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Inexact Newton regularization methods in Hilbert

scales

Qinian Jin · Ulrich Tautenhahn

Abstract We consider a class of inexact Newton regularization methods for solving
nonlinear inverse problems in Hilbert scales. Under certain conditions we obtain the
order optimal convergence rate result.

1 Introduction

In this paper we consider the nonlinear inverse problems

F (x) = y, (1.1)

where F : D(F ) ⊂ X 7→ Y is a nonlinear Fréchet differentiable operator between
two Hilbert spaces X and Y whose norms and inner products are denoted as ‖ · ‖
and (·, ·) respectively. We assume that (1.1) has a solution x† in the domain D(F ) of
F , i.e. F (x†) = y. We use F ′(x) to denote the Fréchet derivative of F at x ∈ D(F )
and F ′(x)∗ the adjoint of F ′(x). A characteristic property of such problems is their
ill-posedness in the sense that their solutions do not depend continuously on the data.
Let yδ be the only available approximation of y satisfying

‖yδ − y‖ ≤ δ (1.2)

with a given small noise level δ > 0. Due to the ill-posedness, the regularization
techniques should be employed to produce from yδ a stable approximate solution of
(1.1).

Many regularization methods have been considered in the last two decades. In
particular, the nonlinear Landweber iteration [6], the Levenberg-Marquardt method
[4,9], and the exponential Euler iteration [7] have been applied to solve nonlinear
inverse problems. These methods take the form

xn+1 = xn − gαn
(F ′(xn)

∗F ′(xn))F
′(xn)

∗
(

F (xn)− yδ
)

, (1.3)
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where x0 is an initial guess of x†, {αn} is a sequence of positive numbers, and {gα}
is a family of spectral filter functions. The scheme (1.3) can be derived by applying
the linear regularization method defined by {gα} to the equation

F ′(xn)(x− xn) = yδ − F (xn). (1.4)

which follows from (1.1) by replacing y by yδ and F (x) by its linearization F (xn) +
F ′(xn)(x − xn) at xn. It is easy to see that

F (xn)− yδ + F ′(xn)(xn+1 − xn) = rαn
(F ′(xn)F

′(xn)
∗)(F (xn)− yδ),

where
rα(λ) = 1− λgα(λ) (1.5)

which is called the residual function associated with gα. For well-posed problems
where F ′(xn) is invertible, usually one has ‖rαn

(F ′(xn)F
′(xn)

∗)‖ ≤ µn < 1 and
consequently

‖F (xn)− yδ + F ′(xn)(xn+1 − xn)‖ ≤ µn‖F (xn)− yδ‖. (1.6)

Thus the methods belong to the class of inexact Newton methods [2]. For ill-posed
problems, however, there only holds ‖rαn

(F ′(xn)F
′(xn)

∗)‖ ≤ 1 in general. In [4] the
Levenberg-Marquardt scheme was considered with {αn} chosen adaptively so that
(1.6) holds and the discrepancy principle was used to terminate the iteration. The
order optimal convergence rates were derived recently in [5]. The general methods
(1.3) with {αn} chosen adaptively to satisfy (1.6) were considered later in [14,11], but
only suboptimal convergence rates were derived in [15] and the convergence analysis
is far from complete. On the other hand, one may consider the method (1.3) with
{αn} given a priori. This has been done for the Levenberg-Marquardt method in [9]
and the exponential Euler method in [7] for instance.

In this paper we will consider the inexact Newton methods in Hilbert scales which
are more general than (1.3). Let L be a densely defined self-adjoint strictly positive
linear operator in X . For each r ∈ R, we define Xr to be the completion of ∩∞

k=0D(Lk)
with respect to the Hilbert space norm

‖x‖r := ‖Lrx‖.

This family of Hilbert spaces (Xr)r∈R is called the Hilbert scales generated by L. Let
x0 ∈ D(F ) be an initial guess of x†. The inexact Newton method in Hilbert scales
defines the iterates {xn} by

xn+1 = xn − gαn

(

L−2sF ′(xn)
∗F ′(xn)

)

L−2sF ′(xn)
∗(F (xn)− yδ), (1.7)

where s ∈ R is a given number to be specified later, and {αn} is an a priori given
sequence of positive numbers with suitable properties. We will terminate the iteration
by the discrepancy principle

‖F (xnδ
)− yδ‖ ≤ τδ < ‖F (xn)− yδ‖, 0 ≤ n < nδ (1.8)

with a given number τ > 1 and consider the approximation property of xnδ
to x† as

δ → 0. We will establish for a large class of spectral filter functions {gα} the order
optimal convergence rates for the method defined by (1.7) and (1.8).

Regularization in Hilbert scales has been introduced in [12] for the linear Tikhonov
regularization with the major aim to prevent the saturation effect. Such technique has
been extended in various ways, in particular, a general class of regularization meth-
ods in Hilbert scales has been considered in [16] with the regularization parameter
chosen by the Morozov’s discrepancy principle. Regularization in Hilbert scales have
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also been applied for solving nonlinear ill-posed problems. The nonlinear Tikhonov
regularization in Hilbert scales has been considered in [10,3], a general continuous
regularization scheme for nonlinear problems in Hilbert scales has been considered in
[17], the general iteratively regularized Gauss-Newton methods in Hilbert scales has
been considered in [8], and the nonlinear Landweber iteration in Hilbert scales has
been considered in [13].

This paper is organized as follows. In Section 2 we first briefly review the relevant
properties of Hilbert scales, and then formulate the necessary condition on {αn},
{gα} and F together with some crucial consequences. In Section 3 we obtain the
main result concerning the order optimal convergence property of the method given
by (1.7) and (1.8). Finally we present in Section 4 several examples of the method
(1.7) for which {gα} satisfies the technical conditions in Section 2.

2 Assumptions

We first briefly review the relevant properties of the Hilbert scales (Xr)r∈R generated
by a densely defined self-adjoint strictly positive linear operator L in X , see [3].
It is well known that Xr is densely and continuously embedded into Xq for any
−∞ < q < r < ∞, i.e.

‖x‖q ≤ θr−q‖x‖r, x ∈ Xr, (2.1)

where θ > 0 is a constant such that

‖x‖2 ≤ θ(Lx, x), x ∈ D(L). (2.2)

Moreover there holds the important interpolation inequality, i.e. for any −∞ < p <
q < r < ∞ there holds for any x ∈ Xr that

‖x‖q ≤ ‖x‖
r−q
r−p
p ‖x‖

q−p
r−p
r . (2.3)

Let T : X 7→ Y be a bounded linear operator satisfying

m‖h‖−a ≤ ‖Th‖ ≤ M‖h‖−a, h ∈ X

for some constants M ≥ m > 0 and a ≥ 0. Then the operator A := TL−s : X 7→ Y is
bounded for s ≥ −a and the adjoint of A is given by A∗ = L−sT ∗, where T ∗ : Y 7→ X
is the adjoint of T . Moreover, for any |ν| ≤ 1 there hold

R((A∗A)ν/2) = Xν(a+s) (2.4)

and
c(ν)‖h‖−ν(a+s) ≤ ‖(A∗A)ν/2h‖ ≤ c(ν)‖h‖−ν(a+s) (2.5)

on D((A∗A)ν/2), where

c(ν) := min{mν ,Mν} and c(ν) = max{mν ,Mν}.

