
Numer. Math. (2009) 112:565–600
DOI 10.1007/s00211-009-0218-6

Numerische
Mathematik

Domain decomposition based H-LU preconditioning

Lars Grasedyck · Ronald Kriemann ·
Sabine Le Borne

Received: 9 February 2007 / Revised: 2 December 2008 / Published online: 3 March 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Hierarchical matrices provide a data-sparse way to approximate fully
populated matrices. The two basic steps in the construction of an H-matrix are (a) the
hierarchical construction of a matrix block partition, and (b) the blockwise approxi-
mation of matrix data by low rank matrices. In this paper, we develop a new approach
to construct the necessary partition based on domain decomposition. Compared to
standard geometric bisection based H-matrices, this new approach yields H-LU fac-
torizations of finite element stiffness matrices with significantly improved storage and
computational complexity requirements. These rigorously proven and numerically
verified improvements result from an H-matrix block structure which is naturally
suited for parallelization and in which large subblocks of the stiffness matrix remain
zero in an LU factorization. We provide numerical results in which a domain decom-
position based H-LU factorization is used as a preconditioner in the iterative solution
of the discrete (three-dimensional) convection-diffusion equation.

Mathematics Subject Classification (2000) 65F05 · 65F30 · 65F50 · 65N55

This work was supported in part by the US Department of Energy under Grant No. DE-FG02-04ER25649
and by the National Science Foundation under grant No. DMS-0408950.

L. Grasedyck (B) · R. Kriemann
Max-Planck-Institute for Mathematics in the Sciences,
Inselstrasse 22–26, 04103 Leipzig, Germany
e-mail: lgr@mis.mpg.de

R. Kriemann
e-mail: rok@mis.mpg.de

S. Le Borne
Tennessee Technological University,
Cookeville, TN 38505, USA
e-mail: sleborne@tntech.edu

123

566 L. Grasedyck et al.

1 Introduction

Hierarchical (or H-) matrices have first been introduced in 1999 [12] and since
then have entered into a wide range of applications. They provide a format for the
data-sparse representation of fully populated matrices. The key idea is to approxi-
mate certain subblocks of a matrix by data-sparse low-rank matrices which are rep-
resented by a product of two rectangular matrices as follows: Let A ∈ R

n×n with
rank(A) = k and k � n. Then there exist matrices B, C ∈ R

n×k such that A = BCT .
Whereas A has n2 entries, B and C together have 2kn entries which results in sig-
nificant savings in storage if k � n. A new H-matrix arithmetic has been developed
which allows (approximate) matrix-vector multiplication and matrix-matrix opera-
tions such as addition, multiplication, inversion and LU factorization of matrices in
this format in nearly optimal complexity O(n logα n) with a moderate parameter α

[9]. It is even possible to reach optimal complexity O(n) by use of H2-matrices
[3,16].

In finite element methods, the stiffness matrix is sparse but its inverse or LU factors
are fully populated and can be approximated by H-matrices. Such an approximate
inverse, or approximate LU factors, may then be used as a preconditioner in iterative
methods [19] or for the representation of matrix valued functions [5]. Even though the
complexities of the H-matrix inversion and H-LU-factorization are of almost optimal
order, there are relatively large constants involved in these complexities which in the
past have prevented H-matrix based preconditioners to be competitive with other state-
of-the-art methods. In this paper, we investigate a clustering strategy which reduces the
constants in the complexity estimates for the H-LU factorization significantly: we will
introduce (recursive) domain decompositions with an interior boundary, also known
as nested dissection, into the construction of the index cluster tree of an H-matrix.
This new clustering algorithm, first presented in [20], will yield a block structure in
which large subblocks are zero and remain zero in a subsequent LU factorization. As
a result, the constants in the (nearly optimal) storage and work complexities will be
significantly smaller than for the standard H-matrix setting based on bisection clus-
tering. A related approach that combines nested dissection with H-matrix techniques
has also been pursued in [18].

The clustering method can also be performed in a purely algebraic fashion by only
using the sparsity pattern of a matrix [11]. For parallelization issues see also [11]. A
comparison of the algebraic H-LU preconditioner with standard direct and iterative
solvers is presented in [10].

The remainder of this paper is structured as follows: Sect. 2 is devoted to preliminar-
ies. It will provide an introduction of the model partial differential equation, a review
of the nested dissection method, as well as a brief introduction to the construction and
arithmetic of H-matrices, including the H-LU factorization for arbitrary hierarchical
block clusterings. Section 3 introduces the new clustering algorithm which is based on
domain decomposition. In Sect. 4 we prove that certain subblocks of the LU factors can
be approximated by low rank, where the rank depends only polylogarithmically on the
desired accuracy. Section 5 is devoted to complexity estimates for the storage require-
ment and computation of the domain decomposition based H-LU factors. Section 6
provides numerical results for the new approach in comparison with standard bisection

123

Domain decomposition based H-LU preconditioning 567

based H-matrix techniques when applied to three-dimensional convection-diffusion
problems.

2 Preliminaries: model problem, nested dissection and H-matrices

2.1 The finite element model problem

Throughout this paper, we consider a linear system of the form Au = b, where A is
the sparse Galerkin stiffness matrix of an invertible second order uniformly elliptic
partial differential operator A : H1

0 (Ω)→ H−1(Ω),

Au = −divσ∇u + b · ∇u + cu, (1)

on a domain Ω ⊂ R
d with L∞-coefficients σ : Ω → R

d×d , b : Ω → R
d , c :

Ω → R. The N -dimensional finite element space is denoted by VN ⊂ H1
0 (Ω) and

is spanned by a local basis (ϕi)i∈I with index set I := {1, . . . , N }, where the term
“local” is defined as follows:

Assumption 1 (Locality) We assume that the supports of the basis functions (ϕi)i∈I
are locally separated in the sense that there exist two constants Csep and nmin so that

max
i∈I

#

{
j ∈ I

∣∣∣dist(suppϕi , suppϕ j) ≤ diam(suppϕi)

Csep

}
≤ nmin. (2)

The left-hand side is the maximal number of basis functions with “relatively close”
supports.

Remark 2 1. The stiffness matrix A is sparse with at most Nnmin non-zero entries.
2. The locality condition (2) does not require shape regularity or a K-mesh property

(neighbored elements are of comparable size). On the other hand, it bounds the
number of non-neighbored elements that are close to each other in R

d .

2.2 A review of nested dissection

Most direct methods for sparse linear systems perform an LU factorization of the
original matrix after some reordering of the indices in order to reduce fill-ins. A pop-
ular reordering method is the so-called nested dissection method which exploits the
concept of separation. The idea of nested dissection has been introduced more than
30 years ago [6] and since then attracted considerable attention (see, e.g., [4,17] and
the references therein). The main idea is to separate the vertices in a (matrix) graph
into three parts, two of which have no coupling between each other. The third one,
referred to as an interior boundary or separator, contains couplings with (possibly both
of) the other two parts. The nodes of the separated parts are numbered first and the
nodes of the separator are numbered last. This process is then repeated recursively in
each subgraph. An illustration of the resulting sparsity pattern is shown in Fig. 1 for

123

568 L. Grasedyck et al.

Fig. 1 Nested dissection and
resulting matrix sparsity
structure

Ω3Ω1 Ω2 Ω4

Ω3

Ω4

Ω

Ω1 Ω

Ω
2

3

4

1

Ω2

Γ

1Γ

Γ Γ2

Γ

Γ
ΩΓ1

Γ2

Γ2

1

the first two decomposition steps. In domain decomposition terminology, we recur-
sively subdivide the domain into an interior boundary and the resulting two disjoint
subdomains.

A favorable property of such an ordering is that a subsequent LU factorization
maintains a major part of this sparsity structure, i.e., there occurs no fill-in in the large,
off-diagonal zero matrix blocks that contain the coupling between two disjoint subdo-
mains (white blocks in Fig. 1). In fact, in the case of a regular three-dimensional grid,
the computational complexity amounts to O(N 2) for a matrix A ∈ R

N×N [21]. In
order to obtain a (nearly) optimal complexity, we propose to approximate the nonzero,
off-diagonal blocks in the H-matrix representation and compute them using H-matrix
arithmetic which will be introduced in Sect. 2.3. The small blocks on the diagonal and
their LU factorizations will be stored as full matrices.

2.3 A brief introduction to H-matrices

In this section, we will introduce hierarchical (H-)matrices and their arithmetic, includ-
ing the computation of an approximate H-LU factorization. An H-matrix provides a
data-sparse approximation to a dense matrix by replacing certain blocks of the matrix
by matrices of low rank which can be stored very efficiently. The blocks which allow
for such low rank representations are selected from a hierarchy of partitions organized
in a so-called cluster tree.

Definition 3 (Cluster tree) Let TI = (V, E) be a tree with vertex set V and edge set
E . For a vertex v ∈ V , we define the set of successors (or sons) of v as S(v) := {w ∈
V | (v,w) ∈ E}.

The tree TI is called a cluster tree of I if its vertices consist of subsets of I and
satisfy the following conditions (cf. Fig. 2, left):

1. I ∈ V is the root of TI , and v ⊂ I, v �= ∅, for all v ∈ V .
2. For all v ∈ V , there holds S(v) = ∅ or v = ⋃̇

w∈S(v)w.

The depth of a cluster tree, d(TI), is defined as the length of the longest path in TI .
In the following, we identify V and TI , i.e., we write v ∈ TI instead of v ∈ V . The
nodes v ∈ V are called clusters. The nodes with no successors are called leaves and
define the set L(TI) := {v ∈ TI | S(v) = ∅}. For a cluster v ∈ TI , we denote the
restriction of TI to v with vertices {w ∈ V | w ⊂ v} by Tv .

123

Domain decomposition based H-LU preconditioning 569

{0, 1, 2, 3, 4, 5, 6, 7}

{0, 1, 2, 3} {4, 5, 6, 7}

{0, 1} {2, 3} {4, 5} {6, 7}

{0}{1}{2}{3}{4}{5}{6}{7}

6

6

0 1 2 3 4 5 7
0

4

2
1

5

3

7
6

62 70 541

4

3 62 70 541 3 62 70 541 3

1
0

3
2

7

5
6

4
3
2

5

7

1
0

6

0
1
2

4
3

5

7

Fig. 2 Left A cluster tree TI . Right The four levels of the block cluster tree TI×I , where nodes that are
further refined are white, inadmissible leaves are dark grey, and admissible leaves are light grey. Leaves of
the block cluster tree are present on several levels of the tree

The construction of a suitable cluster tree typically considers the cardinalities and/or
the geometries of the resulting clusters. We thus need the following geometric entities
associated with the indices:

Definition 4 (Geometric entities) Every index i ∈ I is associated with a basis func-
tion ϕi of the underlying finite element space VN . For every i , we assign a (fixed)
nodal point xi such that

xi ∈ suppϕi . (3)

For a cluster v of indices, we define its support by

Ωv :=
⋃
j∈v

suppϕ j . (4)

Later, we will need (upper bounds of) the diameters of these clusters as well as the
distances between two such clusters (both in the Euclidean norm, see (6,7)). Since
diameters and distances can be computed much more efficiently for rectangular boxes
than for arbitrarily shaped domains, we supply each cluster v with a bounding box

Bv =
d⊗

j=1

[αv, j , βv, j] (5)

that contains Ωv , i.e., Ωv ⊂ Bv .

