Inexact Newton regularization methods in Hilbert scales

Qinian Jin · Ulrich Tautenhahn

Abstract We consider a class of inexact Newton regularization methods for solving nonlinear inverse problems in Hilbert scales. Under certain conditions we obtain the order optimal convergence rate result.

1 Introduction

In this paper we consider the nonlinear inverse problems

$$F(x) = y, (1.1)$$

where $F:D(F)\subset X\mapsto Y$ is a nonlinear Fréchet differentiable operator between two Hilbert spaces X and Y whose norms and inner products are denoted as $\|\cdot\|$ and (\cdot,\cdot) respectively. We assume that (1.1) has a solution x^{\dagger} in the domain D(F) of F, i.e. $F(x^{\dagger})=y$. We use F'(x) to denote the Fréchet derivative of F at $x\in D(F)$ and $F'(x)^*$ the adjoint of F'(x). A characteristic property of such problems is their ill-posedness in the sense that their solutions do not depend continuously on the data. Let y^{δ} be the only available approximation of y satisfying

$$\|y^{\delta} - y\| \le \delta \tag{1.2}$$

with a given small noise level $\delta > 0$. Due to the ill-posedness, the regularization techniques should be employed to produce from y^{δ} a stable approximate solution of (1.1).

Many regularization methods have been considered in the last two decades. In particular, the nonlinear Landweber iteration [6], the Levenberg-Marquardt method [4,9], and the exponential Euler iteration [7] have been applied to solve nonlinear inverse problems. These methods take the form

$$x_{n+1} = x_n - g_{\alpha_n} \left(F'(x_n)^* F'(x_n) \right) F'(x_n)^* \left(F(x_n) - y^{\delta} \right), \tag{1.3}$$

Qinian Jin

Department of Mathematics, Virginia Tech, Blacksburg, VA 24060, USA

E-mail: qnjin@math.vt.edu

Ulrich Tautenhahn

Department of Mathematics, University of Applied Sciences Zittau/Görlitz, PO Box 1454, 02754 Zittau, Germany

E-mail: u.tautenhahn@hs-zigr.de

where x_0 is an initial guess of x^{\dagger} , $\{\alpha_n\}$ is a sequence of positive numbers, and $\{g_{\alpha}\}$ is a family of spectral filter functions. The scheme (1.3) can be derived by applying the linear regularization method defined by $\{g_{\alpha}\}$ to the equation

$$F'(x_n)(x - x_n) = y^{\delta} - F(x_n). \tag{1.4}$$

which follows from (1.1) by replacing y by y^{δ} and F(x) by its linearization $F(x_n) + F'(x_n)(x - x_n)$ at x_n . It is easy to see that

$$F(x_n) - y^{\delta} + F'(x_n)(x_{n+1} - x_n) = r_{\alpha_n}(F'(x_n)F'(x_n)^*)(F(x_n) - y^{\delta}),$$

where

$$r_{\alpha}(\lambda) = 1 - \lambda g_{\alpha}(\lambda) \tag{1.5}$$

which is called the residual function associated with g_{α} . For well-posed problems where $F'(x_n)$ is invertible, usually one has $||r_{\alpha_n}(F'(x_n)F'(x_n)^*)|| \leq \mu_n < 1$ and consequently

$$||F(x_n) - y^{\delta} + F'(x_n)(x_{n+1} - x_n)|| \le \mu_n ||F(x_n) - y^{\delta}||.$$
 (1.6)

Thus the methods belong to the class of inexact Newton methods [2]. For ill-posed problems, however, there only holds $||r_{\alpha_n}(F'(x_n)F'(x_n)^*)|| \leq 1$ in general. In [4] the Levenberg-Marquardt scheme was considered with $\{\alpha_n\}$ chosen adaptively so that (1.6) holds and the discrepancy principle was used to terminate the iteration. The order optimal convergence rates were derived recently in [5]. The general methods (1.3) with $\{\alpha_n\}$ chosen adaptively to satisfy (1.6) were considered later in [14,11], but only suboptimal convergence rates were derived in [15] and the convergence analysis is far from complete. On the other hand, one may consider the method (1.3) with $\{\alpha_n\}$ given a priori. This has been done for the Levenberg-Marquardt method in [9] and the exponential Euler method in [7] for instance.

In this paper we will consider the inexact Newton methods in Hilbert scales which are more general than (1.3). Let L be a densely defined self-adjoint strictly positive linear operator in X. For each $r \in \mathbb{R}$, we define X_r to be the completion of $\bigcap_{k=0}^{\infty} D(L^k)$ with respect to the Hilbert space norm

$$||x||_r := ||L^r x||.$$

This family of Hilbert spaces $(X_r)_{r\in\mathbb{R}}$ is called the Hilbert scales generated by L. Let $x_0 \in D(F)$ be an initial guess of x^{\dagger} . The inexact Newton method in Hilbert scales defines the iterates $\{x_n\}$ by

$$x_{n+1} = x_n - g_{\alpha_n} \left(L^{-2s} F'(x_n)^* F'(x_n) \right) L^{-2s} F'(x_n)^* (F(x_n) - y^{\delta}), \tag{1.7}$$

where $s \in \mathbb{R}$ is a given number to be specified later, and $\{\alpha_n\}$ is an a priori given sequence of positive numbers with suitable properties. We will terminate the iteration by the discrepancy principle

$$||F(x_{n_{\delta}}) - y^{\delta}|| \le \tau \delta < ||F(x_n) - y^{\delta}||, \quad 0 \le n < n_{\delta}$$
 (1.8)

with a given number $\tau > 1$ and consider the approximation property of $x_{n_{\delta}}$ to x^{\dagger} as $\delta \to 0$. We will establish for a large class of spectral filter functions $\{g_{\alpha}\}$ the order optimal convergence rates for the method defined by (1.7) and (1.8).

Regularization in Hilbert scales has been introduced in [12] for the linear Tikhonov regularization with the major aim to prevent the saturation effect. Such technique has been extended in various ways, in particular, a general class of regularization methods in Hilbert scales has been considered in [16] with the regularization parameter chosen by the Morozov's discrepancy principle. Regularization in Hilbert scales have

also been applied for solving nonlinear ill-posed problems. The nonlinear Tikhonov regularization in Hilbert scales has been considered in [10,3], a general continuous regularization scheme for nonlinear problems in Hilbert scales has been considered in [17], the general iteratively regularized Gauss-Newton methods in Hilbert scales has been considered in [8], and the nonlinear Landweber iteration in Hilbert scales has been considered in [13].

This paper is organized as follows. In Section 2 we first briefly review the relevant properties of Hilbert scales, and then formulate the necessary condition on $\{\alpha_n\}$, $\{g_{\alpha}\}$ and F together with some crucial consequences. In Section 3 we obtain the main result concerning the order optimal convergence property of the method given by (1.7) and (1.8). Finally we present in Section 4 several examples of the method (1.7) for which $\{g_{\alpha}\}$ satisfies the technical conditions in Section 2.

2 Assumptions

We first briefly review the relevant properties of the Hilbert scales $(X_r)_{r \in \mathbb{R}}$ generated by a densely defined self-adjoint strictly positive linear operator L in X, see [3]. It is well known that X_r is densely and continuously embedded into X_q for any $-\infty < q < r < \infty$, i.e.

$$||x||_q \le \theta^{r-q} ||x||_r, \quad x \in X_r,$$
 (2.1)

where $\theta > 0$ is a constant such that

$$||x||^2 \le \theta(Lx, x), \quad x \in D(L). \tag{2.2}$$

Moreover there holds the important interpolation inequality, i.e. for any $-\infty there holds for any <math>x \in X_r$ that

$$||x||_q \le ||x||_p^{\frac{r-q}{r-p}} ||x||_r^{\frac{q-p}{r-p}}.$$
(2.3)

Let $T: X \mapsto Y$ be a bounded linear operator satisfying

$$m||h||_{-a} \le ||Th|| \le M||h||_{-a}, \quad h \in X$$

for some constants $M \ge m > 0$ and $a \ge 0$. Then the operator $A := TL^{-s} : X \mapsto Y$ is bounded for $s \ge -a$ and the adjoint of A is given by $A^* = L^{-s}T^*$, where $T^* : Y \mapsto X$ is the adjoint of T. Moreover, for any $|\nu| \le 1$ there hold

$$R((A^*A)^{\nu/2}) = X_{\nu(a+s)} \tag{2.4}$$

and

$$\underline{c}(\nu)\|h\|_{-\nu(a+s)} \le \|(A^*A)^{\nu/2}h\| \le \overline{c}(\nu)\|h\|_{-\nu(a+s)} \tag{2.5}$$

on $D((A^*A)^{\nu/2})$, where

$$\underline{c}(\nu) := \min\{m^{\nu}, M^{\nu}\} \quad \text{and} \quad \overline{c}(\nu) = \max\{m^{\nu}, M^{\nu}\}.$$

If $g:[0,\|A\|^2]\mapsto\mathbb{R}$ is a continuous function, then

$$g(A^*A)L^s = L^s g(L^{-2s}T^*T). (2.6)$$

In order to carry out the convergence analysis on the method defined by (1.7) and (1.8), we need to impose suitable conditions on $\{\alpha_n\}$, $\{g_\alpha\}$ and F. For the sequence $\{\alpha_n\}$ of positive numbers, we set

$$s_{-1} = 0, s_n := \sum_{j=0}^n \frac{1}{\alpha_j}, n = 0, 1, \dots.$$
 (2.7)

We will assume that there are constants $c_0 > 1$ and $c_1 > 0$ such that

$$\lim_{n \to \infty} s_n = \infty, \quad s_{n+1} \le c_0 s_n \quad \text{and} \quad 0 < \alpha_n \le c_1, \quad n = 0, 1, \dots$$
 (2.8)

We will also assume that, for each $\alpha > 0$, the function g_{α} is defined on [0,1] and satisfies the following structure condition, where \mathbb{C} denotes the complex plane.