If g : [0, ‖A‖2] 7→ R is a continuous function, then

g(A∗A)Ls = Lsg(L−2sT ∗T ). (2.6)

In order to carry out the convergence analysis on the method defined by (1.7) and
(1.8), we need to impose suitable conditions on {αn}, {gα} and F . For the sequence
{αn} of positive numbers, we set

s−1 = 0, sn :=

n
∑

j=0

1

αj
, n = 0, 1, · · · . (2.7)
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We will assume that there are constants c0 > 1 and c1 > 0 such that

lim
n→∞

sn = ∞, sn+1 ≤ c0sn and 0 < αn ≤ c1, n = 0, 1, · · · . (2.8)

We will also assume that, for each α > 0, the function gα is defined on [0, 1] and
satisfies the following structure condition, where C denotes the complex plane.

Assumption 1 For each α > 0, the function

ϕα(λ) := gα(λ) −
1

α+ λ

extends to a complex analytic function defined on a domain Dα ⊂ C such that [0, 1] ⊂
Dα, and there is a contour Γα ⊂ Dα enclosing [0, 1] such that

|z| ≥ 1

2
α and

|z|+ λ

|z − λ| ≤ b0, ∀z ∈ Γα, α > 0 and λ ∈ [0, 1], (2.9)

where b0 is a constant independent of α > 0. Moreover, there is a constant b1 such
that

∫

Γα

|ϕα(z)| |dz| ≤ b1 (2.10)

for all 0 < α ≤ c1.

By using the spectral integrals for self-adjoint operators, it follows easily from
(2.9) in Assumption 1 that for any bounded linear operator A with ‖A‖ ≤ 1 there
holds

‖(zI −A∗A)−1(A∗A)ν‖ ≤ b0
|z|1−ν

(2.11)

for z ∈ Γα and 0 ≤ ν ≤ 1.
Moreover, since Assumption 1 implies ϕα(z) is analytic in Dα for each α > 0,

there holds the Riesz-Dunford formula (see [1])

ϕα(A
∗A) =

1

2πi

∫

Γα

ϕα(z)(zI −A∗A)−1dz

for any linear operator A satisfying ‖A‖ ≤ 1.

Assumption 2 Let {αn} be a sequence of positive numbers, let {sn} be defined by
(2.7). There is a constant b2 > 0 such that

0 ≤ λν
n
∏

k=j

rαk
(λ) ≤ (sn − sj−1)

−ν , (2.12)

0 ≤ λνgαj
(λ)

n
∏

k=j+1

rαk
(λ) ≤ b2

1

αj
(sn − sj−1)

−ν (2.13)

for 0 ≤ ν ≤ 1, 0 ≤ λ ≤ 1 and j = 0, 1, · · · , n, where rα(λ) is defined by (1.5).

In Section 4 we will give several important examples of {gα} satisfying Assump-
tions 1 and 2. These examples of {gα} include the ones arising from (iterated)
Tikhonov regularization, asymptotical regularization, Landweber iteration and Lardy
method.

Lemma 1 The inequality (2.12) implies for 0 ≤ ν ≤ 1 and α > 0 that

0 ≤ λν(α+ λ)−1
n
∏

k=j+1

rαk
(λ) ≤ 2αν−1 (1 + α(sn − sj))

−ν
(2.14)

for all 0 ≤ λ ≤ 1 and j = 0, 1, · · · , n.
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Proof For 0 ≤ ν ≤ 1 and α > 0 it follows from (2.12) that

0 ≤ λν(α+ λ)−1
n
∏

k=j+1

rαk
(λ) ≤ min

{

αν−1, α−1(sn − sj)
−ν

}

= αν−1 min
{

1, α−ν(sn − sj)
−ν

}

≤ 2ναν−1 (1 + α(sn − sj))
−ν

for all 0 ≤ λ ≤ 1 and j = 0, 1, · · · , n. ✷

Assumption 3 (a) There exist constants a ≥ 0 and 0 < m ≤ M < ∞ such that

m‖h‖−a ≤ ‖F ′(x)h‖ ≤ M‖h‖−a, h ∈ X

for all x ∈ Bρ(x
†).

(b) F is properly scaled so that ‖F ′(x)L−s‖X→Y ≤ min{1,√α0} for all x ∈
Bρ(x

†), where s ≥ −a.
(c) There exist 0 < β ≤ 1, 0 ≤ b ≤ a and K0 ≥ 0 such that

‖F ′(x)∗ − F ′(x†)∗‖Y→Xb
≤ K0‖x− x†‖β (2.15)

for all x ∈ Bρ(x
†).

The number a in condition (a) can be interpreted as the degree of ill-posedness of
F ′(x) for x ∈ Bρ(x

†). When F satisfies the condition

F ′(x) = RxF
′(x†) and ‖I −Rx‖ ≤ K0‖x− x†‖, (2.16)

which has been verified in [6] for several nonlinear inverse problems, condition (a) is
equivalent to

m‖h‖−a ≤ ‖F ′(x†)h‖ ≤ M‖h‖−a, h ∈ X

From (a) and (2.1) it follows for s ≥ −a that ‖F ′(x)L−s‖X→Y ≤ Mθa+s for all
x ∈ Bρ(x

†). Thus ‖F ′(x)L−s‖X→Y is uniformly bounded over Bρ(x
†). By multiplying

(1.1) by a sufficiently small number, we may assume that F is properly scaled so that
condition (b) is satisfied. Furthermore, condition (a) implies that F ′(x)∗ maps Y into
Xb for b ≤ a and ‖F ′(x)∗‖Y→Xb

≤ Mθa−b for all x ∈ Bρ(x
†). Condition (c) says

that F ′(x)∗ is locally Hölder continuous around x† with exponent 0 < β ≤ 1 when
considered as operators from Y to Xb. It is equivalent to

‖Lb[F ′(x)∗ − F ′(x†)∗]‖Y→X ≤ K0‖x− x†‖β , x ∈ Bρ(x
†)

or

‖[F ′(x) − F ′(x†)]Lb‖X→Y ≤ K0‖x− x†‖β, x ∈ Bρ(x
†).

