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Abstract. In the first part of this work ([5]), we introduced an approximate Riemann solver
for one-dimensional ideal MHD derived from a relaxation system. We gave sufficient conditions
for the solver to satisfy discrete entropy inequalities, and to preserve positivity of density and
internal energy. In this paper we consider the practical implementation, and derive explicit
wave speed estimates satisfying the stability conditions of [5]. We present a 3-wave solver that
well resolves fast waves and material contacts, and a 5-wave solver that accurately resolves the
cases when two eigenvalues coincide. A full 7-wave solver, which is highly accurate on all types
of waves, will be described in a follow-up paper. We test the solvers on one-dimensional shock
tube data and smooth shear waves.

1. Introduction

The equations for ideal MHD in one dimension are

ρt + (ρu)x = 0,(1.1)

(ρu)t + (ρu2 + p +
1

2
|B⊥|2 −

1

2
B2

x)x = 0,(1.2)

(ρu⊥)t + (ρuu⊥ − BxB⊥)x = 0,(1.3)

Et + [(E + p +
1

2
|B⊥|2 −

1

2
B2

x)u − Bx(B⊥ · u⊥)]x = 0,(1.4)

(B⊥)t + (B⊥u − Bxu⊥)x = 0.(1.5)

The state variables are the mass density ρ, the pressure p, the velocity split into its longitudinal
and transverse components u and u⊥, and the magnetic field similarly into Bx and B⊥. Hence
u⊥ and B⊥ are two-dimensional vectors. Since the divergence of the magnetic field is zero at all
times, we take Bx constant for one-dimensional data, but that restriction may be relaxed. Finally
there is the total energy E,

(1.6) E =
1

2
ρ(u2 + |u⊥|2) + ρe +

1

2
(B2

x + |B⊥|2),

with e denoting the specific internal energy. The system is closed by an equation of state p =
p(ρ, e). Thermodynamical considerations leads to the assumption of existence of a specific physical
entropy s = s(ρ, e) that satisfies

(1.7) de + p d(
1

ρ
) = Tds

for some temperature T (ρ, e) > 0. To ensure the hyperbolicity of (1.1)-(1.5), we assume that

(1.8) p′ ≡
(

∂p

∂ρ

)

s

> 0,
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2 FRANÇOIS BOUCHUT1, CHRISTIAN KLINGENBERG2, KNUT WAAGAN3

where the subscript s means that the partial derivative is taken with s constant. We shall also
make the classical assumption that

(1.9) −s is a convex function of (
1

ρ
, e).

This is a follow-up paper to [5] where we proposed an approximate Riemann solver for (1.1)-
(1.5). It is based on a relaxation approximation which generalized the Suliciu relaxation approach
for the Euler equations, see [2] and [3]. In section 1.1 of [5] we described Godunov schemes and
the idea of approximate Riemann solvers. We then introduced discrete entropy inequalities as
a stability constraint, which can be seen also as a way to numerically impose the second law of
thermodynamics. A second important stability criterion is the positivity of density and internal
energy. In section 1.2 we discussed positivity and entropy inequalities in the context of relaxation
systems. This was exemplified by the Suliciu relaxation system for the Euler equations, that our
relaxation system for (1.1)-(1.5) generalizes.

In the next section we recall the results of [5]. In Section 3 we describe our approximate
Riemann solvers with 3 and 5 waves that are special cases of our underlying approach. We give
explicit formulas for wave speeds that ensure entropy inequalities and positivity in both the 3-wave
and the 5-wave case. These formulas are extensions of the explicit signal speeds for the HLLC
solver introduced in [3]. Finally we run some numerical tests. Our solvers are compared against
each other and against the Roe solver, the HLL solver, and the 5-wave solver of [11]. At the end
we summarize the results. In a follow-up paper [4] we treat the case of the full 7-wave solver.

In multidimensional simulations, one-dimensional solvers are commonly used as building blocks.
In the case of ideal MHD the constraint that divB = 0 is an additional challenge. We describe in
an appendix how Powell’s idea of extending (1.1)-(1.5), see [12], can be easily incorporated into
our relaxation approach. Other methods used in the multidimensional finite volume setting should
in principle be able to use our one-dimensional solver.

2. Relaxation system and approximate Riemann solver

In [5] we introduced the relaxation system

ρt + (ρu)x = 0,(2.1)

(ρu)t + (ρu2 + π)x = 0,(2.2)

(ρu⊥)t + (ρuu⊥ + π⊥)x = 0,(2.3)

Et + [(E + π)u + π⊥ · u⊥]x = 0,(2.4)

(B⊥)t + (B⊥u − Bxu⊥)x = 0,(2.5)

with still (1.6), and where the relaxation pressures π and π⊥ evolve according to

(ρπ)t + (ρπu)x + (|b|2 + c2
b)ux − cab · (u⊥)x = 0,(2.6)

(ρπ⊥)t + (ρπ⊥u)x − cab ux + c2
a(u⊥)x = 0.(2.7)

The parameters ca ≥ 0, cb ≥ 0, and b ∈ R2 play the role of approximations of
√

ρ|Bx|, ρ
√

p′ and
sign(Bx)

√
ρB⊥ respectively. Indeed, ca, cb, b are not taken constant, but are evolved with

(2.8) (ca)t + u(ca)x = 0, (cb)t + u(cb)x = 0, bt + ubx = 0.

The eigenvalues of the system (2.1)-(2.8) are u, u ∓ cs

ρ , u ∓ ca

ρ and u ∓ cf

ρ , where

(2.9)
c2
s =

1

2

(
c2
b + c2

a + |b|2 −
√

(c2
b + c2

a + |b|2)2 − 4c2
ac2

b

)
,

c2
f =

1

2

(
c2
b + c2

a + |b|2 +
√

(c2
b + c2

a + |b|2)2 − 4c2
ac2

b

)
,

u having multiplicity 8. All are linearly degenerate. Note that cs ≤ ca ≤ cf , cs ≤ cb ≤ cf ,
and that the eigenvalues of (2.1)-(2.8) equal the eigenvalues of (1.1)-(1.5) whenever ca =

√
ρ|Bx|,

cb = ρ
√

p′ and b = sign(Bx)
√

ρB⊥. However, in order to simplify, we shall make here different
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choices, leading to a solver with 3 waves or 5 waves instead of 7 waves. The full motivation for
the relaxation system is given in Section 2 of [5].

The approximate Riemann solver associated to the above relaxation system is a function
R(x/t, Ul, Ur), where U stands for the MHD variable U = (ρ, ρu, ρu⊥, E, B⊥). It is obtained
by solving the Riemann problem for (2.1)-(2.8), and dropping the extra components π, π⊥, ca, cb,
b. Initially, this Riemann problem starts with the relaxation pressures at equilibrium,

(2.10) π = p +
1

2
|B⊥|2 −

1

2
B2

x and π⊥ = −BxB⊥.