Assumption 1 For each $\alpha > 0$, the function

$$\varphi_{\alpha}(\lambda) := g_{\alpha}(\lambda) - \frac{1}{\alpha + \lambda}$$

extends to a complex analytic function defined on a domain $D_{\alpha} \subset \mathbb{C}$ such that $[0,1] \subset$ D_{α} , and there is a contour $\Gamma_{\alpha} \subset D_{\alpha}$ enclosing [0,1] such that

$$|z| \ge \frac{1}{2}\alpha$$
 and $\frac{|z| + \lambda}{|z - \lambda|} \le b_0$, $\forall z \in \Gamma_\alpha, \, \alpha > 0 \text{ and } \lambda \in [0, 1],$ (2.9)

where b_0 is a constant independent of $\alpha > 0$. Moreover, there is a constant b_1 such

$$\int_{\Gamma_{\alpha}} |\varphi_{\alpha}(z)| |dz| \le b_1 \tag{2.10}$$

for all $0 < \alpha < c_1$.

By using the spectral integrals for self-adjoint operators, it follows easily from (2.9) in Assumption 1 that for any bounded linear operator A with $||A|| \leq 1$ there holds

$$\|(zI - A^*A)^{-1}(A^*A)^{\nu}\| \le \frac{b_0}{|z|^{1-\nu}}$$
 (2.11)

for $z \in \Gamma_{\alpha}$ and $0 \le \nu \le 1$.

Moreover, since Assumption 1 implies $\varphi_{\alpha}(z)$ is analytic in D_{α} for each $\alpha > 0$, there holds the Riesz-Dunford formula (see [1])

$$\varphi_{\alpha}(A^*A) = \frac{1}{2\pi i} \int_{\Gamma_{\alpha}} \varphi_{\alpha}(z) (zI - A^*A)^{-1} dz$$

for any linear operator A satisfying $||A|| \leq 1$.

Assumption 2 Let $\{\alpha_n\}$ be a sequence of positive numbers, let $\{s_n\}$ be defined by (2.7). There is a constant $b_2 > 0$ such that

$$0 \le \lambda^{\nu} \prod_{k=j}^{n} r_{\alpha_k}(\lambda) \le (s_n - s_{j-1})^{-\nu}, \tag{2.12}$$

$$0 \le \lambda^{\nu} \prod_{k=j}^{n} r_{\alpha_{k}}(\lambda) \le (s_{n} - s_{j-1})^{-\nu},$$

$$0 \le \lambda^{\nu} g_{\alpha_{j}}(\lambda) \prod_{k=j+1}^{n} r_{\alpha_{k}}(\lambda) \le b_{2} \frac{1}{\alpha_{j}} (s_{n} - s_{j-1})^{-\nu}$$

$$(2.12)$$

for $0 \le \nu \le 1$, $0 \le \lambda \le 1$ and $j = 0, 1, \dots, n$, where $r_{\alpha}(\lambda)$ is defined by (1.5).

In Section 4 we will give several important examples of $\{g_{\alpha}\}$ satisfying Assumptions 1 and 2. These examples of $\{g_{\alpha}\}$ include the ones arising from (iterated) Tikhonov regularization, asymptotical regularization, Landweber iteration and Lardy

Lemma 1 The inequality (2.12) implies for $0 \le \nu \le 1$ and $\alpha > 0$ that

$$0 \le \lambda^{\nu} (\alpha + \lambda)^{-1} \prod_{k=j+1}^{n} r_{\alpha_k}(\lambda) \le 2\alpha^{\nu-1} \left(1 + \alpha(s_n - s_j) \right)^{-\nu}$$
 (2.14)

for all $0 \le \lambda \le 1$ and $j = 0, 1, \dots, n$

Proof For $0 \le \nu \le 1$ and $\alpha > 0$ it follows from (2.12) that

$$0 \le \lambda^{\nu} (\alpha + \lambda)^{-1} \prod_{k=j+1}^{n} r_{\alpha_{k}}(\lambda) \le \min \left\{ \alpha^{\nu-1}, \alpha^{-1} (s_{n} - s_{j})^{-\nu} \right\}$$
$$= \alpha^{\nu-1} \min \left\{ 1, \alpha^{-\nu} (s_{n} - s_{j})^{-\nu} \right\}$$
$$\le 2^{\nu} \alpha^{\nu-1} \left(1 + \alpha (s_{n} - s_{j}) \right)^{-\nu}$$

for all $0 \le \lambda \le 1$ and $j = 0, 1, \dots, n$.

Assumption 3 (a) There exist constants $a \ge 0$ and $0 < m \le M < \infty$ such that

$$m||h||_{-a} \le ||F'(x)h|| \le M||h||_{-a}, \quad h \in X$$

for all $x \in B_{\rho}(x^{\dagger})$.

- (b) F is properly scaled so that $||F'(x)L^{-s}||_{X\to Y} \leq \min\{1, \sqrt{\alpha_0}\}$ for all $x \in B_{\rho}(x^{\dagger})$, where $s \geq -a$.
 - (c) There exist $0 < \beta \le 1$, $0 \le b \le a$ and $K_0 \ge 0$ such that

$$||F'(x)^* - F'(x^{\dagger})^*||_{Y \to X_b} \le K_0 ||x - x^{\dagger}||^{\beta}$$
(2.15)

for all $x \in B_{\rho}(x^{\dagger})$.

The number a in condition (a) can be interpreted as the degree of ill-posedness of F'(x) for $x \in B_{\rho}(x^{\dagger})$. When F satisfies the condition

$$F'(x) = R_x F'(x^{\dagger})$$
 and $||I - R_x|| \le K_0 ||x - x^{\dagger}||$, (2.16)

which has been verified in [6] for several nonlinear inverse problems, condition (a) is equivalent to

$$m||h||_{-a} < ||F'(x^{\dagger})h|| < M||h||_{-a}, \quad h \in X$$

From (a) and (2.1) it follows for $s \geq -a$ that $||F'(x)L^{-s}||_{X\to Y} \leq M\theta^{a+s}$ for all $x \in B_{\rho}(x^{\dagger})$. Thus $||F'(x)L^{-s}||_{X\to Y}$ is uniformly bounded over $B_{\rho}(x^{\dagger})$. By multiplying (1.1) by a sufficiently small number, we may assume that F is properly scaled so that condition (b) is satisfied. Furthermore, condition (a) implies that $F'(x)^*$ maps Y into X_b for $b \leq a$ and $||F'(x)^*||_{Y\to X_b} \leq M\theta^{a-b}$ for all $x \in B_{\rho}(x^{\dagger})$. Condition (c) says that $F'(x)^*$ is locally Hölder continuous around x^{\dagger} with exponent $0 < \beta \leq 1$ when considered as operators from Y to X_b . It is equivalent to

$$||L^b[F'(x)^* - F'(x^\dagger)^*]||_{Y \to X} \le K_0 ||x - x^\dagger||^\beta, \quad x \in B_\rho(x^\dagger)$$

or

$$||[F'(x) - F'(x^{\dagger})]L^b||_{X \to Y} \le K_0 ||x - x^{\dagger}||^{\beta}, \quad x \in B_{\rho}(x^{\dagger}).$$

Condition (c) was used first in [13] for the convergence analysis of Landweber iteration in Hilbert scales. It is easy to see that when b=0 and $\beta=1$, this is exactly the Lipschitz condition on F'(x). When F satisfies (2.16), (c) holds with b=a and $\beta=1$. In [13] it has been shown that (c) implies

$$||F(x) - y - F'(x^{\dagger})(x - x^{\dagger})|| \le K_0 ||x - x^{\dagger}||^{\beta} ||x - x^{\dagger}||_{-b}$$
 (2.17)

which follows easily from the identity

$$F(x) - y - F'(x^{\dagger})(x - x^{\dagger}) = \int_{0}^{1} \left[F'(x^{\dagger} + t(x - x^{\dagger})) - F'(x^{\dagger}) \right] L^{b} L^{-b}(x - x^{\dagger}) dt.$$

In this paper we will derive, under the above assumptions on $\{\alpha_n\}$, $\{g_\alpha\}$ and F, the rate of convergence of x_{n_δ} to x^{\dagger} as $\delta \to 0$ when $e_0 := x_0 - x^{\dagger}$ satisfies the smoothness condition

$$x_0 - x^{\dagger} \in X_{\mu} \quad \text{with } \frac{a-b}{\beta} < \mu \le b + 2s,$$
 (2.18)

where n_{δ} is the integer determined by the discrepancy principle (1.8) with $\tau > 1$.

The following consequence of the above assumptions on F and $\{g_{\alpha}\}$ plays a crucial role in the convergence analysis.

