Inexact Newton regularization methods in Hilbert scales

Qinian Jin • Ulrich Tautenhahn

Abstract

We consider a class of inexact Newton regularization methods for solving nonlinear inverse problems in Hilbert scales. Under certain conditions we obtain the order optimal convergence rate result.

1 Introduction

In this paper we consider the nonlinear inverse problems

$$
\begin{equation*}
F(x)=y, \tag{1.1}
\end{equation*}
$$

where $F: D(F) \subset X \mapsto Y$ is a nonlinear Fréchet differentiable operator between two Hilbert spaces X and Y whose norms and inner products are denoted as $\|\cdot\|$ and (\cdot, \cdot) respectively. We assume that (1.1) has a solution x^{\dagger} in the domain $D(F)$ of F, i.e. $F\left(x^{\dagger}\right)=y$. We use $F^{\prime}(x)$ to denote the Fréchet derivative of F at $x \in D(F)$ and $F^{\prime}(x)^{*}$ the adjoint of $F^{\prime}(x)$. A characteristic property of such problems is their ill-posedness in the sense that their solutions do not depend continuously on the data. Let y^{δ} be the only available approximation of y satisfying

$$
\begin{equation*}
\left\|y^{\delta}-y\right\| \leq \delta \tag{1.2}
\end{equation*}
$$

with a given small noise level $\delta>0$. Due to the ill-posedness, the regularization techniques should be employed to produce from y^{δ} a stable approximate solution of (1.1).

Many regularization methods have been considered in the last two decades. In particular, the nonlinear Landweber iteration [6], the Levenberg-Marquardt method [4].9, and the exponential Euler iteration [7] have been applied to solve nonlinear inverse problems. These methods take the form

$$
\begin{equation*}
x_{n+1}=x_{n}-g_{\alpha_{n}}\left(F^{\prime}\left(x_{n}\right)^{*} F^{\prime}\left(x_{n}\right)\right) F^{\prime}\left(x_{n}\right)^{*}\left(F\left(x_{n}\right)-y^{\delta}\right), \tag{1.3}
\end{equation*}
$$

Qinian Jin
Department of Mathematics, Virginia Tech, Blacksburg, VA 24060, USA
E-mail: qnjin@math.vt.edu
Ulrich Tautenhahn
Department of Mathematics, University of Applied Sciences Zittau/Görlitz, PO Box 1454, 02754 Zittau, Germany
E-mail: u.tautenhahn@hs-zigr.de
where x_{0} is an initial guess of $x^{\dagger},\left\{\alpha_{n}\right\}$ is a sequence of positive numbers, and $\left\{g_{\alpha}\right\}$ is a family of spectral filter functions. The scheme (1.3) can be derived by applying the linear regularization method defined by $\left\{g_{\alpha}\right\}$ to the equation

$$
\begin{equation*}
F^{\prime}\left(x_{n}\right)\left(x-x_{n}\right)=y^{\delta}-F\left(x_{n}\right) \tag{1.4}
\end{equation*}
$$

which follows from (1.1) by replacing y by y^{δ} and $F(x)$ by its linearization $F\left(x_{n}\right)+$ $F^{\prime}\left(x_{n}\right)\left(x-x_{n}\right)$ at x_{n}. It is easy to see that

$$
F\left(x_{n}\right)-y^{\delta}+F^{\prime}\left(x_{n}\right)\left(x_{n+1}-x_{n}\right)=r_{\alpha_{n}}\left(F^{\prime}\left(x_{n}\right) F^{\prime}\left(x_{n}\right)^{*}\right)\left(F\left(x_{n}\right)-y^{\delta}\right)
$$

where

$$
\begin{equation*}
r_{\alpha}(\lambda)=1-\lambda g_{\alpha}(\lambda) \tag{1.5}
\end{equation*}
$$

which is called the residual function associated with g_{α}. For well-posed problems where $F^{\prime}\left(x_{n}\right)$ is invertible, usually one has $\left\|r_{\alpha_{n}}\left(F^{\prime}\left(x_{n}\right) F^{\prime}\left(x_{n}\right)^{*}\right)\right\| \leq \mu_{n}<1$ and consequently

$$
\begin{equation*}
\left\|F\left(x_{n}\right)-y^{\delta}+F^{\prime}\left(x_{n}\right)\left(x_{n+1}-x_{n}\right)\right\| \leq \mu_{n}\left\|F\left(x_{n}\right)-y^{\delta}\right\| . \tag{1.6}
\end{equation*}
$$

Thus the methods belong to the class of inexact Newton methods [2]. For ill-posed problems, however, there only holds $\left\|r_{\alpha_{n}}\left(F^{\prime}\left(x_{n}\right) F^{\prime}\left(x_{n}\right)^{*}\right)\right\| \leq 1$ in general. In [4] the Levenberg-Marquardt scheme was considered with $\left\{\alpha_{n}\right\}$ chosen adaptively so that (1.6) holds and the discrepancy principle was used to terminate the iteration. The order optimal convergence rates were derived recently in 5]. The general methods (1.3) with $\left\{\alpha_{n}\right\}$ chosen adaptively to satisfy (1.6) were considered later in [14,11, but only suboptimal convergence rates were derived in [15] and the convergence analysis is far from complete. On the other hand, one may consider the method (1.3) with $\left\{\alpha_{n}\right\}$ given a priori. This has been done for the Levenberg-Marquardt method in [9] and the exponential Euler method in [7] for instance.

In this paper we will consider the inexact Newton methods in Hilbert scales which are more general than (1.3). Let L be a densely defined self-adjoint strictly positive linear operator in X. For each $r \in \mathbb{R}$, we define X_{r} to be the completion of $\cap_{k=0}^{\infty} D\left(L^{k}\right)$ with respect to the Hilbert space norm

$$
\|x\|_{r}:=\left\|L^{r} x\right\| .
$$

This family of Hilbert spaces $\left(X_{r}\right)_{r \in \mathbb{R}}$ is called the Hilbert scales generated by L. Let $x_{0} \in D(F)$ be an initial guess of x^{\dagger}. The inexact Newton method in Hilbert scales defines the iterates $\left\{x_{n}\right\}$ by

$$
\begin{equation*}
x_{n+1}=x_{n}-g_{\alpha_{n}}\left(L^{-2 s} F^{\prime}\left(x_{n}\right)^{*} F^{\prime}\left(x_{n}\right)\right) L^{-2 s} F^{\prime}\left(x_{n}\right)^{*}\left(F\left(x_{n}\right)-y^{\delta}\right) \tag{1.7}
\end{equation*}
$$

where $s \in \mathbb{R}$ is a given number to be specified later, and $\left\{\alpha_{n}\right\}$ is an a priori given sequence of positive numbers with suitable properties. We will terminate the iteration by the discrepancy principle

$$
\begin{equation*}
\left\|F\left(x_{n_{\delta}}\right)-y^{\delta}\right\| \leq \tau \delta<\left\|F\left(x_{n}\right)-y^{\delta}\right\|, \quad 0 \leq n<n_{\delta} \tag{1.8}
\end{equation*}
$$

with a given number $\tau>1$ and consider the approximation property of $x_{n_{\delta}}$ to x^{\dagger} as $\delta \rightarrow 0$. We will establish for a large class of spectral filter functions $\left\{g_{\alpha}\right\}$ the order optimal convergence rates for the method defined by (1.7) and (1.8).

Regularization in Hilbert scales has been introduced in [12 for the linear Tikhonov regularization with the major aim to prevent the saturation effect. Such technique has been extended in various ways, in particular, a general class of regularization methods in Hilbert scales has been considered in [16] with the regularization parameter chosen by the Morozov's discrepancy principle. Regularization in Hilbert scales have
also been applied for solving nonlinear ill-posed problems. The nonlinear Tikhonov regularization in Hilbert scales has been considered in [10,3, a general continuous regularization scheme for nonlinear problems in Hilbert scales has been considered in [17], the general iteratively regularized Gauss-Newton methods in Hilbert scales has been considered in [8, and the nonlinear Landweber iteration in Hilbert scales has been considered in 13 .

This paper is organized as follows. In Section 2 we first briefly review the relevant properties of Hilbert scales, and then formulate the necessary condition on $\left\{\alpha_{n}\right\}$, $\left\{g_{\alpha}\right\}$ and F together with some crucial consequences. In Section 3 we obtain the main result concerning the order optimal convergence property of the method given by (1.7) and (1.8). Finally we present in Section 4 several examples of the method (1.7) for which $\left\{g_{\alpha}\right\}$ satisfies the technical conditions in Section 2.

2 Assumptions

We first briefly review the relevant properties of the Hilbert scales $\left(X_{r}\right)_{r \in \mathbb{R}}$ generated by a densely defined self-adjoint strictly positive linear operator L in X, see [3]. It is well known that X_{r} is densely and continuously embedded into X_{q} for any $-\infty<q<r<\infty$, i.e.

$$
\begin{equation*}
\|x\|_{q} \leq \theta^{r-q}\|x\|_{r}, \quad x \in X_{r}, \tag{2.1}
\end{equation*}
$$

where $\theta>0$ is a constant such that

$$
\begin{equation*}
\|x\|^{2} \leq \theta(L x, x), \quad x \in D(L) \tag{2.2}
\end{equation*}
$$

Moreover there holds the important interpolation inequality, i.e. for any $-\infty<p<$ $q<r<\infty$ there holds for any $x \in X_{r}$ that

$$
\begin{equation*}
\|x\|_{q} \leq\|x\|_{p}^{\frac{r-q}{r-p}}\|x\|_{r}^{\frac{q-p}{r-p}} . \tag{2.3}
\end{equation*}
$$

Let $T: X \mapsto Y$ be a bounded linear operator satisfying

$$
m\|h\|_{-a} \leq\|T h\| \leq M\|h\|_{-a}, \quad h \in X
$$

for some constants $M \geq m>0$ and $a \geq 0$. Then the operator $A:=T L^{-s}: X \mapsto Y$ is bounded for $s \geq-a$ and the adjoint of A is given by $A^{*}=L^{-s} T^{*}$, where $T^{*}: Y \mapsto X$ is the adjoint of T. Moreover, for any $|\nu| \leq 1$ there hold

$$
\begin{equation*}
R\left(\left(A^{*} A\right)^{\nu / 2}\right)=X_{\nu(a+s)} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{c}(\nu)\|h\|_{-\nu(a+s)} \leq\left\|\left(A^{*} A\right)^{\nu / 2} h\right\| \leq \bar{c}(\nu)\|h\|_{-\nu(a+s)} \tag{2.5}
\end{equation*}
$$

on $D\left(\left(A^{*} A\right)^{\nu / 2}\right)$, where

$$
\underline{c}(\nu):=\min \left\{m^{\nu}, M^{\nu}\right\} \quad \text { and } \quad \bar{c}(\nu)=\max \left\{m^{\nu}, M^{\nu}\right\} .
$$

If $g:\left[0,\|A\|^{2}\right] \mapsto \mathbb{R}$ is a continuous function, then

$$
\begin{equation*}
g\left(A^{*} A\right) L^{s}=L^{s} g\left(L^{-2 s} T^{*} T\right) \tag{2.6}
\end{equation*}
$$

In order to carry out the convergence analysis on the method defined by (1.7) and (1.8), we need to impose suitable conditions on $\left\{\alpha_{n}\right\},\left\{g_{\alpha}\right\}$ and F. For the sequence $\left\{\alpha_{n}\right\}$ of positive numbers, we set

$$
\begin{equation*}
s_{-1}=0, \quad s_{n}:=\sum_{j=0}^{n} \frac{1}{\alpha_{j}}, \quad n=0,1, \cdots . \tag{2.7}
\end{equation*}
$$

We will assume that there are constants $c_{0}>1$ and $c_{1}>0$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} s_{n}=\infty, \quad s_{n+1} \leq c_{0} s_{n} \quad \text { and } \quad 0<\alpha_{n} \leq c_{1}, \quad n=0,1, \cdots \tag{2.8}
\end{equation*}
$$

We will also assume that, for each $\alpha>0$, the function g_{α} is defined on $[0,1]$ and satisfies the following structure condition, where \mathbb{C} denotes the complex plane.

