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Abstract

The two-sided Rayleigh quotient iteration proposed by Ostrowski computes a pair of
corresponding left-right eigenvectors of a matrix C. We propose a Grassmannian ver-
sion of this iteration, i.e., its iterates are pairs of p-dimensional subspaces instead of
one-dimensional subspaces in the classical case. The new iteration generically converges
locally cubically to the pairs of left-right p-dimensional invariant subspaces of C. More-
over, Grassmannian versions of the Rayleigh quotient iteration are given for the general-
ized Hermitian eigenproblem, the Hamiltonian eigenproblem and the skew-Hamiltonian
eigenproblem.

Keywords. Block Rayleigh quotient iteration, two-sided iteration, Grassmann manifold,
generalized eigenproblem, Hamiltonian eigenproblem.

AMS subject classification. 65F15

1 Introduction

The Rayleigh quotient iteration (RQI) is a classical method for computing eigenvectors of a
Hermitian matrix A = AH [Par74, Par98]. The RQI is a particular inverse iteration [Ips97]
where the shift is the Rayleigh quotient evaluated at the current iterate. The Rayleigh
quotient is an efficient shift because in a neighborhood of any eigenvector of A it yields a
quadratic approximation of the corresponding eigenvalue. This remarkable property endows
the iteration with cubic rate of convergence to the eigenvectors of A (see [Par74, Par98] or
the sketch of proof in [AMSV02]). Thanks to its fast convergence, the RQI is particularly
efficient for refining estimates of eigenvectors.

In some cases, one has to refine an estimate of a p-dimensional invariant subspace (or
eigenspace) of A. A reason for considering an eigenspace instead of individual eigenvec-
tors may be that the eigenvectors themselves are ill-conditioned while the subspace is not
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(see e.g. [Ste73]) or just because they are not relevant for the application. Several meth-
ods have been proposed for refining invariant subspace estimates. A quadratically conver-
gent iteration for refining eigenspaces of arbitrary (possibly non-Hermitian) matrices was
proposed by Chatelin [Cha84, Dem87]. It uses Newton’s method for solving the Riccati
equation obtained by expressing the eigenproblem in inhomogeneous coordinates. Similar
Newton-like iterations for eigenspace refinement were obtained using a differential-geometric
approach [EAS98, LE02, AMS04]; see [AMS07] for an overview. In [Smi97, AMSV02], it was
shown that the RQI, originally defined on the set of one-dimensional subspaces of Rn, can be
generalized to operate on the set of p-dimensional subspaces of Rn. The generalized iteration,
called block-RQI or Grassmann-RQI (because the set of the p-dimensional subspaces of Rn is
termed a Grassmann manifold) converges locally cubically to the p-dimensional eigenspaces
of A = AH .

It is natural to ask whether the Grassmann-RQI method can be adapted to deal with
non-Hermitian matrices. This is the topic of the present paper.

The underlying idea comes from Ostrowski’s series of papers dedicated to the RQI [Ost59a].
Let C be a nonnormal matrix. Then the quadratic approximation property of the Rayleigh
quotient is lost (and moreover the global convergence properties of the RQI become weaker,
see [BS90]). This drawback was avoided by Ostrowski [Ost59b, Par74] by considering the bi-
lateral Rayleigh quotient ρ(yL, yR) := yHL CyR/y

H
L yR which displays the quadratic property in

the neighborhood of the pairs of left-right nondefective eigenvectors of C. Using this Rayleigh
quotient as a shift, he derived a two-sided iteration (see Algorithm 2.6 below) that operates
on pairs of vectors (or pairs of one-dimensional subspaces, since the norm is irrelevant) and
aims at converging to pairs of left-right eigenvectors of C. The rate of convergence is in cubic
in nondegenerate cases. The possibility of solving the two-sided RQI equations approximately
was investigated in [HS03].

In the present paper, we generalize Ostrowski’s two-sided RQI to operate on pairs of p-
dimensional subspaces (instead of one-dimensional subspaces in the original iteration). The
new iteration, called Two-Sided Grassmann-RQI (2sGRQI ), converges locally cubically to
the pairs of left-right p-dimensional eigenspaces of C (see Section 5). Comparison between
Chatelin’s iteration and the 2sGRQI (Section 6) shows that each method has its advantages
and drawbacks. Main advantages of the 2sGRQI over Chatelin’s iteration are the higher
rate of convergence, the simultaneous computation of left and right eigenspaces, and the
simpler structure of the Sylvester equations. On the other hand, the 2sGRQI does not behave
satisfactorily when C is defective and it involves two Sylvester equations instead of one. We
also show that in some structured eigenproblems, namely E-(skew-)Hermitian matrices with
E = ±EH , a relation YL = EYR between left and right subspaces is invariant by the 2sGRQI
mapping (Section 7). In particular, this observation yields a modified one-sided Grassmann-
RQI for the Hamiltonian eigenproblem. We report on numerical experiments in Section 8 and
conclusions are drawn in Section 9.

2 Preliminaries

This paper uses a few elementary concepts related to the algebraic eigenvalue problem, such
as principal vectors, Jordan blocks and nonlinear elementary divisors. A classical reference
is [Wil65]. Notions of subspaces and distance between them can be found in [Ste73].
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The superscript H denotes the conjugate transpose. In accordance with Parlett’s conven-
tions [Par74, Par98], we try to reserve the letter A for Hermitian matrices while C may denote
any matrix. We use Grass(p, n) to denote the Grassmann manifold of the p-dimensional sub-
spaces of Cn, Pn−1 to denote the projective space (i.e., the set of all one-dimensional subspaces
of Cn), and C

n×p
∗ to denote the noncompact Stiefel manifold, i.e., the set of n-by-p matrices

with full rank. The space spanned by the columns of Y ∈ C
n×p
∗ is denoted by ⌊Y ⌋ and called

the span of Y . The norm of a vector x is ‖x‖ =
√
xHx. The spectral norm of a matrix T ,

denoted by ‖T‖, is the largest singular value of T . The Hermitian angle ∠(x, y) between two

vectors x and y in C
n is given by cos∠(x, y) = |xHy|

‖x‖‖y‖ [Sch01]. The angle between a vector

y ∈ C
n and a subspace X spanned by X ∈ C

n×p
∗ is ∠(X, y) = minx∈X ,‖x‖=1∠(x, y). The

angle ∠(X,Y ) between two subspaces spanned by X ∈ C
n×p
∗ and Y ∈ C

n×p
∗ is defined as the

largest principal angle between the two subspaces, given by cos∠(X,Y ) = σmin(X̃
H Ỹ ) where

X̃ and Ỹ are orthonormal bases for ⌊X⌋ and ⌊Y ⌋, respectively, and σmin denotes the smallest
singular value [GH06]. The following proposition is a generalization of [AMSV02, Th. 3.1] to
the complex case.