Lemma 2 Let $\{g_{\alpha}\}$ satisfy Assumptions 1 and 2, let F satisfy Assumption 3, and let $\{\alpha_n\}$ be a sequence of positive numbers. Let $A = F'(x^{\dagger})L^{-s}$ and for any $x \in B_{\rho}(x^{\dagger})$ let $A_x = F'(x)L^{-s}$. Then for $-\frac{b+s}{2(a+s)} \le \nu \le 1/2$ there holds ¹

$$\left\| (A^*A)^{\nu} \prod_{k=j+1}^{n} r_{\alpha_k} (A^*A) \left[g_{\alpha_j} (A^*A) A^* - g_{\alpha_j} (A_x^*A_x) A_x^* \right] \right\|$$

$$\lesssim \frac{1}{\alpha_j} (s_n - s_{j-1})^{-\nu - \frac{b+s}{2(a+s)}} K_0 \|x - x^{\dagger}\|^{\beta}$$

for $j=0,1,\cdots,n$

Proof Let $\eta_{\alpha}(\lambda) = (\alpha + \lambda)^{-1}$ and $\varphi_{\alpha}(\lambda) = g_{\alpha}(\lambda) - (\alpha + \lambda)^{-1}$. We can write

$$(A^*A)^{\nu} \prod_{k=j+1}^n r_{\alpha_k}(A^*A) \left[g_{\alpha_j}(A^*A)A^* - g_{\alpha_j}(A_x^*A_x)A_x^* \right] = J_1 + J_2 + J_3,$$

where

$$J_{1} := (A^{*}A)^{\nu} \prod_{k=j+1}^{n} r_{\alpha_{k}}(A^{*}A)g_{\alpha_{j}}(A^{*}A)[A^{*} - A_{x}^{*}],$$

$$J_{2} := (A^{*}A)^{\nu} \prod_{k=j+1}^{n} r_{\alpha_{k}}(A^{*}A) \left[\eta_{\alpha_{j}}(A^{*}A) - \eta_{\alpha_{j}}(A_{x}^{*}A_{x}) \right] A_{x}^{*},$$

$$J_{3} := (A^{*}A)^{\nu} \prod_{k=j+1}^{n} r_{\alpha_{k}}(A^{*}A) \left[\varphi_{\alpha_{j}}(A^{*}A) - \varphi_{\alpha_{j}}(A_{x}^{*}A_{x}) \right] A_{x}^{*}.$$

It suffices to show that the desired estimates hold for the norms of J_1 , J_2 and J_3 . From (2.5), (2.13) in Assumption 2 and Assumption 3 it follows that

$$||J_{1}|| \lesssim \left\| (A^{*}A)^{\nu} \prod_{k=j+1}^{n} r_{\alpha_{k}}(A^{*}A)g_{\alpha_{j}}(A^{*}A)(A^{*}A)^{\frac{b+s}{2(a+s)}} \right\|$$

$$\times \left\| (A^{*}A)^{-\frac{b+s}{2(a+s)}} [A_{x}^{*} - A^{*}] \right\|$$

$$\lesssim \sup_{0 \leq \lambda \leq 1} \left(\lambda^{\nu + \frac{b+s}{2(a+s)}} g_{\alpha_{j}}(\lambda) \prod_{k=j+1}^{n} r_{\alpha_{k}}(\lambda) \right) ||L^{b}[F'(x)^{*} - F'(x^{\dagger})^{*}]||_{Y \to X}$$

$$\lesssim \frac{1}{\alpha_{j}} (s_{n} - s_{j-1})^{-\nu - \frac{b+s}{2(a+s)}} K_{0} ||x - x^{\dagger}||^{\beta}$$

¹ Throughout this paper we will always use C to denote a generic constant independent of δ and n. We will also use the convention $\Phi \lesssim \Psi$ to mean that $\Phi \leq C\Psi$ for some generic constant C.

which is the desired estimate.

In order to estimate $||J_2||$, we note that

$$\eta_{\alpha_j}(A^*A) - \eta_{\alpha_j}(A_x^*A_x) = (\alpha_j I + A^*A)^{-1}A^*(A_x - A)(\alpha_j I + A_x^*A_x)^{-1} + (\alpha_j I + A^*A)^{-1}(A_x^* - A^*)A_x(\alpha_j I + A_x^*A_x)^{-1}.$$

Therefore $J_2 = J_2^{(1)} + J_2^{(2)}$, where

$$J_2^{(1)} = (A^*A)^{\nu} \prod_{k=j+1}^n r_{\alpha_k} (A^*A) (\alpha_j I + A^*A)^{-1} A^* (A_x - A) (\alpha_j I + A_x^* A_x)^{-1} A_x^*,$$

$$J_2^{(2)} = (A^*A)^{\nu} \prod_{k=j+1}^n r_{\alpha_k}(A^*A)(\alpha_j I + A^*A)^{-1}(A_x^* - A^*)A_x A_x^* (\alpha_j I + A_x A_x^*)^{-1}.$$

With the help of Assumption 3 and (2.5) we have for any $w \in Y$ that

$$\begin{split} \|(A_x - A)(\alpha_j I + A_x^* A_x)^{-1} A_x^* w \| \\ &= \|[F'(x) - F'(x^{\dagger})] L^b L^{-(b+s)} (\alpha_j I + A_x^* A_x)^{-1} A_x^* w \| \\ &\leq K_0 \|x - x^{\dagger}\|^{\beta} \|(\alpha_j I + A_x^* A_x)^{-1} A_x^* w \|_{-(b+s)} \\ &\lesssim K_0 \|x - x^{\dagger}\|^{\beta} \|(A_x^* A_x)^{\frac{b+s}{2(a+s)}} (\alpha_j I + A_x^* A_x)^{-1} A_x^* w \| \\ &\lesssim K_0 \|x - x^{\dagger}\|^{\beta} \alpha_i^{-\frac{1}{2} + \frac{b+s}{2(a+s)}} \|w\|. \end{split}$$

This implies

$$\|(A_x - A)(\alpha_j I + A_x^* A_x)^{-1} A_x^* \| \lesssim K_0 \|x - x^{\dagger}\|^{\beta} \alpha_j^{-\frac{1}{2} + \frac{b+s}{2(a+s)}}. \tag{2.19}$$

Thus, by using Lemma 1, we derive

$$||J_{2}^{(1)}|| \leq \sup_{0 \leq \lambda \leq 1} \left(\lambda^{\nu + \frac{1}{2}} (\alpha_{j} + \lambda)^{-1} \prod_{k=j+1}^{n} r_{\alpha_{k}}(\lambda) \right) ||(A_{x} - A)(\alpha_{j}I + A_{x}^{*}A_{x})^{-1}A_{x}^{*}||$$
$$\lesssim \alpha_{j}^{\nu - 1 + \frac{b+s}{2(a+s)}} \left(1 + \alpha_{j}(s_{n} - s_{j}) \right)^{-\nu - \frac{1}{2}} K_{0} ||x - x^{\dagger}||^{\beta}.$$

By using Assumption 3, Lemma 1 and a similar argument in estimating J_1 we can derive

$$||J_{2}^{(2)}|| \lesssim \sup_{0 \le \lambda \le 1} \left(\lambda^{\nu + \frac{b+s}{2(a+s)}} (\alpha_{j} + \lambda)^{-1} \prod_{k=j+1}^{n} r_{\alpha_{k}}(\lambda) \right) ||L^{b}[F'(x)^{*} - F'(x^{\dagger})^{*}]||_{Y \to X}$$
$$\lesssim \alpha_{j}^{\nu - 1 + \frac{b+s}{2(a+s)}} (1 + \alpha_{j}(s_{n} - s_{j}))^{-\nu - \frac{b+s}{2(a+s)}} K_{0} ||x - x^{\dagger}||^{\beta}.$$

Combining the above estimates on $J_2^{(1)}$ and $J_2^{(2)}$ and noting $\frac{b+s}{2(a+s)} \leq \frac{1}{2}$, it follows that

$$||J_2|| \lesssim \alpha_j^{\nu - 1 + \frac{b+s}{2(a+s)}} \left(1 + \alpha_j(s_n - s_j)\right)^{-\nu - \frac{b+s}{2(a+s)}} K_0 ||x - x^{\dagger}||^{\beta}$$

$$= \frac{1}{\alpha_j} (s_n - s_{j-1})^{-\nu - \frac{b+s}{2(a+s)}} K_0 ||x - x^{\dagger}||^{\beta}.$$

It remains to estimate J_3 . Since Assumption 1 implies that $\varphi_{\alpha_j}(z)$ is analytic in D_{α_j} , we have from the Riesz-Dunford formula that

$$J_3 = \frac{1}{2\pi i} \int_{\Gamma_{\alpha_j}} \varphi_{\alpha_j}(z) T_j(z) dz, \qquad (2.20)$$

where

$$T_j(z) := (A^*A)^{\nu} \prod_{k=j+1}^n r_{\alpha_k}(A^*A) \left[(zI - A^*A)^{-1} - (zI - A_x^*A_x)^{-1} \right] A_x^*.$$

We can write $T_j(z) = T_j^{(1)}(z) + T_j^{(2)}(z)$, where

$$T_j^{(1)}(z) := (A^*A)^{\nu} \prod_{k=j+1}^n r_{\alpha_k}(A^*A)(zI - A^*A)^{-1}A^*(A - A_x)(zI - A_x^*A_x)^{-1}A_x^*,$$

$$T_j^{(2)}(z) := (A^*A)^{\nu} \prod_{k=j+1}^n r_{\alpha_k} (A^*A)(zI - A^*A)^{-1} (A^* - A_x^*) A_x A_x^* (zI - A_x A_x^*)^{-1}.$$

We will estimate the norms of $T_j^{(1)}(z)$ and $T_j^{(2)}(z)$ for $z \in \Gamma_{\alpha_j}$. With the help of Assumption 3, (2.5) and (2.11), similar to the derivation of (2.19) we have

$$\|(A - A_x)(zI - A_x^*A_x)^{-1}A_x^*\| \lesssim K_0\|x - x^{\dagger}\|^{\beta}|z|^{-\frac{1}{2} + \frac{b+s}{2(a+s)}}$$