Assumption 1 For each $\alpha>0$, the function

$$
\varphi_{\alpha}(\lambda):=g_{\alpha}(\lambda)-\frac{1}{\alpha+\lambda}
$$

extends to a complex analytic function defined on a domain $D_{\alpha} \subset \mathbb{C}$ such that $[0,1] \subset$ D_{α}, and there is a contour $\Gamma_{\alpha} \subset D_{\alpha}$ enclosing $[0,1]$ such that

$$
\begin{equation*}
|z| \geq \frac{1}{2} \alpha \quad \text { and } \quad \frac{|z|+\lambda}{|z-\lambda|} \leq b_{0}, \quad \forall z \in \Gamma_{\alpha}, \alpha>0 \text { and } \lambda \in[0,1] \tag{2.9}
\end{equation*}
$$

where b_{0} is a constant independent of $\alpha>0$. Moreover, there is a constant b_{1} such that

$$
\begin{equation*}
\int_{\Gamma_{\alpha}}\left|\varphi_{\alpha}(z)\right||d z| \leq b_{1} \tag{2.10}
\end{equation*}
$$

for all $0<\alpha \leq c_{1}$.
By using the spectral integrals for self-adjoint operators, it follows easily from (2.9) in Assumption 11 that for any bounded linear operator A with $\|A\| \leq 1$ there holds

$$
\begin{equation*}
\left\|\left(z I-A^{*} A\right)^{-1}\left(A^{*} A\right)^{\nu}\right\| \leq \frac{b_{0}}{|z|^{1-\nu}} \tag{2.11}
\end{equation*}
$$

for $z \in \Gamma_{\alpha}$ and $0 \leq \nu \leq 1$.
Moreover, since Assumption 1 implies $\varphi_{\alpha}(z)$ is analytic in D_{α} for each $\alpha>0$, there holds the Riesz-Dunford formula (see [1])

$$
\varphi_{\alpha}\left(A^{*} A\right)=\frac{1}{2 \pi i} \int_{\Gamma_{\alpha}} \varphi_{\alpha}(z)\left(z I-A^{*} A\right)^{-1} d z
$$

for any linear operator A satisfying $\|A\| \leq 1$.
Assumption 2 Let $\left\{\alpha_{n}\right\}$ be a sequence of positive numbers, let $\left\{s_{n}\right\}$ be defined by (2.7). There is a constant $b_{2}>0$ such that

$$
\begin{align*}
0 \leq \lambda^{\nu} \prod_{k=j}^{n} r_{\alpha_{k}}(\lambda) & \leq\left(s_{n}-s_{j-1}\right)^{-\nu} \tag{2.12}\\
0 \leq \lambda^{\nu} g_{\alpha_{j}}(\lambda) \prod_{k=j+1}^{n} r_{\alpha_{k}}(\lambda) & \leq b_{2} \frac{1}{\alpha_{j}}\left(s_{n}-s_{j-1}\right)^{-\nu} \tag{2.13}
\end{align*}
$$

for $0 \leq \nu \leq 1,0 \leq \lambda \leq 1$ and $j=0,1, \cdots, n$, where $r_{\alpha}(\lambda)$ is defined by (1.5).
In Section 4 we will give several important examples of $\left\{g_{\alpha}\right\}$ satisfying Assumptions 11 and 2. These examples of $\left\{g_{\alpha}\right\}$ include the ones arising from (iterated) Tikhonov regularization, asymptotical regularization, Landweber iteration and Lardy method.

Lemma 1 The inequality (2.12) implies for $0 \leq \nu \leq 1$ and $\alpha>0$ that

$$
\begin{equation*}
0 \leq \lambda^{\nu}(\alpha+\lambda)^{-1} \prod_{k=j+1}^{n} r_{\alpha_{k}}(\lambda) \leq 2 \alpha^{\nu-1}\left(1+\alpha\left(s_{n}-s_{j}\right)\right)^{-\nu} \tag{2.14}
\end{equation*}
$$

for all $0 \leq \lambda \leq 1$ and $j=0,1, \cdots, n$.

Proof For $0 \leq \nu \leq 1$ and $\alpha>0$ it follows from (2.12) that

$$
\begin{aligned}
0 \leq \lambda^{\nu}(\alpha+\lambda)^{-1} \prod_{k=j+1}^{n} r_{\alpha_{k}}(\lambda) & \leq \min \left\{\alpha^{\nu-1}, \alpha^{-1}\left(s_{n}-s_{j}\right)^{-\nu}\right\} \\
& =\alpha^{\nu-1} \min \left\{1, \alpha^{-\nu}\left(s_{n}-s_{j}\right)^{-\nu}\right\} \\
& \leq 2^{\nu} \alpha^{\nu-1}\left(1+\alpha\left(s_{n}-s_{j}\right)\right)^{-\nu}
\end{aligned}
$$

for all $0 \leq \lambda \leq 1$ and $j=0,1, \cdots, n$.
Assumption 3 (a) There exist constants $a \geq 0$ and $0<m \leq M<\infty$ such that

$$
m\|h\|_{-a} \leq\left\|F^{\prime}(x) h\right\| \leq M\|h\|_{-a}, \quad h \in X
$$

for all $x \in B_{\rho}\left(x^{\dagger}\right)$.
(b) F is properly scaled so that $\left\|F^{\prime}(x) L^{-s}\right\|_{X \rightarrow Y} \leq \min \left\{1, \sqrt{\alpha_{0}}\right\}$ for all $x \in$ $B_{\rho}\left(x^{\dagger}\right)$, where $s \geq-a$.
(c) There exist $0<\beta \leq 1,0 \leq b \leq a$ and $K_{0} \geq 0$ such that

$$
\begin{equation*}
\left\|F^{\prime}(x)^{*}-F^{\prime}\left(x^{\dagger}\right)^{*}\right\|_{Y \rightarrow X_{b}} \leq K_{0}\left\|x-x^{\dagger}\right\|^{\beta} \tag{2.15}
\end{equation*}
$$

for all $x \in B_{\rho}\left(x^{\dagger}\right)$.
The number a in condition (a) can be interpreted as the degree of ill-posedness of $F^{\prime}(x)$ for $x \in B_{\rho}\left(x^{\dagger}\right)$. When F satisfies the condition

$$
\begin{equation*}
F^{\prime}(x)=R_{x} F^{\prime}\left(x^{\dagger}\right) \quad \text { and } \quad\left\|I-R_{x}\right\| \leq K_{0}\left\|x-x^{\dagger}\right\|, \tag{2.16}
\end{equation*}
$$

which has been verified in [6] for several nonlinear inverse problems, condition (a) is equivalent to

$$
m\|h\|_{-a} \leq\left\|F^{\prime}\left(x^{\dagger}\right) h\right\| \leq M\|h\|_{-a}, \quad h \in X
$$

From (a) and (2.1) it follows for $s \geq-a$ that $\left\|F^{\prime}(x) L^{-s}\right\|_{X \rightarrow Y} \leq M \theta^{a+s}$ for all $x \in B_{\rho}\left(x^{\dagger}\right)$. Thus $\left\|F^{\prime}(x) L^{-s}\right\|_{X \rightarrow Y}$ is uniformly bounded over $B_{\rho}\left(x^{\dagger}\right)$. By multiplying (1.1) by a sufficiently small number, we may assume that F is properly scaled so that condition (b) is satisfied. Furthermore, condition (a) implies that $F^{\prime}(x)^{*}$ maps Y into X_{b} for $b \leq a$ and $\left\|F^{\prime}(x)^{*}\right\|_{Y \rightarrow X_{b}} \leq M \theta^{a-b}$ for all $x \in B_{\rho}\left(x^{\dagger}\right)$. Condition (c) says that $F^{\prime}(x)^{*}$ is locally Hölder continuous around x^{\dagger} with exponent $0<\beta \leq 1$ when considered as operators from Y to X_{b}. It is equivalent to

$$
\left\|L^{b}\left[F^{\prime}(x)^{*}-F^{\prime}\left(x^{\dagger}\right)^{*}\right]\right\|_{Y \rightarrow X} \leq K_{0}\left\|x-x^{\dagger}\right\|^{\beta}, \quad x \in B_{\rho}\left(x^{\dagger}\right)
$$

or

$$
\left\|\left[F^{\prime}(x)-F^{\prime}\left(x^{\dagger}\right)\right] L^{b}\right\|_{X \rightarrow Y} \leq K_{0}\left\|x-x^{\dagger}\right\|^{\beta}, \quad x \in B_{\rho}\left(x^{\dagger}\right) .
$$

Condition (c) was used first in [13] for the convergence analysis of Landweber iteration in Hilbert scales. It is easy to see that when $b=0$ and $\beta=1$, this is exactly the Lipschitz condition on $F^{\prime}(x)$. When F satisfies (2.16), (c) holds with $b=a$ and $\beta=1$. In [13] it has been shown that (c) implies

$$
\begin{equation*}
\left\|F(x)-y-F^{\prime}\left(x^{\dagger}\right)\left(x-x^{\dagger}\right)\right\| \leq K_{0}\left\|x-x^{\dagger}\right\|^{\beta}\left\|x-x^{\dagger}\right\|_{-b} \tag{2.17}
\end{equation*}
$$

which follows easily from the identity

$$
F(x)-y-F^{\prime}\left(x^{\dagger}\right)\left(x-x^{\dagger}\right)=\int_{0}^{1}\left[F^{\prime}\left(x^{\dagger}+t\left(x-x^{\dagger}\right)\right)-F^{\prime}\left(x^{\dagger}\right)\right] L^{b} L^{-b}\left(x-x^{\dagger}\right) d t
$$

In this paper we will derive, under the above assumptions on $\left\{\alpha_{n}\right\},\left\{g_{\alpha}\right\}$ and F, the rate of convergence of $x_{n_{\delta}}$ to x^{\dagger} as $\delta \rightarrow 0$ when $e_{0}:=x_{0}-x^{\dagger}$ satisfies the smoothness condition

$$
\begin{equation*}
x_{0}-x^{\dagger} \in X_{\mu} \quad \text { with } \frac{a-b}{\beta}<\mu \leq b+2 s \tag{2.18}
\end{equation*}
$$

where n_{δ} is the integer determined by the discrepancy principle (1.8) with $\tau>1$.
The following consequence of the above assumptions on F and $\left\{g_{\alpha}\right\}$ plays a crucial role in the convergence analysis.

