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Abstract

We analyze an adaptive finite element /boundary element procedure for
scalar elastoplastic interface problems involving friction, where a non-
linear uniformly monotone operator such as the p—Laplacian is coupled
to the linear Laplace equation on the exterior domain. The problem
is reduced to a boundary/domain variational inequality, a discretized
saddle point formulation of which is then solved using the Uzawa al-
gorithm and adaptive mesh refinements based on a gradient recovery
scheme. The Galerkin approximations are shown to converge to the
unique solution of the variational problem in a suitable product of LP—
and L?-Sobolev spaces.

1 Introduction

Consider the following transmission problem on a bounded Lipschitz domain
QCR™

—div (o(|Vui|)Vui) = f in Q, — Aug =0 in Q°,
o(|Vui|)dyus — dpug =tg on 90Quq —uz =uy on Iy,
(1)  —o(|Vu1])9yu1 (ug 4+ ug — u1) + gl(ug + ug — ug)| =0,
lo(|Vu1)dyu1| < g on L.

[ a+o(1l) ,n=2
uz(w) = { O(|z|>™),n > 2

Here o(t) denotes a function o(x,t) € C(Q x (0,00)) satisfying
0 < ot) < o*[t°(L+1)' P2,

lo(t)t — ols)s| < o"[(t +5)°(L+t+ ) )72t — 5|
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and
o()t — 0(s)s > 0u[(t+5)° (1 + 1+ ) P2t — s)

for all ¢t > s > 0 uniformly in x € Q (§ € [0,1], g+, 0" > 0). The interface
00 = I'y UTYy is divided into the disjoint components I'y and I'y # ), and
the data belong to the following spaces:

feLr(Q), up e W22(9Q), to € W™22(9Q), g € L=(T,), a € R.

As usual, the normal derivatives are understood in terms of a Green’s for-
mula, and it is convenient to set a = 0 for n > 2. In two dimensions one
further condition is required to enforce uniqueness:

(2) /Q f+ (to, 1) = 0.

We are looking for weak solutions (uy,us) € W1P(Q) x VV;E(QC) when p > 2.
A typical example is given by o(t) = [t(1 4 ¢)'70]P=2, § € [0, 1], with the
p—Laplacian corresponding to the maximally degenerate case § = 1.

In this article we use layer potentials for the Laplace equation on ¢ to

reduce the system to a uniquely solvable variational problem on W1P(Q) x
1

_72 . . . . . .
Wy (I's). The main idea of our theoretical analysis is simple: Because

the traces of W1P(Q)—functions are continuously embedded into W%’2(8§2)
for p > 2, the quadratic form (Swu,u) associated to the Steklov—Poincaré
operator is accessible to Hilbert space methods whenever it is defined. In
this slightly weaker setting, Friedrichs’ inequality (Prop. [Il) allows to re-
cover control over the LP—norms in the interior, and as a consequence the
full variational functional associated to the above equations is coercive in
WLP(Q).

In the numerical part we present a model problem, which shows singu-
larities resulting from the given boundary data, as well as from the change
of boundary conditions, leading to a suboptimal convergence rate for uni-
form mesh refinements. We also present a Uzawa solver to deal with the
variational inequality.

With the help of a Korn inequality (Prop. 2]), our method easily carries
over to transmission problems in nonlinear elasticity, e.g. Hencky materi-
als in  coupled to the Lamé equation in ¢ A generalization to certain
nonconvex energy functionals will be discussed elsewhere [7].

The outline of the article is as follows: Section [2lrecalls some properties of
LP-Sobolev spaces and introduce a family of quasinorms adapted to the con-
sidered class of operators. In the following section Blwe introduce the bound-
ary integral operators and derive our variational formulation. Section M is



dedicated to the existence and uniqueness of our model problem. The dis-
cretization of our problem is derived in section [B], as well as the a-priori error
estimates. In section [6] our a-posteriori error estimator is presented and its
reliability proven. Finally, in section [[l we present the Uzawa-solver and two
numerical examples, clearly underlining our theoretical results.

2 Preliminaries

Let ©Q be an open subset of R™ with Lipschitz boundary 9. Set p’ = p%l
whenever p € (1,00).

Definition 1. The Sobolev spaces W(]B’)p(Q), k € Ny, are the completion of

C5(82) with respect to the norm |[ullyrsq) = l[ullkp = llullp+>2 1= 107 ullp-

The second term in the norm will be denoted by |ulwirq) = [ulrp. Let
/ / ! —_—

Wy R (Q) = (WhP(Q)) and Wk (Q) = (W(f’p(Q)> . WEEP0Q) de-

notes the space of traces of WP (Q)~functions on the boundary. It coincides
1

/

1—1
with the Besov space Bp " (002) as obtained by real interpolation of Sobolev
spaces [11], and one may define W*P(082) = B, ,(09) for s € (—1,1).

Remark 1. We are going to need the following properties for bounded OS2
[11/.‘
a) All the above spaces are reflexive and (W*P(9Q)) = W7 (5Q).
b) For p =2 they coincide with the Sobolev spaces H*.

1
) WpP(09) — W22(09) for p > 2.
d) If 09 is smooth, pseudodifferential operators of order m with symbol in
the Hormander class S7(02) map W*P(0R2) continuously to W*="P(0Q).
For Lipschitz 052, at least the first—order S%feklovaoincaré ?perator S of the
Laplacian on Q° is continuous between W2-2(9Q) and W~22(99) [{].
e) Points a) to d) imply that the quadratic form (Su,u) associated to S is

1

well-defined on Wl_E’p((‘)Q) if p > 2. S being elliptic, the form cannot be
defined for p < 2 even if 9 is smooth.

Uniform monotony will be shown using a variant of Friedrichs’ inequality.

Proposition 1. Assume 2 is bounded and that T' C 02 has positive (n—1)—
dimensional measure. Then there is a C' > 0 such that

lull, < CUIVull + llulrllpiry)  for allu € WHP(Q).



