
tion of the ¢2-residual, we used Algorithm 1, i.e., made no step-size adaptions).
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— err: Arithmetic mean of the absolute error over n uniformly distributed points
in an interval /.

— eval: Arithmetic mean of the desired number of evaluations of Gt over n uni-
formly distributed points in an interval /.

For - =—0.1,&, =0.1,1 =[-0.5,0.5] and n = 101, we obtain

method res err  eval Emin Emax
I_.LM 5.11e-6 1.65e-6 57 -9.89e-1 1.48e+0
I_PDL 4.98e-6 1.94e-6 56 -9.94e-1 1.49e+0

K_BrSola | 1.74e-6 1.50e-8 16 -9.10e-1 1.40e+0
K_NSolil | 9.80e-5 8.01e-9 23 -9.92e-1 1.49e+0
K_NSoli2 | 9.80e-5  8.01le-9 23 -992e-1 1.49e+0
K_NSoli3 | 5.68e-7 1.14e-10 24 -9.92e-1 1.49e+0
K_NSoli4 | 4.96e-7  5.05e-9 25 -9.8%-1 1.49e+0
K_NSo0ldO | 7.65e-7  4.46e-7 57 -9.92e-1 1.49e+0
K_NSoldl | 2.30e-7 1.48e-8 149 -9.92e-1 1.49e+0
K_NSold2 | 9.68e-7  6.93e-7 52 -9.82e-1 1.48e+0
K_NSo01d3 | 2.30e-7 1.48e-8 149 -9.92e-1 1.49e+0

The following Figure 2 demonstrates the efficiency of the above algorithms. We
plotted the number of function evaluations for G versus the reached accuracy,
where we fixed T = 30 and & = 0.5. It turned out that K BrSola and K NSolil

-2

10 -
~K_NSoli1
1 1 |="K_NSoli2
104t \ V| K_NSoli3
\ |=K_NSoldo|
" " |-=-K_NSold1
10° ' | = K_NSold2
- {| - K_NSold3
o §
S g i|I—K_BrSola
510 i —
8 |
© !
107 !
10—127 \\‘
| :
-14
10 L L
10° 10" 10° 10°

no. of evaluations

Fig. 2 Efficiency of the Kelley routines in the hyperbolic case

seem to be the most efficient algorithms for this problem, although the first one
converges on a smaller interval than the other methods.

4.1.2 The strongly stable case
We used different system parameters a, b, which together with the error tolerance

€ and constants ¢,0,p, T can be found in the following table. In particular, 7 > 0
is chosen so that the error is less than € on the interval [—1, 1].
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a

b

e | ¢

(o

P

T

-1/2 9/10

1075 | 4/45  2/25 0.020672 47

As above, the table below shows the performance of the corresponding methods
for§_ =-0.1,&4 =0.1,1=[-0.5,0.5] and n = 101.

method res err  eval Enmin Emax
I_1M 3.97e-6 2.18¢-6 108 -99le-1 1.50e+0
I_PDL 3.13e-6 1.76e-6 108 -9.76e-1 1.50e+0
K_BrSola | 1.70e-6 4.47e-8 17 -9.15e-1 1.26e+0
K_NSolil | 8.90e-7 2.63e-8 23 -995e-1 1.49e+0
K_NSoli2 | 8.90e-7 2.62e-8 23 -995e-1 1.49e+0
K_NSo0l1i3 | 6.21e-7 4.01e-8 24 -9.95e-1 1.49e+0
K_NSoli4 | 7.61e-7 2.09e-7 25 -9.95e-1 1.49e+0
K_NS0ldO | 9.62e-7 7.13e-7 130 -9.95e-1 1.49e+0
K_NSold1l | 2.48e-7 6.88¢-8 318 -9.92e-1 1.49¢+0
K_NSold2 | 8.82e-4 9.56e-4 106 -9.84e-1 1.40e+0
K_NS0ld3 | 2.48e-7 6.88e-8 318 -9.92e-1 1.49e+0

Compared to the hyperbolic case, the maximal interval of convergence has roughly
the same size. However, the results are slightly less accurate. This is underlined
by Figure 3 illustrating the efficiency of our algorithms, where we fixed T = 30.
Again, quite solid results have been obtained using K_BrSola and K NSolil, al-
though the first mentioned algorithm again converges on a smaller interval.
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Fig. 3 Efficiency of the Kelley routines in the strongly stable case