Given a cluster tree TI , any two clusters s, t ∈ TI form a product s × t , also
called a block cluster, which can be associated with the corresponding matrix block
(Ai j)i∈s, j∈t . We will use an admissibility condition to decide whether such a block
will be allowed in a block partition of the matrix A or should be further refined. In
general, an admissibility condition is a boolean function

Adm : TI × TI → {true,false}.

Most of the previous H-matrix papers (e.g., [8,9,14,15]) employ the standard (or
strong) admissibility condition which is given by

123

570 L. Grasedyck et al.

AdmS(s × t) = true

:⇔ min(diam(Bs), diam(Bt)) ≤ η dist(Bs, Bt) (6)

for some 0 < η. Here, Bs, Bt are the bounding boxes (5) of the clusters s, t , respec-
tively.

In actual computations, a weaker admissibility condition achieves considerable
savings in both storage and work complexities while maintaining a sufficient approx-
imation accuracy. Such a weak admissibility is given by

AdmW(s × t) = true

:⇔ #{i ∈ I | suppϕi ∩ Bs ∩ Bt �= ∅} ≤ nmin. (7)

The condition (7) means that blocks are admissible if they overlap at most for a few
basis functions.

Given a cluster tree TI and an admissibility condition, we construct a hierarchy of
block partitionings of the product index set I×I. The hierarchy forms a tree structure
and is organized in the block cluster tree TI×I :

Definition 5 (Block cluster tree) Let TI be a cluster tree of the index set I. A cluster
tree TI×I is called a block cluster tree (based upon TI) if for all v ∈ TI×I there exist
s, t ∈ TI such that v = s × t . The nodes v ∈ TI×I are called block clusters.

A block cluster tree may be constructed from a given cluster tree in the following
canonical way which is also employed for all subsequent block cluster trees in this
paper.

Construction 6 (Canonical block cluster tree construction) Given a cluster tree TI ,
an admissibility condition Adm(·), and a parameter nmin, we construct a block cluster
tree TI×I by

root(TI×I) := I × I,

and each vertex s × t ∈ TI×I has the set of successors

S(s × t) :=
⎧⎨
⎩
∅ if Adm(s × t) = true;
∅ if min{#s, #t} ≤ nmin;
{s′ × t ′ | s′ ∈ S(s), t ′ ∈ S(t)} otherwise.

(8)

The parameter nmin (from Assumption 1) has to be chosen large enough to fulfill
(2). For rather small blocks the matrix arithmetic of a full matrix is more efficient than
that of a structured matrix. Therefore, nmin should be chosen at least nmin ≥ 10, which
is typically at the same time sufficient for Assumption 1.

In Fig. 2, we have provided a simple example for a cluster tree and the corre-
sponding block cluster tree. The indices in this example correspond to the continuous,
piecewise linear basis functions of a regularly refined unit interval (in lexicographical
order). Matrix blocks which correspond to admissible block clusters will be approxi-
mated in a data-sparse format by the following Rk-matrix representation.

123

Domain decomposition based H-LU preconditioning 571

Definition 7 (Rk-matrix representation) Let k, n, m ∈ N0. Let M ∈ R
n×m be a matrix

of at most rank k. A representation of M in factorized form

M = ABT , A ∈ R
n×k, B ∈ R

m×k (9)

with A and B stored in full matrix representation, is called an Rk-matrix representation
of M , or, in short, we call M an Rk-matrix.

If the rank k is small compared to the matrix size given by n and m, we obtain
considerable savings in the storage and work complexities of an Rk-matrix compared
to a full matrix [9]. Finally, we can introduce the following definition of a hierarchical
matrix:

Definition 8 (H-matrix) Let k, nmin ∈ N0. The set of H-matrices induced by a block
cluster tree T := TI×I with blockwise rank k and minimum block size nmin is defined
by

H(T, k) :=
{

M ∈ R
I×I

∣∣∣∀s × t ∈ L(T) : rank(M |s×t) ≤ k

or min{#s, #t} ≤ nmin

}
.

Blocks M |s×t with rank(M |s×t) ≤ k are stored as Rk-matrices whereas all other
blocks are stored as full matrices.

Whereas the classical H-matrix uses a fixed rank for the Rk-blocks, it is possible
to replace it by variable (or adaptive) ranks in order to enforce a desired relative
accuracy within the individual blocks [9].

2.4 Arithmetic of H-matrices

Given two H-matrices A, B ∈ H(T, k) based on the same block cluster tree T , i.e.,
with the same block structure, the exact sum or product of these two matrices will typi-
cally not belong to H(T, k). In the case of matrix addition, we have A+B ∈ H(T, 2k);
the rank of an exact matrix product is less obvious. We will use a truncation operator
T H

k←k′ to define the H-matrix addition C := A ⊕H B and H-matrix multiplication
C := A ⊗H B such that C ∈ H(T, k).

A truncation Tk←k′(R) of a rank k′ matrix R to rank k is defined as a best approxi-
mation with respect to the Frobenius (or spectral) norm in the set of rank k matrices.
In the context of H-matrices, we use such truncations for all admissible (rank k′)
blocks. Using truncated versions of the QR-decomposition and singular value decom-
position, the truncation of a rank k′ matrix R ∈ R

n,m (given in the form R = ABT

where A ∈ R
n,k′ and B ∈ R

m,k′) to a lower rank can be computed with complexity
O

(
(k′)2(n + m)

)
; further details are provided in [9]. We then define the H-matrix

addition and multiplication as follows:

A ⊕H B := T H
k←2k(A + B); A ⊗H B := T H

k←k′(A · B),

123

572 L. Grasedyck et al.

where k′ ≤ c(p + 1)k is the rank of the exact matrix product, c denotes some
constant (which depends on the block cluster tree T) and p denotes the depth of
the tree, cf. Definition 3. Estimates that show that the H-matrix addition and multipli-
cation have almost optimal complexity are provided in [9] along with details on the
efficient implementation of these operations.

The approximate H-matrix addition and multiplication permit the explicit com-
putation of an approximate LU factorization in H-matrix format (a so-called H-LU
factorization). Such a factorization is defined recursively in the block structure of the
H-matrix. If A corresponds to a leaf block s × t on the matrix diagonal, then the
exact LU factorization A = LU is computed. If, however, A is further refined, i.e.,
S(s × t) = {si × t j | i, j = 1, . . . , n}, then a (block) H-LU factorization

⎛
⎜⎝

A1,1 · · · A1,n
...

. . .
...

An,1 · · · An,n

⎞
⎟⎠ =

⎛
⎜⎝

L1,1 0
...

. . .

Ln,1 · · · Ln,n

⎞
⎟⎠

⎛
⎜⎝

U1,1 · · · U1,n
. . .

...

0 Un,n

⎞
⎟⎠

is computed as in Algorithm 1 (where we abbreviate the submatrix A|si×t j by Ai, j).

Algorithm 1 H-LU factorization
for i = 1, · · · , n do

for j = 1, · · · , i − 1 do

Solve
∑ j

k=1 Li,kUk, j = Ai, j for Li, j ; (*)
endfor;
Compute Li,i , Ui,i as an H-LU factorization:

Li,i Ui,i = Ai,i −
∑i−1

k=1 Li,kUk,i ; (**)
for j = i + 1, · · · , n do

Solve
∑i

k=1 Li,kUk, j = Ai, j for Ui, j ; (***)
endfor;

endfor;

The solves for Li, j and Ui, j in (*) and (***) of Algorithm 1 require lower and
upper triangular solves in H-arithmetic, respectively. These triangular solves are once
again defined recursively in the H-matrix block structure where on the coarsest (i.e.,
no further refined) level, an exact triangular solve is computed in exact (full) matrix
arithmetic. We note that the summation and products

∑
Li,kUk, j of matrices in (*),

(**) and (***) of Algorithm 1 are not performed exactly but in H-arithmetic.

3 Domain decomposition based clustering

The storage and computational complexities and also the accuracy of an H-LU factor-
ization A ≈ LHUH depend strongly on the H-matrix block structure which in turn
strongly depends on the underlying cluster tree construction. Our goal is to derive a
clustering strategy that will yield an H-matrix block structure which is better suited
for the computation of the H-LU factors of a (stiffness) matrix than the standard

123

Domain decomposition based H-LU preconditioning 573

Fig. 3 Direct domain
decomposition and the resulting
matrix sparsity structure

Ω1

Ω1

Ω3

Ω1 Ω2

Ω4 Ω
Ω

Ω2

Ω Ω Ω

4

3

2 3 4 Γ

ΓΓ

geometric bisection clustering. We derive a new algorithm to construct a cluster tree
which will permit a subsequent H-LU factorization in which

− large off-diagonal blocks remain zero,
− non-zero off-diagonal blocks can be approximated in H-matrix format, and
− the factorization process is well-suited for parallelization.

The new clustering algorithm is based on a domain decomposition approach. In
[13], a direct domain decomposition method has been combined with the hierarchical
matrix technique. In particular, a domain Ω is subdivided into p subdomains and
an interior boundary Γ which separates the subdomains as shown in Fig. 3. Within
each subdomain, standard H-matrix techniques are used, i.e., H-matrices are con-
structed by the standard bisection index clustering with zero or two successors as will
be explained in Sect. 3.1. Thus, the first step is the decomposition of the domain into
a fixed number of subdomains, and in a second step, H-matrix techniques are applied
within each subdomain. The new approach of this paper is to combine (or unify) these
two steps: we will take the index clustering of the domain decomposition and use this
same clustering as a cluster tree for the H-matrix construction.

3.1 Clustering based on bisection

The standard construction of the cluster tree TI is based on variants of binary space
partitioning. The basic idea to construct the clusters is to subdivide a cluster v with
support Ωv (4) into smaller clusters v1, v2 as follows:

1. Let Qv denote a box that contains all nodal points (xi)i∈v , cf. (3). For the root
cluster this could be the bounding box QI := BI .

2. Subdivide the box Qv into two parts Qv = Q1 ∪̇ Q2 of equal size.
3. Define the two sons S(v) = {v1, v2} of v by

v1 := {i ∈ v | xi ∈ Q1}, v2 := {i ∈ v | xi ∈ Q2}

and use the boxes Qv1 := Q1, Qv2 := Q2 for the further splitting of the sons.

The subdivision is typically performed such that the resulting diameters of the boxes
associated with successor clusters become as small as possible so that clusters
eventually become separated and fulfill the standard admissibility condition (6). A
visualization of this geometric regular bisection process is given in Fig. 4.