Since $|z| \ge \alpha_j/2$ and $|z - \lambda|^{-1} \le b_0(|z| + \lambda)^{-1}$ for $z \in \Gamma_{\alpha_j}$, we have from (2.14) in Lemma 1 that

$$||T_{j}^{(1)}(z)|| \lesssim K_{0}||x-x^{\dagger}||^{\beta}|z|^{-\frac{1}{2}+\frac{b+s}{2(a+s)}} \sup_{0 \leq \lambda \leq 1} \left(\lambda^{\nu+\frac{1}{2}}|z-\lambda|^{-1} \prod_{k=j+1}^{n} r_{\alpha_{k}}(\lambda)\right)$$

$$\lesssim K_{0}||x-x^{\dagger}||^{\beta}|z|^{-\frac{1}{2}+\frac{b+s}{2(a+s)}} \sup_{0 \leq \lambda \leq 1} \left(\lambda^{\nu+\frac{1}{2}}(|z|+\lambda)^{-1} \prod_{k=j+1}^{n} r_{\alpha_{k}}(\lambda)\right)$$

$$\lesssim K_{0}||x-x^{\dagger}||^{\beta}|z|^{\nu-1+\frac{b+s}{2(a+s)}} \left(1+(s_{n}-s_{j})|z|\right)^{-\nu-1/2}$$

$$\lesssim K_{0}||x-x^{\dagger}||^{\beta}\alpha_{j}^{\nu-1+\frac{b+s}{2(a+s)}} \left(1+(s_{n}-s_{j})\alpha_{j}\right)^{-\nu-1/2}.$$

Next, by using (2.14) in Lemma 1, (2.5), Assumption 3(a) and (2.11), we have for $z \in \Gamma_{\alpha_i}$ that

$$\begin{split} \|T_{j}^{(2)}(z)\| &\leq \left\| (A^*A)^{\nu} \prod_{k=j+1}^{n} r_{\alpha_{k}}(A^*A)(zI - A^*A)^{-1}(A^*A)^{\frac{b+s}{2(a+s)}} \right\| \\ &\qquad \times \left\| (A^*A)^{-\frac{b+s}{2(a+s)}}(A^* - A_x^*)A_xA_x^*(zI - A_xA_x^*)^{-1} \right\| \\ &\lesssim \sup_{0 \leq \lambda \leq 1} \left(\lambda^{\nu + \frac{b+s}{2(a+s)}} |z - \lambda|^{-1} \prod_{k=j+1}^{n} r_{\alpha_{k}}(\lambda) \right) \|L^{b}(F'(x^{\dagger})^* - F'(x)^*)\| \\ &\lesssim K_{0} \|x - x^{\dagger}\|^{\beta} \sup_{0 \leq \lambda \leq 1} \left(\lambda^{\nu + \frac{b+s}{2(a+s)}}(|z| + \lambda)^{-1} \prod_{k=j+1}^{n} r_{\alpha_{k}}(\lambda) \right) \\ &\lesssim K_{0} \|x - x^{\dagger}\|^{\beta} |z|^{\nu - 1 + \frac{b+s}{2(a+s)}} (1 + (s_{n} - s_{j})|z|)^{-\nu - \frac{b+s}{2(a+s)}} \\ &\lesssim K_{0} \|x - x^{\dagger}\|^{\beta} \alpha_{j}^{\nu - 1 + \frac{b+s}{2(a+s)}} (1 + (s_{n} - s_{j})\alpha_{j})^{-\nu - \frac{b+s}{2(a+s)}}. \end{split}$$

Combining the above estimates on $T_j^{(1)}(z)$ and $T_j^{(2)}(z)$ and noting $\frac{b+s}{2(a+s)} \leq \frac{1}{2}$, it follows for $z \in \Gamma_{\alpha_j}$ that

$$||T_{j}(z)|| \lesssim K_{0}||x - x^{\dagger}||^{\beta} \alpha_{j}^{\nu - 1 + \frac{b+s}{2(a+s)}} (1 + (s_{n} - s_{j})\alpha_{j})^{-\nu - \frac{b+s}{2(a+s)}}$$

$$= \frac{1}{\alpha_{j}} (s_{n} - s_{j-1})^{-\nu - \frac{b+s}{2(a+s)}} K_{0}||x - x^{\dagger}||^{\beta}$$

Therefore, it follows from (2.20) and Assumption 1 that

$$||J_3|| \lesssim \frac{1}{\alpha_j} (s_n - s_{j-1})^{-\nu - \frac{b+s}{2(a+s)}} K_0 ||x - x^{\dagger}||^{\beta} \int_{\Gamma_{\alpha_j}} |\varphi_{\alpha_j}(z)| |dz|$$
$$\lesssim \frac{1}{\alpha_j} (s_n - s_{j-1})^{-\nu - \frac{b+s}{2(a+s)}} K_0 ||x - x^{\dagger}||^{\beta}.$$

The proof is therefore complete.

3 Convergence analysis

We begin with the following lemma.

Lemma 3 Let $\{\alpha_n\}$ be a sequence of positive numbers satisfying $\alpha_n \leq c_1$, and let s_n be defined by (2.7). Let $p \geq 0$ and $q \geq 0$ be two numbers. Then we have

$$\sum_{j=0}^{n} \frac{1}{\alpha_{j}} (s_{n} - s_{j-1})^{-p} s_{j}^{-q} \le C_{0} s_{n}^{1-p-q} \begin{cases} 1, & \max\{p, q\} < 1, \\ \log(1 + s_{n}), & \max\{p, q\} = 1, \\ s_{n}^{\max\{p, q\} - 1}, & \max\{p, q\} > 1, \end{cases}$$

where C_0 is a constant depending only on c_1 , p and q

Proof This result is essentially contained in [5, Lemma 4.3] and its proof. For completeness, we include here the proof with a simplified argument. We first rewrite

$$\sum_{j=0}^{n} \frac{1}{\alpha_j} (s_n - s_{j-1})^{-p} s_j^{-q} = s_n^{1-p-q} \sum_{j=0}^{n} \frac{1}{\alpha_j s_n} \left(1 - \frac{s_{j-1}}{s_n} \right)^{-p} \left(\frac{s_j}{s_n} \right)^{-q}.$$

Observe that when $0 \le s_{j-1}/s_n \le 1/2$ we have

$$\left(1 - \frac{s_{j-1}}{s_n}\right)^{-p} \left(\frac{s_j}{s_n}\right)^{-q} \le 2^p \left(\frac{s_j}{s_n}\right)^{-q}$$

while when $s_{j-1}/s_n \ge 1/2$ we have

$$\left(1 - \frac{s_{j-1}}{s_n}\right)^{-p} \left(\frac{s_j}{s_n}\right)^{-q} \le 2^q \left(1 - \frac{s_{j-1}}{s_n}\right)^{-p}.$$

Consequently there holds with $C_{p,q} = \max\{2^p, 2^q\}$

$$\sum_{j=0}^{n} \frac{1}{\alpha_{j}} (s_{n} - s_{j-1})^{-p} s_{j}^{-q} \\
\leq C_{p,q} s_{n}^{1-p-q} \left(\sum_{j=0}^{n} \frac{1}{\alpha_{j} s_{n}} \left(\frac{s_{j}}{s_{n}} \right)^{-q} + \sum_{j=0}^{n} \frac{1}{\alpha_{j} s_{n}} \left(1 - \frac{s_{j-1}}{s_{n}} \right)^{-p} \right).$$
(3.1)

Note that $s_j - s_{j-1} = 1/\alpha_j$, we have with $h = \frac{1}{2\alpha_0 s_n}$

$$\int_{s_0/s_n - h}^{1} t^{-q} dt = \sum_{j=1}^{n} \int_{s_{j-1}/s_n}^{s_j/s_n} t^{-q} dt + \int_{s_0/s_n - h}^{s_0/s_n} t^{-q} dt$$

$$\geq \sum_{j=1}^{n} \left(\frac{s_j}{s_n}\right)^{-q} \frac{s_j - s_{j-1}}{s_n} + \frac{1}{2\alpha_0 s_n} \left(\frac{s_0}{s_n}\right)^{-q}$$

$$\geq \frac{1}{2} \sum_{j=0}^{n} \frac{1}{\alpha_j s_n} \left(\frac{s_j}{s_n}\right)^{-q}.$$

Therefore

$$\sum_{j=0}^{n} \frac{1}{\alpha_{j} s_{n}} \left(\frac{s_{j}}{s_{n}}\right)^{-q} \leq 2 \int_{s_{0}/s_{n}-h}^{1} t^{-q} dt \leq \begin{cases} \frac{2}{1-q}, & q < 1, \\ 2\log(2\alpha_{0} s_{n}), & q = 1, \\ \frac{2}{q-1} (2\alpha_{0} s_{n})^{q-1}, & q > 1. \end{cases}$$
(3.2)

By a similar argument we have with $h = \frac{1}{2\alpha_n s_n}$

$$\sum_{j=0}^{n} \frac{1}{\alpha_{j} s_{n}} \left(1 - \frac{s_{j-1}}{s_{n}} \right)^{-p} \leq 2 \int_{0}^{\frac{s_{n-1}}{s_{n}} + h} (1-t)^{-p} dt \leq \begin{cases} \frac{2}{1-p}, & p < 1, \\ 2\log(2\alpha_{n} s_{n}), & p = 1, \\ \frac{2}{p-1} (2\alpha_{n} s_{n})^{p-1}, & p > 1. \end{cases}$$
(3.3)

Combining (3.1), (3.2) and (3.3) and using the condition $\alpha_n \leq c_1$, we obtain the desired inequalities.