Proposition 2.1 Let [X|X⊥] be a unitary matrix of order n, with X of dimension n × p,
and let K be an (n− p)× p matrix. Then

tan∠(X,X +X⊥K) = ‖K‖.

Proof. The matrix Ỹ = (X +X⊥K)(I +KHK)−1/2 is an orthonormal matrix with the same
span as X+X⊥K. It follows that cos∠(X,X+X⊥K) = σmin(X

H Ỹ ) = σmin(I+KHK)−1/2 =
(1+ σ2

max(K))−1/2 = (1 + ‖K‖2)−1/2. The conclusion follows from the trigonometric formula
tan2 a = (1− cos2 a)/ cos2 a. �

We now briefly recall some basic facts about invariant subspaces.

Definition 2.2 (eigenspaces) Let X be a p-dimensional subspace of Cn and let X = [X1,X2]
be a unitary n×n matrix such that X1 spans X . Then XHCX may be partitioned in the form

XHCX =
(

C11 C12

C21 C22

)

where C11 ∈ C
p×p. The subspace X is an eigenspace (or invariant sub-

space) of C if C21 = 0, i.e., CX ⊂ X . By spectrum of X , we mean the set of eigenvalues of
C11. We say that X is a nondefective invariant subspace of C if C11 is nondefective. The in-
variant subspace X is termed spectral if C11 and C22 have no eigenvalue in common [GLR86].
The eigenspaces of CH are called left eigenspaces of C. We say that (YL,YR) is a pair of
spectral left-right eigenspaces of C if YL and YR are spectral left and right eigenspaces of C
with the same spectrum.

The span of Y ∈ C
n×p
∗ is an eigenspace of C if and only if there exists a matrix M such

that CY = YM . Each spectral eigenspace is isolated, i.e., there exists a ball in Grass(p, n)
centered on V that does not contain any eigenspace of C other than V. We will also need the
following result [GV96, §7.6.3], of which we give an informative proof.

Proposition 2.3 If (YL,YR) is a pair of spectral left-right eigenspaces of C, then there exists
an invertible matrix S such that the first p columns of S span YR, the first p columns of S−H

span YL, and S−1CS =
[
D1 0
0 D2

]

with D1 ∈ C
p×p.
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Proof. Let (YL,YR) be a pair of spectral left-right eigenspaces of C. Then there exists X

unitary such that XHCX =
[
C11 C12

0 C22

]

, the first p columns of X span YR, and C11 and C22

have no eigenvalue in common. Therefore, there exists a matrix L such that C11L− LC22 =
−C12 [Ste73]. Let S = X

[
I L
0 I

]
. Then the first p columns of S span YR. One easily checks

that S−1CS =
[
C11 0
0 C22

]

. Moreover CHS−H = S−H
[
CH

11
0

0 CH
22

]

. Therefore the first p columns

of S−H span an eigenspace of CH whose spectrum is the same as the one of YR. That is, the
first p columns of S−H span YL. �

The Rayleigh quotient iteration (RQI) is a classical method for computing a single eigen-
vector of a Hermitian matrix A. It induces an iteration on the projective space Pn−1 that can
be written as follows.

Algorithm 2.4 (RQI on projective space) Let A = AH be an n × n matrix. Given S0

in the projective space P
n−1, the RQI algorithm produces a sequence of elements of Pn−1 as

follows. For k = 0, 1, 2, . . .,

1. Pick y in C
n \ {0} such that ⌊y⌋ = Sk.

2. Compute the Rayleigh quotient ρk = (yHAy)/(yHy).
3. If A− ρkI is singular, then solve for its kernel and stop. Otherwise, solve the system

(A− ρkI)z = y (1)

for z.
4. Sk+1 := ⌊z⌋.

It is shown in [BS89] that around each (isolated) eigenvector of A, there is a ball in which
cubic convergence to the eigenvector is uniform. The size of the ball depends on the spacing
between the eigenvalues. Globally, the RQI converges to an eigenvector for any initial point
outside a certain set of measure zero described in [BS89].

The Grassmann-Rayleigh Quotient Iteration (GRQI) is a generalization of the RQI that
operates on Grass(p, n), the set of all p-dimensional subspaces of Cn [AMSV02].

Algorithm 2.5 (GRQI) Let A = AH be an n × n matrix. Given Y0 ∈ Grass(p, n), the
GRQI algorithm produces a sequence of p-dimensional subspaces of Cn by iterating from Y0

the mapping Grass(p, n) → Grass(p, n) : Y 7→ Y+ defined as follows.

1. Pick Y ∈ C
n×p
∗ such that ⌊Y ⌋ = Y.

2. Solve the Sylvester equation

AZ − Z(Y HY )−1Y HAY = Y (2)

for Z ∈ C
n×p.

3. Define Y+ := ⌊Z⌋.

It is shown in [AMSV02] that the subspace Y+ does not depend on the choice of basis Y for
Y in the first step. This iteration converges cubically to the p-dimensional eigenspaces of A,
which are the only fixed points.

When the matrix A is not normal, the stationary property of the Rayleigh quotient fails.
Consequently, the convergence rate of the RQI can be at best quadratic. In order to recover
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cubic convergence, Ostrowski [Ost59b] proposed a two-sided version of the RQI, formulated
as follows in [Par74].