123

574 L. Grasedyck et al.

Fig. 4 The box QI (top left) that contains the whole domain Ω = [0, 1]3 is successively subdivided into
two subboxes. The corresponding matrix A bears a hierarchical 2× 2 block-structure. The eight light grey
blocks are not admissible with respect to (6) but weakly admissible (since they only “touch” in one corner)

3.2 Clustering based on domain decomposition

A new construction of the cluster tree is based on the decomposition of a cluster v

with corresponding domain Ωv (4) into three sons, i.e., S(v) = {v1, v2, v3}, where v1
and v2 contain the indices of the two disconnected subdomains Ωv1 and Ωv2 while
v3 = v\(v1 ∪ v2) contains the indices corresponding to the separator Γv = Ωv3 , cf.
Fig. 1. The formal DD-clustering process is presented in the following Construction 9.

Visualizations of the clustering process and the resulting block structures for two-
and three-dimensional sample domains are presented in Figs. 5 and 6, respectively.

Construction 9 (DD-clustering) The cluster tree TI as well as the set of domain-
clusters Cdom and interface-clusters TI\Cdom are constructed recursively, starting
with

− the root I, Cdom := {I} and
− the box QI := BI from (5) that contains the domain Ω .

Clusters that satisfy #v ≤ nmin will be no further refined. For all other clusters, we
distinguish between domain-clusters and interface-clusters. If a cluster v and a box

Fig. 5 Top row the box QI (top left) that contains the whole domain Ω = [0, 1]2 is successively
subdivided by DD-clustering. The interface cluster (bold) is subdivided by standard bisection in every
other step. Bottom row the four levels of the corresponding block cluster tree

123

Domain decomposition based H-LU preconditioning 575

Fig. 6 The domain Ω = [0, 1]3 is successively subdivided using DD-clustering. The top row displays the
respective bounding boxes used for the subdivision. The bottom row shows the resulting hierarchical block
structure of the matrix A. The white blocks s × t satisfy AdmDD(s × t) = true

Qv = ⊗d
i=1[αi , βi] satisfying x j ∈ Qv for all j ∈ v are given, we introduce new

boxes Q1 and Q2 by splitting Qv in half in the coordinate direction isplit of maximal
extent. In the following, we use the notation

Xi := suppϕi .

Domain-clusters: For v ∈ Cdom, we define the three successors (cf. Fig. 5, top row)

v1 := {i ∈ v | xi ∈ Q1}, v2 := {i ∈ v | Xi ∩Ωv1 = ∅},
(10)

v3 := v\(v1 ∪ v2).

We set S(v) := {v1, v2, v3}. We add the new clusters v1, v2 to the set of domain-
clusters, i.e., Cdom := Cdom ∪ {v1, v2}, and we associate the boxes Qv1 := Q1 and
Qv2 := Q2 with v1, v2, resp. The interface-cluster v3 is equipped with the “flat” box
Qv3 :=

⊗d
i=1[α̃i , β̃i] where α̃i := αi and β̃i := βi except for the splitting coordinate

i = isplit where we set

α̃i := αi + βi

2
− hv3, β̃i := αi + βi

2
+ hv3, hv3 := max

j∈v3
diam(X j).

Interface-clusters: We define the interface-level of a cluster, levelint(v), as the distance
of v to the nearest domain-cluster in the cluster tree. To subdivide an interface cluster
v ∈ TI\Cdom with associated flat box Qv , we split Qv into two boxes Qv = Q1 ∪̇ Q2
in a direction j different from the flat direction isplit. More precisely, the set of sons
S(v) is defined by

S(v) :=
{ {v} if levelint(v) ≡ 0(mod d),

{{i ∈ v | xi ∈ Q1}, {i ∈ v | xi ∈ Q2}} otherwise.
(11)

The associated boxes of the sons are Qvi := Qi .

123

576 L. Grasedyck et al.

Remark 10 (Ordered index set) The ordering of the indices in an LU factorization
is essential for the resulting work and storage requirements. As indicated above, the
three sons v1, v2, v3 of a domain-cluster v are assumed to be ordered so that the
domain-clusters v1, v2 come first and the interface-cluster v3 last, i.e.,

max
i∈v1

i < min
j∈v2

j ≤ max
j∈v2

j < min
l∈v3

l.

The two sons of an interface-cluster v are given in any fixed order, without loss of
generality

max
i∈v1

i < min
j∈v2

j.

An example of a typical cluster tree for a two-dimensional problem is given in Fig. 5
(top row). In the first subdivision step the sons S(I) = {v1, v2, v3} are created. The
set of domain-clusters is thus Cdom = {I, v1, v2}. The distance of v3 to the nearest
domain-cluster (which is I) in the tree is levelint(v3) = 1. Therefore, in the second
subdivision step the interface-cluster v3 is split into two sons S(v3) = {v31, v32}. The
two sons of v3 fulfil 2 = levelint(v3i) ≡ 0(mod 2) and will not be subdivided in the
third subdivision step, cf. (11).

Remark 11 1. The construction of the cluster tree is guided by the fact that matrix
entries Ai j equal zero if the corresponding supports of basis functions are disjoint.
One can therefore replace the condition “Xi ∩Ωv1 = ∅” in (10) by “Ai j = 0 for
all j ∈ v1”.

2. The subdivision of interface-clusters v ∈ TI\Cdom is delayed every dth step in
order to calibrate the diameters of interface-clusters with those of domain-clusters:
the cardinality of a domain cluster vdom,� on level � of the cluster tree is roughly
N/2� and the diameter is roughly diam(Ω)/2�/d . On the other hand, without the
delay in every the dth step, the cardinality of an interface cluster vintf,� (successor
of the first interface on level 1) is roughly N 1−1/d/2� and the diameter is roughly

diam(vintf,�) ≈ diam(Ω)/2�/(d−1) � diam(Ω)/2�/d ≈ diam(vdom,�).

For example, on level � = √2 log2(N) of a cluster tree based on the domain
Ω = [0, 1]2, there are domain-clusters of cardinality

√
N and interface-clusters

of cardinality 1. The ratio between the diameters is roughly N
√

2/2, so that there
are relatively large domain-clusters surrounded by many very small interface-clus-
ters. This imbalance would lead to undesirable fill-in in the H-matrix so that we
would loose the almost linear complexity.

The canonical Construction 6 of a block cluster tree from a cluster tree requires an
admissibility condition. Due to the fact that the distance between subdomain clusters
Ωv1 and Ωv2 , given by the width of the separator Γv , is typically very small compared
to the diameters of Ωv1 , Ωv2 , the block cluster v1 × v2 is not admissible with respect
to the strong admissibility condition (6). However, since the corresponding matrix

123

Domain decomposition based H-LU preconditioning 577

block is zero and remains zero during an LU factorization, we want to regard it as
admissible; in fact, we can assign a fixed rank of zero to this block. This means that an
admissibility condition suitable for domain decomposition based block clusters has to
distinguish between the sets of

− domain-clusters Cdom and
− interface-clusters TI\Cdom

as specified in Construction 9.

Definition 12 (DD-admissibility) Let TI be a cluster tree for the index set I and let
Cdom ⊂ TI be the subset of domain-clusters as defined in Construction 9. We define
the DD-admissibility condition by

AdmDD(s × t) = true :⇔
{

(s �= t, s, t ∈ Cdom) or
AdmS(s × t) = true,

(12)

where AdmS denotes the strong admissibility (6). A weak DD-admissibility is defined
by replacing AdmS by AdmW (7) in (12).

A visualization of the DD-clustering is given in Fig. 6 for the first three subdivision
steps (top). The corresponding block cluster tree and partition of the matrix (bottom)
is done by the canonical Construction 6. The characteristic sparsity pattern can be
noticed already after the first subdivision step.

The H-LU factorization given in Algorithm 1 simplifies as follows for a matrix
block As×s : If s is a further refined interface cluster, i.e., s ∈ TI\Cdom, there holds
n = 2 since interface clusters are refined by bisection. If, however, s is a further refined
domain-cluster, i.e., s ∈ Cdom, there holds n = 3 with matrix blocks A1,2 = A2,1 = 0
as illustrated in Fig. 6. As a result, there holds U1,2 = L2,1 = 0 in the LU-factor-
ization so that the H-LU Algorithm 1 simplifies to four triangular solves (U1,3, U2,3,
L3,1, L3,2, resp.) and three H-LU factorizations on the next coarser level (L1,1U1,1,
L2,2U2,2, L3,3U3,3, resp.).

4 Existence of approximate H-LU factors

In this section, we state the important result that the H-matrix format defined by
DD-clustering allows to approximate the exact LU-factors with an approximation
error ε and a blockwise rank kLU that depends polylogarithmically on ε.

Our analysis is based on two previous results: The existence proof in [2] establishes
the approximation of the inverse of a finite element stiffness matrix by an H-matrix
up to an accuracy of the finite element error. In this proof, the H-matrix is based on
standard bisection-clustering, and a blockwise rank that depends polylogarithmically
on the accuracy is shown to be sufficient. Numerical results, however, show that in fact
an arbitrary accuracy can be reached, i.e., no limitation by the finite element accuracy
can be observed. Also, we observe that a blockwise rank

kinv ∼ | log ε|d−1

123

578 L. Grasedyck et al.

is sufficient to reach the accuracy

‖A−1 − A−1
H ‖2 ≤ ε.

In [1], it is proved that there exist H-LU factors LH, UH that essentially yield the
same approximation quality as the H-inverse A−1

H but with a blockwise rank of

kLU � kinv logβ(cond2(A)),

again for H-matrices based on the standard (strong) admissibility condition and
standard bisection-clustering. The techniques that we employ for the proof are quite
similar, but we are able to generalize this result to H-matrices based on DD-clustering,
and we establish the quasi-optimal rank bound

kLU � kinv.

In fact, the numerical results suggest that

kLU ∼ | log ε|d−2.

In summary, for a given accuracy ε there exist H-matrices LH and UH such that
‖A − LHUH‖ ≤ ε, both for the case of geometric bisection (proven in [1]) and
domain decomposition based clustering (proven here). Furthermore, the storage and
computational complexities of the H-LU factorization are almost linear in the problem
size N , cf. Sect. 5.

The general idea for the proof is as follows:

1. It is shown that all Schur complements in A (in particular Schur complements
with respect to admissible blocks) have efficient H-matrix approximations (Theo-
rem 15). Note that the inverse cannot be approximated efficiently by an H-matrix
based on DD-clustering since the large, off-diagonal zero matrix blocks would
not remain zero during the inversion.

2. We provide a recursion formula for the admissible blocks of the exact LU factors
based on generalized Schur complements.

3. We prove that the submatrices of L and U corresponding to admissible blocks can
be approximated by Rk-matrices with the same rank as the respective submatrices
of an H-matrix approximation of the Schur complement (Theorem 24).

The main existence result is stated in Theorem 24 following a technical proof of an
auxiliary Lemma.

Notation 13 We denote the restriction of the block cluster tree T to s × t ⊂ I × I
and its successors by T |s×t .