Lemma 2 Let $\left\{g_{\alpha}\right\}$ satisfy Assumptions 1 and $\left\{\alpha_{n}\right\}$ be a sequence of positive numbers. Let $A=F^{\prime}\left(x^{\dagger}\right) L^{-s}$ and for any $x \in B_{\rho}\left(x^{\dagger}\right)$ let $A_{x}=F^{\prime}(x) L^{-s}$. Then for $-\frac{b+s}{2(a+s)} \leq \nu \leq 1 / 2$ there holds ${ }^{1}$

$$
\left\|\left(A^{*} A\right)^{\nu} \prod_{k=j+1}^{n} r_{\alpha_{k}}\left(A^{*} A\right)\left[g_{\alpha_{j}}\left(A^{*} A\right) A^{*}-g_{\alpha_{j}}\left(A_{x}^{*} A_{x}\right) A_{x}^{*}\right]\right\| . \| \begin{aligned}
& \lesssim \frac{1}{\alpha_{j}}\left(s_{n}-s_{j-1}\right)^{-\nu-\frac{b+s}{2(a+s)}} K_{0}\left\|x-x^{\dagger}\right\|^{\beta}
\end{aligned}
$$

for $j=0,1, \cdots, n$.
Proof Let $\eta_{\alpha}(\lambda)=(\alpha+\lambda)^{-1}$ and $\varphi_{\alpha}(\lambda)=g_{\alpha}(\lambda)-(\alpha+\lambda)^{-1}$. We can write

$$
\left(A^{*} A\right)^{\nu} \prod_{k=j+1}^{n} r_{\alpha_{k}}\left(A^{*} A\right)\left[g_{\alpha_{j}}\left(A^{*} A\right) A^{*}-g_{\alpha_{j}}\left(A_{x}^{*} A_{x}\right) A_{x}^{*}\right]=J_{1}+J_{2}+J_{3}
$$

where

$$
\begin{aligned}
& J_{1}:=\left(A^{*} A\right)^{\nu} \prod_{k=j+1}^{n} r_{\alpha_{k}}\left(A^{*} A\right) g_{\alpha_{j}}\left(A^{*} A\right)\left[A^{*}-A_{x}^{*}\right], \\
& J_{2}
\end{aligned}:=\left(A^{*} A\right)^{\nu} \prod_{k=j+1}^{n} r_{\alpha_{k}}\left(A^{*} A\right)\left[\eta_{\alpha_{j}}\left(A^{*} A\right)-\eta_{\alpha_{j}}\left(A_{x}^{*} A_{x}\right)\right] A_{x}^{*}, ~=\left(A^{*} A\right)^{\nu} \prod_{k=j+1}^{n} r_{\alpha_{k}}\left(A^{*} A\right)\left[\varphi_{\alpha_{j}}\left(A^{*} A\right)-\varphi_{\alpha_{j}}\left(A_{x}^{*} A_{x}\right)\right] A_{x}^{*} .
$$

It suffices to show that the desired estimates hold for the norms of J_{1}, J_{2} and J_{3}.
From (2.5), (2.13) in Assumption 2 and Assumption 3 it follows that

$$
\begin{aligned}
\left\|J_{1}\right\| \lesssim & \left\|\left(A^{*} A\right)^{\nu} \prod_{k=j+1}^{n} r_{\alpha_{k}}\left(A^{*} A\right) g_{\alpha_{j}}\left(A^{*} A\right)\left(A^{*} A\right)^{\frac{b+s}{2(a+s)}}\right\| \\
& \times\left\|\left(A^{*} A\right)^{-\frac{b+s}{2(a+s)}}\left[A_{x}^{*}-A^{*}\right]\right\| \\
& \lesssim \sup _{0 \leq \lambda \leq 1}\left(\lambda^{\nu+\frac{b+s}{2(a+s)}} g_{\alpha_{j}}(\lambda) \prod_{k=j+1}^{n} r_{\alpha_{k}}(\lambda)\right)\left\|L^{b}\left[F^{\prime}(x)^{*}-F^{\prime}\left(x^{\dagger}\right)^{*}\right]\right\|_{Y \rightarrow X} \\
& \lesssim \frac{1}{\alpha_{j}}\left(s_{n}-s_{j-1}\right)^{-\nu-\frac{b+s}{2(a+s)}} K_{0}\left\|x-x^{\dagger}\right\|^{\beta}
\end{aligned}
$$

[^0]which is the desired estimate.
In order to estimate $\left\|J_{2}\right\|$, we note that
\[

$$
\begin{aligned}
\eta_{\alpha_{j}}\left(A^{*} A\right)-\eta_{\alpha_{j}}\left(A_{x}^{*} A_{x}\right)= & \left(\alpha_{j} I+A^{*} A\right)^{-1} A^{*}\left(A_{x}-A\right)\left(\alpha_{j} I+A_{x}^{*} A_{x}\right)^{-1} \\
& +\left(\alpha_{j} I+A^{*} A\right)^{-1}\left(A_{x}^{*}-A^{*}\right) A_{x}\left(\alpha_{j} I+A_{x}^{*} A_{x}\right)^{-1} .
\end{aligned}
$$
\]

Therefore $J_{2}=J_{2}^{(1)}+J_{2}^{(2)}$, where

$$
\begin{aligned}
& J_{2}^{(1)}=\left(A^{*} A\right)^{\nu} \prod_{k=j+1}^{n} r_{\alpha_{k}}\left(A^{*} A\right)\left(\alpha_{j} I+A^{*} A\right)^{-1} A^{*}\left(A_{x}-A\right)\left(\alpha_{j} I+A_{x}^{*} A_{x}\right)^{-1} A_{x}^{*}, \\
& J_{2}^{(2)}=\left(A^{*} A\right)^{\nu} \prod_{k=j+1}^{n} r_{\alpha_{k}}\left(A^{*} A\right)\left(\alpha_{j} I+A^{*} A\right)^{-1}\left(A_{x}^{*}-A^{*}\right) A_{x} A_{x}^{*}\left(\alpha_{j} I+A_{x} A_{x}^{*}\right)^{-1} .
\end{aligned}
$$

With the help of Assumption 3 and (2.5) we have for any $w \in Y$ that

$$
\begin{aligned}
\|\left(A_{x}-A\right)\left(\alpha_{j} I\right. & \left.+A_{x}^{*} A_{x}\right)^{-1} A_{x}^{*} w \| \\
& =\left\|\left[F^{\prime}(x)-F^{\prime}\left(x^{\dagger}\right)\right] L^{b} L^{-(b+s)}\left(\alpha_{j} I+A_{x}^{*} A_{x}\right)^{-1} A_{x}^{*} w\right\| \\
& \leq K_{0}\left\|x-x^{\dagger}\right\|^{\beta}\left\|\left(\alpha_{j} I+A_{x}^{*} A_{x}\right)^{-1} A_{x}^{*} w\right\|_{-(b+s)} \\
& \lesssim K_{0}\left\|x-x^{\dagger}\right\|^{\beta}\left\|\left(A_{x}^{*} A_{x}\right)^{\frac{b s}{2(a+s)}}\left(\alpha_{j} I+A_{x}^{*} A_{x}\right)^{-1} A_{x}^{*} w\right\| \\
& \lesssim K_{0}\left\|x-x^{\dagger}\right\|^{\beta} \alpha_{j}^{-\frac{1}{2}+\frac{b+s}{2(a+s)}}\|w\| .
\end{aligned}
$$

This implies

$$
\begin{equation*}
\left\|\left(A_{x}-A\right)\left(\alpha_{j} I+A_{x}^{*} A_{x}\right)^{-1} A_{x}^{*}\right\| \lesssim K_{0}\left\|x-x^{\dagger}\right\|^{\beta} \alpha_{j}^{-\frac{1}{2}+\frac{b+s}{2(a+s)}} \tag{2.19}
\end{equation*}
$$

Thus, by using Lemma 1, we derive

$$
\begin{aligned}
\left\|J_{2}^{(1)}\right\| & \leq \sup _{0 \leq \lambda \leq 1}\left(\lambda^{\nu+\frac{1}{2}}\left(\alpha_{j}+\lambda\right)^{-1} \prod_{k=j+1}^{n} r_{\alpha_{k}}(\lambda)\right)\left\|\left(A_{x}-A\right)\left(\alpha_{j} I+A_{x}^{*} A_{x}\right)^{-1} A_{x}^{*}\right\| \\
& \lesssim \alpha_{j}^{\nu-1+\frac{b+s}{2(a+s)}}\left(1+\alpha_{j}\left(s_{n}-s_{j}\right)\right)^{-\nu-\frac{1}{2}} K_{0}\left\|x-x^{\dagger}\right\|^{\beta} .
\end{aligned}
$$

By using Assumption 3, Lemma 1 and a similar argument in estimating J_{1} we can derive

$$
\begin{aligned}
\left\|J_{2}^{(2)}\right\| & \lesssim \sup _{0 \leq \lambda \leq 1}\left(\lambda^{\nu+\frac{b+s}{2(a+s)}}\left(\alpha_{j}+\lambda\right)^{-1} \prod_{k=j+1}^{n} r_{\alpha_{k}}(\lambda)\right)\left\|L^{b}\left[F^{\prime}(x)^{*}-F^{\prime}\left(x^{\dagger}\right)^{*}\right]\right\|_{Y \rightarrow X} \\
& \lesssim \alpha_{j}^{\nu-1+\frac{b+s}{2(a+s)}}\left(1+\alpha_{j}\left(s_{n}-s_{j}\right)\right)^{-\nu-\frac{b+s}{2(a+s)}} K_{0}\left\|x-x^{\dagger}\right\|^{\beta} .
\end{aligned}
$$

Combining the above estimates on $J_{2}^{(1)}$ and $J_{2}^{(2)}$ and noting $\frac{b+s}{2(a+s)} \leq \frac{1}{2}$, it follows that

$$
\begin{aligned}
\left\|J_{2}\right\| & \lesssim \alpha_{j}^{\nu-1+\frac{b+s}{2(a+s)}}\left(1+\alpha_{j}\left(s_{n}-s_{j}\right)\right)^{-\nu-\frac{b+s}{2(a+s)}} K_{0}\left\|x-x^{\dagger}\right\|^{\beta} \\
& =\frac{1}{\alpha_{j}}\left(s_{n}-s_{j-1}\right)^{-\nu-\frac{b+s}{2(a+s)}} K_{0}\left\|x-x^{\dagger}\right\|^{\beta} .
\end{aligned}
$$

It remains to estimate J_{3}. Since Assumption 1 implies that $\varphi_{\alpha_{j}}(z)$ is analytic in $D_{\alpha_{j}}$, we have from the Riesz-Dunford formula that

$$
\begin{equation*}
J_{3}=\frac{1}{2 \pi i} \int_{\Gamma_{\alpha_{j}}} \varphi_{\alpha_{j}}(z) T_{j}(z) d z, \tag{2.20}
\end{equation*}
$$

where

$$
T_{j}(z):=\left(A^{*} A\right)^{\nu} \prod_{k=j+1}^{n} r_{\alpha_{k}}\left(A^{*} A\right)\left[\left(z I-A^{*} A\right)^{-1}-\left(z I-A_{x}^{*} A_{x}\right)^{-1}\right] A_{x}^{*}
$$