The signal speeds ca, cb, b have to be specified initially on the left and on the right, i.e. one has
to give values for

(2.11) cbl, cbr, cal, car, bl, br.

This choice is the key issue for stability and accuracy. This approximate Riemann solver is
consistent with (1.1)-(1.5) and conservative, whatever is the choice of these signal speeds (see
[3] for the precise meaning of this). Our relaxation system (2.1)-(2.8) generalizes the Suliciu
relaxation system for gas dynamics, hence since the HLLC solver is associated to the Suliciu
system, our approximate Riemann solver is an extension of the HLLC solver to MHD.

If the initial data Ul, Ur consist of a single material contact discontinuity, the approximate
Riemann solver gives the exact solution to (1.1)-(1.5), π and π⊥ remaining at equilibrium. Iso-
lated Alfven contact discontinuities are as well exactly resolved under some additional conditions
specified in [5]. These additional conditions cannot be satisfied for the 3-wave or 5-wave solvers
considered here.

As usual, an approximate Riemann solver leads to a conservative scheme

(2.12) Un+1
i = Un

i − ∆t

∆x
(Fn

i+ 1

2

− Fn
i− 1

2

),

where the index i refers to the cell, the index n to time, and

(2.13) Fn
i+1/2 = F(Un

i , Un
i+1)

with F(Ul, Ur) the numerical flux. In our case, since our solver R(x/t, Ul, Ur) comes from the
exact solution to (2.1)-(2.8) which is conservative in U , it is given by the exact flux of (2.1)-(2.8)
evaluated at x/t = 0,

(2.14) F(Ul, Ur) = (ρu, ρu2 + π, ρuu⊥ + π⊥, (E + π)u + π⊥ · u⊥, B⊥u − Bxu⊥)x/t=0.

The CFL-condition for this scheme is

(2.15) max

(
|ul −

cfl

ρl
|, |ur +

cfr

ρr
|
)

∆t ≤ C∆x,

for some CFL-number C. A value C = 1/2 ensures that the waves emerging from the cell interfaces
do not interact. However, it is common in practice to use C = 1 for the first-order scheme.

Since all characteristic fields of (2.1)-(2.8) are linearly degenerate, the Riemann problem is
much easier to solve than for the original MHD system. Indeed its solution consists of constant
states (we shall call them ”intermediate states” in the sequel), separated by discontinuities. In
order to get the solution one has only to list the weak Riemann invariants associated to each
eigenvalue, and to write that each of them does not jump through the associated discontinuity.

The aim of this work is to produce an accurate, positive and entropy satisfying approximate
Riemann solver for MHD. By entropy satisfying we mean that the scheme (2.12) satisfies discrete
entropy inequalities

(2.16) η(Un+1
i ) ≤ η(Un

i ) − ∆t

∆x
(Gn

i+ 1

2

− Gn
i− 1

2

)

for entropy flux pairs (η, G), where Gn
i+ 1

2

= G(Un
i , Un

i+1), and G(Ul, Ur) is a numerical entropy

flux, satisfying G(U, U) = G(U). For ideal MHD we consider η = ρφ(s), and G = ηu, where φ
is any decreasing and convex function. The assumption (1.9) ensures that η = ρφ(s) is convex
with respect to U . A stronger entropy inequality can indeed be formulated on the approximate
Riemann solver itself (see [3]). The positivity of density and internal energy for the approximate
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Riemann solver (i.e. for its intermediate values) is also retained as the useful formulation, instead
of the weaker one stating that the scheme (2.12) is positive.

In [5] we derived stability conditions, that ensure that the approximate Riemann solver is
positive and entropy satisfying. These stability conditions must hold for each intermediate state
of the approximate solver, and involve also the initial states and the relaxation parameters (2.11).
It is convenient to denote by a star any value corresponding to an intermediate state, while the
sub- or superscript ’l/r’ will be used to refer to the initial state on the same side of the central
wave as the intermediate value considered. In [5] we proved the following result.

Proposition 2.1. The approximate Riemann solver defined by the relaxation system (2.1)-(2.8)
is positive and satisfies the discrete entropy inequalities if, for each intermediate state, denoted by

a star, we have ρ∗ > 0 and

(2.17)

(ρ2p′)∗,l/r ≤ c2
b ,

1

ρ∗
− B2

x

c2
a

≥ 0,
∣∣∣∣B

l/r
⊥ − Bx

b

ca

∣∣∣∣
2

≤
(
c2
b − (ρ2p′)∗,l/r

)( 1

ρ∗
− B2

x

c2
a

)
,

where (ρ2p′)∗,l/r is defined as

(2.18) (ρ2p′)∗,l/r ≡ sup
ρ∈[ρl/r,ρ∗]

ρ2p′(ρ, sl/r),

and where cb, ca, b are evaluated locally, i.e. they stand for cb,l/r, ca,l/r, bl/r.

3. Riemann solvers with 3 and 5 waves

The solvers considered in this paper are obtained with the choice bl = br = 0. This makes
the formulas for the intermediate states simpler, resulting in fast codes and a relatively simple
analysis.

3.1. Intermediate states for the 3-wave solver. The most simple choice for the signal speeds
is obtained by taking

(3.1) b = 0, ca = cb ≡ c,

which means that we have only two parameters cl > 0, cr > 0. Then cs = cf = c, thus we have
only three eigenvalues for the system (2.1)-(2.8), which are u − c/ρ, u, u + c/ρ. This leads to a
solver with 3 waves and 2 intermediate states, that will be denoted as l∗ and r∗.

The left and right waves have multiplicity 3. There are 8 strong Riemann invariants associated
to the central wave (i.e. quantities that lie in the kernel of ∂t + u∂x), which are ca, cb, b, and

1

ρ
+

π

c2
,

B⊥
ρ

+
Bx

c2
π⊥, e +

B2
x + |B⊥|2

2ρ
− π2

2c2
− |π⊥|2

2c2
.(3.2)

These quantities are thus weak Riemann invariants for the left and right waves. They must be
completed with 3 weak Riemann invariants, that are found to be π + cu, π⊥ + cu⊥ for the left
wave, and π − cu, π⊥ − cu⊥ for the right wave. For the central wave, 6 weak Riemann invariants
are u, u⊥, π, π⊥. The wave speeds are therefore σ1 < σ2 < σ3,

(3.3) σ1 = ul −
cl

ρl
, σ2 = u∗

l = u∗
r ≡ u∗, σ3 = ur +

cr

ρr
.