We assume that the inverse of each minor B of A (possibly but not necessarily a
FEM matrix) can be approximated by an H-matrix B−1

H ∈ H(T, kinv), where the
block cluster tree T has been constructed by the canonical Construction 6 using a

123

Domain decomposition based H-LU preconditioning 579

domain decomposition based cluster tree and the strong admissibility condition (6).
This means that all admissible blocks are admissible in the classical sense and not
with respect to the DD-admissibility condition. We cannot use the DD-admissibility
here, because the zero-blocks would be of (almost) full rank in the inverse. However,
the approximate inverse is, for the theory, only required in intermediate steps.

Assumption 14 (Existence of an H-matrix inverse) For any ε > 0 and r := {1, . . . ,

n}, n ≤ N , the minor B := A|r×r is invertible, and there exists an H-matrix B−1
H ∈

H(T |r×r , kinv) with

kinv := (log n)2| log ε|d+1 and ‖B−1 − B−1
H ‖2 ≤ Cinvε.

Given Assumption 14, we now prove the existence of H-LU factors for domain-
decomposition based H-matrix structures following the steps outlined above. For this
purpose, we define a general Schur complement S(s, t) with respect to the matrix
block s × t (cf. Fig. 7) by

S(s, t) := A|s×t − A|s×r (A|r×r)
−1 A|r×t , (13)

where r := {i ∈ I | i < min{ j ∈ s∪t}} (see also Remark 10 concerning the ordering).

Theorem 15 (Approximation of Schur complements) Let A ∈ H(T, kinv) (kinv from
Assumption 14), and let b = s × t be any block cluster. Then the Schur complement

S(s, t) = A|s×t − A|s×r (A|r×r)
−1 A|r×t

of the block b in A can be approximated by an H-matrix SH(s, t) ∈ H(T |s×t , k′)
where k′ � (p + 1)2kinv, p := depth(TI), such that

‖S(s, t)− SH(s, t)‖2 < Cinv‖A‖22ε.

Fig. 7 The Schur complement
S(s, t) is defined via the inverse
of the diagonal block A|r×r and
the coupling matrices A|s×r and
A|r×t . The diagonal blocks are
grey

r r

rs s t

r t

A

A

r t

s

r

A

A

123

580 L. Grasedyck et al.

Proof We define the H-matrices As,r , Ar,r , Ar,t ∈ H(T, kinv) to be zero in all
subblocks except

As,r |s×r := A|s×r ,

Ar,r |r×r := (A|r×r)
−1
H ,

Ar,t |r×t := A|r×t .
rr

s

tr r

The two matrices As,r and Ar,t belong to H(T, kinv) since A ∈ H(T, kinv). The
matrix (A|r×r)

−1
H is theH-matrix approximation of (A|r×r)

−1 in the setH(T |r×r , kinv)

and fulfills by Assumption 14 the estimate

‖(A|r×r)
−1 − (A|r×r)

−1
H ‖2 ≤ Cinvε.

The exact product yields the proposed error estimate:

‖A|s×r (A|r×r)
−1 A|r×t − (As,r Ar,r Ar,t)|s×t‖2 ≤ ‖A‖2Cinvε‖A‖2.

The blockwise rank of the exact product As,r Ar,r Ar,t is at most O((p+1)2kinv), since
for each multiplication the blockwise rank increases by at most a factor O(p+ 1) [9,
Theorem 2.24]. The submatrix SH(s, t) := (A − As,r Ar,r Ar,t)|s×t has a blockwise
rank of at most k′. ��
Remark 16 (a) For any domain-cluster t ∈ Cdom, there holds S(t, t) = A|t×t .
(b) For an admissible block cluster s × t and a matrix A ∈ H(T, 0), one can omit

the factor (p + 1)2 so that k′ � kinv:

t

r’ r’’

s

Let P denote a partition of r . We write

A|s×r (A|r×r)
−1 A|r×t =

∑
r ′∈P

∑
r ′′∈P

A|s×r ′((A|r×r)
−1)|r ′×r ′′ A|r ′′×t

and observe that an addend is non-zero only if both s× r ′ and r ′′ × t are inadmissible.
Since s and t are well-separated (admissible), then r ′ × r ′′ will also be admissible if
the diameters of r ′ and r ′′ are by a factor smaller than the distance between s and t ,
i.e., max{diam(r ′), diam(r ′′)} ≤ c dist(s, t}. Therefore ((A|r×r)

−1)|r ′×r ′′ is of rank
at most kinv and thus k′ ≤ (#P)2kinv � kinv.

123

Domain decomposition based H-LU preconditioning 581

In the second step of the proof, we derive formulae for the structure of the LU
factors of Schur complements. The exact factors L and U will later be approximated
by H-matrices with matrix partitions as they occur in the domain decomposition based
clustering. We begin with a recursion formula for Schur complements with respect to
blocks on the diagonal:

Lemma 17 (Recursion formula for Schur complements I) For the Schur complement
S(t, t) of an interface-cluster t ∈ TI with two sons S(t) = {t1, t2}, there holds

S(t, t) =
[

S(t1, t1) S(t1, t2)
S(t2, t1) S(t2, t2)+ S(t2, t1)S(t1, t1)−1S(t1, t2)

]
. (14)

If the only son of t is t1, then S(t, t) = S(t1, t1). For Schur complements S(t, t) of
domain clusters t ∈ TI with three sons S(t) = {t1, t2, t3}, there holds

S(t, t) =
⎡
⎣ A|t1×t1 0 A|t1×t3

0 A|t2×t2 A|t2×t3
A|t3×t1 A|t3×t2 A|t3×t3

⎤
⎦ . (15)

Proof We distinguish between blocks corresponding to interface-clusters and blocks
corresponding to domain-clusters. An interface-cluster t (that is not a leaf) has either
one son t1 (which is the trivial case) or two sons t1, t2 (see (11) in Construction 9 for the
domain decomposition based clustering). In the case of two sons, the corresponding
diagonal matrix block is subdivided into four subblocks. For this case, the proof is
given in [1, Lemma 3.1] and repeated here for completeness: Let r := {1, . . . , min{ j ∈
t} − 1}. Then

S(t, t)|t1×t1
def.=

(
A|t×t − A|t×r (A|r×r)

−1 A|r×t

)∣∣∣
t1×t1

= A|t1×t1 − A|t1×r (A|r×r)
−1 A|r×t1 = S(t1, t1),

and analogously for S(t1, t2) and S(t2, t1) since r in the definition of the Schur com-
plement is the same for all three: min{ j ∈ t} = min{ j ∈ t1}. For the lower right block,
there holds

S(t2, t2) = A|t2×t2 − A|t2×r∪t1(A|r∪t1×r∪t1)
−1 A|r∪t1×t2

= A|t2×t2 −
[

A|t2×r A|t2×t1

] [A|r×r A|r×t1
A|t1×r A|t1×t1

]−1 [
A|r×t2
A|t1×t2

]

= A|t2×t2 −
[

A|t2×r A|t2×t1

] [A|−1
r×r −A|−1

r×r A|r×t1 S(t1, t1)−1

0 S(t1, t1)−1

]

×
[

I 0
−A|t1×r A|−1

r×r I

] [
A|r×t2
A|t1×t2

]
.

123

582 L. Grasedyck et al.

The product of the first two matrices equals

[
A|t2×r A|−1

r×r (A|t2×t1 − A|t2×r A|−1
r×r A|r×t1)S(t1, t1)−1

]
= [

A|t2×r A|−1
r×r S(t2, t1)S(t1, t1)−1

]
,

whereas the product of the last two matrices is

[
A|r×t2

A|t1×t2 − A|t1×r A|−1
r×r A|r×t2

]
=

[
A|r×t2

S(t1, t2)

]
.

Multiplying both and subtracting them from A|t2×t2 yields

S(t2, t2) = A|t2×t2 − A|t2×r A|−1
r×r A|r×t2 − S(t2, t1)S(t1, t1)

−1S(t1, t2)

= S(t, t)|t2×t2 − S(t2, t1)S(t1, t1)
−1S(t1, t2).

For a domain-cluster t (that is not a leaf), the Schur complement equals the matrix
itself since the off-diagonal coupling matrices are zero. ��

For blocks in the upper triangular part of the matrix we derive a similar recursion
formula:

Lemma 18 (Recursion formula for Schur complements II) Let b = s × t be a block
in the upper triangular part, i.e., max{ j ∈ s} < min{ j ∈ t}. Let t ′ ∈ S(t) be a son of
t . If s has exactly one son S(s) = {s′}, then

S(s, t)|s′×t ′ = S(s′, t ′).

If s has two successors S(s) = {s1, s2}, then

S(s, t)|s×t ′ =
[

S(s1, t ′)
S(s2, t ′)+ S(s2, s1)S(s1, s1)

−1S(s1, t ′)

]
. (16)

For a domain-cluster s with three successors S(s) = {s1, s2, s3} there holds

S(s, t)s×t ′ =
⎡
⎣ A|s1×t ′

A|s2×t ′
A|s3×t ′

⎤
⎦ . (17)

Proof We define r := {i ∈ I | i < min{ j ∈ s}}. For S(s) = {s′} we get

S(s, t)|s′×t ′ =
(

A|s×t − A|s×r (A|r×r)
−1 A|r×t

)∣∣∣
s′×t ′

= A|s′×t ′ − A|s′×r (A|r×r)
−1 A|r×t ′ = S(s′, t ′).

123

Domain decomposition based H-LU preconditioning 583

For S(s) = {s1, s2} we can proceed as in Lemma 17:

S(s, t)|s1×t ′ =
(

A|s×t − A|s×r (A|r×r)
−1 A|r×t

)∣∣
s1×t ′

= A|s1×t ′ − A|s1×r (A|r×r)
−1 A|r×t ′ = S(s1, t ′),

S(s, t)|s2×t ′ = A|s2×t ′ − A|s2×r∪s1(A|r∪s1×r∪s1)
−1 A|r∪s1×t ′

= A|s2×t ′ −
[

A|s2×r A|s2×s1

] [A|r×r A|r×s1

A|s1×r A|s1×s1

]−1 [
A|r×t ′
A|s1×t ′

]
= A|s2×t ′

−A|s2×r A|−1
r×r A|r×t ′ − S(s2, s1)S(s1, s1)

−1S(s1, t ′)
= S(s, t)|s2×t ′ − S(s2, s1)S(s1, s1)

−1S(s1, t ′).

Formula (17) holds because s is a domain cluster and the off-diagonal coupling A|s×r

in the definition of S(s, t) is zero. ��

The following Lemma is the “transpose” of Lemma 18 and can be proven analo-
gously.

Lemma 19 (Recursion formula for Schur complements III) Let b = s × t be a block
in the lower triangular part, i.e., min{ j ∈ s} > max{ j ∈ t}. Let s′ ∈ S(s) be a son of
s. If t has exactly one son S(t) = {t ′}, then

S(s, t)|s′×t ′ = S(s′, t ′).