Condition (c) was used first in [13] for the convergence analysis of Landweber iteration
in Hilbert scales. It is easy to see that when b = 0 and β = 1, this is exactly the
Lipschitz condition on F ′(x). When F satisfies (2.16), (c) holds with b = a and β = 1.
In [13] it has been shown that (c) implies

‖F (x)− y − F ′(x†)(x − x†)‖ ≤ K0‖x− x†‖β‖x− x†‖−b (2.17)

which follows easily from the identity

F (x)− y − F ′(x†)(x− x†) =

∫ 1

0

[

F ′(x† + t(x− x†))− F ′(x†)
]

LbL−b(x− x†)dt.
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In this paper we will derive, under the above assumptions on {αn}, {gα} and
F , the rate of convergence of xnδ

to x† as δ → 0 when e0 := x0 − x† satisfies the
smoothness condition

x0 − x† ∈ Xµ with
a− b

β
< µ ≤ b+ 2s, (2.18)

where nδ is the integer determined by the discrepancy principle (1.8) with τ > 1.
The following consequence of the above assumptions on F and {gα} plays a crucial

role in the convergence analysis.

Lemma 2 Let {gα} satisfy Assumptions 1 and 2, let F satisfy Assumption 3, and let
{αn} be a sequence of positive numbers. Let A = F ′(x†)L−s and for any x ∈ Bρ(x

†)
let Ax = F ′(x)L−s. Then for − b+s

2(a+s) ≤ ν ≤ 1/2 there holds 1

∥

∥

∥

∥

∥

∥

(A∗A)ν
n
∏

k=j+1

rαk
(A∗A)

[

gαj
(A∗A)A∗ − gαj

(A∗
xAx)A

∗
x

]

∥

∥

∥

∥

∥

∥

.
1

αj
(sn − sj−1)

−ν− b+s
2(a+s)K0‖x− x†‖β

for j = 0, 1, · · · , n.

Proof Let ηα(λ) = (α+ λ)−1 and ϕα(λ) = gα(λ) − (α+ λ)−1. We can write

(A∗A)ν
n
∏

k=j+1

rαk
(A∗A)

[

gαj
(A∗A)A∗ − gαj

(A∗
xAx)A

∗
x

]

= J1 + J2 + J3,

where

J1 := (A∗A)ν
n
∏

k=j+1

rαk
(A∗A)gαj

(A∗A)[A∗ −A∗
x],

J2 := (A∗A)ν
n
∏

k=j+1

rαk
(A∗A)

[

ηαj
(A∗A)− ηαj

(A∗
xAx)

]

A∗
x,

J3 := (A∗A)ν
n
∏

k=j+1

rαk
(A∗A)

[

ϕαj
(A∗A)− ϕαj

(A∗
xAx)

]

A∗
x.

It suffices to show that the desired estimates hold for the norms of J1, J2 and J3.
From (2.5), (2.13) in Assumption 2 and Assumption 3 it follows that

‖J1‖ .

∥

∥

∥

∥

∥

∥

(A∗A)ν
n
∏

k=j+1

rαk
(A∗A)gαj

(A∗A)(A∗A)
b+s

2(a+s)

∥

∥

∥

∥

∥

∥

×
∥

∥

∥(A∗A)−
b+s

2(a+s) [A∗
x −A∗]

∥

∥

∥

. sup
0≤λ≤1



λν+ b+s
2(a+s) gαj

(λ)

n
∏

k=j+1

rαk
(λ)



 ‖Lb[F ′(x)∗ − F ′(x†)∗]‖Y→X

.
1

αj
(sn − sj−1)

−ν− b+s
2(a+s)K0‖x− x†‖β

1 Throughout this paper we will always use C to denote a generic constant independent of δ and
n. We will also use the convention Φ . Ψ to mean that Φ ≤ CΨ for some generic constant C.
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which is the desired estimate.
In order to estimate ‖J2‖, we note that

ηαj
(A∗A)− ηαj

(A∗
xAx) = (αjI +A∗A)−1A∗(Ax −A)(αjI +A∗

xAx)
−1

+ (αjI +A∗A)−1(A∗
x −A∗)Ax(αjI +A∗

xAx)
−1.

Therefore J2 = J
(1)
2 + J

(2)
2 , where

J
(1)
2 = (A∗A)ν

n
∏

k=j+1

rαk
(A∗A)(αjI +A∗A)−1A∗(Ax − A)(αjI +A∗

xAx)
−1A∗

x,

J
(2)
2 = (A∗A)ν

n
∏

k=j+1

rαk
(A∗A)(αjI +A∗A)−1(A∗

x −A∗)AxA
∗
x(αjI +AxA

∗
x)

−1.

With the help of Assumption 3 and (2.5) we have for any w ∈ Y that

‖(Ax −A)(αjI +A∗
xAx)

−1A∗
xw‖

= ‖[F ′(x) − F ′(x†)]LbL−(b+s)(αjI +A∗
xAx)

−1A∗
xw‖

≤ K0‖x− x†‖β‖(αjI +A∗
xAx)

−1A∗
xw‖−(b+s)

. K0‖x− x†‖β‖(A∗
xAx)

b+s
2(a+s) (αjI +A∗

xAx)
−1A∗

xw‖

. K0‖x− x†‖βα− 1
2+

b+s
2(a+s)

j ‖w‖.

This implies

‖(Ax −A)(αjI +A∗
xAx)

−1A∗
x‖ . K0‖x− x†‖βα− 1

2+
b+s

2(a+s)

j . (2.19)

Thus, by using Lemma 1, we derive

‖J (1)
2 ‖ ≤ sup

0≤λ≤1



λν+ 1
2 (αj + λ)−1

n
∏

k=j+1

rαk
(λ)



 ‖(Ax −A)(αjI +A∗
xAx)

−1A∗
x‖

. α
ν−1+ b+s

2(a+s)

j (1 + αj(sn − sj))
−ν− 1

2 K0‖x− x†‖β.

By using Assumption 3, Lemma 1 and a similar argument in estimating J1 we can
derive

‖J (2)
2 ‖ . sup

0≤λ≤1



λν+ b+s
2(a+s) (αj + λ)−1

n
∏

k=j+1

rαk
(λ)



 ‖Lb[F ′(x)∗ − F ′(x†)∗]‖Y→X

. α
ν−1+ b+s

2(a+s)

j (1 + αj(sn − sj))
−ν− b+s

2(a+s) K0‖x− x†‖β.

Combining the above estimates on J
(1)
2 and J

(2)
2 and noting b+s

2(a+s) ≤ 1
2 , it follows

that

‖J2‖ . α
ν−1+ b+s

2(a+s)

j (1 + αj(sn − sj))
−ν− b+s

2(a+s) K0‖x− x†‖β

=
1

αj
(sn − sj−1)

−ν− b+s
2(a+s) K0‖x− x†‖β.