Proof. We apply an interpolation argument to the well-known Friedrichs’
inequality

1
Juuall, < CIVul — wa=g [ w
)y

on WHP(Q) (see e.g. [10]). Let L : W1P(Q) — LP() be the rank-1 operator
Lu = ﬁ Jrulr and I the inclusion of W'P() into LP(2). Then I — L :

WhP(Q) — LP(Q) is bounded and
[ = Lullp = (I = L)(u = uo)llp < I = Llllu = uall, < C[Vullp
for all u € WHP(Q). The assertion follows. O

Let w(z,y) = (Jz| + [y))° (1 + |z| + |y[)' =%, 0 < § < 1. In addition to the
above norms, the following family of quasi-norms will prove useful:

Definition 2. For v,w € W'?(Q) and k € Ny, define

1
2
el = ([ o(TuDtop-2pR2)

where | D*v|? = 2 lyl=k |07v|?.

Remark 2. a) If p > 2, the (1,w,p)—quasi-norm can be estimated from
above and below by suitable powers of the WP —seminorm [6]:

[0 < 10l < Cvlip, lwlip)lof,.

b) In the nondegenerate case § =0, we have |v]} , < \v\%l wp)”

¢) The following inequality is useful for computations with quasi—norms:
A < max{e ™, e /TP (Pt 4 NP2 4 e(a + p)P 2
for A, pu,a >0 and € > 0.

The results of this paper easily generalize to the systems of equations
describing certain inelastic materials. In this case, Lemma [0 has to be
replaced by the following Korn inequality:

Proposition 2. Assume 2 C R"™ is a bounded Lipschitz domain and I' C 02
has positive (n — 1)—dimensional measure. Then there is a C > 0 such that

lulliy < Clle@)llp + lulrllzi@y)  for alluw e (WHP(Q)".



Proof. The LP—version |lull1, < C(|le(uw)], + |lullp) of Korn’s inequality is
well-known (see e.g. [5]). Assume the assertion was false. Then ||e(uy)]|, +
unlrllzrry < L for some sequence in WhP(Q2) normalized to |Jun |1, = 1.
By the compactness of W1P(Q) < LP(£2), we may assume u,, to converge in
LP(Q). The cited variant of Korn’s inequality shows that u, is even Cauchy

in WP(€2), hence converges to some ug with [le(uo)ll, = [luolr|[r1r) = 0.
The kernel of € consists of skew—symmetric affine transformations Az + b,
A= —AT. As dimker A = n mod 2, uy cannot vanish on all of the (n — 1-
dimensional) I" unless uy = 0. Contradiction to ||ugl/1,, = 1. O

3 Variational Formulation and Reduction to 0f2

We continue to use the notation from the Introduction and mainly follow
[9]. Fix some p > 2 and, for ¢(t) = fot so(s) ds, let G(u) = [, ¢(|Vu|) with
derivative

DG(u,v) = (G'u,v) = /Q o(|Vu|)VuVu (u,v € WHP(Q))

and j(v) = st glv|, v € LY(Ty). G is known to be strictly convex and G’ :

WhP(Q) — (Wl’p(Q))/ bounded and uniformly monotone, hence coercive,

with respect to the seminorm |- |; ,: There is some ag > 0 such that for all
u,v € WHP(Q)

(G'u, u)

lulp—o0  [U]1p

(G'u— G'v,u —v) > aglu—vf , and = 00.

The naive variational formulation of the transmission problem (II) mini-
mizes the functional

1 )
Blur,ua) = Glu)+5 [ Vsl = [ fur— (to,ualon) + (w2~ +uo)lr,)
Qe Q

over a suitable convex set.

Lemma 1. Minimizing ® over the nonempty, closed and convex subset
C = {(u1,u2) € WHP(Q) x W,,2(Q%) : (w1 — ug)|r, = uo, us € Lo},

Lo ={veW Q) : Av=0in W 12(Q°) + radiation condition at 0o},

loc

is equivalent to the system (1) in the sense of distributions if o € C1(Q x
(0,00)).



Proof. C'is apparently convex. A similar argument as in Remarks 2 and 4 of
[1] shows that C'is closed and nonempty. The proof there almost exclusively
involves the exterior problem in Lo and only requires basic measure theoretic
properties of W2(Q), which also hold for WP(Q2). Finally, repeat the
computations of [9] to obtain equivalence with (). O

To reduce the exterior problem to the boundary, we are going to need
the layer potentials

Vo) = — | o) logle— | da'
Ko(z) = —% o P(z) Oy, log o — 2’| da’,
K'¢(x) = ! - o(x') 8, log |z — 2’| da’,

T
W) = 0. [ o) 0, logle — | dv

associated to the Laplace equation on Q€. They extend from C'*°(9f) to a
bounded map <;<)C ;é,) on the Sobolev space W%Q(E?Q) X W_%’z((‘)Q). If

the capacity of 0 is less than 1, which can always be achieved by scaling, V
and W considered as operators on W ~2:2(9Q) are selfadjoint, V is positive
and W non-negative. Similarly, the Steklov-Poincaré operator

S=W+(1-K)W1-K): W22(0Q) ¢ W™22(9Q) — W22(9Q)

defines a positive and selfadjoint operator (pseudodifferential of order 1, if
0% is smooth) with the main property

Oyuzlan = —S(uzlan — a)

for solutions ug € Lo of the Laplace equation on Q¢. By Remark [Ie), S
gives rise to a coercive and symmetric bilinear form (Su,u) on W%’2(8§2)
and, in particular, a pairing on the traces of WP(Q) if and only if p > 2.

Using the weak definition of d,|sq, S reduces the integral over Q¢ in ®
to the boundary:

|Vug|? = —(0,uzlaq, u2lon) = (S(uslaq — a),uz|sq) for ug € Ls.
QC



Easy manipulations allow to substitute ug by a function v on T'y (cf. [9]):
Let

W22(T,) = {u e W22(0Q) : supp u C Ty}, XP = WP(Q) x W24(T,)

and (u,v) = (u1 —¢, ug+uszlan —u1lsq) € XP for a suitable ¢ € R. Collecting
the data—dependent terms in

A(u,v) = (to + Suo, uloa + v) +/ fu
Q

leads to
1

(1, us) = G(u)+§<5(u]ag+v),u\ag+v>—)\(u,v)+j(v)+%(5uo,uo>+(to,u0>.

The first three terms on the right hand side will be called J(u,v).