If t has two successors S(t) = {t1, t2}, then

S(s, t)|s′×t =
[

S(s′, t1) S(s′, t2)+ S(s′, t1)S(t1, t1)−1S(t1, t2)
]
. (18)

For a domain-cluster t there holds

S(s, t)s′×t =
[

A|s′×t1 A|s′×t2 A|s′×t3

]
. (19)

In the following definition we introduce factors L and U for the representation of
the Schur complement S(t, t). We will later prove that these factors can be efficiently
approximated by H-matrices.

Definition 20 (LU factors for the Schur complement) We define the LU factors L(t, t)
and U (t, t) for the Schur complement S(t, t), t ∈ TI , recursively by

L(t, t) :=
[

L(t1, t1) 0
S(t2, t1)U (t1, t1)−1 L(t2, t2)

]
,

U (t, t) :=
[

U (t1, t1) L(t1, t1)−1S(t1, t2)
0 U (t2, t2)

]

123

584 L. Grasedyck et al.

for interior interface-clusters t with sons S(t) = {t1, t2}, and

L(t, t) := L(t ′, t ′), U (t, t) := U (t ′, t ′)

for nodes t with only one son S(t) = {t ′}. For leaves t ∈ L(TI), the two factors L(t, t)
and U (t, t) are defined as the exact LU factors of S(t, t). For domain-clusters t ∈ TI
with sons S(t) = {t1, t2, t3}, the factors are defined as

L(t, t) :=
⎡
⎣ L(t1, t1) 0 0

0 L(t2, t2) 0
A|t3×t1U (t1, t1)−1 A|t3×t2U (t2, t2)−1 L(t3, t3)

⎤
⎦ and

U (t, t) :=
⎡
⎣U (t1, t1) 0 L(t1, t1)−1 A|t1×t3

0 U (t2, t2) L(t2, t2)−1 A|t2×t3
0 0 U (t3, t3)

⎤
⎦ .

Lemma 21 (Exact LU factorization of Schur complements) Let S(t, t) denote a Schur
complement for the cluster t ∈ TI . Then the LU factors in Definition 20 fulfil

L(t, t)U (t, t) = S(t, t).

Proof We prove the equation by induction over the depth of the block cluster tree,
where the start is given by definition of the exact LU factors (depth zero). Now let t
be an interior node of the cluster tree TI . For interface-clusters t , there holds

(L(t, t)U (t, t)) |t1×t1
def.= L(t1, t1)U (t1, t1)

Ind.= S(t1, t1),

(L(t, t)U (t, t)) |t1×t2
def.= L(t1, t1)L(t1, t1)

−1S(t1, t2) = S(t1, t2),

(L(t, t)U (t, t)) |t2×t1
def.= S(t2, t1)U (t1, t1)

−1U (t1, t1) = S(t2, t1),

(L(t, t)U (t, t)) |t2×t2
def.= L(t2, t2)U (t2, t2)

+S(t2, t1)U (t1, t1)
−1L(t1, t1)

−1S(t1, t2)
Ind.= S(t2, t2)+ S(t2, t1)S(t1, t1)

−1S(t1, t2).

According to Lemma 17 the assertion follows.
Now let t be a domain-cluster. We prove the statement L(t, t)U (t, t) = S(t, t)

again by induction, where the trivial start is a leaf t where the equation holds by
definition. Multiplication of L(t, t) and U (t, t) yields

L(t, t)U (t, t) =
⎡
⎣ L(t1, t1)U (t1, t1) 0 A|t1×t3

0 L(t2, t2)U (t2, t2) A|t2×t3
A|t3×t1 A|t3×t2 S33

⎤
⎦ ,

123

Domain decomposition based H-LU preconditioning 585

where

S33 = A|t3×t1U (t1, t1)
−1L(t1, t1)

−1 A|t1×t3

+A|t3×t2U (t2, t2)
−1L(t2, t2)

−1 A|t2×t3 + L(t3, t3)U (t3, t3)
Ind.= A|t3×t1 A|−1

t1×t1 A|t1×t3 + A|t3×t2 A|−1
t2×t2 A|t2×t3 + S(t3, t3),

S(t3, t3)
def.= A|t3×t3 − A|t3×t1∪t2 A|−1

t1∪t2×t1∪t2 A|t1∪t2×t3

= A|t3×t3 − A|t3×t1 A|−1
t1×t1 A|t1×t3 − A|t3×t2 A|−1

t2×t2 A|t2×t3 ,

⇒ S33 = A|t3×t3 .

An induction for the first two diagonal subblocks and S(t, t) = A|t×t completes the
proof. ��

Lemma 22 (Recursion formula for Schur complements IV) Let b = s × t be a block
in the upper triangular part, i.e., max{ j ∈ s} < min{ j ∈ t}. Let s′ ∈ S(s) and
t ′ ∈ S(t). Then

(
L(s, s)−1S(s, t)

)∣∣∣
s′×t ′
= L(s′, s′)−1S(s′, t ′). (20)

For the lower triangular part there holds

(
S(s, t)U (t, t)−1

)∣∣∣
s′×t ′
= S(s′, t ′)U (t ′, t ′)−1. (21)

Proof We prove only the first part of the Lemma, since the second part follows anal-
ogously. Let s × t be a block in the upper triangular part and s′ ∈ S(s) and t ′ ∈ S(t).

Trivial case S(s) = {s′}:
(

L(s, s)−1S(s, t)
)∣∣∣

s′×t ′
=

(
L(s′, s′)−1S(s, t)

)∣∣∣
s′×t ′

Lemma 18= L(s′, s′)−1S(s, t ′).

Interface case S(s) = {s1, s2}: The inverse of the L-factor is

L(s, s)−1 def.=
[

L(s1, s1)
−1 0

−L(s2, s2)
−1S(s2, s1)U (s1, s1)

−1L(s1, s1)
−1 L(s2, s2)

−1

]

=
[

L(s1, s1)
−1 0

−L(s2, s2)
−1S(s2, s1)S(s1, s1)

−1 L(s2, s2)
−1

]
.

123

586 L. Grasedyck et al.

In the following, we use the short notation Lν,µ := L(sν, sµ). For t ′ ∈ S(t), there
holds

(
L(s, s)−1S(s, t)

) |s×t ′ =
[

L−1
1,1 0

−L−1
2,2S(s2, s1)S(s1, s1)

−1 L−1
2,2

][
S(s, t)|s1×t ′
S(s, t)|s2×t ′

]

=
[

L−1
1,1S(s, t)|s1×t ′

L−1
2,2S(s, t)|s2×t ′ − L−1

2,2S(s2, s1)S(s1, s1)
−1S(s, t)|s1×t ′

]

Lemma 18=
[

L(s1, s1)
−1S(s1, t ′)

L(s2, s2)
−1S(s2, t ′)

]
.

Domain case S(s) = {s1, s2, s2}: we use the short notation

L3i := L(s3, s3)
−1 A|s3×si S(si , si)

−1

for i ∈ {1, 2}. Then the inverse of the L-factor reads

L(s, s)−1 def.=
⎡
⎣ L(s1, s1)

−1 0 0
0 L(s2, s2)

−1 0
−L31 −L32 L(s3, s3)

−1

⎤
⎦ .

Let t ′ ∈ S(t). For the first two components si × t ′, i ∈ {1, 2}, of the product, we have

(
L(s, s)−1S(s, t)

)
|si×t ′ = L(si , si)

−1S(s, t)|si×t ′

Lemma 18= L(si , si)
−1S(si , t ′).

For the last component s3 × t ′, we conclude

(
L(s, s)−1S(s, t)

)
|s3×t ′

= L(s3, s3)
−1S(s3, t)|s3×t ′ − L31S(s1, t)|s1×t ′ − L32S(s2, t)|s2×t ′

Lemma 18= L(s3, s3)
−1 A|s3×t ′ − L31 A|s1×t ′ − L32 A|s2×t ′

= L(s3, s3)
−1 A|s3×t ′ −

2∑
i=1

L(s3, s3)
−1 A|s3×si S(si , si)

−1 A|si×t ′

= L(s3, s3)
−1

(
A|s3×t ′ −

2∑
i=1

A|s3×si S(si , si)
−1 A|si×t ′

)

Lemma 17= L(s3, s3)
−1S(s3, t ′).

��
For the exact LU factors of a Schur complement S we are able to prove that they can

be approximated in the H-matrix format with the same blockwise rank as the H-matrix

123

Domain decomposition based H-LU preconditioning 587

approximation SH of S, such that the difference between the exact and approximated
factorization is under control. This is not a surprise, since Lemma 22 states

L(r, r)|s×t = L(s, s)−1S(s, t)

for all admissible blocks s × t , so that L(r, r)|s×t can be approximated by a low rank
matrix if and only if S(s, t) can be approximated by a low rank matrix.

Lemma 23 (Approximate H-LU factorization of Schur complements) For any cluster
r ∈ TI the LU factors of the matrix S(r, r) defined in Definition 20 can be approxi-
mated by H-matrices

LH(r, r), UH(r, r) ∈ H(T |r×r , kLU), kLU � (p + 1)2kinv

(kinv the blockwise rank of the H-matrix approximation to the inverse from Assump-
tion 14), where the approximation error in each leaf s × t is bounded by

‖ (LH(r, r)− L(r, r)) |s×t‖2 ≤ CinvcU‖A‖22ε,
‖ (UH(r, r)−U (r, r)) |s×t‖2 ≤ CinvcL‖A‖22ε.

The variable p is the depth of TI×I , Cinv is from Assumption 14, and

cU := max
t∈TI
‖U (t, t)−1‖2, cL := max

t∈TI
‖L(t, t)−1‖2.

Proof We define the matrices LH(r, r) and UH(r, r) blockwise. For each inadmissi-
ble block s× t they coincide with L(r, r)|s×t and U (r, r)|s×t from Definition 21. For
each admissible block we set

LH(r, r)|s×t := TkLU ((L(r, r)|s×t) , UH(r, r)|s×t := TkLU ((U (r, r)|s×t) ,

where kLU := k′ � (p + 1)2kinv is defined as required in Theorem 15, and TkLU is
the truncation to rank kLU. We prove the error bound by induction over the level of r ,
where for leaves r × r ∈ TI×I the error is zero.

Interface-cluster: Let the interface-cluster r be subdivided into {r1, r2}. By induc-
tion, the error bound holds for the submatrices LH(ri , ri) and UH(ri , ri). It remains
to show that the off-diagonal blocks

S(r2, r1)U (r1, r1)
−1 and L(r1, r1)

−1S(r1, r2)

fulfill the error bound. This will be proven in the last part.

Domain-cluster: Let the domain-cluster r be subdivided into {r1, r2, r3}. By
induction the error bound holds for the submatrices LH(ri , ri) and UH(ri , ri). It

123

588 L. Grasedyck et al.

remains to show that the off-diagonal blocks

S(r3, ri)U (ri , ri)
−1 and L(ri , ri)

−1S(ri , r3), i ∈ {1, 2},

fulfill the error bound (recall S(r3, ri) = A|r3×ri and S(ri , r3) = A|ri×r3). This will
be proven next.