Algorithm 2.6 (Two-Sided RQI) Let C be an n-by-n matrix. Pick initial vectors v0 and
u0 satisfying vH0 u0 6= 0, ‖v0‖ = ‖u0‖ = 1. For k = 0, 1, 2, . . .,
1. Compute ρk = vHk Cuk/v

H
k uk.

2. If C − ρkI is singular solve yH(C − ρkI) = 0 and (C − ρkI)x = 0 for y, x 6= 0 and stop,
otherwise
3. Solve both vHk+1(C−ρkI) = vHk νk, (C−ρkI)uk+1 = ukτk, where νk and τk are normalizing
factors.
4. If vHk+1uk+1 = 0, then stop and admit failure.

The Two-Sided RQI converges with cubic rate to the pairs of left-right eigenvectors of C with
linear elementary divisor [Par74].

3 Two-Sided GRQI

We propose the following generalization of the Two-Sided RQI, which we call the Two-Sided
Grassmann-Rayleigh Quotient Iteration (2sGRQI).

Algorithm 3.1 (2sGRQI) Let C be an n-by-n matrix. Given (YL0
,YR0

) ∈ Grass(p, n) ×
Grass(p, n), the 2sGRQI algorithm produces a sequence of pairs of p-dimensional subspaces
of Cn by iterating from (YL0

,YR0
) the mapping (YL,YR) 7→ (YL+,YR+) defined as follows.

1. Pick YL and YR in C
n×p
∗ such that ⌊YL⌋ = YL and ⌊YR⌋ = YR.

2. Solve the Sylvester equations

CZR − ZR (Y H
L YR)

−1Y H
L CYR

︸ ︷︷ ︸

RR

= YR (3a)

ZH
L C − Y H

L CYR(Y
H
L YR)

−1

︸ ︷︷ ︸

RL

ZH
L = Y H

L (3b)

for ZL and ZR in C
n×p.

3. Define YL+ := ⌊ZL⌋ and YR+ := ⌊ZR⌋.

In point 1, one has to choose bases for YL and YR. There are infinitely many possibilities.
Indeed, if Y is a basis of Y, then {Y M : M ∈ C

p×p
∗ } is the (infinite) set of all bases of Y.

Therefore, one has to make sure that YL+ and YR+ do not depend on the choice of basis.
By a straightforward adaptation of the development carried out in [AMSV02] for the GRQI
algorithm, if (YL, YR, ZL, ZR) solve (3) then (YLM,YRN,ZLM,ZRN) also solve (3) for all M ,
N in C

p×p
∗ . Hence, the spans of ZL and ZR only depend on YL and YR, and not on the choice

of the bases YL and YR.

In point 2, the matrix Y H
L YR may not be invertible. This corresponds to point 4 in

the Two-Sided RQI (Algorithm 2.6). However, if (YL,YR) is a pair of spectral left-right
eigenspaces of C, then Y H

L YR is invertible (as a consequence of Proposition 2.3), and by
continuity invertibility holds on a neighborhood of the pair of eigenspaces.
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In point 2, the (uncoupled) Sylvester equations (3) may fail to admit one and only one
solution. This situation happens if and only if (YR, YL) belongs to the set

S := {(YL, YR) ∈ C
n×p
∗ × C

n×p
∗ : RR exists and σ(C) ∩ σ(RR) 6= ∅}

=
⋃

λ∈σ(C)

{(YL, YR) ∈ C
n×p
∗ × C

n×p
∗ : RR exists and det(RR − λI) = 0};

this follows directly from the characterization of the eigenvalues of Sylvester operators [Ste73,
Th. 4.4]. Since S is the finite union of algebraic sets, it has measure zero and the interior
of its closure is empty. This means that if (ŶL, ŶR) does not yield a unique solution, then
there exists, arbitrarily close to (ŶL, ŶR), a pair (YL, YR) and a neighborhood of this pair
on which the solution (ZL, ZR) of (3) exists and is unique. In our numerical experiments,
when such a singularity occurs (i.e., when the solution of the Sylvester equations returned
by Matlab contains Inf’s or NaN’s), we slightly perturb the system. A justification for this
technique is given in [AMSV02] and the numerical tests performed in Section 8 illustrate that
the technique works well in practice.

In point 3, if ZL or ZR is not full rank, then (YL+,YR+) does not belong to Grass(p, n)×
Grass(p, n). A tall n× p matrix Z is rank deficient if and only if all its p× p minors are zero.
Therefore, the set

D := {(YL, YR) : rank(ZL) < p or rank(ZR) < p}

is a subset of a finite union of algebraic sets. So here again, ZL and ZR are full rank for a
generic choice of YL, YR.

In practice, only a few iterates will be computed. In finite precision arithmetic, the iterates
no longer improve after a few (typically two or three) iterations because of numerical errors
(see numerical experiments in Section 8). Stopping criteria can rely on the principal angles
between two successive iterates and on the principal angles between YR and AYR or YL and
AHYL.

4 Practical implementation

The major computational task in both GRQI (Algorithm 2.5) and 2sGRQI (Algorithm 3.1)
is to solve the Sylvester equations. For GRQI, it is recommended to choose an orthonormal
basis Y (i.e., Y HY = Ip) that makes Y HAY diagonal. This requires solving a p-dimensional
eigenproblem, which is cheap when p is small. With Y HY = I and Y HAY diagonal, the GRQI
equation (2) decouples into p linear systems for the p columns of Z. We refer to [AMSV02]
for details.

The case of 2sGRQI (Algorithm 3.1) is quite different. The matrices RR and RL in the
2sGRQI equations (3) are not Hermitian and they may not be diagonalizable. A possible
approach to solving an equation such as (3a) is to reduce it to a certain triangular structure
by means of unitary transformations and solve the new system of equations using back sub-
stitution, as described in [GLAM92]. However, we observed in numerical experiments that
this technique tends to yield rather inaccurate results when the iterates get close to a solution
(the final error was sometimes around 10−11 whereas the machine epsilon was approximately
2.2 · 10−16, to be compared with the results in Table 1). The reason seems to lie in the fact
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that the norm of the solution z to the equation (C − ρI)z = x becomes very sentitive to ρ
when ρ gets close to an eigenvalue of C. The magic of the classical RQI is that the direction
of z is well-conditioned, as pointed out by Peters and Wilkinson [PW79]. However, in the
block case, the magic weakens because, in view of the workings of back substitution, the large
numerical error in the norm of any one column of Z jeopardizes the accuracy of the other
columns whose computation depends on that column.