Lemma 2. Minimizing ® over C is equivalent to minimizing J + j over
the nonempty closed convex set D = {(u,v) € XP : (S(ulag +v — ugp), 1) =
0 if n =2}

Proof. As in [9]. The main additional observation here is that the substitu-
tion v = ug + uzlgn — u1]sn indeed defines an element of Wi2 (T's), because
ug, u2lan € W%’2(8Q), u1lan € Wl_%’p(aQ) C W%’2(8§2) by Remark [I] and
’Uh“t =0, if (ul,u2) e C. O

4 Existence and Uniqueness

Minimization of J + j over D translates into the following variational in-
equality: Find (a,0) € XP such that

(G"i,u— 1) +(S(@loq +0), (u—@)]on +v —0) +j(v) = j(0) = AMu—1,v—10)

for all (u,v) € XP. Note that D has been replaced by XP.

We now prove the crucial monotony estimate:

Lemma 3. The operator in the variational inequality is uniformly monotone
on XP. There exists an a = a(C) > 0 such that for all ||u,v| x,||a,0]|x < C

ol = sy + o =0l , ) < (G~ Gluyi— u)

32(r,)
+ (S((@ —u)laq + 0 —v), (& — u)|aq + 0 — v).



Proof. Recall the monotony estimate for G’ from Section [3t
(G"t — G'u, i —u) > agli —ulf .

The triangle inequality and convexity of P imply

B B _ ~ p

o —vli?, ey = U@ =0l o=l g0 1@ =Wy e )
< 227 (||(a - —olf? = . '
< (& — w)|r, + UHw%ﬂ(rs) + || (@ U)|FS||W%,2(FS)

Using Wl_%’p(FS) — W%’Q(FS) as well as the boundedness of the trace
operator,

2 o —oll2y, =B 1= ully g < M@ e, 0ol

T's) W?’Z(FS)

follows for some 8 > 1. Let

K ={(u,v,u,0) € XP x XP:||(4—u)|lgo +0—v BQ)<2ﬁC’}

HW%,z(

and 0 < ¢ < B~'. Since S is positive definite on W%Q(@Q), we ob-
tain from Friedrichs’ inequality for (u,v,u,0) € K or, in particular, if
”u7U”X7 ”ZAL,’lA)”X < C:

(G"i — G'uy it —u) + (S((4 — u)lgn + 0 — v), (& — u)|g + 0 — )

2o —ulf, + (2 — u)loa + 0 — U||2

2(00)
R Ja—ulf, + (@ —ulog + 0 —oll? 4 2000
zm—uﬁm+eMu—um¥+v—“@&%rf*“a‘““miamw

2 i =l € =)l +5 oy,

1—
2 (1= 8) 1= ulfyupgy + 277 0=l
Uniform monotony on all of X? is shown similarly, but on the unbounded
complement (XP x XP)\ K the exponents p on the left hand side have to
be replaced by 2. O

Theorem 1. The variational inequality is equivalent to the transmission
problem (1) and has a unique solution.

Proof. We repeat the computations in [9] to get the equivalence with the
minimization of J+ j over D, and hence with ([Il). Existence and uniqueness
follow from Lemma 3] e.g. by applying [12], Proposition 32.36. O



5 Discretization and Error Analysis

In order to avoid using S = W+ (1—K')V~1(1—K) explicitly, the numerical
implementation involves a variant of the variational inequality
(Gt u— )+ (S(alog +9), (u—@)|aq +v—10) +j(v) — j(B) > Mu—1d,v—10)

in terms of the layer potentials. Our a posteriori analysis is therefore based
on the following equivalent problem: Find (4,9, ¢) € XP x W~ 5’2(89)
YP, such that

(G, u — @) + W(iiaq + 0) + (K — 1), (u — @)|aq +v — )
Fi) — §(8) > (to + Wuo, (u — i)l + v — 0) +/Qf(u—ﬂ),

(¢, Vo + (1 = K)(iiloq +9)) = (¢, (1 = K)uo)
for all (u,v,¢) € YP. More concisely,

A~ ~ ~

with

B(u,v,¢;1,0,6) = (G'u,u) + Wlulog +v) + (K' = 1), o + )
+(p, Vo + (1 — K)(u|gn + v)),
A(uv’u7¢) = <t0 +WUO,U|8Q +U> +/qu+ <¢7 (1 _’C)u0>
The more detailed a priori and a posteriori error analysis requires a few
basic properties of the quasi-norms [6].

Remark 3. a) The continuity and coercivity estimates can be sharpened:
For all u,v € WHP(Q)

(G'u— Gvyu—v) Slu— v|%17u7p) <SH{G'u — G'v,u — v).
b) There is 6 > 0 such that for all € € (0,00) and all u,v,w € WHP(Q)
(G'u — G'v,w)| S elu— ”’?I,u, + E_e\w\ L)

Lemma 4. For all (4,0, ¢), (u,v,¢) € YP we have

A~

o — @ —wlaa+o—vl? y, o +lnl? )

‘(lum 2(50) 2(6Q)
S o= ulfy ) 1= o + = o] P [ ¢H§V,, .

S.; ('&@(5 U,'U—’U,T])—B(U,U,¢;U—U,U—U,ﬁ),
where 20 = ¢ — ¢+ V(1 — K) (4 — u)|gq + 0 — v).



Proof. The right hand side of the identity

B(ti, 0, ;6 — u, © — v,n) — B(u,v, ¢34 — u, 0 —v,1)
(G't— G'u, i — u) + SOWV((4 — w)|on + 0 — v), (4 — u)|sn + O — v))
+ 3(S((a — w)|oq + 9 — v), (@ — u)loo + 0 —v)) + L(V( — ¢),d — ¢).

is, up to a constant, larger than |4 — u, 0 — v, é— <;5||%

W,yr)” Furthermore,

< ||l — o — b —

O

Let {7} }rer a regular triangulation of €2 into disjoint open regular trian-
gles K, so that Q = | keT, I8 - Each element has at most one edge on 01,
and the closures of any two of them share at most a single vertex or edge.
Let hx denote the diameter of K € T, and px the diameter of the largest
inscribed ball. We assume that 1 < maxgeT;, h—}f < R independent of h and
that h = maxge7; hix. & is going to be the set of all edges of the triangles

in 7y, D the set of nodes. Associated to 7T}, is the space Wﬁ’p(Q) C Wr(Q)
of functions whose restrictions to any K € 7}, are linear.

