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Inexact Newton regularization methods in Hilbert
scales

Qinian Jin - Ulrich Tautenhahn

Abstract We consider a class of inexact Newton regularization methods for solving
nonlinear inverse problems in Hilbert scales. Under certain conditions we obtain the
order optimal convergence rate result.

1 Introduction

In this paper we consider the nonlinear inverse problems

F(z) =y, (1.1)

where F' : D(F) C X — Y is a nonlinear Fréchet differentiable operator between
two Hilbert spaces X and Y whose norms and inner products are denoted as || - ||
and (-, ) respectively. We assume that (L)) has a solution z' in the domain D(F) of
F,ie. F(x") =y. We use F’(z) to denote the Fréchet derivative of F' at x € D(F)
and F'(x)* the adjoint of F/(x). A characteristic property of such problems is their
ill-posedness in the sense that their solutions do not depend continuously on the data.
Let 4° be the only available approximation of y satisfying

Iy’ —yll <6 (1.2)

with a given small noise level § > 0. Due to the ill-posedness, the regularization
techniques should be employed to produce from 3° a stable approximate solution of
D).

Many regularization methods have been considered in the last two decades. In
particular, the nonlinear Landweber iteration [6], the Levenberg-Marquardt method
[4.9], and the exponential Euler iteration [7] have been applied to solve nonlinear
inverse problems. These methods take the form

Tot1 = Tn — Ga, (F' (@) F'(20)) F'(@0)* (Flza) —y°), (1.3)
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where g is an initial guess of zf, {a,,} is a sequence of positive numbers, and {g,}
is a family of spectral filter functions. The scheme (3] can be derived by applying
the linear regularization method defined by {g.} to the equation

F'(xp)(x —20) = y° — F(x,). (1.4)

which follows from (L)) by replacing y by y° and F(x) by its linearization F(z,) +
F'(z,)(x — x) at z,. It is easy to see that

F(xn) — y6 + F’(:cn)(szrl —Tp) =Ta, (F/(zn)F/(zn)*)(F(zn) - y5)7

where

ra(A) =1 = Aga(}) (1.5)

which is called the residual function associated with g,. For well-posed problems
where F'(z,) is invertible, usually one has ||ro, (F'(zn)F'(2,)*)]| < pn < 1 and
consequently

1F(@n) = ° + F'(@n) (@n41 = 20)|| < gl F(20) = 3] (1.6)

Thus the methods belong to the class of inexact Newton methods [2]. For ill-posed
problems, however, there only holds ||7q,, (F'(z,)F'(z,)*)|| < 1 in general. In [4] the
Levenberg-Marquardt scheme was considered with {«,} chosen adaptively so that
(C8) holds and the discrepancy principle was used to terminate the iteration. The
order optimal convergence rates were derived recently in [5]. The general methods
([3) with {ay,} chosen adaptively to satisfy (L8] were considered later in [T4L[IT], but
only suboptimal convergence rates were derived in [I5] and the convergence analysis
is far from complete. On the other hand, one may consider the method (3] with
{a,} given a priori. This has been done for the Levenberg-Marquardt method in [9]
and the exponential Euler method in [7] for instance.

In this paper we will consider the inexact Newton methods in Hilbert scales which
are more general than (L3). Let L be a densely defined self-adjoint strictly positive
linear operator in X . For each r € R, we define X, to be the completion of N$°  D(LF)
with respect to the Hilbert space norm

]l = I L]

This family of Hilbert spaces (X, ),cr is called the Hilbert scales generated by L. Let
xo € D(F) be an initial guess of 2. The inexact Newton method in Hilbert scales
defines the iterates {z,} by

Tot1 = Tn — Ga, (L2F (@n) F'(20)) L72F (@0)" (F(za) —y°),  (L7)

where s € R is a given number to be specified later, and {a,,} is an a priori given
sequence of positive numbers with suitable properties. We will terminate the iteration
by the discrepancy principle

IF(@ns) =9 78 <||F(xa) =4°, 0<n<ns (1.8)

with a given number 7 > 1 and consider the approximation property of x,;, to z' as
d — 0. We will establish for a large class of spectral filter functions {g,} the order
optimal convergence rates for the method defined by (7)) and (LS).

Regularization in Hilbert scales has been introduced in [I2] for the linear Tikhonov
regularization with the major aim to prevent the saturation effect. Such technique has
been extended in various ways, in particular, a general class of regularization meth-
ods in Hilbert scales has been considered in [16] with the regularization parameter
chosen by the Morozov’s discrepancy principle. Regularization in Hilbert scales have



also been applied for solving nonlinear ill-posed problems. The nonlinear Tikhonov
regularization in Hilbert scales has been considered in [I0)3], a general continuous
regularization scheme for nonlinear problems in Hilbert scales has been considered in
[17], the general iteratively regularized Gauss-Newton methods in Hilbert scales has
been considered in [§], and the nonlinear Landweber iteration in Hilbert scales has
been considered in [I3].

This paper is organized as follows. In Section 2 we first briefly review the relevant
properties of Hilbert scales, and then formulate the necessary condition on {a,},
{ga} and F together with some crucial consequences. In Section 3 we obtain the
main result concerning the order optimal convergence property of the method given
by (7)) and (L8). Finally we present in Section 4 several examples of the method
(T for which {g.} satisfies the technical conditions in Section 2.