Off-diagonal products: For all off-diagonal products of the form S(s, t)U (t, t)−1 in
the lower diagonal part and L(s, s)−1S(s, t) in the upper diagonal part we have already
shown in Lemma 22 that they consist blockwise of products of the same form. For
a leaf s × t of TI×I the Schur complement S(s, t) can be approximated by SH(s, t)
of rank at most kLU so that ‖S(s, t) − SH(s, t)‖2 ≤ Cinv‖A‖22ε (Theorem 15). We
conclude

‖S(s, t)U (t, t)−1 − SH(s, t)U (t, t)−1‖2 ≤ ‖U (t, t)−1‖Cinv‖A‖22ε.

Since TkLU is defined as the best approximation with respect to the Euclidean norm,
the above upper bound also holds for LH(r, r)|s×t . By the same arguments we get

‖U (r, r)|s×t −UH(r, r)|s×t‖2 ≤ ‖L(s, s)−1‖Cinv‖A‖22ε.

We summarize that each admissible block s× t of the LU factors can be approximated
by a matrix of rank k′ so that the blockwise error is at most

‖U (r, r)|s×t −UH(r, r)|s×t‖2 ≤ CinvcL‖A‖22ε,
‖L(r, r)|s×t − LH(r, r)|s×t‖2 ≤ CinvcU‖A‖22ε.

��

Theorem 24 (H-LU factorization of A) Under Assumption 14, the matrix A can be
approximated by lower and upper triangular H-matrices

LH, UH ∈ H(T, kLU), kLU � (p + 1)2(log n)2(log(1/ε)+ log(cA))d+1,

where cA := Cinv(cU‖U‖2+cL‖LH‖2)(p+1)‖A‖22, so that the approximation error
is bounded by

‖A − LHUH‖2 ≤ ε.

For reasonably small ε ≤ c−1
A and the improved estimate from Remark 16 for sparse

FEM stiffness matrices A, we get the estimate

kLU � kinv.

123

Domain decomposition based H-LU preconditioning 589

Proof The blockwise norm estimate from Theorem 23 yields the global estimate
[7, Theorem 6.2]

‖L(r, r)− LH(r, r)‖2
≤ CspCinv(p + 1) max

s×t∈TI×I
‖(L(r, r)− LH(r, r))|s×t‖2

≤ CspCinvcU (p + 1)‖A‖22ε,

where Csp is the sparsity constant of Definition 26. Due to Theorem 15, we can find
a rank

kLU � (p + 1)2(log n)2
∣∣∣∣log

ε

cA

∣∣∣∣
d+1

so that

‖S(s, t)− SH(s, t)‖2 ≤ ‖A‖22ε/(cACsp).

We define the matrices LH := LH(I, I) and UH := UH(I, I). According to The-
orem 23 (and the above global estimate), the exact LU factors LU = A of A can be
approximated with accuracy

‖L − LH‖2 ≤ CinvcU (p + 1)‖A‖22ε/cA,

‖U −UH‖2 ≤ CinvcL(p + 1)‖A‖22ε/cA.

Both together yield

‖A − LHUH‖2 ≤ ‖(L − LH)UH‖2 + ‖LH(U −UH)‖2
≤ ‖U‖2CinvcU (p + 1)‖A‖22ε/cA + ‖LH‖2CinvcL(p + 1)‖A‖22ε/cA

= ε.

Using the improved estimate from Remark 16, we have kLU � (log n)2| log ε
cA
|d+1.

For ε ≤ cA, this simplifies to

kLU � (log n)2| log ε2|d+1 � (log n)2| log ε|d+1 � kinv.

��

Corollary 25 For a block cluster tree based on DD-clustering and the DD-
admissibility, both Lemma 23 and Theorem 24 apply. Blocks that are not standard
admissible but only DD-admissible remain zero during the LU factorization, and for
all other blocks the approximation is proven.

123

590 L. Grasedyck et al.

5 Complexity estimates

In this section, we will prove that the storage and computational complexities of the
H-LU factorization as computed by Algorithm 1 are almost optimal, i.e., in
O(N logc N) for a moderate c, cf. Corollary 31 for the main result. An important
quantity which will enter the complexity estimates and turns out to be bounded by a
constant is the so-called sparsity of the block cluster tree TI×I [9]:

Definition 26 (Sparsity) The sparsity of a block cluster tree TI×I based on a cluster
tree TI is defined by

Csp := max
s∈TI

#{t ∈ TI | s × t ∈ TI×I}.

For a fixed domain Ω and a local mesh (see Assumption 1), the sparsity of a block
cluster tree created from a regular, geometrical bisection based cluster tree by the
canonical Construction 6 using the standard admissibility (6) is bounded by a constant
[9, Lemma 4.5]. Therefore, Csp is called the sparsity constant.

For the new domain decomposition based clustering and the DD-admissibility con-
dition (12), we will also prove that Csp is bounded by a constant. In order to simplify
the presentation, we assume the following:

− The subdivision in Construction 9 is modified so that each domain-cluster is split
d times so that there are 2d domain sons and d2d−1 interface sons, while each
interface-cluster is split d − 1 times into 2d−1 sons.

− The initial box QI = BI for the entire domain Ω is the unit cube [0, 1]d .

Lemma 27 (DD-sparsity) Let h := mini∈I diam(suppϕi) and assume that locality
as expressed in (2) holds for some constants Csep, nmin. Let T := TI×I be the block
cluster tree constructed in the canonical way (cf. (8)) from the cluster tree TI from
DD-clustering in Construction 9. Then the following statements hold:

(a) The depth of the tree is bounded by

depth(T) < max
{

1, log2

(
Csep
√

dh−1
)}
= O(log N).

(b) The sparsity is bounded by

Csp ≤ 3d(1+ d)
(

1+ 2
(√

d
(
η−1(3+ 2Csep)+ 4(1+ Csep)

)))d

= O(η−d).

Proof We denote by level(t) the distance of a cluster t to the root I of the cluster
tree TI .
(a) Let t ∈ TI be a non-leaf node and � := level(t). We denote the box corresponding
to t by Qt , where due to the construction diam(Qt) =

√
d2−�. Due to Construction 9,

123

Domain decomposition based H-LU preconditioning 591

the size of t is at least #t > nmin, Therefore, by Assumption 1, there exist i, j ∈ t such
that

dist(suppϕi , suppϕ j) > C−1
sepdiam(suppϕi)

and thus

√
d2−� = diam(Qt) ≥ dist(suppϕi , suppϕ j)

> C−1
sepdiam(suppϕi) ≥ C−1

seph. (22)

This yields � < log2(Csep
√

dh−1) and thus the proposed bound on the depth of the
tree T .
(b) To prove the bound on the sparsity, we exploit the structure of the regular subdi-
vision of [0, 1]d into boxes Qt as follows:

1. Let t ∈ TI be a node with level(t) = � and #t > nmin. The number of domain-
boxes Qs on level � that touch Qt is at most 3d . By induction, it follows that the
number of domain-boxes on level � with a distance less than j2−� to Qt is bounded
by (1+ 2 j)d . The number of interface-boxes (between the domain-boxes) is then
bounded by d(1+ 2 j)d .

2. Let s ∈ TI with level(s) = �, #s > nmin and dist(Qt , Qs) ≥ j2−�. Using the
notation hv := maxι∈v diam(suppϕι), we can estimate the diameter and distance
of the respective bounding boxes Bt , Bs of the clusters by

diam(Bt) ≤ diam(Qt)+ 2ht
(22)≤ √d2−� + 2(1+ Csep)

√
d2−�,

diam(Bs)
(22)≤ √d2−� + 2(1+ Csep)

√
d2−�,

dist(Bs, Bt) ≥ dist(Qs, Qt)− ht − hs

≥ j2−� − 4(1+ Csep)
√

d2−�.

3. If s× t is not admissible, then the domain-decomposition admissibility (12) yields
the relation

j2−�η <
√

d2−� + 2(1+ Csep)
√

d2−� + 4(1+ Csep)
√

d2−�η,

which gives the desired estimate

j <
√

d
(
η−1(3+ 2Csep)+ 4(1+ Csep)

)
=: jmax.

4. As a consequence of 1. and 3., the number of nodes s ∈ TI (with level(s) =
level(t), #s > nmin and #t > nmin) not admissible to t is bounded by (1+ d)(1+
2 jmax)

d .
5. Let t ′ ∈ TI be arbitrary. If t ′ is the root of TI , then there is exactly one cluster on

the same level, namely t ′ itself. Therefore a sparsity constant Csp ≥ 1 would be
sufficient. If t ′ is not the root, then the father cluster t of t ′ fulfills #t > nmin. Due

123

592 L. Grasedyck et al.

to 4., we conclude that there are at most (1+ d)(1+ 2 jmax)
d clusters s ∈ TI with

s× t ∈ TI×I so that there are at most maxs∈TI #S(s)(1+d)(1+2 jmax)
d clusters

s′ ∈ TI with s′ × t ′ ∈ TI×I . This is the desired bound for the sparsity Csp.

��
The previous Lemma gives a rigorous proof that the sparsity constant Csp is indepen-
dent of the problem size N as well as the geometry and grows like O(η−d). If we
include the fact that distinct domain-clusters s, t always yield admissible block clus-
ters s×t (cf. (12)) and regard all clusters with corresponding boxes touching in at most
one corner admissible, i.e., if we use the weak domain-decomposition admissibility,
then there holds

Csp ≈
{

11 if d = 2,

63 if d = 3.

Now that we have established the bound for Csp, we can apply the results from [9] in
order to derive the complexity bounds for the storage and matrix-vector product for
H-matrices with constant rank k. For adaptively chosen ranks we get the same bounds
by taking k as the maximum over all blockwise ranks.

Corollary 28 Let M, M ′ ∈ H(T, k) for a block cluster tree T := TI×I based on the
cluster tree TI with sparsity constant Csp. Then the storage requirements NH,St (T, k),
the matrix-vector complexity NH·v(T, k) and the complexity NH⊕H(T, k) of the (for-
matted) matrix addition for M, M ′ in H-matrix representation can be bounded by

NH,St (T, k) ≤ Csp(depth(T)+ 1) max{k, nmin}N = O(k N log N),

NH·v(T, k) ≤ 2NH,St (T, k),

NH⊕H(T, k) ≤ 74 max{1, k}NH,St (T, k).

Proof The bounds on storage and matrix-vector multiplication have already been
proven in [9, Lemma 2.4, Lemma 2.5] for arbitrary H-matrix structures. It remains
to prove the estimate for the addition which we do here in two steps. For admissible
blocks, we have to truncate an n × m Rk-matrix from rank 2k down to k.

1. If 2k ≤ min{n, m}, then we use the truncation algorithm from [9, Lemma 1.3] of
complexity

24k2(n + m)+ 184k3 ≤ 24k2(n + m)+ 92k2 min{n, m} ≤ 70k2(n + m).