Consequently, we recommend reducing the small block shifts RR and RL in the 2sGRQI
equations (3) to quasi-diagonal form, or to (complex) diagonal form if complex arithmetic
is available. To fix ideas, assume complex arithmetic and consider the first equation, (3a),
namely

CZR − ZRRR = YR.

Assuming that RR is nondefective, let RR = WR diag(ρ1, . . . , ρp)W
−1
R be an eigenvalue de-

composition of RR. Multiplying (3a) on the right by WR yields

CZ̃R − Z̃Rdiag(ρ1, . . . , rhop) = ỸR

where ỸR = YRWR and Z̃R = ZRWR. The advantage of this reformulation of (3a) is that it
yields p decoupled equations

(C − ρiI)Z̃Rei = Ỹrei

for each column Z̃Rei of Z̃R. Back propagation is thus no longer needed. A drawback is
that this technique does not work when RR is defective, and numerical errors on WR may
become large when RR is close to being defective. Nevertheless, in our extensive numerical
experiments on randomly chosen matrices, these difficulties were not noticed (see Section 8).

The same kind of discussion applies to the left equation (3b). Note that since RL =
(Y H

L YR)RR(Y
H
L YR)

−1 is a similarity transformation of RR, we have that WL = (Y H
L YR)WR

is a matrix of eigenvector of RL. Hence, the eigendecomposition of RL is readily obtained
from that of RR.

5 Local convergence

The following local convergence analysis can be thought of as a two-sided generalization of the
proof of cubic convergence of the block-RQI (equivalent to the Grassmann-RQI of [AMSV02])
given in [Smi97].

Let (VL,VR) be a pair of spectral left-right eigenspaces of C, and let VL and VR be cor-
responding eigenbases. We assume that the eigenspaces are nondefective, that is, the matrix
(V H

L VR)
−1V H

L CVR is diagonalizable by a similarity transformation. Since (Vl,VR) is nonde-
fective, it follows that for all YL and YR sufficiently close to VL and VR, the block Rayleigh
quotients RR and RL are diagonalizable by similarity transformations WR and WL. Equa-
tions (3) thus can be solved in two steps: (i) diagonalize the small block Rayleigh quotients,
hence decoupling the equations and reducing them to classical two-sided RQI equations; (ii)
solve the decoupled two-sided RQI equations, yielding matrices ZLWL and ZRWR that span
YL+ and YR+. The key of the convergence analysis is an “oblique” generalization of [Ste01,
Th. 2], showing that the angles between the right Ritz vectors (the columns of YRWR) and
the “corresponding” right eigenvectors of A are of the order of the largest principal angle
between YR and VR, and likewise for the left Ritz vectors and eigenvectors; see Lemma 5.1.
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Then the result follows quite directly from the cubic convergence of the non-block two-sided
RQI.

Lemma 5.1 Let (λ, x) be an eigenpair of an n×n matrix C. Let YR and YL be orthonormal
n× p matrices, p < n, such that Y H

L YR is invertible. Let wR be an eigenvector of

B := (Y H
L YR)

−1Y H
L CYR

associated with the eigenvalue of B that is closest to λ. Then

sin∠(YRwR, x) ≤
[

1 +
2(cos δ)−1rLαδ(ǫ)

sep(wH
RBwR, w

H
R⊥BwR⊥

)− rLγδ(ǫ)

]

(1 + tan δ)ǫ

where ǫ := sin∠(YR, x) is the angle between the direction of x and the span of YR, δ :=
∠(YR, YL) is the largest principal angle between the spans of YR and YL, αδ(ǫ) :=

1√
1−ǫ2−ǫ tan δ

satisfies limǫ→0 αδ(ǫ) = 1, γδ(ǫ) := (cos δ(
√
1− ǫ2−ǫ tan δ))−1(1+tan δ)ǫ satisfies limǫ→0 γδ(ǫ) =

0, and rL := ‖Y H
L⊥A

HYL‖ where YL⊥ ∈ C
n×(n−p) is an orthonormal basis of the orthogonal

complement of the span of YL.

Proof. It is readily checked that the statement is not affected by a unitary change of coor-
dinates in C

n. Therefore, without loss of generality, we work in a unitary coordinate system

such that YR =

[
Ip

0(n−p)×p

]

. Let YL⊥ ∈ C
n×(n−p) and YR⊥ ∈ C

n×(n−p) be orthonormal bases of

the orthogonal complements of the spans of YL and YR, respectively. Assume without loss of

generality that the eigenvector x has unit norm. Consider the block decompositions x =

[
xa
xb

]

and YL =

[
YLa

YLb

]

. Consider also the decomposition x = YRxR + YL⊥xL⊥, which yields

xR := (Y H
L YR)

−1Y H
L x, xL⊥ := (Y H

R⊥YL⊥)
−1Y H

R⊥x.

Since ǫ = sin∠(YR, x), we have ‖xa‖2 = 1− ǫ2 and ‖xb‖ = ǫ. We also have (Y H
L YR)

−1Y H
L =

[
I T

]
where T = (YLa)

−1YLb. It follows from Proposition 2.1 that ‖T‖ = tan δ. We also
obtain

YRxR =

[
I
0

]
[
I T

]
x =

[
xa + Txb

0

]

.

Acceptable choices for YL⊥ and YR⊥ are YL⊥ =

[
−T
In−p

]

(In−p + THT )−1/2 and YR⊥ =
[
0p×(n−p)

In−p

]

. This yields xL⊥ = (In−p + THT )1/2xb and thus ‖xL‖ ≤
√
1 + tan2 δ ǫ.