4.1.3 The strongly unstable case

The system parameters a, b, the error tolerance € and the constants ¢, 5, p, T from

above are summarized in the following table. Moreover, 7 > 0 is chosen to meet
the requirement that the error is less than € on the interval [—1, 1].
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a b e | ¢ c P T
-5/4 3 1070 | 718 7/20  0.052731 32
This strongly unstable situation seems to be the numerically most critical case:
The highly unstable character of (21) implies that small inaccuracies in (16) get
highly amplified. Indeed, the algorithms K_NSold, K_NSoli and K_BrSola, namely
our favorite methods from the previous cases, do not perform very well. Hence,
we additionally applied M_DL, M_LM and M_GN, which turn out to be robust but
costly. The performance of the more successful algorithms is summarized in the
following table with §_ = —0.1, &, = 0.1,1 =[-0.5,0.5] and n = 101:
method res err  eval Emin Enax
I_LM 1.67e-2  7.83e-3 286 -6.47e-1 1.24e+0
I_PDL 1.36e-5 8.32e-8 294 -6.53e-1 1.25e+0
M_DL 4.38e-4 1.23e-5 3213 -6.52e-1 1.90e+0
M_LM1 1.82e-3  9.69e-5 4015 -6.39e-1 1.23e+0
M.GN1 | 3.23e-2 3.0le-3 5716 -6.50e-1 1.24e+0
M_GN2 | 4.85e-2 6.00e-3 6035 -6.50e-1 1.23e+0

Obviously, the numerical amount is drastically larger than in the hyperbolic or
strongly stable situation. In order to obtain further performance data, we reduced
the length of the Lyapunov-Perron sums to 7 = 15 to obtain Figures 4 and 5 il-
lustrating the reached accuracy versus number of iterations. As demonstrated by
Figure 4, the preconditioning strategy for (16) from Remark 8 with damping pa-
rameter ¥ = 0.9 was successful. Unfortunately, preconditioning led to no signifi-
cant advantages in the hyperbolic and strongly stable case.

0
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s ~I LM
107 I LM_C
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10 ‘
10" 10> 10°

no. of evaluations

Fig. 4 Efficiency of the IMMOptiBox routines in the strongly unstable case

4.2 The simplified flour-beetle model

The biologically motivated model discussed in this subsection is taken from [26]
and describes a population of flour beetles. Here, let a € (0, 1), b > 0 be reals and
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Fig. 5 Efficiency of the MatLab routines in the strongly unstable case
(A(#))ren, (1(2))ser denote bounded sequences in [0,0). We consider the scalar
third-order nonautonomous ordinary difference equation
) _ ,
Yi+3 = ayi2 +bye ()32 =p Oy )

which is equivalent to the 3-dimensional first-order system

1 2
g
X1 =N X 1~ (22)
3 _ .3 1,—A(t)x] —p(r)x
x) = ax; +bxte ()7 —(t)x;

The time-varying coefficients A (), 1t(z) describe the only significant source of
pupal mortality in (22), the adult cannibalism (cf. [26]). For the sake of our anal-

e
implies that the Jacobian of (22) evaluated along the zero solution possesses a
pair of complex-conjugated eigenvalues with modulus y. To guarantee a € (0,1)

/3h3
we additionally assume y € < w— %, \3/1;) with @ := \3/ % + %ﬂ%). The

linear transformation x — Ax with

P2 A=y

ysis, we retreat to the situation a =

where ¥ > 0 is a real number. This

2h2y2 2h2
A= _7F _V¥2 »p
2b 2by yi
b
1 0 7

applied to (22) yields a system with decoupled linear part
cpo
Xi+1 = —pPOo 2 Xt +F(t7-xt)7 (23)
0