2. If 2k > min{n, m}, then we first convert the Rk-matrix to a standard fullmatrix R
of size n × m with complexity

4nkm ≤ 4k max{n, m}min{n, m} < 8k2 max{n, m}.

For the fullmatrix R, we compute a truncated QR-decomposition in complexity

4 max{n, m}min{n, m}2,

123

Domain decomposition based H-LU preconditioning 593

the SVD of the R-factor in 21 min{n, m}3 and the multiplication of the Q-factor
with one of the orthogonal matrices from the SVD in 2 max{n, m}min{n, m}2.
All four steps sum up to

8k2 max{n, m} + 6 max{n, m}min{n, m}2 + 21 min{n, m}3
≤ 74k2(n + m).

The truncation complexity of each Rk-block is at most 74k times the storage com-
plexity. In the fullmatrix blocks, we have to add nm entries which is at most 1 times
the number of floats to be stored. ��
In order to estimate the complexity for the matrix-matrix multiplication and matrix
factorization, the standard approach from [9] requires a bound on the idempotency of
TI×I . Roughly speaking, the idempotency constant Cid(r × t) counts the number of
blocks M |r ′×s′ and M |s′×t ′ such that M |r ′×s′ ·M |s′×t ′ contributes to the block r × t in
the matrix product. For the block cluster tree TI×I based on domain decomposition
with the DD-admissibility (12), the standard definition of the idempotency has to be
modified to exclude the admissible domain-domain block clusters since these blocks
will not be modified during the factorization (but there would occur fill-in during a
matrix multiplication or inversion).

Lemma 29 (DD-idempotency) Let T := TI×I be the block cluster tree constructed
in the canonical way (cf. (8)) from the cluster tree TI from the DD-clustering in
Construction 9. Then the idempotency constant

Cid := max
r×t∈L(T),(r,t) �∈Cdom×Cdom

Cid(r × t)

with blockwise idempotency

Cid(r × t) := #
{
r ′ × t ′ | r ′ ⊂ r, t ′ ⊂ t and ∃s′ ∈ TI :
r ′ × s′ ∈ T, s′ × t ′ ∈ T

}

is bounded by

Cid ≤
(√

d(1+ η)(3+ 2Csep)
)2 log2(3)d = O(1).

Proof We use the notations from Lemma 27 and denote by level(t) the distance of a
cluster t to the root I of the cluster tree TI .
Let r × t ∈ L(T) and (r, t) �∈ Cdom × Cdom, � := level(r) = level(t). If r × t is not
admissible, then Cid(r × t) = 1 (either r or t has no sons). Now let r × t be (standard)

admissible. We define q := log2

(√
d(1+ η)(3+ 2Csep)

)
.

1. We will prove that for all nodes r ′, s′, t ′ ∈ TI with level(r ′, s′, t ′) ≥ � + q,
r ′ × s′ ⊂ r × s and s′ × t ′ ⊂ s × t , one of the vertices r ′ × s′ or s′ × t ′ is a leaf.

123

594 L. Grasedyck et al.

Let r ′, s′, t ′ be given as above and min{#r ′, #s′, #t ′} > nmin (otherwise one of the
three is a leaf of TI).
For u ∈ {r ′, s′, t ′} we can bound the diameter of the corresponding bounding box
as in Lemma 27 by

diam(Bu) ≤ √d(3+ 2Csep)2
−q−�

Def.q≤ 2−�/(1+ η). (23)

The distance between r ′ and s′ or s′ and t ′ is at least

max{dist(Br ′ , Bs′), dist(Bs′ , Bt ′)} ≥ dist(Br ′ , Bt ′)− diam(Bs′)

≥ dist(Br , Bt)− diam(Bs′)
(6)≥ η−1 min{diam(Br), diam(Bt)} − diam(Bs′)

≥ η−12−� − 2−�/(1+ η) = η−12�/(1+ η).

Both estimates together yield

diam(Bs′) ≤ η max{dist(Br ′ , Bs′), dist(Bs′ , Bt ′)},

so that either r ′ × s′ or s′ × t ′ is admissible, i.e., a leaf.
2. From (1), it follows that on a level ≥ �+ q + 1 there are no vertices r ′ × s′ ∈ T

and s′ × t ′ ∈ T with r ′ ⊂ r, t ′ ⊂ t . Since the number of sons of a block clus-
ter is limited by 32d , there are at most 32dq = 2q log2(3)2d such vertices on level
�, . . . , �+ q.

��
Theorem 30 (H-matrix multiplication) The complexity NH⊗H of the (formatted)

matrix multiplication in H(T, k) with a block cluster tree T of depth O(log N) and a
prescribed zero-pattern where domain-domain blocks remain zero during the multi-
plication, is

NH⊗H(T, k) = O(k2 N log2 N).

Proof According to [9, Theorem 2.20], the complexity to compute the exact product
(without truncation) is NH·H(T, k) = O(k log(N)NH,St (T, k)). The product matrix
is an element of H(T, k̃), where the blockwise rank is at most k̃ = CidCsp(depth(T)+
1)k, except for the domain-domain blocks which are enforced to remain zero. The trun-
cation of the exact product to blockwise rank k is split into two parts. The first part
concerns the domain-domain blocks. Since these are kept as zero blocks, there is noth-
ing to be done. The second part concerns the standard admissible blocks of T . Their
truncation is done by CidCsp(depth(T) + 1) − 1 times truncation from rank 2k to k
as in [9, Lemma 2.10]. This complexity is bounded by 74(CidCsp(depth(T) + 1) −
1)k NH,St (T, k). ��
In principle we could use Theorem 30 in order to bound the complexity of the
H-LU factorization (based on the DD-clustering). The estimate would then read

123

Domain decomposition based H-LU preconditioning 595

NH-LU (T, k) = O(k2 N log3 N). However, we will present a more elegant way to
avoid the extra logarithm and also to reveal the improved estimate NH-LU (T, k) ≈
1
2 NH⊗H(T, k).

Corollary 31 (H-LU factorization) For the complexity NH-LU (T, k) of the (format-
ted) H-LU factorization, there holds

NH-LU (T, k) ≤ NH⊗H(T, k).

For a balanced cluster tree TI (domain-clusters on the same level are of almost equal
cardinality), there holds in particular

NH-LU (T, k) ≈ 1

2
NH⊗H(T, k).

Proof Since interface clusters are refined by bisection, we will first consider a block
cluster tree T based on standard geometric bisection from Sect. 3.1. We prove the
statement by induction over the depth of TI×I , starting with the trivial case of a full
matrix where we assume that the factorization costs approximately half of a mul-
tiplication. During the (formatted) matrix multiplication C := A ⊗ B of matrices
A, B, C ∈ H(T, k), we have to perform the formatted operations

Ci j := Ai1 ⊗ B1 j ⊕ Ai2 ⊗ B2 j , i, j ∈ {1, 2}.

During an H-LU factorization C = LU with lower triangular factor L and upper
triangular factor U (cf. Algorithm 1) we have to

1. factorize C11 = L11U11;
2. solve two triangular systems L11U12 = C12 and L21U11 = C21 for the unknowns

U12, L21;
3. compute the (formatted) matrix product and sum C̃22 := C22 � L21 ⊗ U12, and

finally
4. factorize C̃22 = L22U22 (recursion).

Steps (1) and (4) appear also during the matrix multiplications C11 := A11⊗B11⊕· · ·
and C22 := A22 ⊗ B22 ⊕ By induction, they are at least of (twice for a balanced
cluster tree) the complexity of the respective factorization. In step (3) we have to mul-
tiply and add C̃22 := C22�L21⊗U12. The same operation occurs in the multiplication
C22 := A21 ⊗ B12 ⊕ Additionally, the multiplication C11 := A12 ⊗ B21 ⊕ . . .

occurs during the multiplication, which is omitted for the LU decomposition (for a
balanced cluster tree both multiplications are of almost the same complexity and there-
fore together twice as costly as step (3)). For the two triangular solves in (2), we have
the four counterparts

C12 := A11 ⊗ B12 ⊕ A12 ⊗ B22,

C21 := A22 ⊗ B21 ⊕ A21 ⊗ B11.

123

596 L. Grasedyck et al.

It remains to show that the triangular solves are of at most the complexity of the
respective (formatted) matrix multiplications.

We prove the last assertion, that the multiplication Y := L ⊗ X is of at least the
complexity of the triangular solve L X = Y , by induction over the depth of TI×I . For
the triangular solve of

[
L11
L21 L22

]
·
[

X11 X12
X21 X22

]
=

[
Y11 Y12
Y21 Y22

]

with unknown X , we have to

1. solve 4 times a triangular system Lii Xi j = Yi j , i, j ∈ {1, 2};
2. perform the (formatted) operation Y2 j � L21 ⊗ X1 j , j ∈ {1, 2}.
For the matrix multiplication we have to multiply Yi j := Lii ⊗ Xi j , i, j ∈ {1, 2},
which is by induction at least of the complexity of the triangular solves in (1), and we
perform the (formatted) operations Y2 j ⊕ L21 ⊗ X1 j , j ∈ {1, 2}, which is the same
as in (2). The other two multiplications Y1 j ⊕ L12 ⊗ X2 j , j ∈ {1, 2}, are omitted in
the triangular solve due to the structure of L . This completes the proof for the cluster
tree TI constructed by the standard geometric bisection from Sect. 3.1.

For the domain decomposition based cluster tree from Construction 9, the same
technique as above can be applied, except that we keep the zero pattern of the matrix.
The factorization

⎡
⎣C11 C13

C22 C23
C31 C32 C33

⎤
⎦ =

⎡
⎣ L11

L22
L31 L32 L33

⎤
⎦ ·

⎡
⎣U11 U13

U22 U23
U33

⎤
⎦

resolves into

1. two recursions Cii = LiiUii , i ∈ {1, 2};
2. four domain-interface triangular solves C3i = L3iUii and Ci3 = LiiUi3 for

i ∈ {1, 2};
3. two matrix multiplications in C̃33 := C33 ⊕ (L31 ⊗U13)⊕ (L32 ⊗U23) and
4. the factorization of the interface part C̃33 = L33U33.

The multiplication of two matrices A, B with zero-blocks A12, A21, B12, B21, requires
in the non-zero blocks of C the formatted operations

1. Cii := Aii ⊗ Bii ⊕ Ai3 B3i , i ∈ {1, 2};
2. four domain-interface and interface-interface multiplications C3i := A3i ⊗ Bii ⊕

A33 ⊗ B3i and Ci3 := Aii ⊗ Bi3 ⊕ Ai3 ⊗ B33 for i ∈ {1, 2};
3. three matrix multiplications C̃33 := A31 ⊗ B13 ⊕ A32 ⊗ B23 ⊕ A33 ⊗ B33.