In order to derive the necessary estimates on $x_n - x^{\dagger}$, we need some useful identities. For simplicity of presentation, we set

$$e_n := x_n - x^{\dagger}, \quad A := F'(x^{\dagger})L^{-s} \quad \text{and} \quad A_n := F'(x_n)L^{-s}.$$

It follows from (1.7) and (2.6) that

$$e_{n+1} = e_n - L^{-s} g_{\alpha_n} (A_n^* A_n) A_n^* (F(x_n) - y^{\delta}).$$

Let

$$u_n := F(x_n) - y - F'(x^{\dagger})(x_n - x^{\dagger}).$$

Then we can write

$$e_{n+1} = e_n - L^{-s} g_{\alpha_n} (A^* A) A^* (F(x_n) - y^{\delta})$$

$$- L^{-s} [g_{\alpha_n} (A_n^* A_n) A_n^* - g_{\alpha_n} (A^* A) A^*] (F(x_n) - y^{\delta})$$

$$= L^{-s} r_{\alpha_n} (A^* A) L^s e_n - L^{-s} g_{\alpha_n} (A^* A) A^* (y - y^{\delta} + u_n)$$

$$- L^{-s} [g_{\alpha_n} (A_n^* A_n) A_n^* - g_{\alpha_n} (A^* A) A^*] (F(x_n) - y^{\delta}).$$
(3.4)

By telescoping (3.4) we can obtain

$$e_{n+1} = L^{-s} \prod_{j=0}^{n} r_{\alpha_{j}}(A^{*}A)L^{s}e_{0}$$

$$-L^{-s} \sum_{j=0}^{n} \prod_{k=j+1}^{n} r_{\alpha_{k}}(A^{*}A)g_{\alpha_{j}}(A^{*}A)A^{*}(y-y^{\delta}+u_{j})$$

$$-L^{-s} \sum_{j=0}^{n} \prod_{k=j+1}^{n} r_{\alpha_{k}}(A^{*}A) \left[g_{\alpha_{j}}(A_{j}^{*}A_{j})A_{j}^{*} - g_{\alpha_{j}}(A^{*}A)A^{*}\right] (F(x_{j}) - y^{\delta}).$$
(3.5)

By multiplying (3.5) by $T := F'(x^{\dagger})$ and noting that $A = TL^{-s}$ and

$$I - \sum_{i=0}^{n} \prod_{k=i+1}^{n} r_{\alpha_k}(AA^*) g_{\alpha_j}(AA^*) AA^* = \prod_{i=0}^{n} r_{\alpha_j}(AA^*),$$

we can obtain

$$Te_{n+1} - y^{\delta} + y$$

$$= A \prod_{j=0}^{n} r_{\alpha_{j}}(A^{*}A)L^{s}e_{0} + \prod_{j=0}^{n} r_{\alpha_{j}}(AA^{*})(y - y^{\delta})$$

$$- \sum_{j=0}^{n} \prod_{k=j+1}^{n} r_{\alpha_{k}}(AA^{*})g_{\alpha_{j}}(AA^{*})AA^{*}u_{j}$$

$$- \sum_{j=0}^{n} A \prod_{k=j+1}^{n} r_{\alpha_{k}}(A^{*}A) \left[g_{\alpha_{j}}(A_{j}^{*}A_{j})A_{j}^{*} - g_{\alpha_{j}}(A^{*}A)A^{*}\right] (F(x_{j}) - y^{\delta}). \tag{3.6}$$

Based on (3.5) and (3.6) we will derive the order optimal convergence rate of $x_{n_{\delta}}$ to x^{\dagger} when $e_0 := x_0 - x^{\dagger}$ satisfies the smoothness condition (2.18). Under such condition we have $L^s e_0 \in X_{\mu-s}$ and $|\frac{\mu-s}{a+s}| \leq 1$. Thus, with the help of Assumption 3(a), it follows from (2.4) and (2.5) that there exists $\omega \in X$ such that

$$L^{s}e_{0} = (A^{*}A)^{\frac{\mu-s}{2(a+s)}}\omega \quad \text{and} \quad c_{2}\|\omega\| \le \|e_{0}\|_{\mu} \le c_{3}\|\omega\|$$
 (3.7)

for some generic constants $c_3 \geq c_2 > 0$. We will first derive the crucial estimates on $||e_n||_{\mu}$ and $||Te_n||$. To this end, we introduce the integer \tilde{n}_{δ} satisfying

$$s_{\tilde{n}_{\delta}}^{-\frac{a+\mu}{2(a+s)}} \le \frac{(\tau-1)\delta}{2c_0\|\omega\|} < s_n^{-\frac{a+\mu}{2(a+s)}}, \quad 0 \le n < \tilde{n}_{\delta}, \tag{3.8}$$

where $c_0 > 1$ is the constant appearing in (2.8). Such \tilde{n}_{δ} is well-defined since $s_n \to \infty$ as $n \to \infty$.

Proposition 1 Let F satisfy Assumptions 3, let $\{g_{\alpha}\}$ satisfy Assumptions 1 and 2, and let $\{\alpha_n\}$ be a sequence of positive numbers satisfying (2.8). If $e_0 \in X_{\mu}$ for some $(a-b)/\beta < \mu \leq b+2s$ and if $K_0\|\omega\|^{\beta}$ is suitably small, then there exists a generic constant $C_* > 0$ such that

$$||e_n||_{\mu} \le C_* ||\omega||$$
 and $||Te_n|| \le C_* s_n^{-\frac{a+\mu}{2(a+s)}} ||\omega||$ (3.9)

and

$$||Te_n - y^{\delta} + y|| \le (c_0 + C_* K_0 ||\omega||^{\beta}) s_n^{-\frac{a+\mu}{2(a+s)}} ||\omega|| + \delta$$
(3.10)

for all $0 \le n \le \tilde{n}_{\delta}$.

Proof We will show (3.9) by induction. By using (3.7) and $||A|| \leq \sqrt{\alpha_0}$ we have

$$||Te_0|| = ||AL^s e_0|| = ||(A^*A)^{1/2} L^s e_0|| = ||(A^*A)^{\frac{a+\mu}{2(a+s)}} \omega|| \le \alpha_0^{\frac{a+\mu}{2(a+s)}} ||\omega||.$$

This together with (3.7) shows (3.9) for n=0 if $C_* \ge \max\{1, c_3\}$. Next we assume that (3.9) holds for all $0 \le n \le l$ for some $l < \tilde{n}_{\delta}$ and we are going to show (3.9) holds for n=l+1.

With the help of (2.5) and (3.7) we can derive from (3.5) that

 $||e_{l+1}||_{\mu}$

$$\lesssim \left\| \prod_{j=0}^{l} r_{\alpha_{j}}(A^{*}A)\omega \right\| + \left\| \sum_{j=0}^{l} (AA^{*})^{\frac{a+2s-\mu}{2(a+s)}} g_{\alpha_{j}}(AA^{*}) \prod_{k=j+1}^{l} r_{\alpha_{k}}(AA^{*})(y-y^{\delta}+u_{j}) \right\| + \left\| \sum_{j=0}^{l} (A^{*}A)^{\frac{s-\mu}{2(a+s)}} \prod_{k=j+1}^{l} r_{\alpha_{k}}(A^{*}A) \left[g_{\alpha_{j}}(A_{j}^{*}A_{j})A_{j}^{*} - g_{\alpha_{j}}(A^{*}A)A^{*} \right] (F(x_{j}) - y^{\delta}) \right\|.$$

Since $(a-b)/\beta < \mu \le b+2s$ and $0 \le b \le a$, we have

$$0 \le \frac{a+2s-\mu}{2(a+s)} < 1$$
 and $-\frac{b+s}{2(a+s)} \le \frac{s-\mu}{2(a+s)} < \frac{1}{2}$.

Thus we may use Assumption 2 and Lemma 2 to conclude

$$||e_{l+1}||_{\mu} \lesssim ||\omega|| + \sum_{j=0}^{l} \frac{1}{\alpha_{j}} (s_{l} - s_{j-1})^{-\frac{a+2s-\mu}{2(a+s)}} (\delta + ||u_{j}||)$$

$$+ \sum_{j=0}^{l} \frac{1}{\alpha_{j}} (s_{l} - s_{j-1})^{-\frac{b+2s-\mu}{2(a+s)}} K_{0} ||e_{j}||^{\beta} ||F(x_{j}) - y^{\delta}||. \tag{3.11}$$

Moreover, by using (3.7), Assumption 2 and Lemma 2, we have from (3.6) that

$$||Te_{l+1} - y^{\delta} + y|| \le s_l^{-\frac{a+\mu}{2(a+s)}} ||\omega|| + \delta + b_2 \sum_{j=0}^{l} \frac{1}{\alpha_j} (s_l - s_{j-1})^{-1} ||u_j||$$

$$+ c_4 \sum_{j=0}^{l} \frac{1}{\alpha_j} (s_l - s_{j-1})^{-\frac{b+a+2s}{2(a+s)}} K_0 ||e_j||^{\beta} ||F(x_j) - y^{\delta}||, \quad (3.12)$$

where $c_4 > 0$ is a generic constant.

By using the interpolation inequality (2.3), Assumption 3(a) and the induction hypotheses, it follows for all $0 \le j \le l$ that

$$||e_j|| \le ||e_j||_{-a}^{\frac{\mu}{a+\mu}} ||e_j||_{\mu}^{\frac{a}{a+\mu}} \lesssim ||Te_j||_{\mu}^{\frac{\mu}{a+\mu}} ||e_j||_{\mu}^{\frac{a}{a+\mu}} \lesssim ||\omega|| s_j^{-\frac{\mu}{2(a+s)}}.$$
(3.13)

With the help of (2.17) and the interpolation inequality (2.3), we have

$$||u_j|| \le K_0 ||e_j||^{\beta} ||e_j||_{-b} \le K_0 ||e_j||_{a^{\frac{b+\mu+\mu\beta}{a^{\frac{a+\mu}}}}} ||e_j||_{\mu}^{\frac{a+a\beta-b}{a^{\frac{a+\mu}}}}.$$
 (3.14)

We then obtain from Assumption 3(a) and the induction hypotheses that

$$||u_j|| \lesssim K_0 ||Te_j||^{\frac{b+\mu+\mu\beta}{a+\mu}} ||e_j||_{\mu}^{\frac{a+a\beta-b}{a+\mu}} \lesssim K_0 ||\omega||^{1+\beta} s_j^{-\frac{b+\mu+\mu\beta}{2(a+s)}}.$$
 (3.15)