It remains to estimate J3. Since Assumption 1 implies that ϕαj
(z) is analytic in

Dαj
, we have from the Riesz-Dunford formula that

J3 =
1

2πi

∫

Γαj

ϕαj
(z)Tj(z)dz, (2.20)
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where

Tj(z) := (A∗A)ν
n
∏

k=j+1

rαk
(A∗A)

[

(zI −A∗A)−1 − (zI −A∗
xAx)

−1
]

A∗
x.

We can write Tj(z) = T
(1)
j (z) + T

(2)
j (z), where

T
(1)
j (z) := (A∗A)ν

n
∏

k=j+1

rαk
(A∗A)(zI −A∗A)−1A∗(A−Ax)(zI −A∗

xAx)
−1A∗

x,

T
(2)
j (z) := (A∗A)ν

n
∏

k=j+1

rαk
(A∗A)(zI −A∗A)−1(A∗ −A∗

x)AxA
∗
x(zI −AxA

∗
x)

−1.

We will estimate the norms of T
(1)
j (z) and T

(2)
j (z) for z ∈ Γαj

. With the help of
Assumption 3, (2.5) and (2.11), similar to the derivation of (2.19) we have

‖(A−Ax)(zI −A∗
xAx)

−1A∗
x‖ . K0‖x− x†‖β |z|− 1

2+
b+s

2(a+s) .

Since |z| ≥ αj/2 and |z − λ|−1 ≤ b0(|z| + λ)−1 for z ∈ Γαj
, we have from (2.14) in

Lemma 1 that

‖T (1)
j (z)‖ . K0‖x− x†‖β|z|− 1

2+
b+s

2(a+s) sup
0≤λ≤1



λν+ 1
2 |z − λ|−1

n
∏

k=j+1

rαk
(λ)





. K0‖x− x†‖β|z|− 1
2+

b+s
2(a+s) sup

0≤λ≤1



λν+ 1
2 (|z|+ λ)−1

n
∏

k=j+1

rαk
(λ)





. K0‖x− x†‖β|z|ν−1+ b+s
2(a+s) (1 + (sn − sj)|z|)−ν−1/2

. K0‖x− x†‖βαν−1+ b+s
2(a+s)

j (1 + (sn − sj)αj)
−ν−1/2

.

Next, by using (2.14) in Lemma 1, (2.5), Assumption 3(a) and (2.11), we have for
z ∈ Γαj

that

‖T (2)
j (z)‖ ≤

∥

∥

∥

∥

∥

∥

(A∗A)ν
n
∏

k=j+1

rαk
(A∗A)(zI −A∗A)−1(A∗A)

b+s
2(a+s)

∥

∥

∥

∥

∥

∥

×
∥

∥

∥(A∗A)−
b+s

2(a+s) (A∗ −A∗
x)AxA

∗
x(zI −AxA

∗
x)

−1
∥

∥

∥

. sup
0≤λ≤1



λν+ b+s
2(a+s) |z − λ|−1

n
∏

k=j+1

rαk
(λ)



 ‖Lb(F ′(x†)∗ − F ′(x)∗)‖

. K0‖x− x†‖β sup
0≤λ≤1



λν+ b+s
2(a+s) (|z|+ λ)−1

n
∏

k=j+1

rαk
(λ)





. K0‖x− x†‖β|z|ν−1+ b+s
2(a+s) (1 + (sn − sj)|z|)−ν− b+s

2(a+s)

. K0‖x− x†‖βαν−1+ b+s
2(a+s)

j (1 + (sn − sj)αj)
−ν− b+s

2(a+s) .

Combining the above estimates on T
(1)
j (z) and T

(2)
j (z) and noting b+s

2(a+s) ≤ 1
2 , it

follows for z ∈ Γαj
that

‖Tj(z)‖ . K0‖x− x†‖βαν−1+ b+s
2(a+s)

j (1 + (sn − sj)αj)
−ν− b+s

2(a+s)

=
1

αj
(sn − sj−1)

−ν− b+s
2(a+s)K0‖x− x†‖β
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Therefore, it follows from (2.20) and Assumption 1 that

‖J3‖ .
1

αj
(sn − sj−1)

−ν− b+s
2(a+s)K0‖x− x†‖β

∫

Γαj

|ϕαj
(z)||dz|

.
1

αj
(sn − sj−1)

−ν− b+s
2(a+s)K0‖x− x†‖β .

The proof is therefore complete. ✷

3 Convergence analysis

We begin with the following lemma.

Lemma 3 Let {αn} be a sequence of positive numbers satisfying αn ≤ c1, and let sn
be defined by (2.7). Let p ≥ 0 and q ≥ 0 be two numbers. Then we have

n
∑

j=0

1

αj
(sn − sj−1)

−ps−q
j ≤ C0s

1−p−q
n







1, max{p, q} < 1,
log(1 + sn), max{p, q} = 1,

s
max{p,q}−1
n , max{p, q} > 1,

where C0 is a constant depending only on c1, p and q.

Proof This result is essentially contained in [5, Lemma 4.3] and its proof. For com-
pleteness, we include here the proof with a simplified argument. We first rewrite

n
∑

j=0

1

αj
(sn − sj−1)

−ps−q
j = s1−p−q

n

n
∑

j=0

1

αjsn

(

1− sj−1

sn

)−p (
sj
sn

)−q

.

Observe that when 0 ≤ sj−1/sn ≤ 1/2 we have

(

1− sj−1

sn

)−p (
sj
sn

)−q

≤ 2p
(

sj
sn

)−q

while when sj−1/sn ≥ 1/2 we have

(

1− sj−1

sn

)−p (
sj
sn

)−q

≤ 2q
(

1− sj−1

sn

)−p

.

Consequently there holds with Cp,q = max{2p, 2q}
n
∑

j=0

1

αj
(sn − sj−1)

−ps−q
j

≤ Cp,qs
1−p−q
n





n
∑

j=0

1

αjsn

(

sj
sn

)−q

+

n
∑

j=0

1

αjsn

(

1− sj−1

sn

)−p


 . (3.1)

Note that sj − sj−1 = 1/αj, we have with h = 1
2α0sn

∫ 1

s0/sn−h

t−qdt =

n
∑

j=1

∫ sj/sn

sj−1/sn

t−qdt+

∫ s0/sn

s0/sn−h

t−qdt

≥
n
∑

j=1

(

sj
sn

)−q
sj − sj−1

sn
+

1

2α0sn

(

s0
sn

)−q

≥ 1

2

n
∑

j=0

1

αjsn

(

sj
sn

)−q

.
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Therefore

n
∑

j=0

1

αjsn

(

sj
sn

)−q

≤ 2

∫ 1

s0/sn−h

t−qdt ≤







2
1−q , q < 1,

2 log(2α0sn), q = 1,
2

q−1 (2α0sn)
q−1, q > 1.