We can write $T_{j}(z)=T_{j}^{(1)}(z)+T_{j}^{(2)}(z)$, where

$$
\begin{aligned}
& T_{j}^{(1)}(z):=\left(A^{*} A\right)^{\nu} \prod_{k=j+1}^{n} r_{\alpha_{k}}\left(A^{*} A\right)\left(z I-A^{*} A\right)^{-1} A^{*}\left(A-A_{x}\right)\left(z I-A_{x}^{*} A_{x}\right)^{-1} A_{x}^{*} \\
& T_{j}^{(2)}(z):=\left(A^{*} A\right)^{\nu} \prod_{k=j+1}^{n} r_{\alpha_{k}}\left(A^{*} A\right)\left(z I-A^{*} A\right)^{-1}\left(A^{*}-A_{x}^{*}\right) A_{x} A_{x}^{*}\left(z I-A_{x} A_{x}^{*}\right)^{-1}
\end{aligned}
$$

We will estimate the norms of $T_{j}^{(1)}(z)$ and $T_{j}^{(2)}(z)$ for $z \in \Gamma_{\alpha_{j}}$. With the help of Assumption 3, (2.5) and (2.11), similar to the derivation of (2.19) we have

$$
\left\|\left(A-A_{x}\right)\left(z I-A_{x}^{*} A_{x}\right)^{-1} A_{x}^{*}\right\| \lesssim K_{0}\left\|x-x^{\dagger}\right\|^{\beta}|z|^{-\frac{1}{2}+\frac{b+s}{2(a+s)}} .
$$

Since $|z| \geq \alpha_{j} / 2$ and $|z-\lambda|^{-1} \leq b_{0}(|z|+\lambda)^{-1}$ for $z \in \Gamma_{\alpha_{j}}$, we have from (2.14) in Lemmathat

$$
\begin{aligned}
\left\|T_{j}^{(1)}(z)\right\| & \lesssim K_{0}\left\|x-x^{\dagger}\right\|^{\beta}|z|^{-\frac{1}{2}+\frac{b+s}{2(a+s)}} \sup _{0 \leq \lambda \leq 1}\left(\lambda^{\nu+\frac{1}{2}}|z-\lambda|^{-1} \prod_{k=j+1}^{n} r_{\alpha_{k}}(\lambda)\right) \\
& \lesssim K_{0}\left\|x-x^{\dagger}\right\|^{\beta}|z|^{-\frac{1}{2}+\frac{b+s}{2(a+s)}} \sup _{0 \leq \lambda \leq 1}\left(\lambda^{\nu+\frac{1}{2}}(|z|+\lambda)^{-1} \prod_{k=j+1}^{n} r_{\alpha_{k}}(\lambda)\right) \\
& \lesssim K_{0}\left\|x-x^{\dagger}\right\|^{\beta}|z|^{\nu-1+\frac{b+s}{2(a+s)}}\left(1+\left(s_{n}-s_{j}\right)|z|\right)^{-\nu-1 / 2} \\
& \lesssim K_{0}\left\|x-x^{\dagger}\right\|^{\beta} \alpha_{j}^{\nu-1+\frac{b+s}{2(a+s)}}\left(1+\left(s_{n}-s_{j}\right) \alpha_{j}\right)^{-\nu-1 / 2}
\end{aligned}
$$

Next, by using (2.14) in Lemma 1. (2.5), Assumption 3(a) and (2.11), we have for $z \in \Gamma_{\alpha_{j}}$ that

$$
\begin{aligned}
\left\|T_{j}^{(2)}(z)\right\| \leq & \left\|\left(A^{*} A\right)^{\nu} \prod_{k=j+1}^{n} r_{\alpha_{k}}\left(A^{*} A\right)\left(z I-A^{*} A\right)^{-1}\left(A^{*} A\right)^{\frac{b+s}{2(a+s)}}\right\| \\
& \times\left\|\left(A^{*} A\right)^{-\frac{b+s}{2(a+s)}}\left(A^{*}-A_{x}^{*}\right) A_{x} A_{x}^{*}\left(z I-A_{x} A_{x}^{*}\right)^{-1}\right\| \\
& \lesssim \sup _{0 \leq \lambda \leq 1}\left(\lambda^{\left.\nu+\frac{b+s}{2(a+s)}|z-\lambda|^{-1} \prod_{k=j+1}^{n} r_{\alpha_{k}}(\lambda)\right)\left\|L^{b}\left(F^{\prime}\left(x^{\dagger}\right)^{*}-F^{\prime}(x)^{*}\right)\right\|}\right. \\
& \lesssim K_{0}\left\|x-x^{\dagger}\right\|^{\beta} \sup _{0 \leq \lambda \leq 1}\left(\lambda^{\nu+\frac{b+s}{2(a+s)}}(|z|+\lambda)^{-1} \prod_{k=j+1}^{n} r_{\alpha_{k}}(\lambda)\right) \\
& \lesssim K_{0}\left\|x-x^{\dagger}\right\|^{\beta}|z|^{\nu-1+\frac{b+s}{2(a+s)}}\left(1+\left(s_{n}-s_{j}\right)|z|\right)^{-\nu-\frac{b+s}{2(a+s)}} \\
& \lesssim K_{0}\left\|x-x^{\dagger}\right\|^{\beta} \alpha_{j}^{\nu-1+\frac{b+s}{2(a+s)}}\left(1+\left(s_{n}-s_{j}\right) \alpha_{j}\right)^{-\nu-\frac{b+s}{2(a+s)}} .
\end{aligned}
$$

Combining the above estimates on $T_{j}^{(1)}(z)$ and $T_{j}^{(2)}(z)$ and noting $\frac{b+s}{2(a+s)} \leq \frac{1}{2}$, it follows for $z \in \Gamma_{\alpha_{j}}$ that

$$
\begin{aligned}
\left\|T_{j}(z)\right\| & \lesssim K_{0}\left\|x-x^{\dagger}\right\|^{\beta} \alpha_{j}^{\nu-1+\frac{b+s}{2(a+s)}}\left(1+\left(s_{n}-s_{j}\right) \alpha_{j}\right)^{-\nu-\frac{b+s}{2(a+s)}} \\
& =\frac{1}{\alpha_{j}}\left(s_{n}-s_{j-1}\right)^{-\nu-\frac{b+s}{2(a+s)}} K_{0}\left\|x-x^{\dagger}\right\|^{\beta}
\end{aligned}
$$

Therefore, it follows from (2.20) and Assumption 1 that

$$
\begin{aligned}
\left\|J_{3}\right\| & \lesssim \frac{1}{\alpha_{j}}\left(s_{n}-s_{j-1}\right)^{-\nu-\frac{b+s}{2(a+s)}} K_{0}\left\|x-x^{\dagger}\right\|^{\beta} \int_{\Gamma_{\alpha_{j}}}\left|\varphi_{\alpha_{j}}(z) \| d z\right| \\
& \lesssim \frac{1}{\alpha_{j}}\left(s_{n}-s_{j-1}\right)^{-\nu-\frac{b+s}{2(a+s)}} K_{0}\left\|x-x^{\dagger}\right\|^{\beta} .
\end{aligned}
$$

The proof is therefore complete.

3 Convergence analysis

We begin with the following lemma.
Lemma 3 Let $\left\{\alpha_{n}\right\}$ be a sequence of positive numbers satisfying $\alpha_{n} \leq c_{1}$, and let s_{n} be defined by (2.7). Let $p \geq 0$ and $q \geq 0$ be two numbers. Then we have

$$
\sum_{j=0}^{n} \frac{1}{\alpha_{j}}\left(s_{n}-s_{j-1}\right)^{-p} s_{j}^{-q} \leq C_{0} s_{n}^{1-p-q} \begin{cases}1, & \max \{p, q\}<1 \\ \log _{2}\left(1+s_{n}\right), & \max \{p, q\}=1 \\ s_{n}^{\max \{p, q\}-1}, & \max \{p, q\}>1\end{cases}
$$

where C_{0} is a constant depending only on c_{1}, p and q.
Proof This result is essentially contained in [5, Lemma 4.3] and its proof. For completeness, we include here the proof with a simplified argument. We first rewrite

$$
\sum_{j=0}^{n} \frac{1}{\alpha_{j}}\left(s_{n}-s_{j-1}\right)^{-p} s_{j}^{-q}=s_{n}^{1-p-q} \sum_{j=0}^{n} \frac{1}{\alpha_{j} s_{n}}\left(1-\frac{s_{j-1}}{s_{n}}\right)^{-p}\left(\frac{s_{j}}{s_{n}}\right)^{-q} .
$$

Observe that when $0 \leq s_{j-1} / s_{n} \leq 1 / 2$ we have

$$
\left(1-\frac{s_{j-1}}{s_{n}}\right)^{-p}\left(\frac{s_{j}}{s_{n}}\right)^{-q} \leq 2^{p}\left(\frac{s_{j}}{s_{n}}\right)^{-q}
$$

while when $s_{j-1} / s_{n} \geq 1 / 2$ we have

$$
\left(1-\frac{s_{j-1}}{s_{n}}\right)^{-p}\left(\frac{s_{j}}{s_{n}}\right)^{-q} \leq 2^{q}\left(1-\frac{s_{j-1}}{s_{n}}\right)^{-p}
$$

Consequently there holds with $C_{p, q}=\max \left\{2^{p}, 2^{q}\right\}$

$$
\begin{align*}
& \sum_{j=0}^{n} \frac{1}{\alpha_{j}}\left(s_{n}-s_{j-1}\right)^{-p} s_{j}^{-q} \\
& \quad \leq C_{p, q} s_{n}^{1-p-q}\left(\sum_{j=0}^{n} \frac{1}{\alpha_{j} s_{n}}\left(\frac{s_{j}}{s_{n}}\right)^{-q}+\sum_{j=0}^{n} \frac{1}{\alpha_{j} s_{n}}\left(1-\frac{s_{j-1}}{s_{n}}\right)^{-p}\right) \tag{3.1}
\end{align*}
$$

Note that $s_{j}-s_{j-1}=1 / \alpha_{j}$, we have with $h=\frac{1}{2 \alpha_{0} s_{n}}$

$$
\begin{aligned}
\int_{s_{0} / s_{n}-h}^{1} t^{-q} d t & =\sum_{j=1}^{n} \int_{s_{j-1} / s_{n}}^{s_{j} / s_{n}} t^{-q} d t+\int_{s_{0} / s_{n}-h}^{s_{0} / s_{n}} t^{-q} d t \\
& \geq \sum_{j=1}^{n}\left(\frac{s_{j}}{s_{n}}\right)^{-q} \frac{s_{j}-s_{j-1}}{s_{n}}+\frac{1}{2 \alpha_{0} s_{n}}\left(\frac{s_{0}}{s_{n}}\right)^{-q} \\
& \geq \frac{1}{2} \sum_{j=0}^{n} \frac{1}{\alpha_{j} s_{n}}\left(\frac{s_{j}}{s_{n}}\right)^{-q}
\end{aligned}
$$

Therefore

$$
\sum_{j=0}^{n} \frac{1}{\alpha_{j} s_{n}}\left(\frac{s_{j}}{s_{n}}\right)^{-q} \leq 2 \int_{s_{0} / s_{n}-h}^{1} t^{-q} d t \leq \begin{cases}\frac{2}{1-q}, & q<1 \tag{3.2}\\ 2 \log \left(2 \alpha_{0} s_{n}\right), & q=1 \\ \frac{2}{q-1}\left(2 \alpha_{0} s_{n}\right)^{q-1}, & q>1\end{cases}
$$

By a similar argument we have with $h=\frac{1}{2 \alpha_{n} s_{n}}$

$$
\sum_{j=0}^{n} \frac{1}{\alpha_{j} s_{n}}\left(1-\frac{s_{j-1}}{s_{n}}\right)^{-p} \leq 2 \int_{0}^{\frac{s_{n-1}}{s_{n}}+h}(1-t)^{-p} d t \leq \begin{cases}\frac{2}{1-p}, & p<1 \tag{3.3}\\ 2 \log \left(2 \alpha_{n} s_{n}\right), & p=1 \\ \frac{2}{p-1}\left(2 \alpha_{n} s_{n}\right)^{p-1}, & p>1\end{cases}
$$

Combining (3.1), (3.2) and (3.3) and using the condition $\alpha_{n} \leq c_{1}$, we obtain the desired inequalities.