7
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ya

o /4
where ¢ := —a5 P =

5 76, and we have abbreviated (f is the r.h.s. of (22))

o Q7
‘%\WOO
=

(o2
F(t,x):=A" f(t,Ax)— | =P
0

It is easy to see that (23) satisfies our assumptions in a neighborhood of 0, where
the dichotomy data is given by oty =7, a_ = %, Ky =1and Py := (l 1 0). In

order to approximate the invariant fiber bundles S™ and §~ of (23) numerically, we

fix parameters b := %, Y= % (leadingto a = gg?ggg) and consider asymptotically

constant cannibalism rates A(f) := 1 — Larctant, u(t) := 1+ Larctant. In this
particular setting, the cannibalism becomes stationary as ¢ — =oo, but note that our
framework is sufficiently general to capture arbitrary bounded time-dependence.
Then the dichotomy rates for (23) are given by o, = %, o = %. We have
computed an approximation of the stable and unstable fiber bundle of (23).

Stable fiber bundle In order to compare the performance of different methods to
compute the 2-dimensional stable fiber bundle for (23) (resp. (22)), we introduce
the arithmetic mean of the ¢>-residual

1 ny n

Y Y6t &,

i=1j=1

rest =
niny

and the number eval’ of necessary evaluations over a grid of n; x ny uniformly
distributed points (&;,&;) in a 2-dimensional box B. We fixed T = 15 and have
chosen a tolerance of € = 10 in order to approximate the fiber S7(0). In such a

situation, for B = [—%, %]2 and n; = np = 21, we arrive at the following table:
method \ rest  eval”™ remark
K_BrSola | 1.30e-03 39 line search failures for large || ]|

KNSolil | 1.31e-06 45
K NSoli2 | 1.31e-06 45
K_NSoli3 | 9.02e-07 46
K_NSoli4 | 9.01e-07 62

Note that we have not included the methods I_LM and I_PDL, since they abort due
to a too small gradient. Finally, Figure 6 shows the 2-dimensional stable fibers
ST (7) for T = —10,—2,2, 10 over the square B computed with K_NSolil.

Unstable fiber bundle We illustrate different methods to get the 1-dimensional
unstable fiber bundle of (23) (resp. (22)) using the interval bounds &yin, Emax, the
mean residual res™ and the mean number of evaluations eval . The precise mean-
ing of these factors is analogous to the ones explained in Subsection 4.1.1. The
subsequent table shows the performance information for & = —0.1, &, = 0.1,
the interval / = [—0.5,0.5] and n = 101, while computing S~ (0).
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Fig. 6 Stable fibers S (7) in the simplified flour beetle model for T = —10,—2,2,10

method \ res”  evalm  &nin Emax  remark

I_PDL 6.21e-6 66 -1.65 1.63  stopped by small G~ -value
K_NSolil | 1.69e-6 61 -1.65 0.559

K_NSoli2 | 1.69e-6 61 -1.64 0.559

K_NSoli3 | 1.77e-6 108 -1.65 0.547

K_NSolid | 7.77e-7 168 -1.65 0.555

The routine I_LM terminated and K_BrSola aborted due to a line search failure.
In Figure 7 we computed and displayed the 1-dimensional unstable fibers S~ (7)
for times T = —10, —2,2 over the interval [—1.5,1.5] using I_PDL, for which res™
is satisfactory small despite error messages due to small G~ -value. Figure 7 also
shows S~ (10), where I_PDL converged only on the interval [—1.5,0.5].

We also approximated both the stable and unstable fiber bundle in the sim-
plified flour beetle model with the computer programm GAIO (see [9]). We used
the fact that unstable manifolds have pullback attraction properties and that pull-
back attractors can be approximated via set-oriented techniques (see [10, 2] for the
theoretical background in the autonomous/nonautonomous context). Our compu-
tations approve the results obtained above, however, we made the experience that
the computation effort is much higher when using subdivision techniques. This
is due to the fact that one needs to study the system on many small boxes itera-
tively to get a fine covering of the manifold, and mapping boxes means that one
has to select many test points in each box. The total amount of evaluations of
the right hand side depends on several parameters, and we therefore omit a di-
rect comparison of the two algorithms. Furthermore, note that the approximation
of the two-dimensional stable manifold via set-oriented methods was only possi-
ble in the small box [—0.06,0.06]°, since one needs to approximate the pullback
attractor of the system under time reversal which cannot be computed globally.
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Fig. 7 Unstable fibers S~ (7) in the simplified flour beetle model for 7 = —10,—2,2, 10

After all, a (local) Taylor approximation of the stable and center fiber bundles
for the simplified flour beetle model can be found in [35].