The values of ca, cb, b are the left values for the l∗ state, and the right values for the r∗ state.
The intermediate values for ρ, B⊥, e are deduced from the fact that the quantities in (3.2) do not
jump through the left and right waves. It remains to determine the values u∗, u∗

⊥, π∗, π∗
⊥ (which

are common for the l∗ and r∗ states). They are determined by the relations

(3.4)
(π + cu)∗l = (π + cu)l, (π − cu)∗r = (π − cu)r,

(π⊥ + cu⊥)∗l = (π⊥ + cu⊥)l, (π⊥ − cu⊥)∗r = (π⊥ − cu⊥)r.
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Hence we get the intermediate values

(3.5)

u∗ =
clul + crur + πl − πr

cl + cr
,

π∗ =
crπl + clπr − clcr(ur − ul)

cl + cr
,

u∗
⊥ =

clu
l
⊥ + cru

r
⊥ + πl

⊥ − πr
⊥

cl + cr
,

π∗
⊥ =

crπ
l
⊥ + clπ

r
⊥ − clcr(u

r
⊥ − ul

⊥)

cl + cr
.

Note that since σ1 = u∗
l − cl

ρ∗

l
and σ3 = u∗

r + cr

ρ∗

r
, positivity of ρ is equivalent to σ1 < σ2 < σ3.

3.2. Intermediate states for the 5-wave solver. A more general solver is obtained if we only
set

(3.6) b = 0,

and keep arbitrary ca, cb. Then we have the four parameters cbl, cal, cbr, car. We observe that

(3.7) cs = min(ca, cb), cf = max(ca, cb),

thus we have five eigenvalues for our system (2.1)-(2.8), which are u− cf/ρ, u− cs/ρ, u, u + cs/ρ,
u + cf/ρ. The eigenvalues u ± ca/ρ have double multiplicity, while u ± cb/ρ are simple. We get a
5-wave solver with four intermediate states.

There are 8 strong Riemann invariants associated to the central wave (i.e. quantities that lie
in the kernel of ∂t + u∂x), which are ca, cb, b, and

1

ρ
+

π

c2
b

,
B⊥
ρ

+
Bx

c2
a

π⊥, e +
B2

x + |B⊥|2
2ρ

− π2

2c2
b

− |π⊥|2
2c2

a

.(3.8)

These quantities are thus weak Riemann invariants for the other waves. Six weak Riemann in-
variants for the central wave are u, u⊥, π, π⊥. They take the same value on the left and on the
right of this central wave, we shall denote theses values by u∗, u∗

⊥, π∗, π∗
⊥. The remaining weak

Riemann invariants for the left and right waves are found to be

(3.9)

u − cb/ρ : π + cbu, π⊥, u⊥,
u − ca/ρ : π⊥ + cau⊥, π, u,
u + cb/ρ : π − cbu, π⊥, u⊥,
u + ca/ρ : π⊥ − cau⊥, π, u.

Therefore, everything is as if the longitudinal part of the velocity-pressure (u, π) were resolved
independently of the transverse velocity-pressure (u⊥, π⊥), the first jumping only through the cb

waves, and the second jumping only through the ca waves. We deduce the values u∗, u∗
⊥, π∗, π∗

⊥
by replacing c by cb or by ca in (3.5),

(3.10)

u∗ =
cblul + cbrur + πl − πr

cbl + cbr
,

π∗ =
cbrπl + cblπr − cblcbr(ur − ul)

cbl + cbr
,

u∗
⊥ =

calu
l
⊥ + caru

r
⊥ + πl

⊥ − πr
⊥

cal + car
,

π∗
⊥ =

carπ
l
⊥ + calπ

r
⊥ − calcar(u

r
⊥ − ul

⊥)

cal + car
.

We complete the values of u, π, u⊥, π⊥ in the ”noncentral” intermediate states by setting them
to either their star value or their l/r value depending on the ordering between ca and cb. Indeed,

if cb > ca then (u, π) = (u∗, π∗), (u⊥, π⊥) = (u
l/r
⊥ , π

l/r
⊥ ), and if cb < ca then (u, π) = (ul/r, πl/r),

(u⊥, π⊥) = (u∗
⊥, π∗

⊥).
The strong Riemann invariants (3.8) are constant on each side of the middle wave providing

formulas for the intermediate values ρ, B⊥ and e. In particular, ρ does not jump through the ca

waves.
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Finally, we remark that u and π are given by u∗ and π∗ between the waves with speeds ul − cbl

ρl

and ur + cbr

ρr
, while there ρ takes the values ρ∗l and ρ∗r . The remaining left ca wave hence has speed

ul − cal

ρl
if cal ≥ cbl, and u∗ − cal

ρl∗
otherwise. The remaining right ca wave has speed ur + car

ρr
if

car ≥ cbr, and u∗ + car

ρr∗
otherwise. Between these two ca waves u⊥ and π⊥ are given by u∗

⊥ and

π∗
⊥.

3.3. Previous 3-wave and 5-wave solvers. In [9] and [10] approximate Riemann solvers with
3 waves that resolve material contact discontinuities are given. No stability analysis is known in
their case, and indeed instabilities can occur in practice. Miyoshi and Kusano proposed in [11]
an approximate Riemann solver with 5 waves, that also accurately resolves Alfven contact waves.
Even if no analysis of stability is provided, it is stable in practice.

3.4. Choice of signal speeds for the 3-wave solver. Here we derive explicit values for the
signal speeds that are sufficient for positivity and entropy inequalities. This is done with the use
of Proposition 2.1. Following the analysis of the classical gas dynamics case performed in [2], we
make some natural assumptions on the pressure law, that is

(
∂

∂ρ

)

s

(
ρ
√

p′
)

> 0,(3.11)

(
∂

∂ρ

)

s

(
ρ
√

p′
)
≤ α

√
p′, for some constant α > 1,(3.12)

where we recall that p′ is defined in (1.8). Notice that these assumptions only involve the pressure
law p(ρ) at fixed s, and that the first inequality is equivalent to p being convex with respect to
1/ρ, at fixed s. For an ideal gas these conditions hold with α = 1

2 (γ + 1). Considering now the
3-wave case, we make the following a priori choice of the relaxation speeds,

(3.13)
cl = ρla

0
l + αρl

(
(ul − ur)+ +

(πr − πl)+
ρlaql + ρraqr

)
,

cr = ρra
0
r + αρr

(
(ul − ur)+ +

(πl − πr)+
ρlaql + ρraqr

)
.

Here, aql, aqr denote the left and right fast MHD speeds,

(3.14) a2
q =

1

2

(
p′ +

B2
x + |B⊥|2

ρ
+

√(
p′ +

B2
x + |B⊥|2

ρ

)2

− 4p′
B2

x

ρ

)
,

and a0
l and a0

r need to be determined in such a way that

(3.15) a0
l ≥ aql, a0

r ≥ aqr.

This last restriction implies in particular that cl ≥ ρlaql, cr ≥ ρraqr. We would like now to find a
value for a0

l , such that ρ∗l > 0, and that the conditions (2.17) of Proposition 2.1 are satisfied on
the l∗ state. From the first invariant of (3.2) we have that 1/ρ∗l + π∗/c2

l = 1/ρl + πl/c2
l , thus with

the value of π∗ given in (3.5),

(3.16)

1

ρ∗l
=

1

ρl
+

cr(ur − ul) + πl − πr

cl(cl + cr)

≥ 1

ρl
− cr(ul − ur)+

cl(cl + cr)
− (πr − πl)+

cl(cl + cr)

≥ 1

ρl
− (ul − ur)+

cl
− (πr − πl)+

cl(ρlaql + ρraqr)
.