In order to derive the necessary estimates on $x_{n}-x^{\dagger}$, we need some useful identities. For simplicity of presentation, we set

$$
e_{n}:=x_{n}-x^{\dagger}, \quad A:=F^{\prime}\left(x^{\dagger}\right) L^{-s} \quad \text { and } \quad A_{n}:=F^{\prime}\left(x_{n}\right) L^{-s} .
$$

It follows from (1.7) and (2.6) that

$$
e_{n+1}=e_{n}-L^{-s} g_{\alpha_{n}}\left(A_{n}^{*} A_{n}\right) A_{n}^{*}\left(F\left(x_{n}\right)-y^{\delta}\right)
$$

Let

$$
u_{n}:=F\left(x_{n}\right)-y-F^{\prime}\left(x^{\dagger}\right)\left(x_{n}-x^{\dagger}\right)
$$

Then we can write

$$
\begin{align*}
e_{n+1}= & e_{n}-L^{-s} g_{\alpha_{n}}\left(A^{*} A\right) A^{*}\left(F\left(x_{n}\right)-y^{\delta}\right) \\
& -L^{-s}\left[g_{\alpha_{n}}\left(A_{n}^{*} A_{n}\right) A_{n}^{*}-g_{\alpha_{n}}\left(A^{*} A\right) A^{*}\right]\left(F\left(x_{n}\right)-y^{\delta}\right) \\
= & L^{-s} r_{\alpha_{n}}\left(A^{*} A\right) L^{s} e_{n}-L^{-s} g_{\alpha_{n}}\left(A^{*} A\right) A^{*}\left(y-y^{\delta}+u_{n}\right) \\
& -L^{-s}\left[g_{\alpha_{n}}\left(A_{n}^{*} A_{n}\right) A_{n}^{*}-g_{\alpha_{n}}\left(A^{*} A\right) A^{*}\right]\left(F\left(x_{n}\right)-y^{\delta}\right) . \tag{3.4}
\end{align*}
$$

By telescoping (3.4) we can obtain

$$
\begin{align*}
e_{n+1}= & L^{-s} \prod_{j=0}^{n} r_{\alpha_{j}}\left(A^{*} A\right) L^{s} e_{0} \\
& -L^{-s} \sum_{j=0}^{n} \prod_{k=j+1}^{n} r_{\alpha_{k}}\left(A^{*} A\right) g_{\alpha_{j}}\left(A^{*} A\right) A^{*}\left(y-y^{\delta}+u_{j}\right) \\
& -L^{-s} \sum_{j=0}^{n} \prod_{k=j+1}^{n} r_{\alpha_{k}}\left(A^{*} A\right)\left[g_{\alpha_{j}}\left(A_{j}^{*} A_{j}\right) A_{j}^{*}-g_{\alpha_{j}}\left(A^{*} A\right) A^{*}\right]\left(F\left(x_{j}\right)-y^{\delta}\right) . \tag{3.5}
\end{align*}
$$

By multiplying (3.5) by $T:=F^{\prime}\left(x^{\dagger}\right)$ and noting that $A=T L^{-s}$ and

$$
I-\sum_{j=0}^{n} \prod_{k=j+1}^{n} r_{\alpha_{k}}\left(A A^{*}\right) g_{\alpha_{j}}\left(A A^{*}\right) A A^{*}=\prod_{j=0}^{n} r_{\alpha_{j}}\left(A A^{*}\right)
$$

we can obtain

$$
\begin{align*}
& T e_{n+1}-y^{\delta}+y \\
& =A \prod_{j=0}^{n} r_{\alpha_{j}}\left(A^{*} A\right) L^{s} e_{0}+\prod_{j=0}^{n} r_{\alpha_{j}}\left(A A^{*}\right)\left(y-y^{\delta}\right) \\
& \quad-\sum_{j=0}^{n} \prod_{k=j+1}^{n} r_{\alpha_{k}}\left(A A^{*}\right) g_{\alpha_{j}}\left(A A^{*}\right) A A^{*} u_{j} \\
& \quad-\sum_{j=0}^{n} A \prod_{k=j+1}^{n} r_{\alpha_{k}}\left(A^{*} A\right)\left[g_{\alpha_{j}}\left(A_{j}^{*} A_{j}\right) A_{j}^{*}-g_{\alpha_{j}}\left(A^{*} A\right) A^{*}\right]\left(F\left(x_{j}\right)-y^{\delta}\right) . \tag{3.6}
\end{align*}
$$

Based on (3.5) and (3.6) we will derive the order optimal convergence rate of $x_{n_{\delta}}$ to x^{\dagger} when $e_{0}:=x_{0}-x^{\dagger}$ satisfies the smoothness condition (2.18). Under such condition we have $L^{s} e_{0} \in X_{\mu-s}$ and $\left|\frac{\mu-s}{a+s}\right| \leq 1$. Thus, with the help of Assumption 3(a), it follows from (2.4) and (2.5) that there exists $\omega \in X$ such that

$$
\begin{equation*}
L^{s} e_{0}=\left(A^{*} A\right)^{\frac{\mu-s}{2(a+s)}} \omega \quad \text { and } \quad c_{2}\|\omega\| \leq\left\|e_{0}\right\|_{\mu} \leq c_{3}\|\omega\| \tag{3.7}
\end{equation*}
$$

for some generic constants $c_{3} \geq c_{2}>0$. We will first derive the crucial estimates on $\left\|e_{n}\right\|_{\mu}$ and $\left\|T e_{n}\right\|$. To this end, we introduce the integer \tilde{n}_{δ} satisfying

$$
\begin{equation*}
s_{\tilde{n}_{\delta}}^{-\frac{a+\mu}{2(a+s)}} \leq \frac{(\tau-1) \delta}{2 c_{0}\|\omega\|}<s_{n}^{-\frac{a+\mu}{2(a+s)}}, \quad 0 \leq n<\tilde{n}_{\delta} \tag{3.8}
\end{equation*}
$$

where $c_{0}>1$ is the constant appearing in (2.8). Such \tilde{n}_{δ} is well-defined since $s_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

Proposition 1 Let F satisfy Assumptions $\mathbf{3}$, let $\left\{g_{\alpha}\right\}$ satisfy Assumptions 1 and , and let $\left\{\alpha_{n}\right\}$ be a sequence of positive numbers satisfying (2.8). If $e_{0} \in X_{\mu}$ for some $(a-b) / \beta<\mu \leq b+2 s$ and if $K_{0}\|\omega\|^{\beta}$ is suitably small, then there exists a generic constant $C_{*}>0$ such that

$$
\begin{equation*}
\left\|e_{n}\right\|_{\mu} \leq C_{*}\|\omega\| \quad \text { and } \quad\left\|T e_{n}\right\| \leq C_{*} s_{n}^{-\frac{a+\mu}{2(a+s)}}\|\omega\| \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|T e_{n}-y^{\delta}+y\right\| \leq\left(c_{0}+C_{*} K_{0}\|\omega\|^{\beta}\right) s_{n}^{-\frac{a+\mu}{2(a+s)}}\|\omega\|+\delta \tag{3.10}
\end{equation*}
$$

for all $0 \leq n \leq \tilde{n}_{\delta}$.
Proof We will show (3.9) by induction. By using (3.7) and $\|A\| \leq \sqrt{\alpha_{0}}$ we have

$$
\left\|T e_{0}\right\|=\left\|A L^{s} e_{0}\right\|=\left\|\left(A^{*} A\right)^{1 / 2} L^{s} e_{0}\right\|=\left\|\left(A^{*} A\right)^{\frac{a+\mu}{2(a+s)}} \omega\right\| \leq \alpha_{0}^{\frac{a+\mu}{2(a+s)}}\|\omega\|
$$

This together with (3.7) shows (3.9) for $n=0$ if $C_{*} \geq \max \left\{1, c_{3}\right\}$. Next we assume that (3.9) holds for all $0 \leq n \leq l$ for some $l<\tilde{n}_{\delta}$ and we are going to show (3.9) holds for $n=l+1$.

With the help of (2.5) and (3.7) we can derive from (3.5) that

$$
\begin{aligned}
& \left\|e_{l+1}\right\|_{\mu} \\
& \lesssim\left\|\prod_{j=0}^{l} r_{\alpha_{j}}\left(A^{*} A\right) \omega\right\|+\left\|\sum_{j=0}^{l}\left(A A^{*}\right)^{\frac{a+2 s-\mu}{2(a+s)}} g_{\alpha_{j}}\left(A A^{*}\right) \prod_{k=j+1}^{l} r_{\alpha_{k}}\left(A A^{*}\right)\left(y-y^{\delta}+u_{j}\right)\right\| \\
& +\left\|\sum_{j=0}^{l}\left(A^{*} A\right)^{\frac{s-\mu}{2(a+s)}} \prod_{k=j+1}^{l} r_{\alpha_{k}}\left(A^{*} A\right)\left[g_{\alpha_{j}}\left(A_{j}^{*} A_{j}\right) A_{j}^{*}-g_{\alpha_{j}}\left(A^{*} A\right) A^{*}\right]\left(F\left(x_{j}\right)-y^{\delta}\right)\right\| .
\end{aligned}
$$

Since $(a-b) / \beta<\mu \leq b+2 s$ and $0 \leq b \leq a$, we have

$$
0 \leq \frac{a+2 s-\mu}{2(a+s)}<1 \quad \text { and } \quad-\frac{b+s}{2(a+s)} \leq \frac{s-\mu}{2(a+s)}<\frac{1}{2}
$$