Since sin∠(u, v) ≤ sin∠(u,w) + sin∠(w, v) for all u, v, w ∈ C
n
0 , we have

∠(YRwR, x) ≤ ∠(YRwR, YRxR) + ∠(YRxR, x). (4)

Let us first consider the second term in (4). Since

sin∠(YRxR, x) ≤ ‖YRxR − x‖ ≤ ‖YRxR −
[
xa
0

]

‖+ ‖
[
xa
0

]

− x‖,

8



it follows that

sin∠(YRxR, x) ≤ ‖Txb‖+ ‖xb‖ ≤ tan δ ǫ+ ǫ = (1 + tan δ)ǫ. (5)

Note also for later use that, for all small ǫ such that
√
1− ǫ2 > ǫ tan δ, we also obtain that

‖xR‖ ≥ |‖xa‖ − ‖Txb‖| ≥
√
1− ǫ2 − ǫ tan δ.

We now tackle the first term in (4). Since YR is orthonormal, it follows that ∠(YRwR, YRxR) =
∠(wR, xR). Pre-multiplying the equation Cx = λx by (Y H

L YR)
−1Y H

L yields

(Y H
L YR)

−1Y H
L C(YRxR + YL⊥xL⊥) = xRλ,

which can be rewritten as
(B + E)x̂R = λx̂R,

where x̂R := xR‖xR‖−1 and

E := (Y H
L YR)

−1Y H
L AYL⊥xL⊥‖xR‖−1x̂HR .

Then, by [JS00, Th. 5.1],

sin∠(wR, x̂R) ≤ tan∠(wR, x̂R) ≤
2‖E‖

sep
(
wH
RBwR, (wR)H⊥B(wR)⊥

)
− 2‖E‖

if the bound is smaller than 1. The expression of the bound can be simplified using

‖E‖ = ‖(Y H
L YR)

−1Y H
L CYL⊥xL⊥‖‖xR‖−1 ≤ ‖(Y H

L YR)
−1‖‖Y H

L⊥C
HYL‖‖xL⊥

‖‖xR‖−1

≤ 1

cos δ
rL(1 + tan δ)ǫ

1√
1− ǫ2 − ǫ tan δ

,

where we have used the bound
√
1 + tan2 δ ≤ (1+tan δ) that holds for all δ ∈ [0, π2 ). Replacing

all these results in (4) yields the desired bound. �

Theorem 5.2 Let (VL,VR) be a pair of p-dimensional spectral nondefective left-right eigenspaces
of an n × n matrix C (Definition 2.2). Then there is a neighborhood N of (VL,VR) in
Grass(p, n)×Grass(p, n) and a c > 0 such that, for all (YL,YR) ∈ N , the subspaces YL+ and
YR+

produced by the 2sGRQI mapping (Algorithm 3.1) satisfy

∠(YL+
,VL) + ∠(YR+

,VR) ≤ c (∠(YL,VL) + ∠(YR,VR))
3 .

Proof. Since the pair of eigenspaces is assumed to be spectral, it follows that ∠(VL, VR) < π/2.
Therefore, taking the neighborhoodN sufficiently small, one has ∠(YR, YL) ≤ δ′ < π/2. More-
over, since the pair of eigenspaces is assumed to be nondefective, it follows that the eigenbases
VR and VL have full rank. Note that for each column x of VR, we have ∠(YR, x) ≤ ∠(YR, VR).
Lemma 5.1 implies that for any c1 > 1+tan δ′, there exists an ǫ > 0 such that, for all (YL,YR)
with ∠(YL,VL)+∠(YR,VR) < ǫ, the angle ∠(YRwR, x) between x and the nearest Ritz vector
YRwR satisfies ∠(YRwR, x) ≤ c1∠(YR, x) ≤ c1∠(YR, VR). Next, represent the subspaces YL

and YR by their Ritz vectors, which decouples (3a) into p two-sided RQI equations. By tak-
ing ǫ sufficiently small, it follows from the cubic convergence of the two-sided RQI that there
exists c2 > 0 such that, for each column x of VR, we have ∠((zR)i, x) < c2(c1∠(YR, VR))

3 for
at least one column (zR)i of ZR. It follows that ∠(ZR, VR) < c3c2(c1∠(YR, VR))

3 where c3 is
a constant that depends on the conditioning of the basis VR. A similar reasoning applies to
the left subspace. �
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6 Comparisons with Newton-based approaches

It has been long known (see, e.g., Peters and Wilkinson [PW79]) that the RQI can be viewed
as a Newton iteration. In fact, the RQI is a Newton method in a certain differential-geometric
sense [AMS07]. However, the strict interpretation of RQI as a Newton method disappears
in the block case, as pointed out in [AMSV02], so much so that the Grassmann-RQI can be
considered as distinct from the Newton approach.

Several Newton-based approaches for the general (non-Hermitian) eigenvalue problem
have been proposed in the litterature. In particular, the well-known Jacobi-Davidson approach
can be viewed as a Newton method within a sequential subspace algorithm; see, e.g., [LE02,
AMS07]. Here we discuss specifically the Newton method proposed by Chatelin [Cha84] for
refining eigenspace estimates. The reasoning can be explained as follows. An n× p matrix Y
spans an eigenspace of C if and only if there exists a p× p matrix M such that

CY = YM. (6)

However, any subspace admits infinitely many bases, and the solutions Y of (6) are thus not
isolated. A way to remove the freedom in the choice of basis is to impose on Y a normalization
condition WHY = I where W is a given full-rank n× p matrix. Then (6) becomes

F (Y ) := CY − Y (WHCY ) = 0 (7)

where the unknown Y is normalized by WHY = I. The Newton iteration for solving (7) is
given by

(I − YWH)C∆−∆(WHCY ) = −F (Y ), WH∆ = 0 (8)

Y+ := Y +∆. (9)

If the basis Y is chosen orthonormal and W := Y , then (8) becomes

ΠCΠ∆−∆(Y HCY ) = −ΠCY, Y H∆ = 0 (10)

where Π := I−Y Y H . The resulting algorithm admits an interpretation as a Newton method
on the Grassmann manifold [AMS07]. The rate of convergence is quadratic in general (cubic
when C is Hermitian).