Define now

(3.17) Xl =
1

aql

(
(ul − ur)+ +

(πr − πl)+
ρlaql + ρraqr

)
,

so that by the definition (3.13) of cl and by (3.15), one has

(3.18)
cl

ρl
≥ aql(1 + αXl).
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Using this in (3.16) gives

(3.19)
1

ρ∗l
≥ 1

ρl

(
1 − Xl

1 + αXl

)
,

hence ρ∗l > 0,

(3.20) 0 < ρ∗l ≤ ρl/xl,

with

(3.21) xl = 1 − Xl

1 + αXl
∈
(

α − 1

α
, 1

]
.

The following Lemma generalizes the analysis performed for the Euler equations in [3].

Lemma 3.1. Consider a pressure law p(ρ) satisfying (3.11)-(3.12). Let x = 1 − X/(1 + αX) for

some X ≥ 0. Then for all ρ > 0

(3.22)
ρ

x

√
p′
(ρ

x

)
≤ ρ
√

p′(ρ)(1 + αX).

Proof. The assumptions imply that

(3.23)
d

dρ

(
ρ−αρ

√
p′(ρ)

)
≤ 0,

and thus that

(3.24) ∀r ≥ 1, rρ
√

p′(ρ) ≥ ρr1/α
√

p′(ρr1/α).

Taking r = x−α gives

(3.25)
ρ

x

√
p′
(ρ

x

)
≤ ρ
√

p′(ρ)x−α,

thus in order to conclude it only remains to prove that x−α ≤ 1 + αX , or equivalently that
x ≥ (1 + αX)−1/α. This can be written

(3.26) 1 − X

1 + αX
− (1 + αX)−1/α ≥ 0.

Defining θ = 1/(1 + αX) ∈ [0, 1], this reduces to

(3.27) 1 − 1 − θ

α
− θ1/α ≥ 0,

which holds true for all θ ∈ [0, 1] and α ≥ 1. �

Applying the lemma with ρ = ρl gives

(3.28)
ρl

xl

√

p′
(

ρl

xl
, sl

)
≤ ρl

√
p′(ρl, sl)(1 + αXl).

According to the monotonicity of ρ
√

p′ stated in (3.11) and to (3.20), this allows to estimate the
supremum of the speeds in (2.18),

(3.29)
√

(ρ2p′)∗,l ≤ ρl

√
p′l(1 + αXl),

with p′l = p′(ρl, sl). Now, in order to satisfy (2.17), it is sufficient to have

(3.30)
∣∣Bl

⊥
∣∣2 ≤

(
c2
l − ρ2

l p
′
l(1 + αXl)

2
)(xl

ρl
− B2

x

c2
l

)
,
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provided that the two factors on the right-hand side are nonnegative. In order to simplify this,
we write that cl = ρl(a

0
l + αaqlXl), thus

(3.31)
c2
l = ρ2

l

(
(a0

l )
2 + 2αa0

l aqlXl + (αaqlXl)
2
)

≥ ρ2
l

(
(a0

l )
2 + 2αa2

qlXl + (αaqlXl)
2
)
.

Therefore, we get

(3.32)

c2
l − ρ2

l p
′
l(1 + αXl)

2

≥ ρ2
l

(
(a0

l )
2 − p′l + 2αXl(a

2
ql − p′l) + (αXl)

2(a2
ql − p′l)

)

≥ ρ2
l

(
(a0

l )
2 − p′l

)
.

Therefore, for (3.30) to hold it is enough that

(3.33)
∣∣Bl

⊥
∣∣2 ≤ ρ2

l

(
(a0

l )
2 − p′l

)(xl

ρl
− B2

x

ρ2
l (a

0
l )

2

)
,

provided that the two factors on the right-hand side are nonnegative. Multiplying this by (a0
l )

2

we get a second degree inequality, and (a0
l )

2 must be larger than its largest root. Therefore we
can take for (a0

l )
2 this largest root,

(3.34) (a0
l )

2 =
1

2



p′l +
B2

x + |Bl
⊥|2

ρlxl
+

√(
p′l +

B2
x + |Bl

⊥|2
ρlxl

)2

− 4p′l
B2

x

ρlxl



 .

Notice that this formula differs only by the appearance of xl from the definition of aql. Since
xl ≤ 1, the condition a0

l ≥ aql in (3.15) holds true.
The same analysis is valid on the right, with

(3.35) Xr =
1

aqr

(
(ul − ur)+ +

(πl − πr)+
ρlaql + ρraqr

)
, xr = 1 − Xr

1 + αXr
,

(3.36) (a0
r)

2 =
1

2



p′r +
B2

x + |Br
⊥|2

ρrxr
+

√(
p′r +

B2
x + |Br

⊥|2
ρrxr

)2

− 4p′r
B2

x

ρrxr



 .

We have proved the following:

Proposition 3.2. If the pressure law satisfies (3.11)-(3.12), the 3-wave solver is positive and

entropy satisfying for the choice of cl, cr given by (3.13) with (3.34), (3.36), (3.17), (3.21), (3.35).

The above formulas are sharp in the sense that they give the true fast MHD speeds for constant
initial data. Indeed, it is enough that ul = ur and πl = πr for getting cl = ρlaql, cr = ρraqr . This
shows that fast waves are well resolved with this solver. Furthermore, one observes that with our
choice of cl, cr, the maximum speed involved in the CFL condition (2.15) remains bounded when
the speeds of the left and the right states are bounded, (|u|+aq)l/r ≤ C. This is true in particular
if for example ρl approaches 0 with ρr fixed (but under the previous left/right bounds), as it was
required in order to treat the vacuum in the Euler case, see [3].

3.5. Choice of signal speeds for the 5-wave solver. We here provide formulas for the signal
speeds cbl, cbr, cal, car for the 5-wave solver that enable to get positivity and entropy inequalities.
We still make the assumptions (3.11)-(3.12). In order to apply Proposition 2.1 we need that

(3.37)
∣∣∣Bl/r

⊥

∣∣∣
2

≤
(

c2
b − (ρ2p′)∗,l/r

)(
1

ρ∗
− B2

x

c2
a

)
,

with both factors on the right-hand side being nonnegative. If (3.37) is to hold sharply, a decrease
in ca implies an increase in cb, and vice versa. In the 3-wave case we had cb = ca, and clearly
that choice gives the least restrictive CFL-condition (2.15), where cf = max(ca, cb) is involved.
Another criterion for choosing ca and cb is to minimize the effect of the diffusion obtained from the
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Chapman-Enskog expansion. We shall make this choice here. The computation of the Chapman-
Enskog expansion was performed in [5], and one can check that minimizing the largest eigenvalue
of the diffusion matrix means minimizing c2

b + c2
a. If we assume that (3.37) holds sharply (and for

smooth solutions in the Chapman-Enskog context), minimum is achieved when

(3.38) c2
a = ρ(B2

x + |BxB⊥|), and c2
b = ρ2p′ + ρ(|B⊥|2 + |BxB⊥|).