0N is triangulated by {l € &, : | C 002}. Wh% ’2(89) denotes the corre-
sponding space of piecewise linear functions, and /Wv/h%2 (T's) the subspace of
those supported on I';. Finally, Wh_%z(aQ) C W_%’Q(OQ).

We denote by i, : Wﬁ’p(Q) — WLP(Q), jn : WEQ(FS) — W%’Q(Fs)
and ky : W}L_%2(8Q) — W_%’Q(aﬁ) the canonical inclusion maps. Set
XP = WIP(Q) x W2(T,), We denote by iy : WP(Q) <5 WP(Q), jy -
W$’2(FS) — W%’2(FS) and ky, : W}L_%2(8Q) — W_%Q(E?Q) the canonical
inclusion maps. Set X? = W, "*(Q) x WE’Q(FS),

S = 5 W+ (1~ K)ku(k Vi) KT~ K)

and
Mo (ttns 0n) = {to + Shuio, uloq +v) + /Q Fun.

As is well-known, there exists hg > 0 such that the approximate Steklov—
Poincaré operator S} is coercive uniformly in h < hg, i.e. (Spup,up) >
2 . .
agllu with ag independent of h.
ﬂ|ﬂw5%m) s indep

10



The discretized variational inequality reads as follows: Find (ay, Op, <;3h) €
Y}” such that

Bt Ony §ps un— i, 0 — 0y S —n)+3 () —3 (0n) > A(up—1itn, vy —0n, dp—bn)

for all (up, v, dp) € Y}f . Repeating the arguments from the previous section,
one obtains a unique solution to the discretized variational inequality.

Theorem 2. Let (u,0, (JAS) € YP, (ap, vp, ngh) € Y be the solutions of the con-
tinuous resp. discretized variational problem. The following a priori bound
for the error holds uniformly in h < hg:

Hﬁ - ﬁh7 0 — 'ﬁhu (Zg - (ZthI;/P
Sl = anl?y 4 + (@ = an)log + 0 — @hHiV%,Q(aQ +1l¢ - ¢hH 200
S inf i —up, ® —vn, d— dnllEe + 10 — vl 2.

(wh,vp,0n)EYY

Proof. Let (u,v,¢) € YP, (up,vp, ¢p) € Y}'. Lemma [ and the variational
inequality imply

_ _ _ 2

|6 — @nlfyg.p) + (8 — @)oo + 0 Uh|| 200) T lp — ¢h|| 2(00)

< Bty 0, ¢3 0 — Gy, 0 — Ony @ — dn) — (uh,vh,%;u—uh,v—vh,qb—%)

< B(w, 0, ¢5u,v,¢) — AMu —d,v —0,¢ — @) + j(v) — 5(0)

Qhy Ohy Ol Why OBy D) — M, — Ty, v — Oy G — Pn) + 5 (on) — §(0n)

Qp, On, G 0, 0, @) — B(il, 0, ¢ n, p, O1)

Setting (u,v, ) = (tp, Op, qubh) and adding 0, the right hand side turns into

B(tt, 0, o3 up — @, vp — 0, ¢n — &) — Aup, — @, 0, — 0, ¢n — @) + j(vn) — 5(D)
+ B(it, 0, ¢5 6 — up, & — vhy @ — ¢p) — B(iin, Oy dp & — up, 0 — vy & — bp).

We first consider the friction terms:

ston) = 3(0) = [ alonl =15 < [ glon = o) < lglzaon = ollz2e
The last two terms are bounded using Remark Bb and Cauchy-Schwarz:

(G'i— Gap, i —up) S el — ﬁ‘h|%17ﬂ,p) + E_elﬂ - Uh|%1,a,p)a

S elan — affy oy + 2 CUalp, [unlip)lun — a7,

11



for sufficiently small € > 0. We may replace C(|t|1p, |upl1,p) by an honest
constant noting that the coercivity of our functional gives an a priori bound
on [|@ly1.p(q) and that we can restrict to those uy, satisfying |lup[lyw1p@q) <
2|t wr.p (). Moreover,

W((i@ — an)|on + 9 — Or) + (1= K') (@ — bn), (&t — un)|aq + 0 — vp)
S ell(@ — oo + 0 — op| wheen el — ¢hH 29

—1)5 -1 2
b,y 0+ =l

(692)

and

(& — o, V(b — dn) + (1= K)((@ — i) |oq + 0 — 1))

<ot 2 2 . a2
e é = nll? 4. 2 (00 +€H¢ ¢hHW"2 o T (@ —an)log + 0 —Dulll 4 o0 -

Substituting (u,v,®) = (up,?,0) and (u,v,¢) = (24 — up,v,0) into the
variational inequality on Y? and using that also the ¢ part is really an
equality, the remaining two terms reduce to

(—to — Wug + Wli|gg + 9) + (K' — 1)¢, vy, — )
—<t0 — S(ﬂbg —|— @ — UO),’Uh — ZA}>
= —(o(IVul)dyu,vp — 0) < lgllzeroyllon — 9ll 2.

Applying these various estimates to the terms of the right hand side, the
assertion follows from

[a—un, D=0, d—Gnp S 1a—nlFy 4 )+ (—in) | o2+0—0n | W

2
o=,

) 2(00)
as in Lemma 3l O

In the nondegenerate case § = 0, we essentially recover the estimates for
uniformly elliptic operators from [}, 9].