The constraint Y H∆ = 0 can be addressed by setting ∆ = Y⊥K, where Y⊥ is an or-
thonormal matrix with Y HY⊥ = 0 and K is an (n − p)× p matrix; see, e.g., [Dem87]. Then
Y H∆ = 0 is trivially satisfied and equation (10) becomes

(Y H
⊥ CY⊥)K −K(Y HCY ) = −Y H

⊥ CY, (11)

i.e., a Sylvester equation without constraints on the unknownK. As pointed out in [AMSV02],
solving (11) takes O(n3) operations even when C is condensed (e.g. tridiagonal) because
Y H
⊥ CY⊥ is a large dense (n− p)× (n− p) matrix. However, Lundström and Eldén proposed

an algorithm [LE02, alg. 2] for solving (10) that does not require the computation of Y H
⊥ CY⊥.

It takes O(np2) operations to solve (10) when C is block diagonal of sufficiently moderate
block size and O(n2p) when C is Hessenberg. The complexity of the 2sGRQI method (Algo-
rithm 3.1) is of the same order.
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A theoretical comparison between algorithms based on inverse iteration and on Newton
does not reveal that one approach has a clear edge over the other. Among the advantages
of the 2sGRQI method (Algorithm 3.1) over Chatelin’s method, one can mention that the
convergence of 2sGRQI is cubic instead of quadratic, and that a pair of left-right eigenspaces is
computed instead of just a right-eigenspace. On the other hand, Chatelin’s method admits a
convergence analysis when the target eigenspace is defective [Dem87, AMS04], and it requires
solving only one Sylvester equation instead of two in 2sGRQI. However, we show in Section 7
that one Sylvester equation suffices for 2sGRQI on some important structured eigenproblems.

7 Structured eigenproblems

In this section, we show that the 2sGRQI induces particular one-sided formulations for some
structured eigenproblems.

7.1 E-Hermitian eigenproblem

Let C be an n× n matrix. If there exists an invertible matrix E such that

EC = CHE, (12)

then we say that C is E-Hermitian. If C is E-Hermitian, then its left and right eigenspaces
are related by the action of E. Indeed, let S be a (complex) matrix of principal vectors of C,
i.e.,

CS = SD

where D is a (complex) Jordan matrix; then, from (12), one obtains CH(ES) = (ES)D.

The case where E is Hermitian or skew-Hermitian, i.e., EH = ±E, is of particular interest
because, as we show in the next proposition, the relation YL = EYR is invariant under the
2sGRQI (Algorithm 3.1). Therefore, if YL = EYR, it is not necessary to solve both (3a)
and (3b): just solve (3a) to get YR+, and obtain YL+ as YL+ := EYR+. Moreover, since the
pairs of left-right eigenspaces of C also satisfy VL = EVR, Theorem 5.2 also applies.

Proposition 7.1 Let E be invertible with EH = ±E and let C be E-Hermitian, i.e., EC =
CHE. If YL = EY , YR = Y , and Z satisfies

CZ − Z (Y HEY )−1(Y HECY ) = Y, (13)

then ZL = EZ and ZR = Z satisfy the 2sGRQI equations (3). Hence, if YL = EYR, then
YL+ = EYR+. Moreover, the subspace iteration ⌊Y ⌋ 7→ ⌊Z⌋ defined by (13) converges locally
cubically to the spectral nondefective right-eigenspaces of C.

Proof. It is easy to check that replacing YR := Y , ZR := Z, YL := EYR, ZL := EZR in (3a)
and (3b) yields (13) in both cases. In order to prove cubic convergence, it is sufficient to notice
that the pairs (VL,VR) of eigenspaces satisfy VL = EVR, as was shown above. Therefore, if
Y is close to VR, then the pair (YL,YR) := (EY,Y) is close to (VL,VR) and local cubic
convergence to VR follows from Theorem 5.2. �

The discussion in Section 4 on solving Sylvester equations applies likewise to (13).
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Generalized Hermitian eigenproblem

Using Proposition 7.1, we show that the 2sGRQI yields a Grassmannian RQI for the Hermitian
generalized eigenproblem AV ⊂ BV which does not involve an explicit computation of B−1A.
Let A and B be two Hermitian n-by-n matrices with B invertible. Consider the problem of
finding a p-dimensional subspace V such that AV ⊂ BV. Let V ∈ C

n×p be a basis for V, then
AV ⊂ BV if and only if there is a matrix M such that AV = BVM . Equivalently, V spans
a right-eigenspace of B−1A, i.e.,

B−1AV = VM.

The problem is thus to find a right-eigenspace of C := B−1A. The conditions in Proposi-
tion 7.1 are satisfied with E := B. The modified GRQI equation (13) becomes

AZ −BZ (Y HBY )−1(Y HAY ) = BY (14)

and the subspace iteration ⌊Y ⌋ 7→ ⌊Z⌋ converges locally cubically to the spectral nondefective
eigenspaces of B−1A. In particular, B−1A is nondefective when A or B is positive definite.

Skew-Hamiltonian eigenproblem

Let T be a skew-Hamiltonian matrix, i.e., (TJ)H = −TJ , where J =
(

0 I
−I 0

)
, see e.g. [BBMX02].

Equivalently, JT = THJ , i.e., T is J-Hermitian. Conditions in Proposition 7.1 are satisfied
with C := T and E := J . The modified GRQI equation (13) becomes

TZ − Z (Y HJY )−1(Y HJTY ) = Y (15)

and the subspace iteration ⌊Y ⌋ 7→ ⌊Z⌋ converges locally cubically to the spectral nondefective
right-eigenspaces of T .

7.2 E-skew-Hermitian eigenproblem

Let E be an invertible n×n matrix and let C be an E-skew-Hermitian n×n matrix, namely

EC = −CHE. (16)

We saw in the previous section that the corresponding left and right eigenspaces of E-
Hermitian matrices are related by a multiplication by E. The case of E-skew-Hermitian
matrices is slightly different.

Proposition 7.2 Let C be an E-skew-Hermitian matrix. Then the spectrum of C is sym-
metric with respect to the imaginary axis. In other words, if λ is an eigenvalue of C, then
so is −λ. Moreover, if VL and VR are left and right eigenspaces of C whose spectra are the
symmetric image one of the other with respect to the imaginary axis, then VL = EVR.