Thus we may use Assumption 2 and Lemma 2 to conclude

$$
\begin{align*}
\left\|e_{l+1}\right\|_{\mu} \lesssim & \|\omega\|+\sum_{j=0}^{l} \frac{1}{\alpha_{j}}\left(s_{l}-s_{j-1}\right)^{-\frac{a+2 s-\mu}{2(a+s)}}\left(\delta+\left\|u_{j}\right\|\right) \\
& +\sum_{j=0}^{l} \frac{1}{\alpha_{j}}\left(s_{l}-s_{j-1}\right)^{-\frac{b+2 s-\mu}{2(a+s)}} K_{0}\left\|e_{j}\right\|^{\beta}\left\|F\left(x_{j}\right)-y^{\delta}\right\| . \tag{3.11}
\end{align*}
$$

Moreover, by using (3.7), Assumption 2 and Lemma 2 we have from (3.6) that

$$
\begin{align*}
\left\|T e_{l+1}-y^{\delta}+y\right\| \leq & s_{l}^{-\frac{a+\mu}{2(a+s)}}\|\omega\|+\delta+b_{2} \sum_{j=0}^{l} \frac{1}{\alpha_{j}}\left(s_{l}-s_{j-1}\right)^{-1}\left\|u_{j}\right\| \\
& +c_{4} \sum_{j=0}^{l} \frac{1}{\alpha_{j}}\left(s_{l}-s_{j-1}\right)^{-\frac{b+a+2 s}{2(a+s)}} K_{0}\left\|e_{j}\right\|^{\beta}\left\|F\left(x_{j}\right)-y^{\delta}\right\|, \tag{3.12}
\end{align*}
$$

where $c_{4}>0$ is a generic constant.
By using the interpolation inequality (2.3), Assumption 3(a) and the induction hypotheses, it follows for all $0 \leq j \leq l$ that

$$
\begin{equation*}
\left\|e_{j}\right\| \leq\left\|e_{j}\right\|_{-a}^{\frac{\mu}{a+\mu}}\left\|e_{j}\right\|_{\mu}^{\frac{a}{a+\mu}} \lesssim\left\|T e_{j}\right\|^{\frac{\mu}{a+\mu}}\left\|e_{j}\right\|^{\frac{a}{a+\mu}} \lesssim\|\omega\| s_{j}^{-\frac{\mu}{2(a+s)}} . \tag{3.13}
\end{equation*}
$$

With the help of (2.17) and the interpolation inequality (2.3), we have

$$
\begin{equation*}
\left\|u_{j}\right\| \leq K_{0}\left\|e_{j}\right\|^{\beta}\left\|e_{j}\right\|_{-b} \leq K_{0}\left\|e_{j}\right\|_{-a}^{\frac{b+\mu+\mu \beta}{a+\mu}}\left\|e_{j}\right\|^{\frac{a+a \beta-b}{a+\mu}} \tag{3.14}
\end{equation*}
$$

We then obtain from Assumption 3(a) and the induction hypotheses that

$$
\begin{equation*}
\left\|u_{j}\right\| \lesssim K_{0}\left\|T e_{j}\right\|^{\frac{b+\mu+\mu \beta}{a+\mu}}\left\|e_{j}\right\|^{\frac{a+a \beta-b}{a+\mu}} \lesssim K_{0}\|\omega\|^{1+\beta} s_{j}^{-\frac{b+\mu+\mu \beta}{2(a+s)}} \tag{3.15}
\end{equation*}
$$

On the other hand, since (2.1) and the induction hypotheses implies

$$
\left\|e_{j}\right\|_{-a} \lesssim\left\|e_{j}\right\|_{\mu} \lesssim\|\omega\|, \quad 0 \leq j \leq l
$$

and since $\mu>(a-b) / \beta$, we have from (3.14) and Assumption 3(a) that

$$
\begin{equation*}
\left\|u_{j}\right\| \lesssim K_{0}\left\|e_{j}\right\|_{-a}\left\|e_{j}\right\|_{-a}^{\frac{b-a+\mu \beta}{a+\mu}}\left\|e_{j}\right\|^{\frac{a+a \beta-b}{a+\mu}} \lesssim K_{0}\|\omega\|^{\beta}\left\|T e_{j}\right\| . \tag{3.16}
\end{equation*}
$$

Therefore, by using the fact

$$
\begin{equation*}
\delta \leq \frac{2 c_{0}}{\tau-1}\|\omega\| s_{j}^{-\frac{a+\mu}{2(a+s)}}, \quad 0 \leq j \leq l \tag{3.17}
\end{equation*}
$$

and the induction hypotheses we have

$$
\begin{equation*}
\left\|F\left(x_{j}\right)-y^{\delta}\right\| \leq \delta+\left\|T e_{j}\right\|+\left\|u_{j}\right\| \lesssim\|\omega\| s_{j}^{-\frac{a+\mu}{2(a+s)}} \tag{3.18}
\end{equation*}
$$

In view of the estimates (3.13), (3.15), (3.18) and the inequality

$$
\sum_{j=0}^{l} \frac{1}{\alpha_{j}}\left(s_{l}-s_{j-1}\right)^{-\frac{a+2 s-\mu}{2(a+s)}} \lesssim s_{l}^{\frac{a+\mu}{2(a+s)}}
$$

which follows from Lemma 3, we have from (3.11) and (3.12) that

$$
\begin{aligned}
\left\|e_{l+1}\right\|_{\mu} \leq & c_{5}\|\omega\|+c_{5} s_{l}^{\frac{a+\mu}{2(a+s)}} \delta \\
& +C K_{0}\|\omega\|^{1+\beta} \sum_{j=0}^{l} \frac{1}{\alpha_{j}}\left(s_{l}-s_{j-1}\right)^{-\frac{a+2 s-\mu}{2(a+s)}} s_{j}^{-\frac{b+\mu+\mu \beta}{2(a+s)}} \\
& +C K_{0}\|\omega\|^{1+\beta} \sum_{j=0}^{l} \frac{1}{\alpha_{j}}\left(s_{l}-s_{j-1}\right)^{-\frac{b+2 s-\mu}{2(a+s)}} s_{j}^{-\frac{a+\mu+\mu \beta}{2(a+s)}}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|T e_{l+1}-y^{\delta}+y\right\| \leq & \|\omega\| s_{l}^{-\frac{a+\mu}{2(a+s)}}+\delta \\
& +C K_{0}\|\omega\|^{1+\beta} \sum_{j=0}^{l} \frac{1}{\alpha_{j}}\left(s_{l}-s_{j-1}\right)^{-1} s_{j}^{-\frac{b+\mu+\mu \beta}{2(a+s)}} \\
& +C K_{0}\|\omega\|^{1+\beta} \sum_{j=0}^{l} \frac{1}{\alpha_{j}}\left(s_{l}-s_{j-1}\right)^{-\frac{b+a+2 s}{2(a+s)}} s_{j}^{-\frac{a+\mu+\mu \beta}{2(a+s)}},
\end{aligned}
$$

where c_{5} and C are two positive generic constants.
With the help of Lemma 3, $\mu>(a-b) / \beta$, (3.17) and (2.8) we have

$$
\left\|e_{l+1}\right\|_{\mu} \leq\left(c_{5}+\frac{2}{\tau-1} c_{0} c_{5}+C K_{0}\|\omega\|^{\beta}\right)\|\omega\|
$$

and

$$
\begin{align*}
\left\|T e_{l+1}-y^{\delta}+y\right\| & \leq \delta+\left(1+C K_{0}\|\omega\|^{\beta}\right)\|\omega\| s_{l}^{-\frac{a+\mu}{2(a+s)}} \\
& \leq \delta+c_{0}\left(1+C K_{0}\|\omega\|^{\beta}\right)\|\omega\| s_{l+1}^{-\frac{a+\mu}{2(a+s)}} . \tag{3.19}
\end{align*}
$$

Consequently $\left\|e_{l+1}\right\|_{\mu} \leq C_{*}\|\omega\|$ if $C_{*} \geq 2 c_{5}+\frac{2}{\tau-1} c_{0} c_{5}$ and $K_{0}\|\omega\|^{\beta}$ is suitably small. Moreover, from (3.19), (3.17) and (2.8) we also have

$$
\begin{aligned}
\left\|T e_{l+1}\right\| & \leq 2 \delta+c_{0}\left(1+C K_{0}\|\omega\|^{\beta}\right)\|\omega\| s_{l+1}^{-\frac{a+\mu}{2(a+s)}} \\
& \leq\left(\frac{4 c_{0}^{2}}{\tau-1}+c_{0}+C K_{0}\|\omega\|^{\beta}\right)\|\omega\| s_{l+1}^{-\frac{a+\mu}{2(a+s)}} \\
& \leq C_{*}\|\omega\| s_{l+1}^{-\frac{a+\mu}{2(a+s)}}
\end{aligned}
$$

if $C_{*} \geq 2 c_{0}+\frac{4 c_{0}^{2}}{\tau-1}$ and $K_{0}\|\omega\|^{\beta}$ is suitably small. We therefore complete the proof of (3.9). In the meanwhile, (3.19) gives the proof of (3.10).

From Proposition 1 and its proof it follows that $x_{n} \in B_{\rho}\left(x^{\dagger}\right)$ for $0 \leq n \leq \tilde{n}_{\delta}$ if $\|\omega\|$ is sufficiently small. Furthermore, from (3.15) and (3.16) we have

$$
\begin{equation*}
\left\|F\left(x_{n}\right)-y-T e_{n}\right\| \lesssim K_{0}\|\omega\|^{1+\beta} s_{n}^{-\frac{b+\mu+\mu \beta}{2(a+s)}} \tag{3.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|F\left(x_{n}\right)-y-T e_{n}\right\| \lesssim K_{0}\|\omega\|^{\beta}\left\|T e_{n}\right\| \tag{3.21}
\end{equation*}
$$

for $0 \leq n \leq \tilde{n}_{\delta}$.
In the following we will show that $n_{\delta} \leq \tilde{n}_{\delta}$ for the integer n_{δ} defined by (1.8) with $\tau>1$. Consequently, the method given by (1.7) and (1.8) is well-defined.

Lemma 4 Let all the conditions in Proposition 1 hold. Let $\tau>1$ be a given number. If $e_{0} \in X_{\mu}$ for some $(a-b) / \beta<\mu \leq b+2 s$ and if $K_{0}\left\|e_{0}\right\|_{\mu}^{\beta}$ is suitably small, then the discrepancy principle (1.8) defines a finite integer n_{δ} satisfying $n_{\delta} \leq \tilde{n}_{\delta}$.

Proof From Proposition 1, (3.20) and $\mu>(a-b) / \beta$ it follows for $0 \leq n \leq \tilde{n}_{\delta}$ that

$$
\begin{aligned}
\left\|F\left(x_{n}\right)-y^{\delta}\right\| & \leq\left\|F\left(x_{n}\right)-y-T e_{n}\right\|+\left\|T e_{n}-y^{\delta}+y\right\| \\
& \leq C K_{0}\|\omega\|^{1+\beta} s_{n}^{-\frac{b+\mu+\mu \beta}{2(a+s)}}+\left(c_{0}+C K_{0}\|\omega\|^{\beta}\right) s_{n}^{-\frac{a+\mu}{2(a+s)}}\|\omega\|+\delta \\
& \leq\left(c_{0}+C K_{0}\|\omega\|^{\beta}\right) s_{n}^{-\frac{a+\mu}{2(a+s)}}\|\omega\|+\delta .
\end{aligned}
$$

By setting $n=\tilde{n}_{\delta}$ in the above inequality and using the definition of \tilde{n}_{δ} we obtain

$$
\left\|F\left(x_{\tilde{n}_{\delta}}\right)-y^{\delta}\right\| \leq\left(1+\frac{\tau-1}{2}+C K_{0}\|\omega\|^{\beta}\right) \delta \leq \tau \delta
$$

if $K_{0}\|\omega\|^{\beta}$ is suitably small. According to the definition of n_{δ} we have $n_{\delta} \leq \tilde{n}_{\delta}$.
Now we are ready to prove the main result concerning the order optimal convergence rates for the method defined by (1.7) and (1.8) with $\tau>1$.