On the other hand, since (2.1) and the induction hypotheses implies

$$||e_i||_{-a} \lesssim ||e_i||_{\mu} \lesssim ||\omega||, \quad 0 \leq j \leq l$$

and since $\mu > (a-b)/\beta$, we have from (3.14) and Assumption 3(a) that

$$||u_{j}|| \lesssim K_{0}||e_{j}||_{-a}||e_{j}||_{-a}^{\frac{b-a+\mu\beta}{a+\mu}}||e_{j}||_{\mu}^{\frac{a+a\beta-b}{a+\mu}} \lesssim K_{0}||\omega||^{\beta}||Te_{j}||. \tag{3.16}$$

Therefore, by using the fact

$$\delta \le \frac{2c_0}{\tau - 1} \|\omega\| s_j^{-\frac{a + \mu}{2(a + s)}}, \qquad 0 \le j \le l$$
(3.17)

and the induction hypotheses we have

$$||F(x_j) - y^{\delta}|| \le \delta + ||Te_j|| + ||u_j|| \lesssim ||\omega|| s_j^{-\frac{a+\mu}{2(a+s)}}.$$
 (3.18)

In view of the estimates (3.13), (3.15), (3.18) and the inequality

$$\sum_{i=0}^{l} \frac{1}{\alpha_{i}} (s_{l} - s_{j-1})^{-\frac{a+2s-\mu}{2(a+s)}} \lesssim s_{l}^{\frac{a+\mu}{2(a+s)}}$$

which follows from Lemma 3, we have from (3.11) and (3.12) that

$$||e_{l+1}||_{\mu} \leq c_5 ||\omega|| + c_5 s_l^{\frac{a+\mu}{2(a+s)}} \delta$$

$$+ CK_0 ||\omega||^{1+\beta} \sum_{j=0}^{l} \frac{1}{\alpha_j} (s_l - s_{j-1})^{-\frac{a+2s-\mu}{2(a+s)}} s_j^{-\frac{b+\mu+\mu\beta}{2(a+s)}}$$

$$+ CK_0 ||\omega||^{1+\beta} \sum_{i=0}^{l} \frac{1}{\alpha_j} (s_l - s_{j-1})^{-\frac{b+2s-\mu}{2(a+s)}} s_j^{-\frac{a+\mu+\mu\beta}{2(a+s)}}$$

and

$$||Te_{l+1} - y^{\delta} + y|| \le ||\omega|| s_l^{-\frac{a+\mu}{2(a+s)}} + \delta$$

$$+ CK_0 ||\omega||^{1+\beta} \sum_{j=0}^{l} \frac{1}{\alpha_j} (s_l - s_{j-1})^{-1} s_j^{-\frac{b+\mu+\mu\beta}{2(a+s)}}$$

$$+ CK_0 ||\omega||^{1+\beta} \sum_{j=0}^{l} \frac{1}{\alpha_j} (s_l - s_{j-1})^{-\frac{b+a+2s}{2(a+s)}} s_j^{-\frac{a+\mu+\mu\beta}{2(a+s)}},$$

where c_5 and C are two positive generic constants.

With the help of Lemma 3, $\mu > (a - b)/\beta$, (3.17) and (2.8) we have

$$||e_{l+1}||_{\mu} \le \left(c_5 + \frac{2}{\tau - 1}c_0c_5 + CK_0||\omega||^{\beta}\right)||\omega||,$$

and

$$||Te_{l+1} - y^{\delta} + y|| \le \delta + (1 + CK_0 ||\omega||^{\beta}) ||\omega|| s_l^{-\frac{a+\mu}{2(a+s)}}$$

$$\le \delta + c_0 (1 + CK_0 ||\omega||^{\beta}) ||\omega|| s_{l+1}^{-\frac{a+\mu}{2(a+s)}}.$$
(3.19)

Consequently $||e_{l+1}||_{\mu} \leq C_* ||\omega||$ if $C_* \geq 2c_5 + \frac{2}{\tau - 1}c_0c_5$ and $K_0 ||\omega||^{\beta}$ is suitably small. Moreover, from (3.19), (3.17) and (2.8) we also have

$$||Te_{l+1}|| \leq 2\delta + c_0 \left(1 + CK_0 ||\omega||^{\beta}\right) ||\omega|| s_{l+1}^{-\frac{a+\mu}{2(a+s)}}$$

$$\leq \left(\frac{4c_0^2}{\tau - 1} + c_0 + CK_0 ||\omega||^{\beta}\right) ||\omega|| s_{l+1}^{-\frac{a+\mu}{2(a+s)}}$$

$$\leq C_* ||\omega|| s_{l+1}^{-\frac{a+\mu}{2(a+s)}}$$

if $C_* \geq 2c_0 + \frac{4c_0^2}{\tau - 1}$ and $K_0 \|\omega\|^{\beta}$ is suitably small. We therefore complete the proof of (3.9). In the meanwhile, (3.19) gives the proof of (3.10).

From Proposition 1 and its proof it follows that $x_n \in B_{\rho}(x^{\dagger})$ for $0 \leq n \leq \tilde{n}_{\delta}$ if $\|\omega\|$ is sufficiently small. Furthermore, from (3.15) and (3.16) we have

$$||F(x_n) - y - Te_n|| \lesssim K_0 ||\omega||^{1+\beta} s_n^{-\frac{b+\mu+\mu\beta}{2(a+s)}}$$
 (3.20)

and

$$||F(x_n) - y - Te_n|| \lesssim K_0 ||\omega||^{\beta} ||Te_n||$$
 (3.21)

for $0 < n < \tilde{n}_{\delta}$.

In the following we will show that $n_{\delta} \leq \tilde{n}_{\delta}$ for the integer n_{δ} defined by (1.8) with $\tau > 1$. Consequently, the method given by (1.7) and (1.8) is well-defined.

Lemma 4 Let all the conditions in Proposition 1 hold. Let $\tau > 1$ be a given number. If $e_0 \in X_\mu$ for some $(a - b)/\beta < \mu \le b + 2s$ and if $K_0 ||e_0||_\mu^\beta$ is suitably small, then the discrepancy principle (1.8) defines a finite integer n_δ satisfying $n_\delta \le \tilde{n}_\delta$.

Proof From Proposition 1, (3.20) and $\mu > (a-b)/\beta$ it follows for $0 \le n \le \tilde{n}_{\delta}$ that

$$||F(x_n) - y^{\delta}|| \le ||F(x_n) - y - Te_n|| + ||Te_n - y^{\delta} + y||$$

$$\le CK_0 ||\omega||^{1+\beta} s_n^{-\frac{b+\mu+\mu\beta}{2(a+s)}} + (c_0 + CK_0 ||\omega||^{\beta}) s_n^{-\frac{a+\mu}{2(a+s)}} ||\omega|| + \delta$$

$$\le (c_0 + CK_0 ||\omega||^{\beta}) s_n^{-\frac{a+\mu}{2(a+s)}} ||\omega|| + \delta.$$

By setting $n = \tilde{n}_{\delta}$ in the above inequality and using the definition of \tilde{n}_{δ} we obtain

$$||F(x_{\tilde{n}_{\delta}}) - y^{\delta}|| \le \left(1 + \frac{\tau - 1}{2} + CK_0||\omega||^{\beta}\right)\delta \le \tau\delta$$

if $K_0\|\omega\|^{\beta}$ is suitably small. According to the definition of n_{δ} we have $n_{\delta} \leq \tilde{n}_{\delta}$.

Now we are ready to prove the main result concerning the order optimal convergence rates for the method defined by (1.7) and (1.8) with $\tau > 1$.

Theorem 1 Let F satisfy Assumptions 3, let $\{g_{\alpha}\}$ satisfy Assumptions 1 and 2, and let $\{\alpha_n\}$ be a sequence of positive numbers satisfying (2.8). If $e_0 \in X_{\mu}$ for some $(a-b)/\beta < \mu \leq b+2s$ and if $K_0\|e_0\|_{\mu}^{\beta}$ is suitably small, then for all $r \in [-a,\mu]$ there holds

$$||x_{n_{\delta}} - x^{\dagger}||_{r} \le C||e_{0}||_{\mu}^{\frac{a+r}{a+\mu}} \delta^{\frac{\mu-r}{a+\mu}}$$

for the integer n_{δ} determined by the discrepancy principle (1.8) with $\tau > 1$, where C > 0 is a generic constant.

Proof It follows from (3.21) that if $K_0 \|\omega\|^{\beta}$ is suitably small then

$$||F(x_n) - y - Te_n|| \le \frac{1}{2} ||Te_n||$$

which implies $||Te_n|| \le 2||F(x_n) - y||$ for $0 \le n \le \tilde{n}_{\delta}$. Since Lemma 4 implies $n_{\delta} \le \tilde{n}_{\delta}$, it follows from Assumption 3(a) and the definition of n_{δ} that

$$||e_{n_{\delta}}||_{-a} \le \frac{1}{m} ||Te_{n_{\delta}}|| \le \frac{2}{m} (||F(x_{n_{\delta}}) - y^{\delta}|| + \delta) \le \frac{2(1+\tau)}{m} \delta.$$

But from Proposition 1 we have $||e_{n_{\delta}}||_{\mu} \leq C_* ||\omega||$. The desired estimate then follows from the interpolation inequality (2.3) and (3.7).

Remark 1 If F satisfies (2.16) and $\{x_n\}$ is defined by (1.7) with s > -a/2, then the order optimal convergence rate holds for $x_0 - x^{\dagger} \in X_{\mu}$ with $0 < \mu \le a + 2s$. On the other hand, if F'(x) satisfies the Lipschitz condition

$$||F'(x) - F'(x^{\dagger})|| \le K_0 ||x - x^{\dagger}||, \quad x \in B_{\rho}(x^{\dagger})$$

and $\{x_n\}$ is defined by (1.7) with s > a/2, then the order optimal convergence rate holds for $x_0 - x^{\dagger} \in X_{\mu}$ with $a < \mu \leq 2s$.