Corollary 1. For 6 =0, we obtain

[a—itn, O—0p, d—pl| 22 < inf HU Un, O—Vh, G— |30+ 0—vnl| L2r,)
(uh,vn,6n)E€Y;

uniformly in h < hg

Proof. Use[2b) to estimate |iy, — 1|1 4,) in Theorem 2] from below. O

12



6 A posteriori error estimate

Denote by
(67676) - ('Zl—'l/lh,’f) _ﬁha(b_ ¢h) € Yp
the error of the Galerkin approximation, and let 2v = e+V~1(1-K)(e|gn+€).
Our basic a posteriori estimate is the following.
Lemma 5. For all (ep,ép,vp) € V)P

2
CY) W 52(60)

S Ale—ep, € —ép,v—up)+ jén + o) — j(0)

2 "
leltia,p) + llelon + GHW%,Q ) + [Je]]
— B(ith, On, pn; € — €ny € — én, v — vp)
= / fle—en) — (G'un, e —ep) +/ g(len + Op| — | + Op|)
Q r,
— W — v, Vo + (1 = K) (@i |oa + 0n — uo))
+ (to — W(ﬁh‘ag + 0p — uo) — (IC, — l)éh, (e — eh)‘ag +é— éh>.

Proof. Lemma [ the continuous and the discretized variational inequality
imply

4 — u‘%l,ﬁ,p) +[[(% — u)]on + 0 — UHiV%’Q(aQ) +6— <Z5”3V,%,2(am

< B(ii, 0, ¢; 0t — Gy, 0 — Op, v) — B, O, ps 6 — @y, & — O, )

S Al — Qg D — Op,v) + j(08) — 5(0) — B, Op, dp; G — G, 0 — Op, 1)
SA(G —ap — (up — ap), 0 — 0 — (v, — 0p), v — vp) + j(vr) — J(0)

— B, On, Gpi @ — 1, — (up — p), 0 — 0 — (v — 0p), v — ).

Note that the variational inequalities are identities when restricted to the
¢-variable. The claim follows by setting e;, = up — iy, and €, = vy, — 0p. [

Simplifying the right hand side along the lines of [2] leads to a gradient
recovery scheme in the interior with a residual type estimator on the bound-
ary. With a straight forward modification of [§], also a method purely based
on residual type estimates could be justified.

For 1 <p<ooand 0 <§ <1, define

Gpa(a,y) = lylPw(z, vy~ = [yP[(a] + ly)° (L + o] + Jy) =012

whenever |z|+ |y| > 0 and 0 otherwise. As in [2], our analysis will be based

on the following consequences of the monotony and convexity properties of
Gps-
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Lemma 6. Assume that € is connected. Let q be a continuous linear form
on WHP(Q) with R Nkerq = {0}, where R is identified with the space of
constant functions on Q. Then for any 1 < p < oo there exists Cp =
Cp(p,q,Q) > 0 such that for all a > 0 and v € WP(Q),

/Gp(;au)<0p<p5aq /Gp5 |Vu|>

Proof. Cf. [2], Lemma 4.1 and its generalization in Remark 4.3. O

Lemma 7. For any d,k € N there is Cy, = Cx(p,d, k) > 0 such that for all
ai,as,...,ar € R

k j—1 k—1
s —a) < i s
Z Gpolaj,aj —a;) S Cx Z 12,}219 Gps(am, aj+1 — aj).
j=11=1 j=1
Proof. Cf. [2], Lemma 4.2 and its generalization in Remark 4.3. O

Even though Lemma [ and Lemma @ hold for any 1 < p < oo with minor
modifications of the proofs (see [2] for a similar discussion), we will from
now on concentrate on the range 2 < p < oo relevant to our transmission
problem.

Definition 3. Let z € D be a node of the triangulation T, and ¢, € Wé’p(Q)
the associated nodal basis function. Let w, = {x € Q : ¢.(x) > 0} be the

interior of the support of ¢.. The interpolation operator m : WIP(Q) —
WyP(Q) is defined as

wu:Zuzgpz, uzz/gpzu//gpz.
z€D Q Q

Lemma 8. Let & = {l € &, : | = K; N K for some K;, K; C w,}. Given
up € Wi’p(Q), let [Oy¢up], denote the jump of the normal derivative across
the inner edge 1 of the triangulation. Then, if v € W'P(Q) and K € Ty, the
following estimate holds:

/ Gp.s(Vup, hi (v — mv) / Gps(Vup, V(v —7v))

S Z Gps(Vup, Vv) + Z _min / Gp.s(Vup |k, [Ovgun)))

_ K'Ni#£D
zeDNK \"%* le&; #0Jw
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Proof. The proof is a modification of [2], Lemma 4.3. Concerning the first
term on the left hand side, the convexity of G, in its second argument (a
“triangle inequality”) and enlarging the domain of integration leads to

/Gpa Vup, hig' (v — 7v)) = /Gp5 Vun, Y hg(v—v.)e.)

2€DNK
5 Z / Gp6 vuha (U - Uz)‘pz)
2€DNK
< Y [ GVl kil o - v)e.)
zeDNK ~%*
As Gps(Vup|k,-) is increasing and |p,| < 1, Lemma [ with q(u) = [, ¢.u

implies

/ G5 (Vunlie i (v — v)ps) < / G s (Vunlic, hh(v — v.))

N

3) < Cp / G, 5(Vunli, V(v — v,))
— o / G, s(Vunl i, Vo)

for every term in the sum over z € D N K. To replace the constant Vup|x
by Vuy, we repeatedly apply the usual triangle inequality and the convexity
of G) 5 to obtain
Gps(Vunli, Vv)
< Gps(Vup|k, |V + [Vup|k — Vup|)
= (|Vv| + [Vunlk — Vup|)2(|Vup|k| + Vo] + [Vup g — Vay,[)°@~2
X (14 |Vup|g| + [V + [Vup| . — V)10 P=2)
< (IVo] + [Vun|x = Vun|)*(IVo] + 2 Vun| + [Vug| i — Vuy])’P=?
X (1 + |Vl + 2(|Vug| + |[Vup| k. — Vg [) 9@~
S Gp.s(Vup, V| + |[Vup|k — Vug|)
S Gp.s(Vup, Vo) + Gy, 5(Vup, Vug |k — Vuy,).