Then, for this choice, the largest eigenvalue of the diffusion matrix is 2|BxB⊥|/ρ. We notice that
it implies that the diffusion matrix vanishes identically when Bx = 0 or B⊥ = 0. The case when
Bx = 0 or B⊥ = 0 means that two eigenvalues of the MHD system coincide (the system has at
most 5 waves instead of 7). Therefore, it means that whenever the MHD system has at most 5
waves, the 5-wave solver with the choice (3.38) becomes fully accurate (it has only the residual
viscosity due to averaging on the cells, or equivalently it has the same viscosity as the exact
Godunov scheme).

We would like now to make a choice of cal, cbl, car, cbr for our solver in such a way that for
constant data we obtain the values (3.38). In order to analyze the stability conditions, we notice
that the intermediate densities are given by a formula similar to the 3-wave case,

(3.39)
1

ρ∗l
=

1

ρl
+

cbr(ur − ul) + πl − πr

cbl(cbl + cbr)
,

1

ρ∗r
=

1

ρr
+

cbl(ur − ul) + πr − πl

cbr(cbl + cbr)
.

This suggests to take cbl, cbr similarly as in (3.13),

(3.40)
cbl = ρla

0
l + αρl

(
(ul − ur)+ +

(πr − πl)+
ρlabql + ρrabqr

)
,

cbr = ρra
0
r + αρr

(
(ul − ur)+ +

(πl − πr)+
ρlabql + ρrabqr

)
,

but now with abql, abqr defined by

(3.41) a2
bq = p′ +

|B⊥|2 + |BxB⊥|
ρ

.

We look for values a0
l , a0

r satisfying

(3.42) a0
l ≥ abql, a0

r ≥ abqr.

This restriction implies in particular that cbl ≥ ρlabql, cbr ≥ ρrabqr. Then, we set

(3.43) Xl =
1

abql

(
(ul − ur)+ +

(πr − πl)+
ρlabql + ρrabqr

)
,

so that by (3.40) and (3.42), one has

(3.44)
cbl

ρl
≥ abql(1 + αXl).

Estimating the density ρ∗l given in (3.39) similarly as in (3.16) yields that

(3.45) 0 < ρ∗l ≤ ρl/xl,

with

(3.46) xl = 1 − Xl

1 + αXl
∈
(

α − 1

α
, 1

]
.

Now we observe that we have two intermediate states on the left, but however for any of them,
its density ρ∗ is equal either to ρ∗l , or to ρl. Thus ρ∗ > 0, and

(3.47) sup
ρ∈[ρ∗,ρl]

ρ ≤ ρl

xl
.

Therefore, according to the monotonicity of ρ
√

p′ stated in (3.11), the maximal speed in (2.18)
can be estimated as

(3.48)
√

(ρ2p′)∗,l ≤
ρl

xl

√

p′
(

ρl

xl
, sl

)
≤ ρl

√
p′l(1 + αXl),
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the latter inequality resulting from Lemma 3.1. Thus, in order to get (3.37), it is enough that

(3.49)
∣∣Bl

⊥
∣∣2 ≤

(
c2
bl − ρ2

l p
′
l(1 + αXl)

2
)(xl

ρl
− B2

x

c2
al

)
,

provided that the two factors on the right-hand side are nonnegative. Next, we write cbl =
ρl(a

0
l + αabqlXl), and the same estimates as in (3.31)-(3.32) give

(3.50) c2
bl − ρ2

l p
′
l(1 + αXl)

2 ≥ ρ2
l

(
(a0

l )
2 − p′l

)
.

Therefore, for (3.49) to hold it is sufficient to have

(3.51)
∣∣Bl

⊥
∣∣2 ≤ ρ2

l

(
(a0

l )
2 − p′l

)(xl

ρl
− B2

x

c2
al

)
,

with the two factors on the right-hand side being nonnegative. Our choice is then to take

(3.52) (a0
l )

2 = p′l +
|Bl

⊥|2 + |BxBl
⊥|

ρlxl
,

(3.53) c2
al =

ρl

xl

(
B2

x + |BxBl
⊥|
)
,

that gives equality in (3.51). Since xl ≤ 1 the condition that a0
l ≥ abql in (3.42) is satisfied. Notice

again that (3.52) differs only by the factor 1/xl from the definition of abql.
A similar analysis on the right leads to

(3.54) Xr =
1

abqr

(
(ul − ur)+ +

(πl − πr)+
ρlabql + ρrabqr

)
, xr = 1 − Xr

1 + αXr
,

(3.55) (a0
r)

2 = p′r +
|Br

⊥|2 + |BxBr
⊥|

ρrxr
, c2

ar =
ρr

xr

(
B2

x + |BxBr
⊥|
)
.

We have proved the following:

Proposition 3.3. If the pressure law satisfies (3.11)-(3.12), the 5-wave solver is positive and

entropy satisfying for the choice of cbl, cbr, cal, car given by (3.40), (3.52), (3.53), (3.43), (3.46),
(3.54), (3.55).

As it was chosen, for constant data the values of ca, cb reduce to (3.38), hence the solver
becomes fully accurate whenever Bx or B⊥ vanishes (or is sufficiently small). Thus, an interest of
this 5-wave solver is to be able to use it as a ”patch” for other solvers using 7 waves, that may
have singularities when two eigenvalues become too close.

However, a weak point in our 5-wave solver is that its maximal wave speed cf/ρ = max(ca/ρ, cb/ρ)
involved in the CFL condition (2.15) exceeds the maximal speed of the MHD system, which is aq

in (3.14). This excess can be evaluated by the ratios ca/ρaq and cb/ρaq, where ca, cb are given in
(3.38). For the first one, studying the variations with respect to p′ one can easily prove that

(3.56)
ca

ρaq
=

√
B2

x + |BxB⊥|
ρa2

q

≤

√
1

2
+

√
1

2
≈ 1.099.

For the second it is not so easy, but with the same method we get the same upper bound

(3.57)
cb

ρaq
=

√
p′

a2
q

+
|B⊥|2 + |BxB⊥|

ρa2
q

≤

√
1

2
+

√
1

2
.

This implies that the overall computational cost can be only of 10% in the worst case. In practice
the 5-wave solver uses timesteps close to what the 3-wave solver uses.