2 Assumptions

We first briefly review the relevant properties of the Hilbert scales (X, ),cr generated
by a densely defined self-adjoint strictly positive linear operator L in X, see [3].
It is well known that X, is densely and continuously embedded into X, for any
—00 < g<r<oo,ie.

lally < el,, @ € X, (2.1)

where 6 > 0 is a constant such that
|2]]* < 0(Lz, ), « € D(L). (2.2)

Moreover there holds the important interpolation inequality, i.e. for any —oco < p <
q < 1 < oo there holds for any x € X, that

Izl < llzllp ™ llllr . (2.3)
Let T: X — Y be a bounded linear operator satisfying
m|[h||—a < [|Th| < M|hl-a, heX

for some constants M > m > 0 and a > 0. Then the operator A:=TL %: X — Y is
bounded for s > —a and the adjoint of A is given by A* = L™°T*, where T* : Y — X
is the adjoint of T'. Moreover, for any |v| < 1 there hold

R((A*A)V/2) = XV(aJrs) (24)

and
cW) Rl -v(ats) < [(A*A) 2] <EW)IB]-v(ats) (2.5)

on D((A*A)*/?), where
c¢(v) :=min{m”, M*} and ¢(v)=max{m", M"}.
If g : [0,]A]|?] = R is a continuous function, then
g(A*A)LS = Lg(L™*T*T). (2.6)

In order to carry out the convergence analysis on the method defined by (7)) and
(L8), we need to impose suitable conditions on {a,}, {ga} and F. For the sequence
{an} of positive numbers, we set

s_1=0, sn::Z—_, n=20,1,---. (2.7)



We will assume that there are constants cg > 1 and ¢; > 0 such that

lim s, =00, $py1<cosp, and 0<a,<c, n=01,---. (2.8)
n— oo

We will also assume that, for each a > 0, the function g, is defined on [0, 1] and
satisfies the following structure condition, where C denotes the complex plane.

Assumption 1 For each a > 0, the function

a+ A

extends to a complex analytic function defined on a domain D, C C such that [0,1] C
D, and there is a contour I, C D, enclosing [0,1] such that

|z] + A
|z = Al

1
|z| > e and < by, Vz e Iy, a>0 and X €0,1], (2.9)
where by is a constant independent of a > 0. Moreover, there is a constant by such
that

/ la(2)]dz| < by (2.10)

Fa

for all 0 < a < ¢y.

By using the spectral integrals for self-adjoint operators, it follows easily from
239) in Assumption [ that for any bounded linear operator A with ||A|| < 1 there
holds b

(=1 — A A) 7 (A" A)"|| < —

forzel,and0<v<1.
Moreover, since Assumption [Il implies ¢, (z) is analytic in D, for each a > 0,
there holds the Riesz-Dunford formula (see [I])
1
w(ATA) = — o I—-A*A)"d
pa(A7A) m/mw(z)(z )l
for any linear operator A satisfying || A| < 1.

Assumption 2 Let {a,} be a sequence of positive numbers, let {s,} be defined by
(27). There is a constant by > 0 such that

n

0 <N ] ranN) < (s —s5-1)7, (2.12)
k=j
. 1
0<Nga,(N) [ ran) <ba—(sn—s;-1)7" (2.13)
k=j+1 @y

for0<v<1,0<A<1landj=0,1, -, n, where ro(\) is defined by (L.1).

In Section Ml we will give several important examples of {g,} satisfying Assump-
tions [l and @I These examples of {g,} include the ones arising from (iterated)
Tikhonov regularization, asymptotical regularization, Landweber iteration and Lardy
method.

Lemma 1 The inequality (212) implies for 0 <v <1 and o > 0 that

0< M@+ M) ] ran) €207 (14 afsn —55)) ™" (2.14)
k=j+1

forall0<AX<1andj=0,1,--- n.



Proof For 0 <v <1 and « > 0 it follows from (ZI2) that

0< N (a+N)"1 H Ta(A) <min{a” " a  (sp — ;) 7"}
k=j+1
= o’ ! min {1, a”"(sy — Sj)il/}

<2’ M1+ a(s, —s5)) 7"
foral0<A<1landj=0,1,---,n. O
Assumption 3 (a) There exist constants a > 0 and 0 < m < M < oo such that
mhll—a < |F"(@)h]| < M||h]|-a, heX

for all x € B,(a').

(b) F is properly scaled so that ||F'(x)L™%||x—y < min{l, /ag} for all x €
B,(z1), where s > —a.

(c) There exist 0 < 8 <1,0<b<a and Ky > 0 such that

1F" ()" = F'(a")* [y —x, < Kolle — 2" (2.15)
for all x € B,(a').