Altogether

/GM (Vup| i, hi (v—mv)) S Z / {Gps(Vup, Vv) + Gy 5(Vup, Vup|k — Vup)} .
zeDNK "%
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Let @, = K1 U---U Kj,. Applying Lemma [1 with aj = Vuh\Kj, 1<j5 <k,
leads to the asserted bound for the first term. For the proof, note that the
conormal derivatives of the piecewise linear function uy, are determined by its
boundary values on the corresponding edge. But uy, € Wﬁ’p(Q) c Whr(Q),
so the restrictions from both sides have to coincide, and the conormal deriva-
tive does not jump: a; — a1 = [Oyeunlg,ni,_,]-

As for the second term, let ¢ = Wll i) ¢ U- Because

[ GrstVun T =100 5 [ Gos(Vun, 7o)+ [ GV, T = )
K K K

by convexity and the triangle inequality, it only remains to consider the
second term [, Gps(Vup, V(v — ¢)). The inverse estimate

1 _
V(v —¢)| < W/Kh[{lhrv—d

for the affine function mv — ¢ and Jensen’s inequality show
1
/ Gps(Vup, V(v —¢c)) < / —/ Gps(Vup, hI_{I(mJ —0))
K K K]
= / Gps(Vup, hy (m) —0)).

However, as before
/Gp5 (Vup, hi (mo—c)) /Gp5 Vup, hi (v—mv) /Gp5 Vaup, kit (v—c)),

and the ﬁrst term has been considered in the first step of the proof. Lemmal[6]
with ¢(u fK u also bounds the final term by fK p.5(Vup, Vv). O

Lemma 9. For any e > 0, uy € Wh’p(Q), v e WhP(Q) and f € LY (Q),

/f(v—m;) < C’e/Gp,g(Vuh,Vv)
Q

+C(e Z Z / Gy 1(|Vup|P™ ! hi(f = fi))

zeD KCw,

+O€Z Z _min / Gp75(vuh|K’y [8I/guh]l)-

!
zeDleg: i

Here, fx = % Jxf-If fe WP (Q), the second term may be replaced by

COX Y [ GrallTul " 15v)

ze€D KCuw,
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Proof. We adapt the proof of [2], Lemma 4.4. Let K C @. such that
|Vup| [(| = maxg/cw, |Vup|k/|. Applying the inequality from Remark [2c)
for some ¢ > 0 and C(g) = Cp max{g—l,351/(1—110}7

/Q fo-m) = S % /K hic(f = Fr) R0 — v2).

zeD KCw.

< CplCl)Y Y /<IVuh|;(|p‘1+hK|f—fK|>p’—2h%<|f—fK|2
zeDKcw, ' K
= / (Vunl ] + B o — vl )P~ 2hi2 o — vs]2?
zeD Kcw, ' K
< ey Y / Gy (IVanl P e (f — f0)
zeDKcw, K
ey D / Gps(Vunl g, g (v = v2)e2),
zeDKcw, ' K

because ). Jx fx(v —v2)p. = 0. However, by our choice of K and
because p’ < 2,

/KGp’,l(‘vuh‘f{‘p_lth(f_ fK)) < /Kpr,l(!VUh!p_lahk(f—fK))-
If f € W' (Q), Lemmal[6 with g(u) = [, u gives:

/ G ((VanlP b (F — fx0)) < Cp / G ([Vunl?~, K2V ).
K K

Concerning the G), s-term, equation (3] in the proof of Lemma[§ shows that
it is dominated by & fwz Gp,s(Vuy| 7, Vv), which in turn was bounded by

£ / Gp.s(Vup, Vo) +¢ Y min / Gps(Vun|ir, [Dveunl,).
w, leer K'ni#0 Jy,

O

In order to define the a posteriori estimator, we still need to introduce
some notation. For any z € D, denote by K, € Ty, 1 < j < N, the
triangles neighboring z in the sense that w, = U;V:zl K j,z- To each Kj . we

associate a weight factor a;, > 0 normalized to ZNZ

- ,7:1 04]72 - 1.
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Definition 4. Given uy € Wi’p(Q), define the gradient recovery

Grun =Y (Gron)(2) ¢z, (Gron)(z Zayzwhlm-

zeD

The following theorem states our reliable, but presumably not efficient
a posteriori estimate.

Theorem 3. Let [ € LPISQ) and denote by (e, €, €) the error between the
Galerkin solution (tp,0n,¢p) € Y and the true solution (a,0,¢) € YP. If
s # 0, assume that Vi|p, € LP(T's). Then
s P 2 2
lestullfn S elfp + lelan + 2l 0 + 162,y
S ngr+nf+ns+na+ng,

where
Mor = / Gp,s(Viy, Vi, — Gpip),
KeT,
m= / Gpa(\Van P~ hi (f = fr)),
KeT,
me = > 10:{Vén + (1= K) (oo + o — uo)}72
1Con
2 _ A ~ - - / 72
My =Y 1l —o(Viw) Oyin + to — Wiinlag + on — uo) — (K = 1)énll32
1con
= ;r: Uo(Viin) dyanlr, |70 + ||9||124/,%,2(FS)
Cls

If f e Wl’p/(Q), we may replace 77f by ZKeTh fK o1 (| Vg P~ L h2 %V f).

Proof. From Lemma Bl we know that for all (e, ép,vp) € Y

~ 2 2
les &, ellys < lelfy o )+ llelog +ell’ 200y lell?, 3.2 2(00)
/fe—eh > / o(Vin) Ovinlor (e — en)
KeTy,

+ / 918+ 9n] — 10]) — (v — v, Vi + (1 — K)(@nlon + 0 — uo))
T

+ (to — W(in|aq + i1, — uo) — (K' — 1)gn, (e — en)|on + & — &),

18



with 2v = e + V711 — K)(e|oq + €). The first two terms are mainly going
to give the gradient recovery in the interior, the fourth term the error ng of
constructing the Steklov-Poincaré operator, while the remaining terms add
up to ny.