Proof. Letting S be an invertible matrix of principal vectors of C, i.e.,

CS = SD (17)
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where D is a Jordan matrix, (16) yields

CHES = ES(−D). (18)

Hence, the matrix −D is a Jordan matrix of CH . Therefore, if λ is an eigenvalue of C, then
−λ is an eigenvalue of CH , and thus −λ is an eigenvalue of C. Moreover, equations (17)
and (18) show that if V is a right-eigenspace of C with eigenvalues λi1 , . . . , λip , then EV is a

left-eigenspace of C with eigenvalues −λi1 , . . . ,−λip . �

Consequently, letting V be a spectral right-eigenspace of C, we have that (EV,V) forms a
pair of spectral left-right eigenspaces of C if and only if the spectrum of V is symmetric with
respect to the imaginary axis. We call such an invariant subspace V a full eigenspace of the
E-skew-Hermitian matrix C.

If E is Hermitian or skew-Hermitian, then the relation YL = EYR is invariant by the
2sGRQI (Algorithm 3.1), as we show in the forthcoming proposition. Therefore, if YL = EYR,
it is sufficient to solve (3a) only, and then compute YL+ := EYR+. Moreover, the 2sGRQI
iteration restricted to the pairs (YL,YR) = (EY,Y) converges locally cubically to the full
nondefective eigenspaces of C.

Proposition 7.3 Let E be invertible with EH = ±E and let C be E-skew-Hermitian, i.e.,
EC = −CHE. If YL = EY and YR = Y , then ZL = −EZ and ZR = Z satisfy the 2sGRQI
equations (3) with

CZ − Z (Y HEY )−1(Y HECY ) = Y. (19)

Therefore, if YL = EYR, then YL+ = EYR+.
Moreover, let V be a full nondefective right-eigenspace of C (which means that the eigenvalues
of C|V have the same multiplicity as in C, the spectrum of C|V is symmetric with respect to
the imaginary axis, and C|V is nondefective). Then the subspace iteration ⌊Y ⌋ 7→ ⌊Z⌋ defined
by (13) converges locally cubically to V.

Note that this proposition differs from Proposition 7.1 in two points: ZL = −EZ and the
specification that V must be full.

Proof. It is easy to check that replacing YR := Y , ZR := Z, YL := EYR, ZL := −EZR in (3a)
and (3b) yields (19) in both cases. In order to prove cubic convergence, it is sufficient to
notice that the pairs (VL,VR) of full nondefective left-right eigenspaces satisfy VL = EVR, as
was shown above. Therefore, if Y is close to VR, then the pair (YL,YR) := (EY,Y) is close
to (VL,VR) and local cubic convergence to V follows from Theorem 5.2. �

Skew-Hermitian eigenproblem

Let Ω be skew-Hermitian. Then we have EC = −CHE with C := Ω and E := I. The
modified GRQI equation (19) becomes

ΩZ − Z (Y HY )−1(Y HΩY ) = Y. (20)

This is simply the classical GRQI equation (2). This is not surprising as skew-Hermitian
matrices are normal matrices.
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Hamiltonian eigenproblem

Let H be Hamiltonian, i.e., (HJ)H = HJ , where J =
(

0 I
−I 0

)
. This is equivalent to JH =

−HHJ . Thus we have EC = −CHE with C := H and E := J , and the modified GRQI
equation (19) reads

HZ − Z (Y HJY )−1(Y HJHY ) = Y. (21)

Proposition 7.3 implies that the subspace iteration with iteration mapping ⌊Y ⌋ 7→ ⌊Z⌋ defined
by (21) converges locally cubically to the full nondefective right-eigenspaces of H.

7.3 The generalized eigenvalue problem

We briefly discuss the application of the 2sGRQI concept to the generalized eigenvalue prob-
lem. Let A,B ∈ C

n×n. The generalized eigenvalue problem consists in finding the nontrivial
solutions of the equation Ax = λBx. Corresponding to the notion of invariant subspace
for a single matrix, we have the notion of a deflating subspace, see e.g. [Ste73, GV96]. The
p-dimensional subspace X is deflating for the pencil A − λB if there exists a p-dimensional
subspace Y such that

AX , BX ⊂ Y. (22)

Here we suppose that the pencil A − λB is nondegenerate, i.e., det(A − λB) is not trivially
zero. Then there exists α and β such that B̂ := αB − βA is invertible. Now take γ, δ such
that αδ − γβ 6= 0 and let Â := γB − δA. Then (22) is equivalent to

B̂−1ÂX ⊂ X
B̂X = Y,

i.e., X is an invariant subspace of B̂−1Â. Replacing this expression for C in (3), one obtains
after some manipulations

ÂZRŶ
H
L B̂YR − B̂ZRŶ

H
L ÂYR = B̂YR (23a)

ÂHẐLY
H
R B̂H ŶL − B̂HẐLY

H
R ÂH ŶL = B̂H ŶL (23b)

where ŶL := B̂−HYL and ẐL := B̂−HZL. It yields an iteration for which YR and ŶL locally
cubically converge to pairs of left-right deflating subspaces of the pencil A − λB. Note that
if B is invertible then we can choose B̂ := B and Â := A.

8 Numerical experiments

We report on numerical experiments that illustrate the potential of the 2sGRQI method
(Algorithm 3.1) as a numerical algorithm. The 2sGRQI method has been implemented in
Matlab as described below.

Algorithm 8.1 (implementation of 2sGRQI) Let C be an n×n matrix. Given two n×p
matrices YL0

and YR0
satisfying Y H

L0
YL0

= I = Y H
R0

YR0
, the algorithm produces a sequence of

matrices (YLk
, YRk

) as follows. For k = 0, 1, 2, . . .,
1. Compute the p × p block Rayleigh quotient RR := (Y H

Lk
YRk

)−1Y H
Lk
CYRk

. Compute an
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eigendecomposition RR = WRdiag(ρ1, . . . , ρp)W
−1
R using the Matlab eig function. Obtain the

eigendecomposition RL = WH
L diag(ρ1, . . . , ρp)W

−H
L by computing WL := (Y H

Lk
YRk

)WR.