The number a in condition (a) can be interpreted as the degree of ill-posedness of
F'(z) for z € B,(x"). When F satisfies the condition

F'(z) = R F'(z") and || — R.|| < Ko|lz — x|, (2.16)

which has been verified in [0] for several nonlinear inverse problems, condition (a) is
equivalent to
mlhll—a < |F'(@Nhl < M|h]|—a, heX

From (a) and (21) it follows for s > —a that |F'(z)L™%||xoy < MO for all
x € B,(z"). Thus | F’'(z)L~*||x—y is uniformly bounded over B,(z'). By multiplying
(I by a sufficiently small number, we may assume that F is properly scaled so that
condition (b) is satisfied. Furthermore, condition (a) implies that F’(x)* maps Y into
Xy for b < a and ||F'(2)*|ly=x, < M@27° for all z € B,(z"). Condition (c) says
that F'(z)* is locally Holder continuous around z! with exponent 0 < 8 < 1 when
considered as operators from Y to Xj. It is equivalent to

IL*[F"(2)" = F'(a")]ly»x < Kollz —2¥|1”, 2 € By(a¥)

or
I[F' () = F' @D’ | x5y < Kollz — "7, = € By(ah).

Condition (c¢) was used first in [13] for the convergence analysis of Landweber iteration
in Hilbert scales. It is easy to see that when b = 0 and 8 = 1, this is exactly the
Lipschitz condition on F’(z). When F satisfies (216, (c) holds with b = a and 8 = 1.
In [I3] it has been shown that (c¢) implies

IF(2) =y — F'(z")(@ — 2" < Kollz —2"||”]la — 27| (2.17)

which follows easily from the identity

F(z) —y— F'(a")(z — ') = /01 [F’(xT +t(x —ah)) - F'(wT)] LPL%(x — zT)dt.



In this paper we will derive, under the above assumptions on {w,}, {g.} and
F, the rate of convergence of z,, to zf as § — 0 when ey := zg — z' satisfies the
smoothness condition

—b
wo— ! € X, with GT <pu<b+2s, (2.18)

where n; is the integer determined by the discrepancy principle (L8]) with 7 > 1.
The following consequence of the above assumptions on F' and {g.} plays a crucial
role in the convergence analysis.

Lemma 2 Let {g,} satisfy Assumptions[dl and[3, let F satisfy Assumption[d, and let
{an} be a sequence of positive numbers. Let A = F'(zV)L=% and for any x € B,(x")

let A, = F'(z)L=5. Then for _Q(ba-"fs) < v <1/2 there holds [l

(A*A)" T ron(A"A) [ga, (A" A)A* — go, (A5 A,) A
k=j+1

S

1 a1y S
(s = 5m0) T Kol —)?

Qj

forj=0,1,--- n.

Proof Let o (A\) = (a+X\)7! and pu(A) = go(A) — (@ + X)L, We can write

(A A ] ren(A"A) [ga, (A*A)A* = go, (ALA)AL] = Ty + Jo + Js,
k=j+1

where

Jyi=(A*A) ] rar(A7A)ga, (AT A)[A" — A7),
k=j+1

n

Ty o= (AAY [T 70, (A74) [0, (A 4) = o, (434,)] Az,

k=j+1

n
J

n

J3 = (A" A)Y H Tay (A" A) [a, (A" A) — o, (ALAL)] Al
k=j+1

It suffices to show that the desired estimates hold for the norms of .J;, Js and J3.
From (2.3]), ZI3) in Assumption 2] and Assumption B it follows that

* A\V . « N N bts
172 £ ([ (A4 TT 7o (A* A)ga, (A" 4)(A" 4) o5
k=j+1

x H(A*A)*%[A; — A%

n

4 _bts * %
< sup [ NFEE g (A [T ren ) ) ILP[F (@) = F/ (=) ][Iy~ x

0<A<1 k=it 1
1 _y—bEs
S —(sn = 850) ™ T Kolla — o
J

I Throughout this paper we will always use C' to denote a generic constant independent of § and
n. We will also use the convention @ < ¥ to mean that @ < C¥ for some generic constant C.



which is the desired estimate.
In order to estimate ||J2||, we note that

Ty (A" A) =10, (A3 Ay) = (g ] + A" A) T A (Ay — A)(ay] + A7 A,) ™
+ (o T+ A*A) AL — A Ay (a1 + AL A,
Therefore Jy = J2(1) + JQ(Q), where
JM = (4* A I 7o (A" A) (oI + A*A) T A% (A, — A)(a;] + AL A,) AT,
k=j+1

n

I = (A A ] ren (A A) (o] + A A) V(AL — A) A AL (o] + A, A%) 7

k=j+1
With the help of Assumption Bl and (ZI]) we have for any w € Y that
1(Az — A)(a; ] + A7 A) " Ajw|

= ||[F(z) — F'(a")]LP L=+ (a1 + AXA,) LAl w||
< Kollz — a|°|[ (s T + A Ag) ™" Ajw||— (b4s)
< Kollz — a')|° | (AzA )2““) (a;I + AL AL) T Asw|

+ a+s
< Kollz —2"|a; ® T ).

This implies

(A = AT + A3 A) T AL S Kollz — TP ey At ool (2.19)
Thus, by using Lemma [I we derive

ISV < sup [ Aoy + 070 T 7an V) | 1(Ae — AT + A5A,) AL
0=<A=1 k=j+1

V_1+% —v—1
Sa; T (L4 aj(se — 55)) 77 Kollo — 2)”.