Concerning the first term:

/Qf(e—eh) S ey /I(Gp,g(vfah,ve)

KeTy

0@ Y [ GralVanl (s~ )

KeTy
=3 min [ GVl el
zeDIEE} K70 J o,
N E’e‘%l,ﬁ,p) +C(e) 7712” Te Z Z _I,nin / Gp,é(vah’K’: [8V,suh]z)~
zED lEE? K070 Jeo,
Gy, is continuous across any interior edge [, so that [0, 4y]; = [0, 0 —Grin);
and

_min / Gp#;(Vﬁh’K/, [a,,ﬁh — Ghuh]l) 5 / Gp#;(Vﬁh, Vﬂh — Ghﬁh).
K'Ni#£D Wy Wz

Therefore,

/Q fe=en) S elefgy+ CEME+e X S [ GpolTin, uin — Guinl)

zeDlegf "=

A

eleffiap +CEMF+e Y /K G,.s(Vin, Vi, — Guiip)
KeTy,

= clef iy + ClET + e

1,4,p)
Concerning the second term, let
A= Q(vahh(m) aVah|Kl,1 - Q(Vahh(l,z) aVﬁh|Kl,2’

where again [ C Kl,l N f(l,g, and the unit normal v points outward of K ;.
Therefore

—(G"up,e —me) = — Z / o(Viy) Oytp|or (e — me)
= — Z /Al(e —me) — Z /Q(Vﬁh) vy, (e — me).
1zo0”! 1con !
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Repeating the analysis of [2], Theorem 5.1, with the help of Lemma [§ gives
- Z Al(e - 7T€) 5 7737“ + €(|e|%17ah,p) + 7737“)
1zon !
Thus
2 <112 2
? I, gy IR, g
77?‘ + 5(77;7“ + |e|%l,ﬁ,p)) + 7737“ + €(|e|%l,ﬂh7p) + 7727“)

4 / (= o(Vin) Byanlr, (@ — &) + g(lén + onl — &+ on]))
I's

le.é.el¥r S lelfiap + llelon +

A

~ [ V) vl (e~ melon +2 - )

+<t0 — W(ﬁh‘aﬂ + ﬁh — U()) — (]C/ — 1)(5}“ (6 — FG)‘@Q + é — éh>
—(v = v, Vor + (1 = K)(dnlaa + 0n — uo))-

We bound the second, third + fourth as well as the final line individually.
Cauchy-Schwarz and Young’s inequality allow to estimate the last term by

+e Vo + (1K) (tin | aq+on—uo) ||

~112
elleloa+ell 4 w32(00)"

2
7’2(69)+€H€HW’1

2%(09)
and the latter by % (cf. [3]). The third and fourth lines are estimated by
(ct. [3])

I=o(Vin) 3uﬁh+to—W(ﬂh\aﬂ+@h—UO)—(’C'—l)iﬁhHW%,Q( e—me)loo+el 1.,

Q) it (09)

which lead to ng, where we have choosen é;, = 0, i.e. vy = 0. Finally, using
the triangle inequality, the second line is simplified as follows:

[ =2l in) Buinlr. (@~ &)+ gllen + inl ~ fe+ 6n))
< F‘{_Q(Vah) Oyun|r, (én — €) + glén — él}

— [ {elTin) 0ynlr.z + el

< 0oCVn) Dy ey 10y, + 090y I

We may use the Cauchy-Schwartz inequality and the inverse inequality, lead-

ing to ng.
O

20



7 Numerical results
~1
With the subset Ay, of W2 ? (T's) given by

—~1
Ap = {on € WE(T,) : |on(z)| <1 ae. on T},

we can define an Uzawa algorithm for solving the variational inequality
analogously to [9]. In order to introduce this algorithm, let Py be the

1
projection of Wh?’2(Fs) onto Ay, i.e. for every nodal point of the mesh
Trlr, holds 6 — Py () = sup{—1,inf(1,4)}.

Algorithm 1 (Uzawa).

1. Choose 02 €Ay

2. Forn=0,1,2,... find (u},v]}!) € X} such that

(Gl un) + (S (oo + v, unlon + vn) + / golon ds = Ay (1ups o)

I

for all (up,vp) € X7.

3. Set

optt = Pa(o} + pgvp),

where p > 0 is a sufficiently small parameter that will be specified later.

4. Repeat with 2. until a convergence criterion is satisfied.

In our first example the model problem is defined on the L-shape with

Q= [—1,312\[0, 1]2, Q¢ = R2\Q. The friction part of the interface is I's =

(-3, -, - U (=31,-3)(—3.2), see Figure [l

In this example we choose o(t) = (¢ +1)P~2, with p = 3 and £ = 0.00001.
Our volume and boundary data are given by f = 0 and ug = r%/? sin %((p—%),
to = Oyup|pq. The friction parameter is g = 0.5, leading to slip conditions
on the interface. We have applied the Uzawa algorithm as introduced above
with the damping parameter p = 25 to solve the variational inequality.
The nonlinear variational problem in the Uzawa algorithm is then solved by
Newton’s method in every Uzawa-iteration step.

In Table [[l we give the degrees of freedom, the value Jy(4y, 05) and the
error measured with the help of J, i.e. 6J = Jy(ap,0p) — J(4,0), where we
have obtained the value J(u,?) by extrapolation of Jj (i, 0y). Due to the
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slip condition, we need only a few Uzawa steps. But as a consequence of
the degeneration of the system matrix, due to the nonlinearity, the iteration
numbers for the MINRES solver, applied to the linearized system, are very
high, leading to large computation times. The convergence rate ay is sub-
optimal, due to the presence of singularities, in the boundary data as well,
as due to the change of boundary conditions.

QC

Iy

Figure 1: Geometry and interface of the model problem

DOF  Jp(tp,0n) 6J ayg Ityzawa  T(8)
28 -0.511609 0.017249 — 2 0.190
80 -0.517938 0.010920 -0.435 2 0.640
256 -0.521857 0.007001 -0.382 2 2.440
896 -0.524293 0.004566 -0.341 2 11.05
3328 -0.525841 0.003017 -0.316 2 61.85
12800 -0.526865 0.001993 -0.308 2 437.5
50176 -0.527571  0.001287 -0.320 2 4218.

Table 1: Convergence rates and Uzawa steps for uniform meshes (Example

1)

In our second example we use the same model geometry as before (see
Fig. [Ml). Here we choose the friction boundary I'y = (). Therefore our model
problem reduces to a non-linear p-Laplacian FEM-BEM coupling problem,
where we can prescribe the solution.

In this example we choose o(t) = (e +t)P~2, with p = 3 and & = 0.00001.

™

We prescribe the solution by u; = r2/3 Sin%(go — ) and uz = 0. Then

22



error in energy norm (H1)

0.001

the boundary data ug,ty and volume data f are given by wy = usi|p, to =
o(|Vui|)dyur and f = —div(e(|Vui|)Vuy).