4.3 The flour-beetle model

The difference equation discussed in the previous Subsection 4.2 is indeed a sim-
plification of a more general model. Now we consider the following 3-dimensional
nonautonomous system describing a flour beetle population (cf., e.g., [25])

1 _ 3.3,—c1(t)x—ca(t)x}
xt+1_bxte ()t ()t

xiy = (1= )y (24)
Xy =x2e 0N 4 (1— )}

with model parameters b > 0, u, Uy € (0,1) and arbitrary bounded sequences
c1,¢2,¢3 : Z — (0,00). The linearization of (24) in the equilibrium 0 has a
real eigenvalue p € (1 — ip,0) and a complex-conjugated pair A, , satisfying
|ll /2| < p. Hence, the discrete system admits a 2-dimensional pseudo-stable and
a 1-dimensional pseudo-unstable fiber bundle.

In numerical calculations we fix parameters b := 0.65, y; :=0.11, g :=0.58
and choose asymptotically constant cannibalism rates

ci(k) :=0.92+0.45arctan(k/2), c2(k) :=0.9+0.13 arctan(k/2),
c3(k) :=0.18 +0.06arctan(k/2).

This yields the eigenvalues l]/z =0.26+£0.67i and p = 1. We fixed T = 15 and
have chosen a tolerance of € = 107 in our numerical routines.
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Stable fiber bundle In order to compare the performance of different methods we
again computed the arithmetic mean res™ of the £>-residual and the number eval ™

of evaluations over 21 x 21 uniformly distributed points in a square B = [—1,1]%:
method res™ eval”™ remark
I.1M 8.09e-6 74 aborted by small G"-value
I_PDL 1.02e-5 68 aborted by small G"-vector
K_BrSola | 8.66e-6 29  computed on 22 x 22 grid
K_NSolil | 3.80e-6 43
K_NSoli2 | 3.80e-6 43
K_NSoli3 | 2.55e-6 59
K_NSolid | 3.80e-6 47

Figure 8 was created using the routine K_NSolil. It shows the 2-dimensional sta-
ble fibers S*(7) for times T € {—10,0,10} over [—1,1]?, however not for (24)
itself, but for the linearly transformed system admitting a decoupled linearization.

Graph

108, )

S0EE)

S(108,8)

Number of evaluations

Fig. 8 Stable fibers S*(7) (left column) and number of G*-evaluations (right column) for times

7=-10,0,10 (f.t.td.)
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Center fiber bundle Approximations of the 1-dimensional center fibers S~ (¢) for
t € {—10,0,10} over the interval [—1,0.1] have been computed using K_NSolil
and are depicted in Figure 9; again they describe the linearly decoupled version of
system (24).

Graph Number of evaluations

-09 -08 -07 -06 -05 -04 -03 -02 -0.1

-09 -08 -07 -06 -05 -04 -03 -02 -01

s;0) A 09 08 -07 06 -05 -04 -03 -02 -01 0 = 01
sjaon)

Fig. 9 Center fibers S~ (7) (left column) and number of G~ -evaluations (right column) for times
7=-10,0,10 (f.t.t.d.)

4.4 Hénon map

In order to illustrate the efficiency of our pseudo-arclength path-following algo-
rithm (Algorithm 3), we computed the unstable manifold S~ corresponding to the

fixed point (x*,y*) := (‘/268@ -1 % - %) ~ (0.63,0.19) of the Hénon system

X1 =y +1 —axtz,
Ye+1 = bx;,
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for the typically used parameters a = 1.4 and b = 0.3. We chose £ = 107, T = 20,
Imin = 27 P himax, the inital step-size 4 = 10~* and tested different algorithms to
solve the corresponding nonlinear systems. Their performance can be compared
using the averaged number of evaluations eval = Smai”f},min and the corresponding

averaged number of necessary step-size corrections corr = —X—  respectively.