APPROXIMATE RIEMANN SOLVER FOR IDEAL MHD 11

Test ρ u v w p Bx By Bz γ

Dai-Woodward left 1.08 1.2 0.01 0.5 0.95 4√
4π

3.6√
4π

2√
4π

5
3

Dai-Woodward right 1.0 0.0 0.0 0.0 1.0 − q − 4√
4π

2√
4π

− q −
Brio-Wu I left 1.0 0.0 0.0 0.0 1.0 0.75 1.0 0.0 2.0
Brio-Wu I right 0.125 0.0 0.0 0.0 0.1 − q − -1.0 0.0 − q −
Brio-Wu II left 1.0 0.0 0.0 0.0 1000.0 0.0 1.0 0.0 2.0
Brio-Wu II right 0.125 0.0 0.0 0.0 0.1 − q − -1.0 0.0 − q −
Slow rarefaction left 1.0 0.0 0.0 0.0 2.0 1.0 0.0 0.0 5

3
Slow rarefaction right 0.2 1.186 2.967 0.0 0.1368 − q − 1.6405 0.0 − q −
Vacuum problem left 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2
Vacuum problem right 1.0 0.0 0.0 0.0 0.5 − q − 1.0 0.0 − q −
Expansion problem left 1.0 -3.1 0.0 0.0 0.45 0.0 0.5 0.0 5

3
Expansion problem right 1.0 3.1 0.0 0.0 0.45 − q − 0.5 0.0 − q −
Expansion problem II left 1.0 -3.1 0.0 0.0 0.45 1.0 0.5 0.0 5

3
Expansion problem II right 1.0 3.1 0.0 0.0 0.45 − q − 0.5 0.0 − q −

Figure 4.1. Table of initial data for shock tube tests

4. Numerical tests

In this section we investigate the accuracy and robustness in numerical computations of the
relaxation-based Riemann solvers with 3 and 5 waves. We compare them with each other and with
other methods. In all cases we use the solvers in the first-order Godunov scheme (2.12). In order
to get reference solutions we performed high resolution computations with the entropy satisfying
3-wave solver. The CFL-number was 0.9 in all tests. We summarize the Riemann initial data
taken as test cases in Table 4.1. Note that we use the notation u⊥ = (v, w) and B⊥ = (By, Bz).

For comparison purposes we consider the Roe solver of [1], the HLL solver, and the 5-wave solver
of [11], denoted by MK5. As signal speeds for HLL and MK5 we used the speeds for the 3-wave
solver from Section 3. For the HLL solver this choice ensures positivity and entropy inequalities.
This is because if we consider the conserved quantities, the intermediate value of the HLL solver is
equal to the spatial average between the intermediate states of the 3-wave solver. Hence positivity
of density and internal energy is inherited by convex combination, and entropy inequalities are
obtained via Jensen’s inequality.

4.1. Shock tube of Dai and Woodward. This shock tube test was introduced in [7]. The
initial data are given as ’Dai-Woodward’ in Table 4.1. The solution consists of shocks and contact
discontinuities for all characteristic fields. On this test we compare our solvers against the Roe
solver of [1]. This particular Roe solver, based on entropy variables, seems to give very sharp
resolution. For the Roe solver we used a CFL number of 0.45, since it is unstable for values too
close to 1. It gives the expected high accuracy on this fairly mild test case, see Figure 4.2. We
also note that the 3-wave solver gives a much better resolution than HLL, especially of the density
ρ. The 5-wave solver performs similarly to the 3-wave solver except that it slightly improves the
resolution of the left-going Alfven wave.

In figure 4.3 we compare our 3-wave solver to the MK5 solver. As signal speeds in the MK5
solver we used our speeds for the 3-wave solver. For that reason it is not surprising that the
performance on fast waves differ very little. At the left-going Alfven and slow waves MK5 is
sharper than with our 3- and 5-wave solvers.

4.2. Brio-Wu shock tube I. Next we consider the shock tube tests of [6], denoted by ’Brio-Wu
I’. Figure 4.4 shows the resulting ρ and By. The solution consists of, from left to right, a fast
rarefaction, a compound wave, a contact discontinuity, and a slow shock. The compound wave is
a discontinuity attached to a slow rarefaction, it can be attributed to the non strict hyperbolicity
of the system (1.1)-(1.5). There is also a small Alfven wave and a fast rarefaction going to the
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Figure 4.2. ρ and By for Dai-Woodward shock tube at time t = 0.2 with reso-
lution ∆x = 0.01. The reference solution is a 3-wave simulation with ∆x = 2

310−4.

right, that are not shown in Figure 4.4. We first compare our 3-wave solver with the HLL solver.
As expected the 3-wave solver has much better resolution of the contact discontinuity. Figure
4.4 shows that the 3-wave solver also strongly improves the sharpness of the slow shock and the
compound wave. The fast waves are well resolved by both solvers. We also see that the 5-wave
solver gives good results on these waves. Figure 4.5 shows that the 5-wave solver improves the
resolution of the compound wave compared to the 3-wave solver. This has to do with B⊥ being
locally small.

4.3. Brio-Wu shock tube II. The second test from [6] is a case with high fast magnetosonic
Mach number. Since Bx = 0, and u⊥ = 0, the 3-, 5-wave and MK5 solvers are identical, and a
full 7-wave solver cannot be expected to peform better. The results are shown in Figure 4.6. In
this case we do not gain much compared to HLL from exactly resolving the contact wave, since
it moves much faster than the magnetosonic speeds. The smearing of the contact wave is mostly
due to numerical diffusion inherent in the Godunov scheme. Both fast waves are reasonably well
resolved.
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Figure 4.3. ρ and By for Dai-Woodward shock tube at time t = 0.2 with reso-
lution ∆x = 0.01. The reference solution is a 3-wave simulation with ∆x = 2

310−4.

4.4. Shear waves. This example illustrates the numerical accuracy on Alfven waves of the dif-
ferent solvers. We choose the initial data

ρ = 1.0, p = 1.0, u = 1.0,
By = sin(2πx), Bz = cos(2πx),
v = sin(2πx), w = cos(2πx),

Bx = 1.0, γ = 5/3.

This specifies a stationary left Alfven wave. We expect that the 5-wave solver will give a better
approximation than the 3-wave, and this is confirmed by the plot of By in Figure 4.7. We also
made the same computation with p = 100.0, which still gives a stationary Alfven wave. In this
case the 5-wave solver is superior as expected, as Figure 4.8 shows. We also note in Figures 4.7,
4.8 that the 3-wave solver is a clear improvement with respect to the HLL solver.

4.5. Slow sonic rarefaction. This test is a slow switch-on rarefaction suggested in [8], and also
used in [11]. The data are given in table 4.1 There is a sonic point in this rarefaction, that is a
point where slow magnetosonic speed equals the fluid velocity. A linearized solver will typically
produce an unphysical shock at the sonic point unless additional numerical diffusion is added.
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Figure 4.4. ρ and By for Brio-Wu shock tube I at time t = 0.2 with resolution
∆x = 0.01. The reference solution is a 3-wave simulation with ∆x = 0.0001

Figure 4.9 shows that the 3-wave solver is able to handle this problem in a stable manner with
good accuracy. It gives an improvement with respect to the HLL solver. The structures in the
density profile behind the rarefaction can be referred to as start-up errors, and these are basically
unavoidable for certain kinds of Riemann problems. The 5-wave solver gives slightly better results
than the 3-wave solver for the magnetic field By, otherwise they are practically the same.