~ %
By using Assumption B] Lemma [ and a similar argument in estimating J; we can

derive

py bEs _ - % %
1520 S sup | A2 (0 + N7 [ ren N | IEYF (1) = F'(a1) ]y o x
0<x<1 ;
k=j+1

14 bts _y—_bts
5 al/ PIcED) (1+aj(5n *Sj)) v 2(,:;35) K()”Z'*ZL'THﬂ

J

< 1 it follows

Combining the above estimates on J2(1) and J2(2) and noting 2(17;38) < 3

that

v—1+450t oy bts
Il S o " (L4 aj(sn — 55)) 7@ Kollz — T||”
1 oy _bts
= — (50— 85-1) T Kollz — 2T,
j
It remains to estimate .J3. Since Assumption [l implies that ¢, () is analytic in
D, we have from the Riesz-Dunford formula that

1
Js = 2 - Yo, (2)T}(2)dz, (2.20)
J



where
Tj(z) :== (A*A)” H Tap (A*A) [(2I — A*A)™' — (2] — AL A,) ] AL
k=j+1

We can write T;(z) = Tj(l)(z) + Tj(Q)(z), where

T(z2) i= (A*A) ] ran (A A) (2] — A A) LA (A — A,) (2] — ALA,) 1AL,
k=j+1
T9(z2) i= (A"A) ] ran (A A) (2] — A" A) (A" — A ALAL(2] — A AL) 7
k=j+1
We will estimate the norms of Tj(l)(z) and TJ§2)(z) for z € I'y;. With the help of
Assumption Bl 2.5 and ([ZI1]), similar to the derivation of ([Z.19) we have
I(A = Au)(2l — A3 A.) "L A3]| S Kol — 2 [P |2| 4+ 25

Since |z| > a;/2 and |z — N[~ < bo(|z| + A)~! for z € I, we have from (ZI4) in
Lemma [l that

n
b+s
ITO ()| S Kollr — 2181275755 sup [ X3z = A7 [T ran (V)
0<A<1 Pt
—jJrl
n

b+s
S Kollz — 2|15 7750 sup [ NF3( + 07 [T rar V)
0=A=l1 k=j+1

p—140Es =
S Kollz = (|27 (14 (s, = s5)]2)) 772
v— bts o
< Koo — 2oy TTRET (14 (50 — 85)a) V2.
Next, by using (2I4) in Lemma [ (Z3]), Assumption Bfa) and (ZII]), we have for
z € I'y; that
1T () < [[(A74) T ran(A*A) (el — AT A) 7} (A" A) 7
k=j+1

x ||y =5 (ar - A A, AT - Aua) |

< sup (AT AT ] v | IZY(F @) — F(2))
k=j+1

,S K0||$_$T||B sup A +2(a+s) |Z| +)\ H Tak
0<A<1 et

S Kollz = al [P 4355 (1 + (50 — s5)21) 265
14 bts
< Kol — o |1Pa) ™ T (14 (s, - 57)a) 7T

Combining the above estimates on Tj(l)(z) and T]@)(z) and noting 2(a+s) < it
follows for 2 € Iy, that

—1 bts s
IT5()I| S Kollw — a[[Pa 7 (1 4 (s, — s5)a;) "~ ore)

1 e
= (50— 85-1) T Kol — o
aj



Therefore, it follows from ([Z20) and Assumption [I] that

1 o, _bts
15l S —(sn = sj-1) Y 2“*”K()l\»’ﬂfﬂl\ﬂ/ |Pa, (2)]|dz]

j Faj
1 —v— st t8
< (50 — 8y-1) " T Kol — a1
Qj
The proof is therefore complete. O

3 Convergence analysis

We begin with the following lemma.

Lemma 3 Let {ay,} be a sequence of positive numbers satisfying o, < ¢1, and let sy,

be defined by (27). Let p > 0 and ¢ > 0 be two numbers. Then we have

n 1 1, max{p,q} <1,
Z — — Sj_l)_psj_q < 008711—1)—11 1Og(1 + Sn)v max{p, Q} =1,
= O‘J sn P max{p, ¢} > 1,

where Cy is a constant depending only on c1, p and q.

Proof This result is essentially contained in [5, Lemma 4.3] and its proof. For com-
pleteness, we include here the proof with a simplified argument. We first rewrite

n -p —q
1 1 S, S,
(e —g. ) PeTd _ l-p—q _ 2t 23
(sn —sj-1)""s; =3, E 1 .
o 05y Sn Sn

Jj=0 Jj=0

n

Observe that when 0 < s;_1/s, <1/2 we have
o) () e ()
Sn Sn - Sn
while when s;_1/s, > 1/2 we have
AT AR
Sn Sn o Sn

Consequently there holds with C), ; = max{2P, 27}

n
1
—p.—q
§ —($p — 8j_1)"Ps;
o J J

Jj=0 ]

n

< Cpasi P | Y Lo() "y i Lo(1osm) (3.1)
5 = -2 ) )
- TPhatn QjSn \ Sn — sy, Sn,

Jj=0

Note that s; — s;—1 = 1/, we have with h =

20405

1 5j/Sn S0/Sn
/ t9dt = Z/ t*thJr/ t~9dt
s0/sn—h Sj—1/Sn so/sn—h

n —q —q
S S5 8; — 851 n 1 S0
T 4 Sn Sn, 2008, \ Sp,
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Therefore
2
n 1 5. —q 1 1—q’ q< 17
> (—J) < 2/ t9dt < { 2log(2008y), g=1, (3.2)
j=0 Qi%n \n so/sn—h 27 (2008,)7 ", g > 1.