Smax —Smin

method Pmax Smin Smax eval corr
K_NSolil 2.5e-3 -123.5 7439 35901 0.1668
M_DL 2.5e-3 -59.3 8.74 92775 64.21
M_LM1 2.5e-3 -125.0 125.0 54806 0

5.0e-3 | -249.8 245.0 27421  0.068
1.0e-2 | -499.5 4999 15420  0.044
5.0e-2 | -2496.3 2485.1 3806  0.062

The Levenberg-Marquardt method M_LM1 proves to be very robust and needed few
step-size adaptions. While the other methods aborted due to 7 < hy,j, we inter-
rupted M_LM1 after 50000 successful increments of the continuation parameter,
while the other algorithms reacted more sensitive to larger upper bounds for 4.

The results using M_LM1 are visualized in the left column of Figure 10. For
comparison reasons, in the right column we also approximated the Hénon attrac-
tor using rigerous set-oriented numerics in form of the program GAIO (cf. [9]).
The unstable manifold S™, as embedded manifold, is contained in the strange at-
tractor A of the Hénon map, i.e., S~ C A. GAIO yields a covering of the attractor,
which can be made arbitrarily fine, and therefore yields an outer approximation of
the unstable manifold. Our continuation approach provides more insight into the
fine structure of the manifold, but is only able to compute a part of S~ and con-
sequently delivers a somewhat incomplete picture. Nevertheless, as demonstrated
by Figure 10 at least on a graphical level our approximation is quite accurate.

To provide some further details on our computation using GAIO, we started
with 213 = 8192 boxes and every step contains 4 continuation steps, before subdi-
vision had been applied. Each box required 100 randomly chosen points in which
the Hénon map was evaluated. This led to 1.562.126.800 Hénon evaluations.

4.5 Colpitts oscillator

The following example illustrates our methods applied to an autonomous ODE,
whose right-hand side is globally Lipschitz but not continuously differentiable.
The Colpitts oscillator (see, for instance, [28]) is one of the most widely used
single-transistor circuits to produce sinusoidal oscillations. Mathematically, it is
given by a 3-dimensional system

=13 —n(x?)
i =51y (25)
P = —%(xl —x%) =23

with parameters ¥,g > 0, k > 1 and a piecewise-defined nonlinearity

n(x) := {—x, x=1

-1, x>1
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Fig. 10 Magnifications of the Hénon attractor: Unstable manifold of the Hénon map computed
using Algorithm 3 (left column) versus the attractor computed with GAIO (right column)

Obviously, equation (25) admits the trivial solution, and we can write it in semi-
linear form X = Ax + F (x) with mappings

0 0 K 1 [n(x2)
A= 019 ()19 5 | F(x):= 5 8
~% "k 4
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Since the spectrum of A is given by 6(A) = {0,—g+ ©}, @ := \/¢*> — 1, we can
verify that (25) possesses a 2-dimensional stable and a 1-dimensional center man-
ifold. The computation of these manifolds get simplified, if we transform (25) via

1 1 —1
A= k—1 k—1 1
3(—q+0) ¥(—g— ) 0

and arrive at the decoupled system

—q-0 n((k= 1) +22) +2) [ 20
i= —q+o |x— D 7%“) : (26)
0 1-k%

As suggested in Subsection 3.3, we apply a numerical one-step scheme to the
autonomous ODE (25). For simplicity reasons we restrict to the explicit Euler
method for step-size 7 = 0.01 and use Algorithm 1 to the resulting difference
equation. We fixed parameter values g =2, ¥ = 8, k = 5 leading to a 2-dimensional
stable and a 1-dimensional center manifold.

The invariant manifolds of this temporal Euler discretization have been com-
puted with T = 15 and accuracy € = 10~>. For the stable manifold S* we used a
grid of 21 x 21 uniformly distributed points in the box B = [—1, 1]2. Our different
methods led to the following results:

method rest  eval™ remark

I_LM 5.75e-5 65 aborted by small G™-vector
I_PDL 1.12e-6 60 aborted by small G"-vector
K BrSola | 8.44e-6 30 line search failures

K_NSolil | 2.70e-6 56
K NSoli2 | 2.70e-6 56
K_NSo0l1i3 | 1.34e-6 152
K_NSolid | 2.56e-6 57

Concerning the center manifold S~, for several methods, we computed the arith-
metic mean of the ¢2-residual and the number of evaluations over the interval

I =[—2,2] using n = 101 intermediate points:
method res” eval” remark
ILM 6.77e-5 64  stopped by small G™-vector
I_PDL 1.30e-6 57 stopped by small G~ -vector

K_NSoliil 2.91e-6 54
K_NSoli2 2.91e-6 54
K_NSo01i3 3.42e-6 85
M_DL 7.93e-10 180

Unfortunately, we obtained no convergence for K_BrSola (line search failures)
and K_NSoli4. The numerical approximations using K_NSoli1 for the stable man-
ifold ST and the center manifold S~ are illustrated in Figure 11.