4.6. Vacuum problem. An interesting test for the stability of a scheme is how it handles a
Riemann problem where one initial state is vacuum (see [2] and [3]). In the case of ideal MHD
we have to take zero magnetic field in the vacuum region to keep the characteristic speeds finite.
This implies that Bx = 0 everywhere. Since also u⊥ = 0 in our case, the 3- and 5-wave solvers are
the same. Consider a vacuum left state with ρl = 0, Bl = 0, and a right state with ρr > 0, pr > 0.
Then, cl, cr and the intermediate states are well defined. We assume in order to get a value for
cl/ρl that Bl/

√
ρl = 0. Note that no quantities jump across the left-going wave. Therefore, the

quantity cl/ρl is only used in calculating the CFL condition. Furthermore, its contribution to the
CFL condition is not strictly needed.

In the case when γ = 2 (i.e. p = ρe), and Bz = 0, we can write the solution as By =
Br

y

ρr
ρ,

together with a pure Euler system written in terms of ρ, u and an auxiliary internal energy ẽ =
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Figure 4.5. ρ and By for Brio-Wu shock tube I at time t = 0.2 with resolution
∆x = 0.01. The reference solution is a 3-wave simulation with ∆x = 0.0001. Note
the different x-axis ranges.

e + 1
2ρ
(

Br
y

ρr

)2

. Then, since a rarefaction wave is isentropic, we get the classical solution

(4.1)

u(t, x) =
2

3

(
max

(
x − 1

2

t
,−2

√
2ẽr

)
−
√

2ẽr

)

−
,

ρ(t, x) = ρr

(
1 +

1

2

u(t, x)√
2ẽr

)2

+

,

ẽ(t, x) = ρ(t, x)
ẽr

ρr
.

The figures 4.10-4.11 show that our solver handles this vacuum test case well. The MK5 solver
with our 3-wave speeds is identical to the 3-wave solver in this case (u⊥ = 0, Bx = 0), and hence
would give the same result.

4.7. Expansion problem. This test is from [11]. It consists of two rarefactions separating a low
density region, which is difficult to compute, especially for linearized solvers. Since Bx = 0 and
u⊥ = 0, the 3- , 5-wave and MK5 solvers are the same, as in subsection 4.3. HLL with the same
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Figure 4.6. ρ and By for Brio-Wu shock tube II at time t = 0.012 with resolution
∆x = 0.01. The reference solution is a 3-wave simulation with ∆x = 0.0001. The
3- and 5-wave solvers are the same in this case.

signal speeds as the 3-wave solver does an equally good job as the 3-wave solver. Figure 4.12
shows ρ computed with the 3-wave solver. This is a good result as one would expect.

4.8. Low thermal pressure. Taking Bx nonzero in the above example causes ρp′

|B|2 to become

small in the center region in the wake of two strong slow rarefactions. This is an additional
difficulty to the low density and pressure. The 3-wave and 5-wave solvers both handle this case
well, and give almost identical results. They resolve the density better than HLL, as seen from
Figure 4.13. The magnetic field By is shown in Figure 4.14, and for that quantity there is less
difference between the codes.

We also plotted β = 2 p
|B|2 , see Figure 4.15. The low values make this an interesting test case.

In Figure 4.16 we compare our solvers with the MK5 solver. We notice that the latter gives
similar results to the 3-wave solver, while our 5-wave solver computes the thermal pressure more
accurately. The specific internal energy reaches its maximum emax at x = 0.5 in all cases. With
our 5-wave solver we get emax = 0.698, while the MK5 gives emax = 1.121, which is a significant
difference. The reference solution has emax = 0.310. Note that the quantity e is proportional to
the temperature for an ideal gas.
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Figure 4.7. By for a smooth Alfven wave with resolution ∆x = 0.01 at time t = 1.0.
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Figure 4.8. The same as in Figure 4.7, but with pressure 100 times higher

4.9. Conclusion. We summarize the results from this section in the following points.

• The 3-wave solver resolves slow moving contacts much better than HLL.
• The 3-wave solver also improves the resolution of Alfven waves and slow waves compared

to HLL.
• The 3-and 5-wave solvers can handle rarefactions into low density and low β = 2 p

|B|2 .

• The 5-wave solver can, in contrast to the 3-wave solver, sharply resolve all waves when Bx

or B⊥ vanishes.
• The 5-wave solver is significantly sharper on Alfven waves in certain regimes. In particular

when Alfven speed is smaller than sound speed, or when |Bx| is smaller than |B⊥|. This
appears from the numerical tests to also be the case for the slow modes in certain cases.

The 3- and 5-wave solvers are ready to be applied on physical problems. They provide good
accuracy and excellent stability properties, with simple and explicit formulas. In most cases,
the 3-wave solver should perform better, because it runs faster. It also allows larger timesteps,
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Figure 4.9. Slow rarefaction at time t = 0.2 with resolution ∆x = 0.01. The
reference solution is a 3-wave simulation with ∆x = 0.0002
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Figure 4.10. Vacuum problem at time t = 0.2 with resolution ∆x = 0.005. The
3- and 5-wave solvers are the same in this case.
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Figure 4.11. Vacuum problem at time t = 0.2 with resolution ∆x = 0.005. The
3- and 5-wave solvers are the same in this case.
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Figure 4.12. Expansion problem at time t = 0.2 with resolution ∆x = 0.005.
Note the logarithmic y-axis. The reference solution is a 3-wave simulation with
∆x = 0.0002. The 3- and 5-wave solvers are the same in this case.

although the difference is not really significant. At high β though, the 5-wave solver is much less
diffusive. This is also the case if one has a strong grid-aligned magnetic field.

5. Appendix: Powell’s system

In this appendix we propose a method to numerically deal with nonconstant Bx. This can be
usefull when dealing with multidimensional MHD and the divB = 0 constraint. We shall denote
here B = (Bx, B⊥) and u = (u, u⊥).

Following Powell [12], the so called Powell system in three dimensions (indeed one of its versions)
is obtained by removing the constraint divB = 0 in the MHD system and by adding a term u div B
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Figure 4.13. Expansion problem with Bx = 1.0 at time t = 0.15 with resolution
∆x = 0.005. Note the logarithmic y-axis. The reference solution is a 3-wave
simulation with ∆x = 2

310−4.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

B
y

 

 

Reference

3−wave

Figure 4.14. Expansion problem with Bx = 1.0 at time t = 0.15 with resolution
∆x = 0.005.

on the induction equation, leading to

(5.1)

ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u + (p +
1

2
|B|2) Id − B⊗ B) = 0,

Et + div[(E + p +
1

2
|B|2)u − (B · u)B] = 0,

Bt + div(B ⊗ u− u ⊗ B) + u div B = 0,

where E is still given by (1.6). This system is a classical quasilinear system, and only the induction
equation is not in conservative form. Some of the main properties of Powell’s system are:
1. Powell’s system is hyperbolic, its eigenvalues being given by the same formulas as for the MHD
system, the only difference being that u has now multiplicity 2,
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Figure 4.15. Expansion problem with Bx = 1.0 at time t = 0.15 with resolution
∆x = 0.005. Note the logarithmic y-axis. The figure shows the ratio of thermal
and magnetic pressure.
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Figure 4.16. Expansion problem with Bx = 1.0 at time t = 0.15 with resolution
∆x = 0.005. Note the logarithmic y-axis. The reference solution is a 3-wave
simulation with ∆x = 2

310−4.