1

By a similar argument we have with h = Ta s

2 p<1’

n 1 Si1 -p Sznl-i-h T—p°
> = <1 - ) < 2/ (1—)Pdt < { 2log(2ans,),  p=1,
i—o i Sn 0 %1(204,,3,1)1)_1, p> 1.

(3.3)

Combining B1), (32) and [B3)) and using the condition a,, < c¢;, we obtain the
desired inequalities. |

In order to derive the necessary estimates on z, — zf, we need some useful iden-
tities. For simplicity of presentation, we set

eni=x, —axt, A:=F(2")L™* and A, :=F'(z,)L"".
It follows from (7)) and (Z6]) that
ent1 =€n — L °gq, (A;An) A;(F(xn) - 96)-

Let
Uy = F(z,) —y — F'(z")(z, — ).
Then we can write
€nt+1 = €n — Lisgan (A*A)A* (F(ZL' ) - yzi)
— L7 [9a, (A7, An) A}, — Ga, (ATA)A™] (F (2 )*y‘s)
=L 1o, (A" A) Ly, — L™°ga, (A" A)A* (y — y° + un)
— L7 [ga, (Af An) AL = g, (AT A)A™] (F(z2) — 9°). (3.4)

By telescoping (4] we can obtain

entl = L= H Taj (A*A)L‘Seo

j=0
S T A A
Jj=0 k=j+1
— L~ ‘SZ H Tak A A ga](A A; )A ga](A*A)A*} (F(.’L']) —yé).
J=0 k=j+1

(3.5)

By multiplying (&5) by T := F’(2) and noting that A = TL~* and

I— Z H Top (AA)ga, (AAT)AA* = Hra] (AA¥),
7=0 k=j+1
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we can obtain

Tent1 —y° +y

= A ro, (A A) Lo + [ [ 7, (AA™)(y — %)

Jj=0 Jj=0

S]] ren(AA%)ga, (AA)AA Y,
J=0k=j+1

—ZA H Ty (A" A) [ga, (AT A AT — go, (A" A)A*] (F(z;) —¢°).  (3.6)
j=0  k=j+1

Based on (1) and (3.6) we will derive the order optimal convergence rate of
Tn, to o7 when eg := ¢ — 21 satisfies the smoothness condition (ZI8). Under such
condition we have L°e¢y € X,,_, and |/;+;§| < 1. Thus, with the help of Assumption
Bla), it follows from ([24) and (23] that there exists w € X such that

LPeg = (A*A)MF9w and  clwl]| < [leoll, < esllwl] (3.7)

for some generic constants cg > co > 0. We will first derive the crucial estimates on
llen||. and ||Te,||. To this end, we introduce the integer 7s satisfying

_ _atp (7— _ 1)5 _ _atp
2(a+s) 2(a+ts) ~
fis =~ m Sn 5 0 S n<ns, (38)

where ¢g > 1 is the constant appearing in (Z8]). Such 75 is well-defined since s, — oo

as n — o0.

Proposition 1 Let F satisfy Assumptions[3, let {go} satisfy Assumptions[dl and[Z,
and let {oan,} be a sequence of positive numbers satisfying (2.8). If eg € X, for some
(a—1b)/B < p<b+2s and if Ko|wl||® is suitably small, then there exists a generic
constant Cy, > 0 such that

__atu
lenlly < Cullwll and || Ten|| < Cusn ™" |lw]| (3.9)

and

__atp
ITen —y° +yll < (co + CuKollw]|?)sn T Jw| + 6 (3.10)
for all0 < n <ns.

Proof We will show ([89) by induction. By using (8.7) and ||A|| < /oo we have

atp

|Teoll = | AL eo | = [[(A* )2 Leo]| = [|(A* A) ¥ w]| < o™ |l

This together with (B7) shows [B.9) for n = 0 if Ci > max{1,c3}. Next we assume
that (39) holds for all 0 < n < [ for some | < fis and we are going to show (B3]
holds for n =1+ 1.