(3.2)

By a similar argument we have with h = 1
2αnsn

n
∑

j=0

1

αjsn

(

1− sj−1

sn

)−p

≤ 2

∫

sn−1
sn

+h

0

(1− t)−pdt ≤







2
1−p , p < 1,

2 log(2αnsn), p = 1,
2

p−1 (2αnsn)
p−1, p > 1.

(3.3)

Combining (3.1), (3.2) and (3.3) and using the condition αn ≤ c1, we obtain the
desired inequalities. ✷

In order to derive the necessary estimates on xn − x†, we need some useful iden-
tities. For simplicity of presentation, we set

en := xn − x†, A := F ′(x†)L−s and An := F ′(xn)L
−s.

It follows from (1.7) and (2.6) that

en+1 = en − L−sgαn
(A∗

nAn)A
∗
n(F (xn)− yδ).

Let

un := F (xn)− y − F ′(x†)(xn − x†).

Then we can write

en+1 = en − L−sgαn
(A∗A)A∗(F (xn)− yδ)

− L−s [gαn
(A∗

nAn)A
∗
n − gαn

(A∗A)A∗] (F (xn)− yδ)

= L−srαn
(A∗A)Lsen − L−sgαn

(A∗A)A∗(y − yδ + un)

− L−s [gαn
(A∗

nAn)A
∗
n − gαn

(A∗A)A∗] (F (xn)− yδ). (3.4)

By telescoping (3.4) we can obtain

en+1 = L−s
n
∏

j=0

rαj
(A∗A)Lse0

− L−s
n
∑

j=0

n
∏

k=j+1

rαk
(A∗A)gαj

(A∗A)A∗(y − yδ + uj)

− L−s
n
∑

j=0

n
∏

k=j+1

rαk
(A∗A)

[

gαj
(A∗

jAj)A
∗
j − gαj

(A∗A)A∗
]

(F (xj)− yδ).

(3.5)

By multiplying (3.5) by T := F ′(x†) and noting that A = TL−s and

I −
n
∑

j=0

n
∏

k=j+1

rαk
(AA∗)gαj

(AA∗)AA∗ =
n
∏

j=0

rαj
(AA∗),
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we can obtain

Ten+1 − yδ + y

= A

n
∏

j=0

rαj
(A∗A)Lse0 +

n
∏

j=0

rαj
(AA∗)(y − yδ)

−
n
∑

j=0

n
∏

k=j+1

rαk
(AA∗)gαj

(AA∗)AA∗uj

−
n
∑

j=0

A
n
∏

k=j+1

rαk
(A∗A)

[

gαj
(A∗

jAj)A
∗
j − gαj

(A∗A)A∗
]

(F (xj)− yδ). (3.6)

Based on (3.5) and (3.6) we will derive the order optimal convergence rate of
xnδ

to x† when e0 := x0 − x† satisfies the smoothness condition (2.18). Under such
condition we have Lse0 ∈ Xµ−s and |µ−s

a+s | ≤ 1. Thus, with the help of Assumption
3(a), it follows from (2.4) and (2.5) that there exists ω ∈ X such that

Lse0 = (A∗A)
µ−s

2(a+s)ω and c2‖ω‖ ≤ ‖e0‖µ ≤ c3‖ω‖ (3.7)

for some generic constants c3 ≥ c2 > 0. We will first derive the crucial estimates on
‖en‖µ and ‖Ten‖. To this end, we introduce the integer ñδ satisfying

s
− a+µ

2(a+s)

ñδ
≤ (τ − 1)δ

2c0‖ω‖
< s

− a+µ
2(a+s)

n , 0 ≤ n < ñδ, (3.8)

where c0 > 1 is the constant appearing in (2.8). Such ñδ is well-defined since sn → ∞
as n → ∞.

Proposition 1 Let F satisfy Assumptions 3, let {gα} satisfy Assumptions 1 and 2,
and let {αn} be a sequence of positive numbers satisfying (2.8). If e0 ∈ Xµ for some
(a − b)/β < µ ≤ b + 2s and if K0‖ω‖β is suitably small, then there exists a generic
constant C∗ > 0 such that

‖en‖µ ≤ C∗‖ω‖ and ‖Ten‖ ≤ C∗s
− a+µ

2(a+s)
n ‖ω‖ (3.9)

and

‖Ten − yδ + y‖ ≤ (c0 + C∗K0‖ω‖β)s
− a+µ

2(a+s)
n ‖ω‖+ δ (3.10)

for all 0 ≤ n ≤ ñδ.

Proof We will show (3.9) by induction. By using (3.7) and ‖A‖ ≤ √
α0 we have

‖Te0‖ = ‖ALse0‖ = ‖(A∗A)1/2Lse0‖ = ‖(A∗A)
a+µ

2(a+s)ω‖ ≤ α
a+µ

2(a+s)

0 ‖ω‖.

This together with (3.7) shows (3.9) for n = 0 if C∗ ≥ max{1, c3}. Next we assume
that (3.9) holds for all 0 ≤ n ≤ l for some l < ñδ and we are going to show (3.9)
holds for n = l + 1.

With the help of (2.5) and (3.7) we can derive from (3.5) that

‖el+1‖µ

.

∥

∥

∥

∥

∥

∥

l
∏

j=0

rαj
(A∗A)ω

∥

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∥

l
∑

j=0

(AA∗)
a+2s−µ
2(a+s) gαj

(AA∗)
l

∏

k=j+1

rαk
(AA∗)(y − yδ + uj)

∥

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∥

l
∑

j=0

(A∗A)
s−µ

2(a+s)

l
∏

k=j+1

rαk
(A∗A)

[

gαj
(A∗

jAj)A
∗
j − gαj

(A∗A)A∗
]

(F (xj)− yδ)

∥

∥

∥

∥

∥

∥

.
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Since (a− b)/β < µ ≤ b+ 2s and 0 ≤ b ≤ a, we have

0 ≤ a+ 2s− µ

2(a+ s)
< 1 and − b+ s

2(a+ s)
≤ s− µ

2(a+ s)
<

1

2
.