2. Under the assumptions (1.7), (1.8), (1.9), Powell’s system has the same entropy inequalities as
the classical MHD system

(5.2) (ρφ(s))t + div(ρφ(s)u) ≤ 0,

for all nonincreasing convex φ,
3. Solutions to Powell’s system such that div B ≡ 0 are solutions to the MHD system,
4. Solutions to Powell’s system such that div B(0, x) ≡ 0 satisfy also div B(t, x) ≡ 0 for all times
t, because one has

(5.3) (div B)t + div(u div B) = 0.

Thus such solutions are also solutions to the MHD system (1.1)-(1.5).
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5.1. Powell’s system in one dimension. In one space dimension, Powell system reads

(5.4)

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p +
1

2
|B⊥|2 −

1

2
B2

x)x = 0,

(ρu⊥)t + (ρuu⊥ − BxB⊥)x = 0,

Et + [(E + p +
1

2
|B⊥|2 −

1

2
B2

x)u − Bx(B⊥ · u⊥)]x = 0,

(Bx)t + u(Bx)x = 0,
(B⊥)t + (B⊥u − Bxu⊥)x + u⊥(Bx)x = 0.

Instead of being constant previously, Bx is now advected at velocity u. Note that the noncon-
servative products in the induction equations do not induce any difficulty concerning definitions
because Bx jumps only through a material contact discontinuity, where u and u⊥ do not jump.

5.2. Relaxation system associated with Powell’s system. In order to approximate (5.4) by
relaxation, we just add the nonconservative part u div B of the Powell system to the magnetic
equations of the relaxaton system (2.1)-(2.8), and obtain

(5.5)

ρt + (ρu)x = 0,
(ρu)t + (ρu2 + π)x = 0,
(ρu⊥)t + (ρuu⊥ + π⊥)x = 0,
Et + [(E + π)u + π⊥ · u⊥]x = 0,
(Bx)t + u(Bx)x = 0,
(B⊥)t + (B⊥u − Bxu⊥)x + u⊥(Bx)x = 0,

with still (1.6), and no change in the other equations

(5.6)
(ρπ)t + (ρπu)x + (|b|2 + c2

b)ux − cab · (u⊥)x = 0,
(ρπ⊥)t + (ρπ⊥u)x − cab ux + c2

a(u⊥)x = 0,

(5.7) (ca)t + u(ca)x = 0, (cb)t + u(cb)x = 0, bt + ubx = 0.

The studies made previously in [5] and in the present paper for the case Bx = cst are valid in the
more general case Bx non constant, the only difference being that now Bx has to be understood
as evaluated locally (as it was the case for ca, cb, b).

5.3. Numerical fluxes. Computing the solution to the Riemann problem associated to the re-
laxation system gives an approximate Riemann solver for the Powell system. Then, one wants
to compute the numerical fluxes associated to it. For the conservative quantities ρ, ρu, ρu⊥, E,
they are given by the corresponding components of (2.14), with the additional information that
Bx only jumps at the middle wave. For updating the magnetic quantities Bx and B⊥, one has
to be more careful since we are solving nonconservative equations. In the spirit of approximate
Riemann solvers, one has to write that the new value Bn+1

i is obtained as the average over the
cell of the approximate solution. The approximate solution satisfies

(5.8) Bt + (Bu − Bxu)x + u(Bx)x = 0,

where u = (u, u⊥). Denote by u∗ the value of u through the material contact. Then one has

(5.9) Bx =





Bl

x if
x

t
< u∗,

Br
x if

x

t
> u∗.

But since

(5.10) (Bx)x = (Br
x − Bl

x)δ(x − tu∗), u(Bx)x = u∗(Br
x − Bl

x)δ(x − tu∗),

where u∗ is the value of u through the material contact, one has

(5.11) [Bu − Bxu]x=0 + u∗(Br
x − Bl

x)1Iu∗=0 = 0,

where [...]x=0 denotes the jump through the line x = 0.



APPROXIMATE RIEMANN SOLVER FOR IDEAL MHD 23

Now, integrate (5.8) over (0, ∆t) × (−∆x, 0). We get
(5.12)

1

∆x

∫ 0

−∆x

B(x/∆t)dx − Bl +
∆t

∆x
((Bu − Bxu)0− − (Bu − Bxu)l) +

∆t

∆x
u∗(Br

x − Bl
x)1Iu∗<0 = 0.

Next, integrate (5.8) over (0, ∆t) × (0, ∆x). We get
(5.13)

1

∆x

∫ ∆x

0

B(x/∆t)dx − Br +
∆t

∆x
((Bu − Bxu)r − (Bu − Bxu)0+) +

∆t

∆x
u∗(Br

x − Bl
x)1Iu∗>0 = 0.

Denote

(5.14)
FB

l = (Bu − Bxu)0− + u∗(Br
x − Bl

x)1Iu∗<0,

FB

r = (Bu − Bxu)0+ − u∗(Br
x − Bl

x)1Iu∗>0.

We end up with

(5.15) Bn+1
i − Bn

i +
∆t

∆x

(
(FB

l )i+1/2 − (FB

r )i−1/2

)
= 0.

According to (5.11), a formula for the numerical fluxes is

(5.16) If u∗ ≥ 0 then

{
FB

l = (Bu − Bxu)0−,

FB

r = (Bu − Bxu)0− − u∗(Br
x − Bl

x),

(5.17) If u∗ ≤ 0 then

{
FB

l = (Bu − Bxu)0+ + u∗(Br
x − Bl

x),

FB

r = (Bu − Bxu)0+.

In all cases one has

(5.18) FB

r − FB

l = −u∗(Br
x − Bl

x),

which implies a consistent discretization of the nonconservative term in (5.8). Notice that the
above derivation of the left and right numerical fluxes FB

l , FB

r involved in (5.15) does not really
use the relaxation system, but merely only (5.8), which is indeed the exact induction equation of
Powell’s system. Thus the formulas are true also for the exact Riemann solver, for example.

This relaxation solver is positive and entropy satisfying under the same conditions that are
derived in [5]. The only modification is that Bx has always to be understood as evaluated locally,
according to (5.9). For the 3- and 5-wave solvers, Propositions 3.2 and 3.3 remain valid with this
interpretation, as well as the formulas for the intermediate states.
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