With the help of (Z5) and 1) we can derive from ([B.3]) that

lerrallu
l l l
ST o, (A" Al + > (A47) Fate) go, (AAY) I 7o (A4 —° +uy)
j=0 j=0 k=j+1

l

IS AT T (A7) [g, (AT A A — g (4 A A (BLay) — )
=0 k=j+1
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Since (@ —b)/f < p <b+2sand 0 <b < a, we have

2s — b — 1
<P M g g -2 o SR
2(a+ s) 2(a+s) = 2(a+s) 2

Thus we may use Assumption [21and Lemma [2] to conclude

l
1 at2s—p
lewrille S oll + D7 (s = 85-1) " %55 (6 + ffuy )
=0 J

l
1 _b+2sfu
+ 30— (51— 551) 7 7 Kolles PP () — %) (3.11)
j=0 &

Moreover, by using (3.7), Assumption Pl and Lemma 2] we have from (B.6]) that

l

1
§+b0 > —(s1—sj-1) Hluy
oll #8403 51— o)

__atp
[Terr —y° +yll <5 77

_ bta+t2s
+C4Z (51— 55-1) " 20 Kolles |21 F(wy) =97, (3.12)

where ¢4 > 0 is a generic constant.
By using the interpolation inequality (Z3]), Assumption Bla) and the induction
hypotheses, it follows for all 0 < j <[ that

w a u a __u
lesll < llesllze lles 1™ S ITesll = lesll it < lwlls; ™. (3.13)

With the help of (2I7) and the interpolation inequality ([2.3]), we have

atafB—b

ﬂ b+u++uﬂ f
llusll < Kolles||”llejll—» < Kollesll o™ llejlla ™ (3.14)

We then obtain from Assumption Bla) and the induction hypotheses that

bt B ataB—b 7b+;;+;;6
lusll S KollTes | a5 llegllu ™ S Kollw|* s, 27 (3.15)

On the other hand, since (Z.I]) and the induction hypotheses implies
lejll-a S llejlln S llwll, 0<j <1

and since p > (a — b)/f, we have from [BI4]) and Assumption [B(a) that

++u a+iﬂfb 3
lusll S Kollejll-allejll—a™ llejlln ™ < Kollwl”[|Te;]l- (3.16)
Therefore, by using the fact
260

__atp
§< [[wlls; >+, 0<j<I (3.17)
and the induction hypotheses we have
5 ~3ate
1F(z;) =y’ <6+ 1Tejll + llusll < llwlls; : (3.18)

In view of the estimates (313), BIH), (BI8) and the inequality

l

1 _a+42s—p Satn
> —(s1—sjm0) D S8
. Qi
7=0
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which follows from Lemma [ we have from [BII) and [I2) that

atp
lewrilly < esllwll + 587" 8

l
1 a2s—y _ bipdus
+CKO||W||1+,6’Z_(SI _Sj—l) ;Eirs)“sj 2(ats)
i
j=0 "7

: — _atptuB

+ CKollw|'*) L (51— 8j-1) " 2oie 5; 2
Y
j=0

and

__a+tp
[ Terrs —y° +yll < llwlls, ™77 +6

_btputuB

1

1 —_ a-+s

+ CKo|w|'*7 Z ;(Sl —sj-1) sy MY
J

=0

l
1 _atptuB
+ CKo|w||**? Z (s - Sj_1)_b2+<;++52>8 5, Hare)
o
j=0 "

where c; and C' are two positive generic constants.
With the help of Lemmal3, > (a — b))/, B17) and [Z.]]) we have

letall, < ( + 2 s+ CKonwnﬂ) el

T—1

and

atp

I Tersr —y° +yll < 6+ (1 + CEKollw|”) [lwlls, ™7
__a+tp
<6+ co (1+ CKollw]|?) lw]lsp, . (3.19)

Consequently |[ej41]], < Cul|w|| if Ci > 2¢5 + =25 cocs and Kol|wl|? is suitably small.

Moreover, from 3I9), FI1) and (Z8) we also have
72a+u
ITerall < 26 + co (1 + CEollwl|?) [lwllsy, ™7

4cg B — slatsy
< +co + CKollw|” ) [|wlls; 5

T—1

_2E1++“)
< C*||w||sl+1

if C > 2¢o+ 16 and Kol||w]|? is suitably small. We therefore complete the proof of

T—1

9). In the meanwhile, (319) gives the proof of (BI0). o

From Proposition [[] and its proof it follows that z, € Bp(:cT) for 0 < n < ng if
||w|| is sufficiently small. Furthermore, from [B.13) and ([B.I0) we have

_btptpup
|F(zn) =y — Teall S Kollw||'* sy =T (3.20)

and
|F(xn) =y — Ten| S Kollw[|®||Ten| (3.21)

for 0 < n < ns.
In the following we will show that ns < ns for the integer ns defined by (L8] with
7 > 1. Consequently, the method given by (7)) and (L8] is well-defined.
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Lemma 4 Let all the conditions in Proposition [l hold. Let T > 1 be a given number.
If eg € X, for some (a —b)/B < p < b+ 2s and if Kolleo||] is suitably small, then
the discrepancy principle (I.8) defines a finite integer ns satisfying ns < ng.

Proof From Proposition [, (820) and u > (a — b)/f it follows for 0 < n < 75 that

IF(@n) = 9’| S IIF(zn) =y — Tenll + [ Ten — y° + yll

1 _btptup __atp
< CKollwl|'*Psn 2™ + (co + CKol[w]|?) 0" |lw]| + 6

__atp
< (o + CKollw]|?) 55 27

wl| + 4.

By setting n = ng in the above inequality and using the definition of ns we obtain
Py T—1 8
1F(z5) =yl < (14 —— + CEKollw|” | 6 <70

if Kollw||® is suitably small. According to the definition of ns we have ns < fis. O

Now we are ready to prove the main result concerning the order optimal conver-
gence rates for the method defined by (7)) and (LJ]) with 7 > 1.