32 Christian Potzsche, Martin Rasmussen
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Fig. 11 Stable manifold (left) and center manifold (right) for the forward Euler discretization of
the Colpitts oscillator (26)

4.6 Discretized reaction-diffusion equations

In this final more comprehensive example, we are interested in approximating the
inertial manifold of a scalar nonautonomous reaction-diffusion equation. Thereto,
we apply our results to a finite-dimensional difference equation, which has been
obtained from the original evolutionary PDE by a Bubnov-Galerkin method for
spatial, and a linearly implicit Euler scheme for temporal discretization. Error
estimates for such full discretizations have been obtained in [19].

We study the following nonautonomous reaction-diffusion equation

Oiu = Iy — f(t,u), 27

subject to homogeneous Dirichlet boundary conditions u(¢,0) = u(¢,7) = 0 and
an initial condition u(7,x) = u(x) for given data T € R, uy € L*(0, ).

This problem fits into the framework of [8], provided we also suppose that
f:R xR — R is continuous, that the partial derivative 822 f:R xR — R exists as
a continuous function and that there exist reals C1,C,,C3,Y > 0, p > 2 such that

P

Y =Ci < fv)y,  [fEv)|7T <C(I+P), —CG<af(ry) (28
for all ¢,v € R and provided we can choose K1,K; : [0,00) — R such that

Ki(r) > sup sup ‘aéf(t,v)‘ foralli=1,2,r>0. (29)
t€R v|<y/zr

Using a Galerkin technique, it is shown in [8, p. 114, Proposition 2.1] that the
nonautonomous equation (27) generates a dissipative 2-parameter semiflow on
the space L%(0, ) — note that we write L? instead of L?(0, ) from now on, and
proceed similarly with the spaces HOl or C°.

On the other hand, following [38, Section 5.1], we can formulate (27) as ab-
stract nonautonomous evolutionary equation

i+ Lu=g(t,u) (30)

with linear part L := —dy, and substitution operator g(t,u)(x) := —f(t,u(x)).
Then, referring to [38, p. 272, Theorem 51.1], the mild solutions of (30) gener-
ate a dissipative 2-parameter semigroup on Hé, and in [8, p. 290, Proposition 3.5]
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it is shown that the radius of the corresponding absorbing set in H(} is bounded by

rg .= 2\/ 2C1C3.

It is known that the eigenvalues of the negative Laplacian L with zero boundary
condition u(0) = u(x) = 0 are given by A, = n?, n € N, with corresponding pair-
wise L*-orthonormal eigenfunctions

en(x) = \/%sin(nx) foralln € N.

In addition, let P; : L> — L? be the orthogonal projection onto the d-dimensional
space span{ey,...,eq} and Q4 := I — P; be the complementary projector.
After these preparations we prove that (27) admits an inertial manifold:

Proposition 4 Assume that (28), (29) hold and the integer d > 0 satisfies

d>V2L(ro) —1/2, L(r) = 2K (2 4+ PKa(r2. (1)
Then the reaction-diffusion equation (27) has a d-dimensional inertial manifold
S ={(t,E+5 (1,§)) eERxHy: £ €imPy}
with a smooth function s~ : R x imP; — im Q.