4 Examples

In this section we will give several important examples of $\{g_{\alpha}\}$ that satisfy Assumptions 1 and 2. Thus, Theorem 1 applies to the corresponding methods if F satisfies Assumption 3 and $\{\alpha_n\}$ satisfies (2.8). For all these examples, the functions g_{α} are analytic at least in the domain

$$D_{\alpha} := \{ z \in \mathbb{C} : z \neq -\alpha, -1 \}.$$

Moreover, for each $\alpha > 0$, we always take the closed contour Γ_{α} to be (see [1])

$$\Gamma_{\alpha} = \Gamma_{\alpha}^{(1)} \cup \Gamma_{\alpha}^{(2)} \cup \Gamma_{\alpha}^{(3)} \cup \Gamma_{\alpha}^{(4)},$$

with

$$\Gamma_{\alpha}^{(1)} := \{ z = \frac{\alpha}{2} e^{i\phi} : \phi_0 \le \phi \le 2\pi - \phi_0 \},$$

$$\Gamma_{\alpha}^{(2)} := \{ z = R e^{i\phi} : -\phi_0 \le \phi \le \phi_0 \},$$

$$\Gamma_{\alpha}^{(3)} := \{ z = t e^{i\phi_0} : \alpha/2 \le t \le R \},$$

$$\Gamma_{\alpha}^{(4)} := \{ z = t e^{-i\phi_0} : \alpha/2 \le t \le R \},$$

where $R > \max\{1, \alpha\}$ and $0 < \phi_0 < \pi/2$ are fixed numbers. Clearly $\Gamma_\alpha \subset D_\alpha$ and [0, 1] lies inside Γ_α . It is straightforward to check that (2.9) is satisfied.

Example 1 We first consider for $\alpha > 0$ the function g_{α} given by

$$g_{\alpha}(\lambda) = \frac{(\alpha + \lambda)^N - \alpha^N}{\lambda(\alpha + \lambda)^N}$$

where $N \geq 1$ is a fixed integer. This function arises from the iterated Tikhonov regularization of order N for linear ill-posed problems. The corresponding method (1.7) becomes

$$u_{n,0} = x_n,$$

$$u_{n,l+1} = u_{n,l} - \left(\alpha_n L^{2s} + T_n^* T_n\right)^{-1} T_n^* \left(F(x_n) - y^{\delta} - T_n(x_n - u_{n,l})\right),$$

$$l = 0, \dots, N - 1,$$

$$x_{n+1} = u_{n,N},$$

where $T_n := F'(x_n)$. When N = 1, this is the Levenberg-Marquardt method in Hilbert scales. The corresponding residual function is $r_{\alpha}(\lambda) = \alpha^N (\alpha + \lambda)^{-N}$. In order to verify Assumption 2, we recall the inequality (see [9, Lemma 3])

$$\lambda \prod_{k=j}^{n} \frac{\alpha_k}{\alpha_k + \lambda} \le (s_n - s_{j-1})^{-1}$$
 for all $\lambda \ge 0$.

Then for $0 \le \nu \le 1$ and $\lambda \ge 0$ we have

$$\lambda^{\nu} \prod_{k=j}^{n} r_{\alpha_k}(\lambda) \le \left(\lambda \prod_{k=j}^{n} \frac{\alpha_k}{\alpha_k + \lambda}\right)^{\nu} \le (s_n - s_{j-1})^{-\nu}$$

and

$$\begin{split} \lambda^{\nu} g_{\alpha_j}(\lambda) \prod_{k=j+1}^n r_{\alpha_k}(\lambda) &= \frac{(\alpha_j + \lambda)^N - \alpha_j^N}{\alpha_j^N \lambda^{1-\nu}} \prod_{k=j}^n \left(\frac{\alpha_k}{\alpha_k + \lambda}\right)^N \\ &= \sum_{l=0}^{N-1} \binom{N}{l} \alpha_j^{l-N} \lambda^{N+\nu-l-1} \prod_{k=j}^n \left(\frac{\alpha_k}{\alpha_k + \lambda}\right)^N \\ &\leq \sum_{l=0}^{N-1} \binom{N}{l} \alpha_j^{l-N} \left(\lambda \prod_{k=j}^n \frac{\alpha_k}{\alpha_k + \lambda}\right)^{N+\nu-l-1} \\ &\leq \sum_{l=0}^{N-1} \binom{N}{l} \alpha_j^{l-N} (s_n - s_{j-1})^{-N-\nu+l+1} \\ &\leq C_N \frac{1}{\alpha_j} (s_n - s_{j-1})^{-\nu}, \end{split}$$

where $C_N = 2^N - 1$ and we used the fact $\alpha_j^{-1} \le s_n - s_{j-1}$. We therefore obtain (2.12) and (2.13) in Assumption 2.

Next we will verify (2.10) in Assumption 1. Note that

$$\varphi_{\alpha}(z) = \frac{\alpha(\alpha + z)^{N-1} - \alpha^{N}}{z(\alpha + z)^{N}} = \frac{1}{z(\alpha + z)^{N}} \sum_{i=0}^{N-2} \binom{N-1}{i} \alpha^{j+1} z^{N-1-j}.$$

It is easy to check $|\varphi_{\alpha}(z)| \lesssim \alpha^{-1}$ on $\Gamma_{\alpha}^{(1)}$ and $|\varphi_{\alpha}(z)| \lesssim 1$ on $\Gamma_{\alpha}^{(2)}$. Moreover, on $\Gamma_{\alpha}^{(3)} \cup \Gamma_{\alpha}^{(4)}$ there holds

$$|\varphi_{\alpha}(z)| \lesssim \frac{1}{t(\alpha+t)^N} \sum_{j=0}^{N-2} \alpha^{j+1} t^{N-1-j} \lesssim \sum_{j=0}^{N-2} \alpha^{j+1} t^{-2-j}.$$

Therefore

$$\begin{split} \int_{\Gamma_{\alpha}} |\varphi_{\alpha}(z)| |dz| &= \int_{\Gamma_{\alpha}^{(1)}} |\varphi_{\alpha}(z)| |dz| + \int_{\Gamma_{\alpha}^{(2)}} |\varphi_{\alpha}(z)| |dz| + \int_{\Gamma_{\alpha}^{(3)} \cup \Gamma_{\alpha}^{(4)}} |\varphi_{\alpha}(z)| |dz| \\ &\lesssim \alpha^{-1} \int_{\phi_{0}}^{2\pi - \phi_{0}} \alpha d\phi + \int_{-\phi_{0}}^{\phi_{0}} d\phi + \sum_{j=0}^{N-2} \alpha^{j+1} \int_{\alpha/2}^{R} t^{-2-j} dt \\ &\lesssim 1. \end{split}$$

Assumption 1 is therefore verified.

Example 2 We consider the method (1.7) with g_{α} given by

$$g_{\alpha}(\lambda) = \frac{1}{\lambda} \left(1 - e^{-\lambda/\alpha} \right)$$

which arises from the asymptotic regularization for linear ill-posed problems. In this method, the iterative sequence $\{x_n\}$ is equivalently defined as $x_{n+1} := x(1/\alpha_n)$, where x(t) is the unique solution of the initial value problem

$$\frac{d}{dt}x(t) = L^{-2s}F'(x_n)^* \left(y^{\delta} - F(x_n) + F'(x_n)(x_n - x(t))\right), \quad t > 0,$$

 $x(0) = x_n.$

The corresponding residual function is $r_{\alpha}(\lambda) = e^{-\lambda/\alpha}$. We first verify Assumption 2. It is easy to see

$$\lambda^{\nu} \prod_{k=j}^{n} r_{\alpha_{j}}(\lambda) = \lambda^{\nu} e^{-\lambda(s_{n} - s_{j-1})} \le \nu^{\nu} e^{-\nu} (s_{n} - s_{j-1})^{-\nu} \le (s_{n} - s_{j-1})^{-\nu}$$

for $0 \le \nu \le 1$ and $\lambda \ge 0$. This shows (2.12). By using the elementary inequality $e^{-p\lambda} - e^{-q\lambda} \le (q-p)/q$ for $0 and <math>\lambda \ge 0$ and observing that $0 \le r_{\alpha}(\lambda) \le 1$ and $0 \le g_{\alpha}(\lambda) \le 1/\alpha$, we have for $0 \le \nu \le 1$ and $\lambda \ge 0$ that

$$\lambda^{\nu} g_{\alpha_{j}}(\lambda) \prod_{k=j+1}^{n} r_{\alpha_{k}}(\lambda) \leq \frac{1}{\alpha_{j}^{1-\nu}} \left(\lambda g_{\alpha_{j}}(\lambda) \prod_{k=j+1}^{n} r_{\alpha_{k}}(\lambda) \right)^{\nu}$$

$$= \frac{1}{\alpha_{j}^{1-\nu}} \left(e^{-(s_{n}-s_{j})\lambda} - e^{-(s_{n}-s_{j-1})\lambda} \right)^{\nu}$$

$$\leq \frac{1}{\alpha_{j}} (s_{n} - s_{j-1})^{-\nu}$$

which gives (2.13).