Theorem 1 Let F satisfy Assumptions [3, let {go} satisfy Assumptions Ol and [,
and let {a, } be a sequence of positive numbers satisfying (2.8). If eq € X, for some
(a—b)/B < u<b+2s and if K0||eo||ﬁ is suitably small, then for all v € [—a, u] there
holds

atr
s — at[lr < Clleo]|T 6

for the integer ns determined by the discrepancy principle (I8) with T > 1, where
C > 0 is a generic constant.

Proof Tt follows from ([B21)) that if Ko|lw||? is suitably small then
1
1F(zn) —y = Ten| < 5[ Tenll

which implies ||Te,|| < 2||F(z,)—yl| for 0 < n < fis. Since Lemma@ implies ng < 7,
it follows from Assumption [3(a) and the definition of ns that

2(147)

1 2
lensll—o < —Tensll < — (|1 F(@n;) =4l +0) < 0.

But from Proposition [I] we have ||en; ||, < Cx|lw]]. The desired estimate then follows
from the interpolation inequality (23] and B.7). O

Remark 1 If F satisfies 2.I6]) and {x,} is defined by (7)) with s > —a/2, then the

order optimal convergence rate holds for zy — zf € X, with 0 < p < a+ 2s. On the
other hand, if F’(x) satisfies the Lipschitz condition

IF'(2) = F'(a")|| < Kollz — 2™, € By(a)

and {z,} is defined by (L) with s > a/2, then the order optimal convergence rate
holds for 2o — z' € X, with a < p < 2s.
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4 Examples

In this section we will give several important examples of {g,} that satisfy Assump-
tions [l and @ Thus, Theorem [l applies to the corresponding methods if F' satisfies
Assumption B and {«,,} satisfies (Z.8]). For all these examples, the functions g, are
analytic at least in the domain

Dy :={2€C:2# —a,-1}.

Moreover, for each o > 0, we always take the closed contour I'y, to be (see [I])
L,=rMWur®ur®ur®,

with

I i={z = 56 : 0 < 6 < 2w — o},
I ={z=Re"": —¢p < ¢ < g0},
I'® = {z=te' : /2 <t <R},

I'™ .= {z=te7 : /2 <t < R},

where R > max{1,a} and 0 < ¢y < 7/2 are fixed numbers. Clearly I, C D, and
[0, 1] lies inside IT,. It is straightforward to check that (29) is satisfied.

Example 1 We first consider for a > 0 the function g, given by

(a+ NNV —al

9a(N) = Mo+ NN

where N > 1 is a fixed integer. This function arises from the iterated Tikhonov
regularization of order N for linear ill-posed problems. The corresponding method

(T becomes

Un,0 = Tn,
Un 41 = Ung — (anL2s + T:{Tn)il T (F(zn) —y0 = To(xy — unl)) ,
[=0,--- ,N—1,
xn-i—l - un,N;
where T, := F'(x,). When N = 1, this is the Levenberg-Marquardt method in

Hilbert scales. The corresponding residual function is 7, (\) = a® (a+X)~. In order
to verify Assumption 2] we recall the inequality (see [9, Lemma 3])

= Qg _
Allak+Ag(%sjg U forall A > 0.

Then for 0 < v <1 and A > 0 we have

v - Qg v
A ]:[_T‘lk()\>§ )\kHjamL)\ < (sn —sj-1)
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and
X (aj + )N —aff ar \V
AN Go (A || an(A) = J
g J( )ki. T k( ) aN)\l_l, <ak+)\>
=j+1 J

N-1 n o N
_ I-NyN+v—l-1 k
- () (G

=J

N_1 N4+v—I—1
— N _ n Qe
=0 g Ok +A
N-—1
N - “N-wv

- ( l )0‘5 Mo = sj-) 7V

=0
< Ov—( )

(s — s ,

> Naj n 7j—1

where Cy = 2V —1 and we used the fact 04;1 < s, —8;—1. We therefore obtain (2.12))
and [2I3) in Assumption
Next we will verify (2.I0) in Assumption [Il Note that

N—-2

o OA(O[ + Z)N71 — OéN o 1 N — 1 j+1 N—1—j
pal?) = z(a+z)N ~ 2(a+2)N ]_go J “oz '

It is easy to check |pq(2)| < a™! on r{" and lpa(2)] S 1 on r{?. Moreover, on
I o@ Ul o@ there holds

1 N-2 N-2
0a(2)| S e S @IV < $7 it
Ha+ N — g

Therefore

| etz = [ ez + [ lea@last+ [, eaiE

o4 o o o o

2m—do ®o N-2 R )
< ofl/ adg +/ dp+ > a”l/ t2dt
0 b0 =0 a/2

<1
Assumption [Ilis therefore verified.