By induction, parts (1) and (2) of the factorization are less costly than those of the
multiplication, and part (3) of the multiplication covers the two multiplications of (3)
and the recursion (4) in the factorization. This concludes the proof for non-balanced
cluster trees.
For a balanced cluster tree, the triangular solves in step (2) are of half the complex-
ity of the respective multiplications. The two extra multiplications in step (2) of the

123

Domain decomposition based H-LU preconditioning 597

multiplication together with the two off-diagonal multiplications in step (3) are of
twice the complexity as the two multiplications in step (3) of the factorization. ��

6 Numerical results

In the first two examples, H-matrices based upon geometric bisection and nested dis-
section clustering (cf. Fig. 8 for typical block structures) are compared for the solution
of Poisson’s equation

−∆u = f in Ω =]0, 1[d , d ∈ {2, 3}. (24)

For the discretization of (24), the finite element method with piecewise linear basis
functions is used. The H-matrices will be generated using the respective strong admis-
sibility conditions (6), (12), with η := 2. Furthermore, the minimal cluster size is set
to nmin := 20. All computations are performed on an AMD Opteron with 2.4 GHz
CPU clock rate and 8GB main memory.

Two different cases for solving (24) are considered. In the first one, an iterative
method is applied and hence only a rough approximation of the LU (or rather LLT)
factors is required.

Table 1 shows the results for this computation. Along with the time for the
Cholesky factorization and the size of the decomposed matrix, also the accuracy δ

of the adaptive H-matrix arithmetic is presented, which is adjusted to maintain the
relative inversion error ‖I − A(L LT)−1‖2 ∼ 10−1.

The results demonstrate a significant advantage of the clustering based on nested
dissection over geometric bisection. It takes less time to compute the Cholesky fac-
torization, and the resulting H-matrix requires less storage. One also notices that the
asymptotic behavior of H-matrix arithmetic is reached already for smaller problem
sizes compared to the standard bisection method.

Fig. 8 H-matrix L and U factors for matrices of size N = 1,000 (nmin = 20) for domain decomposition
based clustering (left) and for the standard bisection based clustering (right). Dark grey blocks are stored
as full matrices whereas light grey blocks are stored in Rk-matrix format. White blocks are zero

123

598 L. Grasedyck et al.

Table 1 Comparison of geometric bisection and nested dissection for the Cholesky factorization with
‖I − A(L LT)−1‖2 ∼ 10−1

N Geometric bisection Nested dissection

δ Time (s) Memory (MB) δ Time (s) Memory (MB)

d = 2 2532 310–3 3.1 70 710–3 1.0 50

3582 110–3 9.0 157 310–3 1.9 85

5112 710–4 20.4 349 210–3 4.7 212

7292 310–4 57.1 792 110–3 9.3 366

1,0232 110–4 135.2 1,730 510–4 21.0 873

1,4472 110–4 351.4 3,680 210–4 42.7 1,470

d = 3 403 310–2 29.2 188 510–2 9.1 119

513 110–2 123.7 463 310–2 32.5 267

643 910–3 310.2 1,080 210–2 79.0 503

813 510–3 915.2 2,740 110–2 197.4 1,280

1023 310–3 2,797.5 6,280 910–3 481.8 2,670

In the second case, a direct solver is sought. For this, the Cholesky factorization
is computed with a precision of the order of the discretization error. The latter is
computed for the solution

u(x) :=
{

x1(1− x1)x2(1− x2), x ∈ Ω =]0, 1[2,
x1(1− x1)x2(1− x2)x3(1− x3), x ∈ Ω =]0, 1[3.

The results for this computation can be found in Table 2. Due to memory constraints,
some computations were not possible. These are marked with “n.c.”.

The behavior of the H-matrix arithmetic for both clustering methods is similar to
the previous case, with the advantage of the nested dissection clustering being even
more apparent.

To demonstrate the stability of the clustering based on nested dissection, a convec-
tion-diffusion problem

−κ∆u + b · ∇u = f in Ω =]0, 1[d , d ∈ {2, 3}

is considered. For a fixed dimension (n = 10232 in R
2 and n = 633 in R

3), the
H-matrices are constructed and decomposed for a decreasing value of κ and hence
an increasing dominance of the convection. The relative inversion error due to the
H-arithmetic is fixed to δ = 10−4, which lies between the previous two cases. Again,
the standard admissibility with η = 2 is chosen for the construction of the block cluster
tree.

123

Domain decomposition based H-LU preconditioning 599

Table 2 Comparison of geometric bisection and nested dissection for the Cholesky factorization with
‖I − A(L LT)−1‖2 ∼ ‖u − uh‖2

N Geometric bisection Nested dissection

δ Time (s) Memory (MB) δ Time (s) Memory (MB)

d = 2 2532 210–7 7.4 99 710–7 1.3 54

3582 510–8 20.5 224 110–7 3.3 94

5112 210–8 48.6 513 310–8 7.0 229

7292 410–9 149.3 1,190 410–9 17.3 410

1,0232 110–9 322.3 2,600 210–9 33.6 948

1,4472 610–10 1,677.4 5,710 910–10 77.0 1,650

d = 3 403 110–5 184.0 436 410–5 39.3 171

513 510–6 650.1 1,130 110–5 138.1 423

643 310–6 1,950.8 2,760 510–6 422.4 908

813 110–6 5,408.3 6,880 210–6 999.1 2,120

1023 n.c. n.c. n.c. 910–7 2,554.6 4,750

Two different types of convection are used in this example:

b1(x) :=
(

1− x2
x1

)
and b2(x) :=

(
0.5− x2
x1 − 0.5

)
.

A non-constant, non-circular convection is described by b1, whereas b2 represents a
circular convection field. In R

3, the third component of b1 and b2 is zero. Figure 9
shows the required times for the H-LU factorizations.

As can be seen, the runtime in the case of a non-circular convection decreases with
κ until an almost constant time is reached. For the circular convection, the behavior is
slightly different. Here, the runtime first grows if κ is decreased. The maximal value is

 42

 44

 46

 48

 50

 52

 54

 56

10-0 10-210-1 10-3 10-4 10-5 10-6 10-7 10-8 10-0 10-210-1 10-3 10-4 10-5 10-6 10-7 10-8

T
im

e
[s

]

κ

non-circular
circular

 100

 200

 300

 400

 500

 600

 700

 800

T
im

e
[s

]

κ

non-circular
circular

Fig. 9 Time for the H-LU factorization for a convection-diffusion problem for an increasing convection
domination in R

2 (left) and R
3 (right)

123

600 L. Grasedyck et al.

reached for κ = 10−3. Afterwards, the runtime also decreases with the growing dom-
inance of the convection term. We conclude that the time for the H-LU factorization
varies only little with a change of κ .

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Bebendorf, M.: Why approximate LU decompositions of finite element discretizations of elliptic
operators can be computed with almost linear complexity. SIAM J. Numer. Anal. 45, 1472–1494 (2007)

2. Bebendorf, M., Hackbusch, W.: Existence of H-matrix approximants to the inverse FE-matrix of
elliptic operators with L∞-coefficients. Numer. Math. 95, 1–28 (2003)

3. Börm, S.: H2-matrix arithmetics in linear complexity. Computing 77, 1–28 (2006)
4. Brainman, I., Toledo, S.: Nested-dissection orderings for sparse LU with partial pivoting. SIAM J.

Math. Anal. Appl. 23, 998–1012 (2002)
5. Gavrilyuk, I., Hackbusch, W., Khoromskij, B.: H-matrix approximation for the operator exponential

with applications. Numer. Math. 92, 83–111 (2002)
6. George, A.: Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10, 345–363

(1973)
7. Grasedyck, L.: Theorie und Anwendungen Hierarchischer Matrizen. Ph.D. thesis, Universität Kiel

(2001)
8. Grasedyck, L., Le Borne, S.: H-matrix preconditioners in convection-dominated problems. SIAM J.

Math. Anal. 27, 1172–1183 (2005)
9. Grasedyck, L., Hackbusch, W.: Construction and arithmetics of H-matrices. Computing 70, 295–334

(2003)
10. Grasedyck, L., Hackbusch, W., Kriemann, R.: Performance of H-LU preconditioning for sparse matri-

ces. Comput. Methods Appl. Math. 8, 336–349 (2008)
11. Grasedyck, L., Kriemann, R., Le Borne, S.: Parallel black box H-LU preconditioning for elliptic

boundary value problems. Comput. Visual. Sci. 11(4–6), 273–291 (2008)
12. Hackbusch, W.: A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matri-

ces. Computing 62, 89–108 (1999)
13. Hackbusch, W.: Direct domain decomposition using the hierarchical matrix technique. In: Herrera, I.,

Keyes, D., Widlund, O., Yates, R. (eds.) Domain Decomposition Methods in Science and Engineering,
UNAM, pp. 39–50 (2003)

14. Hackbusch, W., Khoromskij, B.: H-matrix approximation on graded meshes. In: Whiteman, J.R. (ed.)
The Mathematics of Finite Elements and Applications, pp. 307–316. Elsevier, Amsterdam (2000)

15. Hackbusch, W., Khoromskij, B.: A sparse matrix arithmetic based on H-matrices. Part II: Application
to multi-dimensional problems. Computing 64, 21–47 (2000)

16. Hackbusch, W., Khoromskij, B., Sauter, S. : On H2-matrices. In: Bungartz, H., Hoppe, R., Zenger, C.
(eds.) Lectures on Applied Mathematics, pp. 9–29. Springer, Berlin (2000)

17. Hendrickson, B., Rothberg, E.: Improving the run time and quality of nested dissection ordering. SIAM
J. Sci. Comp. 20, 468–489 (1998)

18. Ibragimov, I., Rjasanow, S., Straube, K.: Hierarchical Cholesky decomposition of sparse matrices
arising from curl-curl-equations. J. Numer. Math. 15, 31–58 (2007)

19. Le Borne, S.: Hierarchical matrices for convection-dominated problems. In: Kornhuber, R., Hoppe,
R., Périaux, J., Pironneau, O., Widlund, O., Xu, J. (eds.) Domain Decomposition Methods in Science
and Engineering. Lecture Notes in Computational Science and Engineering, pp. 631–638 (2004)

20. Le Borne, S., Grasedyck, L., Kriemann, R.: Domain-decomposition based H-LU preconditioners. In:
Widlund, O.B., Keyes, D.E. (eds.) Domain Decomposition Methods in Science and Engineering XVI.
Lecture Notes in Computational Science and Engineering, vol. 55, pp. 661–668. Springer, Berlin (2006)

21. Lipton, R.J., Rose, D.J., Tarjan, R.E.: Generalized nested dissection. SIAM J. Numer. Anal. 16,
346–358 (1979)

123

	Domain decomposition based H-LU preconditioning
	Abstract
	1 Introduction
	2 Preliminaries: model problem, nested dissection and H-matrices
	2.1 The finite element model problem
	2.2 A review of nested dissection
	2.3 A brief introduction to H-matrices
	2.4 Arithmetic of H-matrices

	3 Domain decomposition based clustering
	3.1 Clustering based on bisection
	3.2 Clustering based on domain decomposition

	4 Existence of approximate H-LU factors
	5 Complexity estimates
	6 Numerical results

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