Thus we may use Assumption 2 and Lemma 2 to conclude

‖el+1‖µ . ‖ω‖+
l

∑

j=0

1

αj
(sl − sj−1)

− a+2s−µ
2(a+s) (δ + ‖uj‖)

+

l
∑

j=0

1

αj
(sl − sj−1)

− b+2s−µ
2(a+s) K0‖ej‖β‖F (xj)− yδ‖. (3.11)

Moreover, by using (3.7), Assumption 2 and Lemma 2, we have from (3.6) that

‖Tel+1 − yδ + y‖ ≤ s
− a+µ

2(a+s)

l ‖ω‖+ δ + b2

l
∑

j=0

1

αj
(sl − sj−1)

−1‖uj‖

+ c4

l
∑

j=0

1

αj
(sl − sj−1)

− b+a+2s
2(a+s) K0‖ej‖β‖F (xj)− yδ‖, (3.12)

where c4 > 0 is a generic constant.
By using the interpolation inequality (2.3), Assumption 3(a) and the induction

hypotheses, it follows for all 0 ≤ j ≤ l that

‖ej‖ ≤ ‖ej‖
µ

a+µ

−a ‖ej‖
a

a+µ
µ . ‖Tej‖

µ
a+µ ‖ej‖

a
a+µ
µ . ‖ω‖s−

µ
2(a+s)

j . (3.13)

With the help of (2.17) and the interpolation inequality (2.3), we have

‖uj‖ ≤ K0‖ej‖β‖ej‖−b ≤ K0‖ej‖
b+µ+µβ

a+µ

−a ‖ej‖
a+aβ−b

a+µ
µ . (3.14)

We then obtain from Assumption 3(a) and the induction hypotheses that

‖uj‖ . K0‖Tej‖
b+µ+µβ

a+µ ‖ej‖
a+aβ−b

a+µ
µ . K0‖ω‖1+βs

− b+µ+µβ
2(a+s)

j . (3.15)

On the other hand, since (2.1) and the induction hypotheses implies

‖ej‖−a . ‖ej‖µ . ‖ω‖, 0 ≤ j ≤ l

and since µ > (a− b)/β, we have from (3.14) and Assumption 3(a) that

‖uj‖ . K0‖ej‖−a‖ej‖
b−a+µβ

a+µ

−a ‖ej‖
a+aβ−b

a+µ
µ . K0‖ω‖β‖Tej‖. (3.16)

Therefore, by using the fact

δ ≤ 2c0
τ − 1

‖ω‖s−
a+µ

2(a+s)

j , 0 ≤ j ≤ l (3.17)

and the induction hypotheses we have

‖F (xj)− yδ‖ ≤ δ + ‖Tej‖+ ‖uj‖ . ‖ω‖s−
a+µ

2(a+s)

j . (3.18)

In view of the estimates (3.13), (3.15), (3.18) and the inequality

l
∑

j=0

1

αj
(sl − sj−1)

− a+2s−µ
2(a+s) . s

a+µ
2(a+s)

l
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which follows from Lemma 3, we have from (3.11) and (3.12) that

‖el+1‖µ ≤ c5‖ω‖+ c5s
a+µ

2(a+s)

l δ

+ CK0‖ω‖1+β
l

∑

j=0

1

αj
(sl − sj−1)

− a+2s−µ
2(a+s) s

− b+µ+µβ
2(a+s)

j

+ CK0‖ω‖1+β
l

∑

j=0

1

αj
(sl − sj−1)

− b+2s−µ
2(a+s) s

− a+µ+µβ
2(a+s)

j

and

‖Tel+1 − yδ + y‖ ≤ ‖ω‖s−
a+µ

2(a+s)

l + δ

+ CK0‖ω‖1+β
l

∑

j=0

1

αj
(sl − sj−1)

−1s
− b+µ+µβ

2(a+s)

j

+ CK0‖ω‖1+β
l

∑

j=0

1

αj
(sl − sj−1)

− b+a+2s
2(a+s) s

− a+µ+µβ
2(a+s)

j ,

where c5 and C are two positive generic constants.
With the help of Lemma 3, µ > (a− b)/β, (3.17) and (2.8) we have

‖el+1‖µ ≤
(

c5 +
2

τ − 1
c0c5 + CK0‖ω‖β

)

‖ω‖,

and

‖Tel+1 − yδ + y‖ ≤ δ +
(

1 + CK0‖ω‖β
)

‖ω‖s−
a+µ

2(a+s)

l

≤ δ + c0
(

1 + CK0‖ω‖β
)

‖ω‖s−
a+µ

2(a+s)

l+1 . (3.19)

Consequently ‖el+1‖µ ≤ C∗‖ω‖ if C∗ ≥ 2c5 +
2

τ−1c0c5 and K0‖ω‖β is suitably small.
Moreover, from (3.19), (3.17) and (2.8) we also have

‖Tel+1‖ ≤ 2δ + c0
(

1 + CK0‖ω‖β
)

‖ω‖s−
a+µ

2(a+s)

l+1

≤
(

4c20
τ − 1

+ c0 + CK0‖ω‖β
)

‖ω‖s−
a+µ

2(a+s)

l+1

≤ C∗‖ω‖s
− a+µ

2(a+s)

l+1

if C∗ ≥ 2c0 +
4c20
τ−1 and K0‖ω‖β is suitably small. We therefore complete the proof of

(3.9). In the meanwhile, (3.19) gives the proof of (3.10). ✷

From Proposition 1 and its proof it follows that xn ∈ Bρ(x
†) for 0 ≤ n ≤ ñδ if

‖ω‖ is sufficiently small. Furthermore, from (3.15) and (3.16) we have

‖F (xn)− y − Ten‖ . K0‖ω‖1+βs
− b+µ+µβ

2(a+s)
n (3.20)

and
‖F (xn)− y − Ten‖ . K0‖ω‖β‖Ten‖ (3.21)

for 0 ≤ n ≤ ñδ.
In the following we will show that nδ ≤ ñδ for the integer nδ defined by (1.8) with

τ > 1. Consequently, the method given by (1.7) and (1.8) is well-defined.
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Lemma 4 Let all the conditions in Proposition 1 hold. Let τ > 1 be a given number.
If e0 ∈ Xµ for some (a − b)/β < µ ≤ b + 2s and if K0‖e0‖βµ is suitably small, then
the discrepancy principle (1.8) defines a finite integer nδ satisfying nδ ≤ ñδ.

Proof From Proposition 1, (3.20) and µ > (a− b)/β it follows for 0 ≤ n ≤ ñδ that

‖F (xn)− yδ‖ ≤ ‖F (xn)− y − Ten‖+ ‖Ten − yδ + y‖

≤ CK0‖ω‖1+βs
− b+µ+µβ

2(a+s)
n +

(

c0 + CK0‖ω‖β
)

s
− a+µ

2(a+s)
n ‖ω‖+ δ

≤
(

c0 + CK0‖ω‖β
)

s
− a+µ

2(a+s)
n ‖ω‖+ δ.