2. Solve the decoupled equations (3), that is, (C−ρiI)(zR)i = YRk
WRei and (CH−ρiI)(zL)i =

YLk
W−H

L ei, i = 1, . . . , p, using the Matlab “\” operator. If the solutions have any nonfinite
element, then solve instead (C − ρiI + ǫI)(zR)i = YRk

WRei and (CH − ρiI + ǫI)(zL)i =
YLk

W−H
L ei, i = 1, . . . , p, with ǫ small (we took ǫ = 103u‖C‖F where u is the floating point

relative accuracy and ‖C‖F is the Frobenius norm of C).
3. Orthonormalize ZR :=

[
(zR)1 · · · (zR)i

]
to obtain YRk+1

, and likewise for ZR to obtain
YLk+1

. In Matlab, orthonormalizations are performed using the “economy size” QR decompo-
sition, [YL,ignore] = qr(ZL,0) and [YR,ignore] = qr(ZR,0).

Note that if C, YL0
and YR0

are real, then the columns of ZL and ZR appear in complex
conjugate pairs and unnecessary work can thus be avoided in the computation of ZL and ZR.

It is well known [BS89] that the basins of attraction of RQI (Algorithm 2.4) may collapse
around attractors when the eigenvalues of A are not well separated. This property also
holds for GRQI [ASVM04] and obviously extends to 2sGRQI (Algorithm 3.1). Moreover, in
2sGRQI the matrix C is not necessarily Hermitian; its eigenspaces can thus be arbitrarily
close to each other. In a first set of experiments, in order to ensure a reasonably large basin
of attraction around the left-right eigenspaces, we ruled out clustered eigenvalues and ill-
separated eigenvectors by choosing C as follows: C = SDS−1, where D is a diagonal matrix
whose diagonal elements are random permutations of 1, . . . , n and S = I + α

‖E‖2E, where
the elements of E are observations of independent random variables with standard normal
distribution and α is chosen from the uniform distribution on the interval (0, 0.1). The initial
matrices YL0

and YR0
are randomly chosen such that dist(⌊YR0

⌋, ⌊S(:, 1 : p)⌋) < 0.1 and
dist(⌊YL0

⌋, ⌊S−H (:, 1 : p)⌋) < 0.1, where “dist” is the largest principal angle.

Algorithm 8.1 was run 106 times with n = 20, p = 5. The matrices C, YL0
, and YR0

were randomly chosen in each experiment as explained above. Experiments were run using
Matlab 7.2 with floating point relative accuracy approximately equal to 2 · 10−16. Results are
summarized in Table 1, where the error e is defined as the largest principal angle between
⌊YR⌋ and ⌊S(:, 1 : p)⌋ plus the largest principal angle between ⌊YL⌋ and ⌊S−H(:, 1 : p)⌋. These
results show that convergence to the target eigenspace occurred in each of the 106 runs. The
evolution of the error is compatible with cubic order of convergence.

Iterate number mean(log10(e)) max(log10(e))

0 -1.4338 -1.0000
1 -4.6531 -2.6338
2 -13.9359 -8.3053
3 -16.5507 -15.1861
4 -16.5524 -15.1651
5 -16.5509 -15.1691

Table 1: Numerical experiments for Algorithm 8.1. See details in the text.

The behavior of the 2sGRQI algorithm in case of ill-separated eigenvectors/values would
deserve investigation. The Hermitian case is studied in [ASVM04] where improvements of
GRQI and the Riemannian Newton algorithm are proposed.
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In another set of experiments, real Hamiltonian matrices C were selected randomly as

C =

[
F G̃+ G̃H

H̃ + H̃H −FH

]

where F , G̃ and H̃ are matrices of dimension n
2 × n

2 whose elements are independent obser-
vations of the standard normally distributed random variable. A new matrix C was selected
for each experiment. For testing purposes, an eigenvalue decomposition C = SDS−1 was
computed using the Matlab eig function, and the full left and right real eigenspaces corre-
sponding to the eigenvalues with largest real part in magnitude were chosen as the target
left and right eigenspaces. (The notion of full eigenspace is defined in Section 7.2. The
real eigenspace associated to a pair (λ, λ) of complex conjugate eigenvalues with eigenvectors
vr + ivi and vr − ivi is the span of vr and vi.) The eigenvalue decomposition was ordered
in such a way that ⌊S−H(:, 1 : p⌋) is the target left-eigspace and ⌊S(:, 1 : p)⌋ is the target
right-eigenspace. Note that we have p = 2 when the target eigenvalues are real (λ and −λ),
or p = 4 when the target eigenvalues have a nonzero imaginary part (λ, λ, −λ, and −λ). The
initial matrix YR0

was randomly chosen such that dist(⌊YR0
⌋, ⌊S(:, 1 : p)⌋) < 0.1, where “dist”

is the largest principal angle, and YL0
was chosen as JYR0

in accordance with the material
of Section 7.2. Convergence to the target left and right eigenspaces was declared when the
error e as defined above was smaller than 10−12 at the 10th iterate. Algorithm 8.1 was run
106 times with n = 20 and p = 4 with the matrices C, YL0

and YR0
randomly chosen in each

experiment as described above. Note that, in accordance with the material in Section 7.2,
only ZR was computed at each iteration; ZL was chosen as JZR. We observed that conver-
gence to the target eigenspaces was declared for 99.95% of the 106 experiments. Next, the
experiment was run 106 times with the distance bound on the initial condition set to 0.001
instead of 0.1. Convergence to the target eigenspaces was declared for all but seven of the 106

randomly generated experiments. This confirms the potential of Algorithm 8.1 for refining
initial estimates of full eigenspaces of Hamiltonian matrices.

9 Conclusion

We have shown that Ostrowski’s two-sided iteration generalizes to an iteration on Grass(p, n)×
Grass(p, n) that converges locally cubically to the pairs of spectral nondefective left-right
eigenspaces of arbitrary square matrices. The iteration is competitive with Chatelin’s New-
ton method and it yields one-sided formulations adapted to some structured eigenproblems,
including the Hamiltonian and generalized Hermitian eigenproblems.
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