In order to verify (2.10) in Assumption 1, we note that

$$\varphi_{\alpha}(z) = \frac{1 - e^{-z/\alpha}}{z} - \frac{1}{\alpha + z} = \frac{\alpha - (\alpha + z)e^{-z/\alpha}}{z(\alpha + z)}.$$

It is easy to see that $|\varphi_{\alpha}(z)| \lesssim \alpha^{-1}$ on $\Gamma_{\alpha}^{(1)}$, $|\varphi_{\alpha}(z)| \lesssim 1$ on $\Gamma_{\alpha}^{(2)}$ and

$$|\varphi_{\alpha}(z)| \lesssim \frac{\alpha + (\alpha + t)e^{-\frac{t}{\alpha}\cos\phi_0}}{t(\alpha + t)} \lesssim \alpha t^{-2}$$

on $\Gamma_{\alpha}^{(3)} \cup \Gamma_{\alpha}^{(4)}$. Therefore

$$\int_{\Gamma_{\alpha}} |\varphi_{\alpha}(z)| |dz| \lesssim 1 + \int_{\alpha/2}^{R} \alpha t^{-2} dt \lesssim 1.$$

Example 3 We consider for $0 < \alpha \le 1$ the function g_{α} given by

$$g_{\alpha}(\lambda) = \sum_{l=0}^{[1/\alpha]-1} (1-\lambda)^l = \frac{1-(1-\lambda)^{[1/\alpha]}}{\lambda}$$

which arises from the linear Landweber iteration, where $[1/\alpha]$ denotes the largest integer not greater than $1/\alpha$. The method (1.7) then becomes

$$u_{n,0} = x_n,$$

 $u_{n,l+1} = u_{n,l} - L^{-2s} T_n^* \left(F(x_n) - y^{\delta} - T_n(x_n - u_{n,l}) \right), \quad 0 \le l \le [1/\alpha_n] - 1,$
 $x_{n+1} = u_{n,[1/\alpha_n]},$

where $T_n := F'(x_n)$. When $\alpha_n = 1$ for all n, this method reduces to the Landweber iteration in Hilbert scales proposed in [13]. The corresponding residual function is $r_{\alpha}(\lambda) = (1 - \lambda)^{[1/\alpha]}$. We first verify Assumption 2 when the sequence $\{\alpha_n\}$ is given by $\alpha_n = 1/k_n$ for some integers $k_n \geq 1$. Then for $0 \leq \nu \leq 1$ and $0 \leq \lambda \leq 1$ we have

$$\lambda^{\nu} \prod_{k=j}^{n} r_{\alpha_k}(\lambda) = \lambda^{\nu} (1-\lambda)^{s_n - s_{j-1}} \le \nu^{\nu} (s_n - s_{j-1})^{-\nu} \le (s_n - s_{j-1})^{-\nu}.$$

We thus obtain (2.12). Observing that $0 \le r_{\alpha_j}(\lambda) \le 1$ and $0 \le g_{\alpha_j}(\lambda) \le 1/\alpha_j$ for $0 \le \lambda \le 1$, we have

$$\lambda^{\nu} g_{\alpha_j}(\lambda) \prod_{k=j+1}^n r_{\alpha_k}(\lambda) \leq \frac{1}{\alpha_j^{1-\nu}} \left(\lambda g_{\alpha_j}(\lambda) \prod_{k=j+1}^n r_{\alpha_k}(\lambda) \right)^{\nu}$$
$$= \frac{1}{\alpha_j^{1-\nu}} \left((1-\lambda)^{s_n-s_j} - (1-\lambda)^{s_n-s_{j-1}} \right)^{\nu}.$$

Thus, (2.13) follows from the elementary inequality $t^p - t^q \le (q - p)/q$ for $0 and <math>0 \le t \le 1$.

In order to verify (2.10) in Assumption 1, in the definition of Γ_{α} we pick R > 1 and $0 < \phi_0 < \pi/2$ such that $R < 2\cos\phi_0$. Note that

$$\varphi_{\alpha}(z) = \frac{1 - (1 - z)^{[1/\alpha]}}{z} - \frac{1}{\alpha + z} = \frac{\alpha - (\alpha + z)(1 - z)^{[1/\alpha]}}{z(\alpha + z)}.$$

By using the fact $(1+\alpha)^{1/\alpha} \leq e$ we can see

$$|\varphi_{\alpha}(z)| \lesssim \alpha^{-1} (1 + \alpha/2)^{1/\alpha} \lesssim \alpha^{-1}$$
 on $\Gamma_{\alpha}^{(1)}$

According to the choice of R and ϕ_0 , we have $1 + R^2 - 2R\cos\phi_0 < 1$. Thus

$$|\varphi_{\alpha}(z)| \lesssim \frac{\alpha + (\alpha + R)(1 + R^2 - 2R\cos\phi_0)^{[1/\alpha]/2}}{R(R + \alpha)} \lesssim 1$$
 on $\Gamma_{\alpha}^{(2)}$.

Furthermore, on $\Gamma_{\alpha}^{(3)} \cup \Gamma_{\alpha}^{(4)}$ we have

$$|\varphi_{\alpha}(z)| \lesssim \frac{\alpha + (\alpha + t)(1 + t^2 - 2t\cos\phi_0)^{1/(2\alpha)}}{t(\alpha + t)}.$$

Therefore

$$\int_{\Gamma_{\alpha}} |\varphi_{\alpha}(z)| |dz| \lesssim 1 + \int_{\alpha/2}^{R} \frac{\alpha + (\alpha + t)(1 + t^{2} - 2t\cos\phi_{0})^{1/(2\alpha)}}{t(\alpha + t)} dt$$

$$= 1 + \int_{1/2}^{R/\alpha} \frac{1 + (1 + t)(1 + \alpha^{2}t^{2} - 2\alpha t\cos\phi_{0})^{1/(2\alpha)}}{t(1 + t)} dt$$

$$\lesssim 1 + \int_{1/2}^{R/\alpha} (1 + \alpha^{2}t^{2} - 2\alpha t\cos\phi_{0})^{1/(2\alpha)} dt.$$

Observe that for $1/2 \le t \le R/\alpha$ there holds

$$(1 + \alpha^2 t^2 - 2\alpha t \cos \phi_0)^{1/(2\alpha)} \le (1 - \mu_0 \alpha t)^{1/(2\alpha)} \le e^{-\mu_0 t/2}$$

with $\mu_0 := 2\cos\phi_0 - R > 0$. Thus

$$\int_{\Gamma_{\alpha}} |\varphi_{\alpha}(z)| |dz| \lesssim 1 + \int_{1/2}^{\infty} e^{-\mu_0 t/2} dt \lesssim 1.$$

Example 4 We consider for $0 < \alpha \le 1$ the function g_{α} given by

$$g_{\alpha}(\lambda) = \sum_{i=1}^{[1/\alpha]} (1+\lambda)^{-i} = \frac{1-(1+\lambda)^{-[1/\alpha]}}{\lambda}$$

which arises from the Lardy method for linear inverse problems. Then the method (1.7) becomes

$$u_{n,0} = x_n,$$

$$u_{n,l+1} = u_{n,l} - (L^{2s} + T_n^* T_n)^{-1} T_n^* \left(F(x_n) - y^{\delta} - T_n(x_n - u_{n,l}) \right),$$

$$l = 0, \dots, [1/\alpha_n] - 1,$$

$$x_{n+1} = u_{n,[1/\alpha_n]},$$

where $T_n = F'(x_n)$. The residual function is $r_{\alpha}(\lambda) = (1+\lambda)^{-[1/\alpha]}$. Assumption 1 and Assumption 2 can be verified similarly as in Example 3 when the sequence $\{\alpha_n\}$ is given by $\alpha_n = 1/k_n$ for some integers $k_n \geq 1$.

References

- A. B. Bakushinsky and M. Yu. Kokurin, Iterative Methods for Approximate Solutions of Inverse Problems, Mathematics and its applications, Springer, 2004.
- R. S. Dembo, S. C. Eisenstat and T. Steihaug, *Inexact Newton methods*, SIAM J. Numer. Anal., 19 (1982), 400–408.
- H. W. Engl, M. Hanke and A. Neunauer, Regularization of Inverse Problems, Kluwer, Dordrecht, 1996.
- M. Hanke, A regularizing Levenberg-Marquardt scheme with applications to inverse groundwater filtration problems, Inverse Problems, 13(1997), 79–95.
- 5. M. Hanke, The regularizing Levenberg-Marquardt scheme is of optimal order, J. Integeral Equations and Applications, 22 (2010), no. 2, 259–283.
- M. Hanke, A. Neubauer and O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numer. Math., 72 (1995), 21–37.
- M. Hochbruck, M. Hönig and A. Ostermann, A convergence analysis of the exponential Euler iteration for nonlinear ill-posed problems, Inverse Problems, 25 (2009), no.7, article no. 075009.
- Q. Jin, Error estimates of some Newton-type methods for solving nonlinear inverse problems in Hilbert scales, Inverse Problems, 16 (2000), no. 1, 187–197.
- Q. Jin, On a regularized Levenberg-Marquardt method for solving nonlinear inverse problems, Numer. Math., 115 (2010), no. 2, 229–259.
- J. Köhler and U. Tautenhahn, Error bounds for regularized solutions of nonlinear ill-posed problems, J. Inv. Ill-Posed Problems 3 (1995), 47–74.
- 11. A. Lechleiter and A. Rieder, Towards a general convergence theory for inexact Newton regularizations, Numer. Math. 114 (2010), no. 3, 521–548.
- 12. F. Natterer, Error bounds for Tikhonov regularization in Hilbert scales, Appl. Anal., 18 (1984), 20_37
- A. Neubauer, On Landweber iteration for nonlinear ill-posed problems in Hilbert scales, Numer. Math., 85 (2000), 309–328.
- A. Rieder, On the regularization of nonlinear ill-posed problems via inexact Newton iterations, Inverse Problems, 15(1999), 309–327.
- A. Rieder, On convergence rates of inexact Newton regularizations, Numer. Math. 88(2001), 347–365.
- U. Tautenhahn, Error estimates for regularization methods in Hilbert scales, SIAM J. Numer Anal., 33 (1996), 2120–2130.
- 17. U. Tautenhahn, On a general regularization scheme for nonlinear ill-posed problems: II. regularization in Hilbert scales, Inverse Problems, 14 (1998), 1607–1616.