Theorem 1 Let F satisfy Assumptions [3, let $\left\{g_{\alpha}\right\}$ satisfy Assumptions 1 and 2, and let $\left\{\alpha_{n}\right\}$ be a sequence of positive numbers satisfying (2.8). If $e_{0} \in X_{\mu}$ for some $(a-b) / \beta<\mu \leq b+2 s$ and if $K_{0}\left\|e_{0}\right\|_{\mu}^{\beta}$ is suitably small, then for all $r \in[-a, \mu]$ there holds

$$
\left\|x_{n_{\delta}}-x^{\dagger}\right\|_{r} \leq C\left\|e_{0}\right\|_{\mu}^{\frac{a+r}{a+\mu}} \delta^{\frac{\mu-r}{a+\mu}}
$$

for the integer n_{δ} determined by the discrepancy principle (1.8) with $\tau>1$, where $C>0$ is a generic constant.

Proof It follows from (3.21) that if $K_{0}\|\omega\|^{\beta}$ is suitably small then

$$
\left\|F\left(x_{n}\right)-y-T e_{n}\right\| \leq \frac{1}{2}\left\|T e_{n}\right\|
$$

which implies $\left\|T e_{n}\right\| \leq 2\left\|F\left(x_{n}\right)-y\right\|$ for $0 \leq n \leq \tilde{n}_{\delta}$. Since Lemma 4 implies $n_{\delta} \leq \tilde{n}_{\delta}$, it follows from Assumption 3(a) and the definition of n_{δ} that

$$
\left\|e_{n_{\delta}}\right\|_{-a} \leq \frac{1}{m}\left\|T e_{n_{\delta}}\right\| \leq \frac{2}{m}\left(\left\|F\left(x_{n_{\delta}}\right)-y^{\delta}\right\|+\delta\right) \leq \frac{2(1+\tau)}{m} \delta .
$$

But from Proposition 1 we have $\left\|e_{n_{\delta}}\right\|_{\mu} \leq C_{*}\|\omega\|$. The desired estimate then follows from the interpolation inequality (2.3) and (3.7).

Remark 1 If F satisfies (2.16) and $\left\{x_{n}\right\}$ is defined by (1.7) with $s>-a / 2$, then the order optimal convergence rate holds for $x_{0}-x^{\dagger} \in X_{\mu}$ with $0<\mu \leq a+2 s$. On the other hand, if $F^{\prime}(x)$ satisfies the Lipschitz condition

$$
\left\|F^{\prime}(x)-F^{\prime}\left(x^{\dagger}\right)\right\| \leq K_{0}\left\|x-x^{\dagger}\right\|, \quad x \in B_{\rho}\left(x^{\dagger}\right)
$$

and $\left\{x_{n}\right\}$ is defined by (1.7) with $s>a / 2$, then the order optimal convergence rate holds for $x_{0}-x^{\dagger} \in X_{\mu}$ with $a<\mu \leq 2 s$.

4 Examples

In this section we will give several important examples of $\left\{g_{\alpha}\right\}$ that satisfy Assumptions 1 and 2, Thus, Theorem 11 applies to the corresponding methods if F satisfies Assumption 3 and $\left\{\alpha_{n}\right\}$ satisfies (2.8). For all these examples, the functions g_{α} are analytic at least in the domain

$$
D_{\alpha}:=\{z \in \mathbb{C}: z \neq-\alpha,-1\} .
$$

Moreover, for each $\alpha>0$, we always take the closed contour Γ_{α} to be (see [1])

$$
\Gamma_{\alpha}=\Gamma_{\alpha}^{(1)} \cup \Gamma_{\alpha}^{(2)} \cup \Gamma_{\alpha}^{(3)} \cup \Gamma_{\alpha}^{(4)}
$$

with

$$
\begin{aligned}
\Gamma_{\alpha}^{(1)} & :=\left\{z=\frac{\alpha}{2} e^{i \phi}: \phi_{0} \leq \phi \leq 2 \pi-\phi_{0}\right\}, \\
\Gamma_{\alpha}^{(2)} & :=\left\{z=R e^{i \phi}:-\phi_{0} \leq \phi \leq \phi_{0}\right\} \\
\Gamma_{\alpha}^{(3)} & :=\left\{z=t e^{i \phi_{0}}: \alpha / 2 \leq t \leq R\right\}, \\
\Gamma_{\alpha}^{(4)} & :=\left\{z=t e^{-i \phi_{0}}: \alpha / 2 \leq t \leq R\right\},
\end{aligned}
$$

where $R>\max \{1, \alpha\}$ and $0<\phi_{0}<\pi / 2$ are fixed numbers. Clearly $\Gamma_{\alpha} \subset D_{\alpha}$ and $[0,1]$ lies inside Γ_{α}. It is straightforward to check that (2.9) is satisfied.

Example 1 We first consider for $\alpha>0$ the function g_{α} given by

$$
g_{\alpha}(\lambda)=\frac{(\alpha+\lambda)^{N}-\alpha^{N}}{\lambda(\alpha+\lambda)^{N}}
$$

where $N \geq 1$ is a fixed integer. This function arises from the iterated Tikhonov regularization of order N for linear ill-posed problems. The corresponding method (1.7) becomes

$$
\begin{aligned}
& u_{n, 0}=x_{n}, \\
& u_{n, l+1}=u_{n, l}-\left(\alpha_{n} L^{2 s}+T_{n}^{*} T_{n}\right)^{-1} T_{n}^{*}\left(F\left(x_{n}\right)-y^{\delta}-T_{n}\left(x_{n}-u_{n, l}\right)\right), \\
& l=0, \cdots, N-1, \\
& x_{n+1}=u_{n, N},
\end{aligned}
$$

where $T_{n}:=F^{\prime}\left(x_{n}\right)$. When $N=1$, this is the Levenberg-Marquardt method in Hilbert scales. The corresponding residual function is $r_{\alpha}(\lambda)=\alpha^{N}(\alpha+\lambda)^{-N}$. In order to verify Assumption 2, we recall the inequality (see [9, Lemma 3])

$$
\lambda \prod_{k=j}^{n} \frac{\alpha_{k}}{\alpha_{k}+\lambda} \leq\left(s_{n}-s_{j-1}\right)^{-1} \quad \text { for all } \lambda \geq 0
$$

Then for $0 \leq \nu \leq 1$ and $\lambda \geq 0$ we have

$$
\lambda^{\nu} \prod_{k=j}^{n} r_{\alpha_{k}}(\lambda) \leq\left(\lambda \prod_{k=j}^{n} \frac{\alpha_{k}}{\alpha_{k}+\lambda}\right)^{\nu} \leq\left(s_{n}-s_{j-1}\right)^{-\nu}
$$

and

$$
\begin{aligned}
\lambda^{\nu} g_{\alpha_{j}}(\lambda) \prod_{k=j+1}^{n} r_{\alpha_{k}}(\lambda) & =\frac{\left(\alpha_{j}+\lambda\right)^{N}-\alpha_{j}^{N}}{\alpha_{j}^{N} \lambda^{1-\nu}} \prod_{k=j}^{n}\left(\frac{\alpha_{k}}{\alpha_{k}+\lambda}\right)^{N} \\
& =\sum_{l=0}^{N-1}\binom{N}{l} \alpha_{j}^{l-N} \lambda^{N+\nu-l-1} \prod_{k=j}^{n}\left(\frac{\alpha_{k}}{\alpha_{k}+\lambda}\right)^{N} \\
& \leq \sum_{l=0}^{N-1}\binom{N}{l} \alpha_{j}^{l-N}\left(\lambda \prod_{k=j}^{n} \frac{\alpha_{k}}{\alpha_{k}+\lambda}\right)^{N+\nu-l-1} \\
& \leq \sum_{l=0}^{N-1}\binom{N}{l} \alpha_{j}^{l-N}\left(s_{n}-s_{j-1}\right)^{-N-\nu+l+1} \\
& \leq C_{N} \frac{1}{\alpha_{j}}\left(s_{n}-s_{j-1}\right)^{-\nu},
\end{aligned}
$$

where $C_{N}=2^{N}-1$ and we used the fact $\alpha_{j}^{-1} \leq s_{n}-s_{j-1}$. We therefore obtain (2.12) and (2.13) in Assumption 2.

Next we will verify (2.10) in Assumption (1) Note that

$$
\varphi_{\alpha}(z)=\frac{\alpha(\alpha+z)^{N-1}-\alpha^{N}}{z(\alpha+z)^{N}}=\frac{1}{z(\alpha+z)^{N}} \sum_{j=0}^{N-2}\binom{N-1}{j} \alpha^{j+1} z^{N-1-j}
$$

It is easy to check $\left|\varphi_{\alpha}(z)\right| \lesssim \alpha^{-1}$ on $\Gamma_{\alpha}^{(1)}$ and $\left|\varphi_{\alpha}(z)\right| \lesssim 1$ on $\Gamma_{\alpha}^{(2)}$. Moreover, on $\Gamma_{\alpha}^{(3)} \cup \Gamma_{\alpha}^{(4)}$ there holds

$$
\left|\varphi_{\alpha}(z)\right| \lesssim \frac{1}{t(\alpha+t)^{N}} \sum_{j=0}^{N-2} \alpha^{j+1} t^{N-1-j} \lesssim \sum_{j=0}^{N-2} \alpha^{j+1} t^{-2-j}
$$

Therefore

$$
\begin{aligned}
\int_{\Gamma_{\alpha}}\left|\varphi_{\alpha}(z) \| d z\right| & =\int_{\Gamma_{\alpha}^{(1)}}\left|\varphi_{\alpha}(z)\right||d z|+\int_{\Gamma_{\alpha}^{(2)}}\left|\varphi_{\alpha}(z)\left\|d z\left|+\int_{\Gamma_{\alpha}^{(3)} \cup \Gamma_{\alpha}^{(4)}}\right| \varphi_{\alpha}(z)\right\| d z\right| \\
& \lesssim \alpha^{-1} \int_{\phi_{0}}^{2 \pi-\phi_{0}} \alpha d \phi+\int_{-\phi_{0}}^{\phi_{0}} d \phi+\sum_{j=0}^{N-2} \alpha^{j+1} \int_{\alpha / 2}^{R} t^{-2-j} d t \\
& \lesssim 1
\end{aligned}
$$