By setting n = ñδ in the above inequality and using the definition of ñδ we obtain

‖F (xñδ
)− yδ‖ ≤

(

1 +
τ − 1

2
+ CK0‖ω‖β

)

δ ≤ τδ

if K0‖ω‖β is suitably small. According to the definition of nδ we have nδ ≤ ñδ. ✷

Now we are ready to prove the main result concerning the order optimal conver-
gence rates for the method defined by (1.7) and (1.8) with τ > 1.

Theorem 1 Let F satisfy Assumptions 3, let {gα} satisfy Assumptions 1 and 2,
and let {αn} be a sequence of positive numbers satisfying (2.8). If e0 ∈ Xµ for some
(a− b)/β < µ ≤ b+2s and if K0‖e0‖βµ is suitably small, then for all r ∈ [−a, µ] there
holds

‖xnδ
− x†‖r ≤ C‖e0‖

a+r
a+µ
µ δ

µ−r
a+µ

for the integer nδ determined by the discrepancy principle (1.8) with τ > 1, where
C > 0 is a generic constant.

Proof It follows from (3.21) that if K0‖ω‖β is suitably small then

‖F (xn)− y − Ten‖ ≤ 1

2
‖Ten‖

which implies ‖Ten‖ ≤ 2‖F (xn)−y‖ for 0 ≤ n ≤ ñδ. Since Lemma 4 implies nδ ≤ ñδ,
it follows from Assumption 3(a) and the definition of nδ that

‖enδ
‖−a ≤ 1

m
‖Tenδ

‖ ≤ 2

m

(

‖F (xnδ
)− yδ‖+ δ

)

≤ 2(1 + τ)

m
δ.

But from Proposition 1 we have ‖enδ
‖µ ≤ C∗‖ω‖. The desired estimate then follows

from the interpolation inequality (2.3) and (3.7). ✷

Remark 1 If F satisfies (2.16) and {xn} is defined by (1.7) with s > −a/2, then the
order optimal convergence rate holds for x0 − x† ∈ Xµ with 0 < µ ≤ a+ 2s. On the
other hand, if F ′(x) satisfies the Lipschitz condition

‖F ′(x)− F ′(x†)‖ ≤ K0‖x− x†‖, x ∈ Bρ(x
†)

and {xn} is defined by (1.7) with s > a/2, then the order optimal convergence rate
holds for x0 − x† ∈ Xµ with a < µ ≤ 2s.
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4 Examples

In this section we will give several important examples of {gα} that satisfy Assump-
tions 1 and 2. Thus, Theorem 1 applies to the corresponding methods if F satisfies
Assumption 3 and {αn} satisfies (2.8). For all these examples, the functions gα are
analytic at least in the domain

Dα := {z ∈ C : z 6= −α,−1}.

Moreover, for each α > 0, we always take the closed contour Γα to be (see [1])

Γα = Γ (1)
α ∪ Γ (2)

α ∪ Γ (3)
α ∪ Γ (4)

α ,

with

Γ (1)
α := {z =

α

2
eiφ : φ0 ≤ φ ≤ 2π − φ0},

Γ (2)
α := {z = Reiφ : −φ0 ≤ φ ≤ φ0},

Γ (3)
α := {z = teiφ0 : α/2 ≤ t ≤ R},

Γ (4)
α := {z = te−iφ0 : α/2 ≤ t ≤ R},

where R > max{1, α} and 0 < φ0 < π/2 are fixed numbers. Clearly Γα ⊂ Dα and
[0, 1] lies inside Γα. It is straightforward to check that (2.9) is satisfied.

Example 1 We first consider for α > 0 the function gα given by

gα(λ) =
(α+ λ)N − αN

λ(α + λ)N

where N ≥ 1 is a fixed integer. This function arises from the iterated Tikhonov
regularization of order N for linear ill-posed problems. The corresponding method
(1.7) becomes

un,0 = xn,

un,l+1 = un,l −
(

αnL
2s + T ∗

nTn

)−1
T ∗
n

(

F (xn)− yδ − Tn(xn − un,l)
)

,

l = 0, · · · , N − 1,

xn+1 = un,N ,

where Tn := F ′(xn). When N = 1, this is the Levenberg-Marquardt method in
Hilbert scales. The corresponding residual function is rα(λ) = αN (α+λ)−N . In order
to verify Assumption 2, we recall the inequality (see [9, Lemma 3])

λ

n
∏

k=j

αk

αk + λ
≤ (sn − sj−1)

−1 for all λ ≥ 0.

Then for 0 ≤ ν ≤ 1 and λ ≥ 0 we have

λν
n
∏

k=j

rαk
(λ) ≤



λ

n
∏

k=j

αk

αk + λ





ν

≤ (sn − sj−1)
−ν
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and

λνgαj
(λ)

n
∏

k=j+1

rαk
(λ) =

(αj + λ)N − αN
j

αN
j λ1−ν

n
∏

k=j

(

αk

αk + λ

)N

=

N−1
∑

l=0

(

N
l

)

αl−N
j λN+ν−l−1

n
∏

k=j

(

αk

αk + λ

)N

≤
N−1
∑

l=0

(

N
l

)

αl−N
j



λ

n
∏

k=j

αk

αk + λ





N+ν−l−1

≤
N−1
∑

l=0

(

N
l

)

αl−N
j (sn − sj−1)

−N−ν+l+1

≤ CN
1

αj
(sn − sj−1)

−ν ,

where CN = 2N −1 and we used the fact α−1
j ≤ sn−sj−1. We therefore obtain (2.12)

and (2.13) in Assumption 2.
Next we will verify (2.10) in Assumption 1. Note that

ϕα(z) =
α(α+ z)N−1 − αN

z(α+ z)N
=

1

z(α+ z)N

N−2
∑

j=0

(

N − 1
j

)

αj+1zN−1−j.

It is easy to check |ϕα(z)| . α−1 on Γ
(1)
α and |ϕα(z)| . 1 on Γ

(2)
α . Moreover, on

Γ
(3)
α ∪ Γ

(4)
α there holds

|ϕα(z)| .
1

t(α+ t)N

N−2
∑

j=0

αj+1tN−1−j .

N−2
∑

j=0

αj+1t−2−j .

Therefore
∫

Γα

|ϕα(z)||dz| =
∫

Γ
(1)
α

|ϕα(z)||dz|+
∫

Γ
(2)
α

|ϕα(z)||dz|+
∫

Γ
(3)
α ∪Γ

(4)
α

|ϕα(z)||dz|

. α−1

∫ 2π−φ0

φ0

αdφ +

∫ φ0

−φ0

dφ+

N−2
∑

j=0

αj+1

∫ R

α/2

t−2−jdt

. 1.

Assumption 1 is therefore verified.