Proof In order to employ a suitable inertial manifold theorem, some preparations
are due. As in [38, p. 271] one shows that g : R X Hé — H(} is well-defined and
satisfies the local Lipschitz condition

lg(t,0) = g(t, @)l gy < L(r) u—atlly  forallr € R, u,ii € B.(0) C Hy

and n € N. Note that the explicit form of the constant L(r) given above results from
the compact embedding H(} < CY (cf., e.g., [8, p. 30, Theorem 1.2]) satisfying an

explicit estimate ||u|| 0 < /7 ||ul| i forall u € H}. Using an appropriate retraction

mapping, it is possible to modify g(z,-) outside the absorbing ball B,,(0) such
that the altered nonlinearity g is globally bounded and satisfies a global Lipschitz
condition in the second argument with constant L(rg) (uniformly in € R). Hence,
we can apply [23, Corollary 4.1] to establish the existence of the desired inertial
manifold, since

18(0,0) ~ &(0,) |y < V2L max {12 =l gy 1 i = W}

In our situation, the spectral gap condition in [23, p. 934] reduces to the estimate
2v/2L(r9) < Aus1 — Ay = 2n+ 1, and this implies our claim. [ |

Now we are in a position to describe our discretization strategy for (27). First,
the Bubnov-Galerkin approximation with N Fourier modes, N > 1, is obtained by
inserting the ansatz
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into (27) and taking the L2-inner product with ¢;, j € [1,N]z, leads to an initial
value problem in the space im Py. We canonically identify this linear space with
RY and arrive at the N-dimensional ODE

V)= szvj+fj(t,v) forall j € [1,N]z (32)

with the nonlinearities f; : R x RNV — R,

G =-[ ”f(r, ﬁlwa)ei(x))e,-(x) dx (33)

and initial condition v(7) =1, n; = [y uo(x)e;(x)dx. Respecting the (mild) stiff-
ness of the matrix — diag( jz)yzl, we apply a linearly implicit Euler discretization
(with step-size h > 0) to (32) and arrive at the nonautonomous difference equation

Virl = Apvy JFFh(tth) (34)

N , and a nonlinearity Fj, : Z x RY RN, whose

with linear part A, := diag (ﬁ ) -

components are given by

Fh(l‘,v)/‘ : T—i-hl‘,v) forall j € [I,N]Z.

h
el

Henceforth, we deduce the existence of an attractive invariant fiber bundle for the
difference equation (34). Choosing an integer d according to (31), the linear part
of (34) satisfies Hypothesis 1 with dichotomy data K_ =K, =1,

o = (1+h(d+1)2)1, o = (1+hd*)".

and the invariant projector P_ = diag(1,...,1,0,...,0). Moreover, it is possible to
verify Hypothesis 2. Thus, we can employ the methods from Section 3 to approx-
imate the invariant fiber bundle

Son = { (k& +s5y (k) €ZXRY k€7, & cimP. |

of the discretization (34). An error estimate relating the nonautonomous inertial
manifold S~ of the full reaction diffusion equation (27) (cf. Proposition 4) to the
finite-dimensional invariant fiber bundles S, , can be found in [19, Theorem 5.3]
and is of the form '

Ad+1
ANt

“s;N(hk,g) —s*(hk,é)H < KiAvh+K (35)

with constants K, K> > 0, sufficiently large N and small 4.
In the remaining part of the paper, it is our intention to compute fibers of the
nonautonomous set S, .. Here we retreat to a scalar Chafee-Infante equation with

time-dependent coefficients

O = Oyt + A(t)u— /,L(t)u3, (36)
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under the above initial boundary conditions. For continuous bounded functions
u,A : R — (0,e0) is not difficult to show that (36) fulfills assumption (28) with
nonlinearity f(¢,v) = u(¢t)v* — A(t)v and p = 4, provided there exists a ¥ > 0 with
y < u(t) forall t € R and