Ezample 2 We consider the method (L7) with g, given by

=3 (-9

which arises from the asymptotic regularization for linear ill-posed problems. In this
method, the iterative sequence {x,, } is equivalently defined as 2,41 := z(1/ay,), where
x(t) is the unique solution of the initial value problem

Dalt) = L2 F () (5 — Flea) + F' (@) (wn — (1)), >0,

z(0) = .
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The corresponding residual function is ro(\) = e/, We first verify Assumption
It is easy to see

A\ H Ta; (A) = Ne Men—si—1) < Ve (s —si—1) 7Y < (sp — 8j-1)""
k=j

for 0 < v <1 and A > 0. This shows (ZI2). By using the elementary inequality
ePA —e79 < (¢ —p)/qfor 0 < p < qand A >0 and observing that 0 < 7,(\) < 1
and 0 < g, (A) < 1/a, we have for 0 < v <1 and A > 0 that

Ngo;N) ] ree @) € =5 [ 290,V [ 7an )
k=j+1 J k=j+1

_ 1 - (ef(snfsj)/\ - ef(snfsj,l))\)y

1 —V
a_j(S” —8j-1)

IN

which gives (Z13).

In order to verify [2I0) in Assumption [I] we note that

1 —e 2/ 1 a— (a+z)e /@
Pa(2) = - = .
z a+z z(a+ z)

It is easy to see that |pq(2)] < ™! on I’C(Yl), loa(2)] <1 on F1§2) and

7§cos¢
< a+ (a+te 0

[pa(2)] S Sat™?

ta+1t) ~
on Fo(t3) U Fo(fl). Therefore
R
/ lpa(2)|ldz] 1 +/ at2dt < 1.
Iy a/2

Example 3 We consider for 0 < a <1 the function g, given by
[1/a]-1

1— (1= )/l

W) = 1-N\)=—— 2

ga(N) = D (1-2) 3

=0

which arises from the linear Landweber iteration, where [1/a] denotes the largest
integer not greater than 1/«. The method (1) then becomes
Unp,0 = Tn,
Un,i+1 = Un,l — L_2ST; (F(xn) - 96 - Tn(xn - “n,l)) , 0Z1< [1/an] -1,
Tn+1 = Un,[1/an]>
where T,, := F'(z,,). When «,, = 1 for all n, this method reduces to the Landweber
iteration in Hilbert scales proposed in [I3]. The corresponding residual function is

Ta(A) = (1 — N)[V/2l. We first verify Assumption 2] when the sequence {a,,} is given
by a, = 1/k, for some integers k, > 1. Then for 0 <v <1 and 0 < X <1 we have

A" H Tay(A) = A1 = NP 7%70 <v”(sp — 8j-1) 7" < (80— 55-1) 7",
k=j
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We thus obtain ([ZI2). Observing that 0 < r4;(A) < 1 and 0 < go,(A) < 1/a; for
0 < X< 1, we have

n n

)‘Vgaj(A) H Tak(A) —y Aga]‘(}‘) H Tak(A)

1
k=j+1 J k=j+1

IN

= —— (L= N)""% — (L= \)""51)",

Thus, (2ZI3]) follows from the elementary inequality t? —t9 < (¢ —p)/q for 0 < p < g
and 0 <t <1.

In order to verify (2I0) in Assumption [I in the definition of I, we pick R > 1
and 0 < ¢9 < m/2 such that R < 2cos ¢g. Note that

_ 1—(1— 2/ 1 a— (a+2)(1— z)t/

#al2) z a+z z(a+ z)
By using the fact (14 a)/® < e we can see
$a(2)| S ol (1+a/2)Ve Sat on IV,
According to the choice of R and ¢g, we have 1 + R2 — 2Rcos ¢y < 1. Thus

a+ (a+ R)(1 4 R? — 2R cos ¢g)l1/21/2
R(R+ «)

Pa(2)] S S1 onr.

Furthermore, on I O(¢3) U I O(¢4) we have

c ot (o 4 ) (1 4 t2 — 2t cos ¢pg) 1/ (2)

|(100¢(z)| ~ t(ath)
Therefore
R 2 _ 1/(2c)
a+ (a+t)(1+t° —2tcoso
[ lealias g1+ [ 2ttt L
Iy a/2 t(O&+t)
14 /R/O‘ L4+ (1 +8)(1 + a®t? — 2at cos ¢ )1/ ) i@t
B 1/2 t(1+41)

R/o
<1+ / (14 o?t? — 2at cos ¢ )/ ¥ dt.
1/2

Observe that for 1/2 <t < R/« there holds
(14 o212 — 2at cos ¢ )/ %) < (1 — poat)/ @) < gmrot/2

with pg :=2cos¢g — R > 0. Thus
/ | (2)]|dz] < 1+/ e Hot/2qp < 1.
I, 1/2

Example 4 We consider for 0 < a <1 the function g, given by

[1/a] _
L, 1= (1)l
= 1 Z:
ga(N) =D (1+)) \

i=1
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which arises from the Lardy method for linear inverse problems. Then the method

(T2 becomes

Un,O = znv
Un,l+1 = Un,l — (LQS =+ T;Tn)ilT; (F(zn) - y6 - Tn(zn - unl)) s
1=0,--,[1/an] — 1,

Tl = Un,[1/ay,];

where T}, = F'(x,,). The residual function is 7o (\) = (1+ )~/ Assumption [ and
Assumption [2] can be verified similarly as in Example 3] when the sequence {a,} is
given by a,, = 1/k,, for some integers k, > 1.
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