Example 2 We consider the method (1.7) with gα given by

gα(λ) =
1

λ

(

1− e−λ/α
)

which arises from the asymptotic regularization for linear ill-posed problems. In this
method, the iterative sequence {xn} is equivalently defined as xn+1 := x(1/αn), where
x(t) is the unique solution of the initial value problem

d

dt
x(t) = L−2sF ′(xn)

∗
(

yδ − F (xn) + F ′(xn)(xn − x(t))
)

, t > 0,

x(0) = xn.
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The corresponding residual function is rα(λ) = e−λ/α. We first verify Assumption 2.
It is easy to see

λν
n
∏

k=j

rαj
(λ) = λνe−λ(sn−sj−1) ≤ ννe−ν(sn − sj−1)

−ν ≤ (sn − sj−1)
−ν

for 0 ≤ ν ≤ 1 and λ ≥ 0. This shows (2.12). By using the elementary inequality
e−pλ − e−qλ ≤ (q − p)/q for 0 < p ≤ q and λ ≥ 0 and observing that 0 ≤ rα(λ) ≤ 1
and 0 ≤ gα(λ) ≤ 1/α, we have for 0 ≤ ν ≤ 1 and λ ≥ 0 that

λνgαj
(λ)

n
∏

k=j+1

rαk
(λ) ≤ 1

α1−ν
j



λgαj
(λ)

n
∏

k=j+1

rαk
(λ)





ν

=
1

α1−ν
j

(

e−(sn−sj)λ − e−(sn−sj−1)λ
)ν

≤ 1

αj
(sn − sj−1)

−ν

which gives (2.13).
In order to verify (2.10) in Assumption 1, we note that

ϕα(z) =
1− e−z/α

z
− 1

α+ z
=

α− (α+ z)e−z/α

z(α+ z)
.

It is easy to see that |ϕα(z)| . α−1 on Γ
(1)
α , |ϕα(z)| . 1 on Γ

(2)
α and

|ϕα(z)| .
α+ (α+ t)e−

t
α

cosφ0

t(α+ t)
. αt−2

on Γ
(3)
α ∪ Γ

(4)
α . Therefore

∫

Γα

|ϕα(z)||dz| . 1 +

∫ R

α/2

αt−2dt . 1.

Example 3 We consider for 0 < α ≤ 1 the function gα given by

gα(λ) =

[1/α]−1
∑

l=0

(1− λ)l =
1− (1− λ)[1/α]

λ

which arises from the linear Landweber iteration, where [1/α] denotes the largest
integer not greater than 1/α. The method (1.7) then becomes

un,0 = xn,

un,l+1 = un,l − L−2sT ∗
n

(

F (xn)− yδ − Tn(xn − un,l)
)

, 0 ≤ l ≤ [1/αn]− 1,

xn+1 = un,[1/αn],

where Tn := F ′(xn). When αn = 1 for all n, this method reduces to the Landweber
iteration in Hilbert scales proposed in [13]. The corresponding residual function is
rα(λ) = (1 − λ)[1/α]. We first verify Assumption 2 when the sequence {αn} is given
by αn = 1/kn for some integers kn ≥ 1. Then for 0 ≤ ν ≤ 1 and 0 ≤ λ ≤ 1 we have

λν
n
∏

k=j

rαk
(λ) = λν(1 − λ)sn−sj−1 ≤ νν(sn − sj−1)

−ν ≤ (sn − sj−1)
−ν .
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We thus obtain (2.12). Observing that 0 ≤ rαj
(λ) ≤ 1 and 0 ≤ gαj

(λ) ≤ 1/αj for
0 ≤ λ ≤ 1, we have

λνgαj
(λ)

n
∏

k=j+1

rαk
(λ) ≤ 1

α1−ν
j



λgαj
(λ)

n
∏

k=j+1

rαk
(λ)





ν

=
1

α1−ν
j

(

(1− λ)sn−sj − (1− λ)sn−sj−1
)ν

.

Thus, (2.13) follows from the elementary inequality tp − tq ≤ (q − p)/q for 0 < p ≤ q
and 0 ≤ t ≤ 1.

In order to verify (2.10) in Assumption 1, in the definition of Γα we pick R > 1
and 0 < φ0 < π/2 such that R < 2 cosφ0. Note that

ϕα(z) =
1− (1− z)[1/α]

z
− 1

α+ z
=

α− (α+ z)(1− z)[1/α]

z(α+ z)
.

By using the fact (1 + α)1/α ≤ e we can see

|ϕα(z)| . α−1(1 + α/2)1/α . α−1 on Γ (1)
α .

According to the choice of R and φ0, we have 1 +R2 − 2R cosφ0 < 1. Thus

|ϕα(z)| .
α+ (α+R)(1 +R2 − 2R cosφ0)

[1/α]/2

R(R+ α)
. 1 on Γ (2)

α .

Furthermore, on Γ
(3)
α ∪ Γ

(4)
α we have

|ϕα(z)| .
α+ (α+ t)(1 + t2 − 2t cosφ0)

1/(2α)

t(α+ t)
.

Therefore

∫

Γα

|ϕα(z)||dz| . 1 +

∫ R

α/2

α+ (α+ t)(1 + t2 − 2t cosφ0)
1/(2α)

t(α+ t)
dt

= 1 +

∫ R/α

1/2

1 + (1 + t)(1 + α2t2 − 2αt cosφ0)
1/(2α)

t(1 + t)
dt

. 1 +

∫ R/α

1/2

(1 + α2t2 − 2αt cosφ0)
1/(2α)dt.

Observe that for 1/2 ≤ t ≤ R/α there holds

(1 + α2t2 − 2αt cosφ0)
1/(2α) ≤ (1− µ0αt)

1/(2α) ≤ e−µ0t/2

with µ0 := 2 cosφ0 −R > 0. Thus

∫

Γα

|ϕα(z)||dz| . 1 +

∫ ∞

1/2

e−µ0t/2dt . 1.

Example 4 We consider for 0 < α ≤ 1 the function gα given by

gα(λ) =

[1/α]
∑

i=1

(1 + λ)−i =
1− (1 + λ)−[1/α]

λ
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which arises from the Lardy method for linear inverse problems. Then the method
(1.7) becomes

un,0 = xn,

un,l+1 = un,l − (L2s + T ∗
nTn)

−1T ∗
n

(

F (xn)− yδ − Tn(xn − un,l)
)

,

l = 0, · · · , [1/αn]− 1,

xn+1 = un,[1/αn],

where Tn = F ′(xn). The residual function is rα(λ) = (1+λ)−[1/α]. Assumption 1 and
Assumption 2 can be verified similarly as in Example 3 when the sequence {αn} is
given by αn = 1/kn for some integers kn ≥ 1.
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