Ar)?
Cp:=sup—1—, Cs:=supA(t) <
rer 4(u(t) —y) teR
Furthermore, we can choose the functions K, K5 : [0,00) — R from (29) as
Ki(r) := max {C3,37rr2 supu(r) —inf A (¢ )} Ky (r) := 6y/Trsupu(t).
teR 1€R teR
In the next step we compute a Galerkin approximation for (36). Unfortunately, the
constants Ki, K> > 0 in the mentioned error estimate (35) from [19, Theorem 5.3]
are not immediately accessible. For this reason, we heuristically choose a spatial
approximation of order N = 6. With help of some computer algebra to evaluate
the integrals (33), the resulting nonlinearities fi,.. ., f¢ read as follows:
filt,y) = %( 6vov3V4 + 3\/%\15 6v1v5 6v1v6 6Vov4v5 — 6v1v§
— 3V%V5 + 6viv3vs — 3v21/3 + 6vov3vg + 6V v4ve — 6V V5Vg
— 6v1v4 6v1v2 4+ 6v1vovs — 3v1 6v3v4ve + 3\/%\/3) +A(t)vy,
ftv) = IJZL;:) ( — 6V3V4V5 — 6V VoV3 + 3v1\/4 + 6v1v3v6 — 6V V4V5 — 3\%
— 6v%vz —6Vivsvg — 3v42‘v6 —6viv3ve — 3\%\/4 — 6vzvi
+ 3v2v6 - 6vzv6 6v3Vs5V6 — 6vzv5 + 6vivv5 — 6vzv§) +A(0)va,
fat,v) = % (vl - 3\13 6vov5v6 — 3v1v2 6v1V3v5 — 6V VaVs
+ 6V1vv6 — 6V V4Vg — OV V4 Vs — OV4VsVe — OV V3Vg — 61}3v42
+ 3vvs — 6v3vE — 6V3v2 — 6Viv3 — 3vTvs — 6\/%1}3) +A(t)vs,
fat,v) = # ( 6V3V4vs — 3vzv3 6V4v5 3v4 6V%V4 —6Vav4ve
+ 3v1v6 — 6V3V4 — 6viv3ve + 3v1vz — 6vvav3 — 6V3VsV6
— 6V VaVs — 6V V3Vs — 6V%V4 — 3v§v6 — 6\/41/%) + A(t)va,
f5(t,v) = %( 6V V2V — 6V4VsVe — 3v3V3 — 6V3vs — 3v V3 + 3vis
—6V1Vpv4 — 6V3VVe + 3v1v2 6v2\/5 6Vvrv3v6 — 6V5v%
—6vov3vg — 6\/1 Vs — 3V5 — 6\/3\/5) + A(I)VS,
So(t,v) = A;r) ( —6VV3Vs — 3\% — 3\)4\% +6vivav3 — 3vzv4 6v2v6 + v2
+ 3V%V4 — 6v§v6 — 6V vavs — 6v%v6 — 6v3v6 — 6v4v6
— 6v3vavs — 6V2V3V5) +A (I)V6
To perform actual computations, we choose 8 > 0 and define u,A : R — R by

u(t) =8, A(t) := 6 (5 +arctant) .
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Hence, for y:= 6 /2 the radius of the absorbing set for the reaction-diffusion equa-

tion (36) is bounded above by rg = 2m3/28. Consequently, Proposition 4 guaran-
tees that (36) admits a nonautonomous inertial manifold S—, whose dimension is
the minimal integer d > 0 satisfying

d > 278/ max {12762, 1) 12887554 — 1/2.

We are fixing the parameter value § = % and the evolutionary equation (27)
admits a 2-dimensional inertial manifold, i.e., we can choose d = 2 and also ob-
tain a 2-dimensional invariant fiber bundle S, ; for the Bubnov-Galerkin-Euler
discretization (34). In particular, this nonautonomous set S, ¢ is given as graph of
a function s;, ¢ : Z x R* — R*.

We used Algorithm 1 to approximate the function s, , over the square [—1, 1
using a uniform grid of 21 x 21 points, for an Euler step-size h = 0.1, T = 15 and
accuracy € = 107> The corresponding performance data for the method K_NSoli1
are displayed in the following table:

T | -20 -10 0 10 20
err | 3.58e-6 3.49e-6 5.72e-4 4.84e-3 5.13e-3
eval 645 654 696 856 865

It is apparent that computing fibers S, ((7) becomes more expensive and less ac-

curate as the fiber index T grows. The results of this computation are visualized
in Figure 12 showing the components of s, (7, &) for a fixed fiber with T = 0. In

addition, Figure 13 illustrates how the first component s, (7,&)1 changes under
varying fibers with T = —20,20.

g, -1

5,6(081.8));

g, -1 -1 g, g, -1 -1 g

Fig. 12 Graphs of 5, 5(0,&1,&); fori =1,2,3,4
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g, L g & o g

Fig. 13 Graphs of s;ﬁ(r,é] ,&)1 for T=-20,20
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