In the following we give errors in the [| - ||lyy1.p(q) norm and in the quasi-
norm |u — uplg = ||u — up|l(1,u, p)-

In Tab. 2l we give the errors, convergence rates, number of Newton it-
erations Itnewton and the computing time for the uniform h-version with
rectangles. We observe that the convergence rate in the quasi-norm | - |g
is better than in the [ - [lyy1.3()-norm. The number of Newton iterations
appears to be bounded.

In Tab. 3 for the uniform h-version with triangles, we give the errors, con-
vergence rates, error estimator 7, efficiency indices d,,/n for the || - [y1.3(0)-
norm and d,/n for the |- |g-norm, number of Newton iterations and the
computing time. Again, here we observe that the convergence rate in the
quasi-norm | - | is better than in the || - [[y13(q)-norm and the number
of Newton iterations is bounded. The efficiency index §,/n appears to be
constant, whereas the efficiency index J,/n appears to be decreasing.

Tab. @ gives the corresponding numbers for the adaptive version, using a
blue-green refining strategy for triangles and refining the 10% elements with
the largest indicators. Here we observe that the convergence rates for both
norms are very similar and that both efficiency indices are bounded.

Figure 2] give the errors for all methods in the || - [[y13(q)-norm and
the | - |¢ quasi-norm together with the error indicators for the uniform and
adaptive methods.

Figure [B] presents the sequence of meshes generated by the adaptive
refinement strategy. We clearly observe the refinement towards the reentrant
corner with the singularity of the solution.

10 10

T
conf-uni-h-4 ——
conf-uni-h-3

adap-residual-h-3, theta=0.90 --
conf-uni-h-3-indic
adap-residual-h-3, theta=0.90-indic

uni-h-3

0%

f-uni-h-3-indic
adap-residual-h-3, theta=0.90-indic

il R

error in quasi norm
o
2

Conf-uni-h-d ——

conf-
- adap-residual-h-3, theta=0.90 ---*-
conf =4

0.001

L L L L
1e+06 10 100 1000 10000 100000

degrees of freedom

L L L L
100 1000 10000 100000
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Figure 2: [[u — up|lw1s(q) (left) and |u — u,|q (right).
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DOF  |ju — up|1,3 a  |u—uplg a Ityewton  T(S)
21  0.1711499 —  0.1293512 — 22 0.224

65 0.1308635 -0.238 0.0860870 -0.360 22 0.424
225 0.1039326 -0.186 0.0612225 -0.274 23 1.668
833 0.0826578 -0.175 0.0438478 -0.255 23 6.804
3201 0.0657091 -0.170 0.0314280 -0.247 23 27.28
12545 0.0522196 -0.168 0.0225589 -0.243 24 120.8
49665 0.0414910 -0.167 0.0162319 -0.239 24 560.1
197633 0.0329617 -0.167 0.0117169 -0.236 24 2678.

Table 2: Errors, convergence rates (Example 2, uniform mesh with rectan-

gles)
DOF  |lu —uplliz  «a |u—uplg o N ou/n  Og/nItNew T(s)
21 0.1945908 — 0.1510064 — 1.027 0.190 0.147 22 0.620
65 0.1535874 -0.209 0.1081632 -0.295 0.690 0.223 0.157 22 2.212
225 0.1219287 -0.186 0.0774765 -0.269 0.516 0.236 0.150 22 8.617
833 0.0969249 -0.175 0.0555005 -0.255 0.394 0.246 0.141 23 36.00
3201 0.0770270 -0.171 0.0396882 -0.249 0.304 0.253 0.131 23 144.2
12545 0.0611994 -0.168 0.0283778 -0.246 0.236 0.260 0.120 24 608.7
49665 0.0486160 -0.167 0.0203130 -0.243 0.184 0.265 0.111 24 2530.
197633 0.0386151 -0.167 0.0145686 -0.241 0.144 0.269 0.102 24 11000

Table 3: Errors, onvergence rates, estimator 7,
(Example 2, uniform mesh with triangles)
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DOF  ||u—upll13 a |u—uplg o N Ou/n Og/nItNew T()
21 0.1945908 — 0.1510064 — 1.027 0.190 0.147 22 0.196
32 0.1602214 -0.461 0.1205155 -0.535 0.804 0.199 0.150 22 0.332
54 0.1275298 -0.436 0.0918131 -0.520 0.603 0.212 0.152 22 0.648
93 0.1019990 -0.411 0.0699054 -0.501 0.442 0.231 0.158 22 1.132
152 0.0821754 -0.440 0.0540462 -0.524 0.325 0.253 0.166 23 2.000
249 0.0679251 -0.386 0.0449420 -0.374 0.246 0.276 0.183 23 3.352
400 0.0558447 -0.413 0.0369614 -0.412 0.190 0.294 0.194 23 5.700
625 0.0439784 -0.535 0.0277857 -0.639 0.148 0.297 0.188 24 9.896
986 0.0352491 -0.485 0.0217361 -0.539 0.116 0.305 0.188 24 17.45

1528 0.0279287 -0.531 0.0167409 -0.596 0.091 0.308 0.184 25 31.16

2322 0.0222760 -0.540 0.0129489 -0.614 0.071 0.312 0.181 25 53.98

3620 0.0177640 -0.510 0.0102552 -0.525 0.056 0.316 0.182 25 106.7

5544  0.0142059 -0.524 0.0080233 -0.576 0.044 0.320 0.181 25 205.3

8449 0.0112965 -0.544 0.0063426 -0.558 0.035 0.322 0.181 26 422.4

12810 0.0090396 -0.536 0.0050706 -0.538 0.028 0.325 0.183 26 1060.

19222 0.0072288 -0.551 0.0040370 -0.562 0.022 0.329 0.184 26 2400.

29006 0.0057984 -0.536 0.0032478 -0.529 0.018 0.333 0.186 27 5460.

43593 0.0046615 -0.536 0.0026230 -0.524 0.014 0.337 0.190 27 13000

Table 4: p-Laplacian (adaptive), convergence rates, estimator 7, reliability

du/m and 04/
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Figure 3: The first 12 meshes generated by the adaptive refinement algo-
rithm
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