Assumption 1 is therefore verified.
Example 2 We consider the method (1.7) with g_{α} given by

$$
g_{\alpha}(\lambda)=\frac{1}{\lambda}\left(1-e^{-\lambda / \alpha}\right)
$$

which arises from the asymptotic regularization for linear ill-posed problems. In this method, the iterative sequence $\left\{x_{n}\right\}$ is equivalently defined as $x_{n+1}:=x\left(1 / \alpha_{n}\right)$, where $x(t)$ is the unique solution of the initial value problem

$$
\begin{aligned}
& \frac{d}{d t} x(t)=L^{-2 s} F^{\prime}\left(x_{n}\right)^{*}\left(y^{\delta}-F\left(x_{n}\right)+F^{\prime}\left(x_{n}\right)\left(x_{n}-x(t)\right)\right), \quad t>0, \\
& x(0)=x_{n}
\end{aligned}
$$

The corresponding residual function is $r_{\alpha}(\lambda)=e^{-\lambda / \alpha}$. We first verify Assumption 2 , It is easy to see

$$
\lambda^{\nu} \prod_{k=j}^{n} r_{\alpha_{j}}(\lambda)=\lambda^{\nu} e^{-\lambda\left(s_{n}-s_{j-1}\right)} \leq \nu^{\nu} e^{-\nu}\left(s_{n}-s_{j-1}\right)^{-\nu} \leq\left(s_{n}-s_{j-1}\right)^{-\nu}
$$

for $0 \leq \nu \leq 1$ and $\lambda \geq 0$. This shows (2.12). By using the elementary inequality $e^{-p \lambda}-e^{-q \lambda} \leq(q-p) / q$ for $0<p \leq q$ and $\lambda \geq 0$ and observing that $0 \leq r_{\alpha}(\lambda) \leq 1$ and $0 \leq g_{\alpha}(\lambda) \leq 1 / \alpha$, we have for $0 \leq \nu \leq 1$ and $\lambda \geq 0$ that

$$
\begin{aligned}
\lambda^{\nu} g_{\alpha_{j}}(\lambda) \prod_{k=j+1}^{n} r_{\alpha_{k}}(\lambda) & \leq \frac{1}{\alpha_{j}^{1-\nu}}\left(\lambda g_{\alpha_{j}}(\lambda) \prod_{k=j+1}^{n} r_{\alpha_{k}}(\lambda)\right)^{\nu} \\
& =\frac{1}{\alpha_{j}^{1-\nu}}\left(e^{-\left(s_{n}-s_{j}\right) \lambda}-e^{-\left(s_{n}-s_{j-1}\right) \lambda}\right)^{\nu} \\
& \leq \frac{1}{\alpha_{j}}\left(s_{n}-s_{j-1}\right)^{-\nu}
\end{aligned}
$$

which gives (2.13).
In order to verify (2.10) in Assumption 1, we note that

$$
\varphi_{\alpha}(z)=\frac{1-e^{-z / \alpha}}{z}-\frac{1}{\alpha+z}=\frac{\alpha-(\alpha+z) e^{-z / \alpha}}{z(\alpha+z)} .
$$

It is easy to see that $\left|\varphi_{\alpha}(z)\right| \lesssim \alpha^{-1}$ on $\Gamma_{\alpha}^{(1)},\left|\varphi_{\alpha}(z)\right| \lesssim 1$ on $\Gamma_{\alpha}^{(2)}$ and

$$
\left|\varphi_{\alpha}(z)\right| \lesssim \frac{\alpha+(\alpha+t) e^{-\frac{t}{\alpha} \cos \phi_{0}}}{t(\alpha+t)} \lesssim \alpha t^{-2}
$$

on $\Gamma_{\alpha}^{(3)} \cup \Gamma_{\alpha}^{(4)}$. Therefore

$$
\int_{\Gamma_{\alpha}}\left|\varphi_{\alpha}(z)\right||d z| \lesssim 1+\int_{\alpha / 2}^{R} \alpha t^{-2} d t \lesssim 1
$$

Example 3 We consider for $0<\alpha \leq 1$ the function g_{α} given by

$$
g_{\alpha}(\lambda)=\sum_{l=0}^{[1 / \alpha]-1}(1-\lambda)^{l}=\frac{1-(1-\lambda)^{[1 / \alpha]}}{\lambda}
$$

which arises from the linear Landweber iteration, where $[1 / \alpha]$ denotes the largest integer not greater than $1 / \alpha$. The method (1.7) then becomes

$$
\begin{aligned}
u_{n, 0} & =x_{n} \\
u_{n, l+1} & =u_{n, l}-L^{-2 s} T_{n}^{*}\left(F\left(x_{n}\right)-y^{\delta}-T_{n}\left(x_{n}-u_{n, l}\right)\right), \quad 0 \leq l \leq\left[1 / \alpha_{n}\right]-1, \\
x_{n+1} & =u_{n,\left[1 / \alpha_{n}\right]}
\end{aligned}
$$

where $T_{n}:=F^{\prime}\left(x_{n}\right)$. When $\alpha_{n}=1$ for all n, this method reduces to the Landweber iteration in Hilbert scales proposed in [13. The corresponding residual function is $r_{\alpha}(\lambda)=(1-\lambda)^{[1 / \alpha]}$. We first verify Assumption 2 when the sequence $\left\{\alpha_{n}\right\}$ is given by $\alpha_{n}=1 / k_{n}$ for some integers $k_{n} \geq 1$. Then for $0 \leq \nu \leq 1$ and $0 \leq \lambda \leq 1$ we have

$$
\lambda^{\nu} \prod_{k=j}^{n} r_{\alpha_{k}}(\lambda)=\lambda^{\nu}(1-\lambda)^{s_{n}-s_{j-1}} \leq \nu^{\nu}\left(s_{n}-s_{j-1}\right)^{-\nu} \leq\left(s_{n}-s_{j-1}\right)^{-\nu}
$$

We thus obtain (2.12). Observing that $0 \leq r_{\alpha_{j}}(\lambda) \leq 1$ and $0 \leq g_{\alpha_{j}}(\lambda) \leq 1 / \alpha_{j}$ for $0 \leq \lambda \leq 1$, we have

$$
\begin{aligned}
\lambda^{\nu} g_{\alpha_{j}}(\lambda) \prod_{k=j+1}^{n} r_{\alpha_{k}}(\lambda) & \leq \frac{1}{\alpha_{j}^{1-\nu}}\left(\lambda g_{\alpha_{j}}(\lambda) \prod_{k=j+1}^{n} r_{\alpha_{k}}(\lambda)\right)^{\nu} \\
& =\frac{1}{\alpha_{j}^{1-\nu}}\left((1-\lambda)^{s_{n}-s_{j}}-(1-\lambda)^{s_{n}-s_{j-1}}\right)^{\nu}
\end{aligned}
$$

Thus, (2.13) follows from the elementary inequality $t^{p}-t^{q} \leq(q-p) / q$ for $0<p \leq q$ and $0 \leq t \leq 1$.

In order to verify (2.10) in Assumption (1) in the definition of Γ_{α} we pick $R>1$ and $0<\phi_{0}<\pi / 2$ such that $R<2 \cos \phi_{0}$. Note that

$$
\varphi_{\alpha}(z)=\frac{1-(1-z)^{[1 / \alpha]}}{z}-\frac{1}{\alpha+z}=\frac{\alpha-(\alpha+z)(1-z)^{[1 / \alpha]}}{z(\alpha+z)}
$$

By using the fact $(1+\alpha)^{1 / \alpha} \leq e$ we can see

$$
\left|\varphi_{\alpha}(z)\right| \lesssim \alpha^{-1}(1+\alpha / 2)^{1 / \alpha} \lesssim \alpha^{-1} \quad \text { on } \Gamma_{\alpha}^{(1)}
$$

According to the choice of R and ϕ_{0}, we have $1+R^{2}-2 R \cos \phi_{0}<1$. Thus

$$
\left|\varphi_{\alpha}(z)\right| \lesssim \frac{\alpha+(\alpha+R)\left(1+R^{2}-2 R \cos \phi_{0}\right)^{[1 / \alpha] / 2}}{R(R+\alpha)} \lesssim 1 \quad \text { on } \Gamma_{\alpha}^{(2)}
$$

Furthermore, on $\Gamma_{\alpha}^{(3)} \cup \Gamma_{\alpha}^{(4)}$ we have

$$
\left|\varphi_{\alpha}(z)\right| \lesssim \frac{\alpha+(\alpha+t)\left(1+t^{2}-2 t \cos \phi_{0}\right)^{1 /(2 \alpha)}}{t(\alpha+t)}
$$

Therefore

$$
\begin{aligned}
\int_{\Gamma_{\alpha}}\left|\varphi_{\alpha}(z)\right||d z| & \lesssim 1+\int_{\alpha / 2}^{R} \frac{\alpha+(\alpha+t)\left(1+t^{2}-2 t \cos \phi_{0}\right)^{1 /(2 \alpha)}}{t(\alpha+t)} d t \\
& =1+\int_{1 / 2}^{R / \alpha} \frac{1+(1+t)\left(1+\alpha^{2} t^{2}-2 \alpha t \cos \phi_{0}\right)^{1 /(2 \alpha)}}{t(1+t)} d t \\
& \lesssim 1+\int_{1 / 2}^{R / \alpha}\left(1+\alpha^{2} t^{2}-2 \alpha t \cos \phi_{0}\right)^{1 /(2 \alpha)} d t
\end{aligned}
$$

Observe that for $1 / 2 \leq t \leq R / \alpha$ there holds

$$
\left(1+\alpha^{2} t^{2}-2 \alpha t \cos \phi_{0}\right)^{1 /(2 \alpha)} \leq\left(1-\mu_{0} \alpha t\right)^{1 /(2 \alpha)} \leq e^{-\mu_{0} t / 2}
$$

with $\mu_{0}:=2 \cos \phi_{0}-R>0$. Thus

$$
\int_{\Gamma_{\alpha}}\left|\varphi_{\alpha}(z)\right||d z| \lesssim 1+\int_{1 / 2}^{\infty} e^{-\mu_{0} t / 2} d t \lesssim 1
$$

Example 4 We consider for $0<\alpha \leq 1$ the function g_{α} given by

$$
g_{\alpha}(\lambda)=\sum_{i=1}^{[1 / \alpha]}(1+\lambda)^{-i}=\frac{1-(1+\lambda)^{-[1 / \alpha]}}{\lambda}
$$

which arises from the Lardy method for linear inverse problems. Then the method (1.7) becomes

$$
\begin{array}{rlr}
u_{n, 0} & =x_{n}, \\
u_{n, l+1} & =u_{n, l}-\left(L^{2 s}+T_{n}^{*} T_{n}\right)^{-1} T_{n}^{*}\left(F\left(x_{n}\right)-y^{\delta}-T_{n}\left(x_{n}-u_{n, l}\right)\right), \\
& l=0, \cdots,\left[1 / \alpha_{n}\right]-1, \\
x_{n+1} & =u_{n,\left[1 / \alpha_{n}\right]}, &
\end{array}
$$

where $T_{n}=F^{\prime}\left(x_{n}\right)$. The residual function is $r_{\alpha}(\lambda)=(1+\lambda)^{-[1 / \alpha]}$. Assumption 1 and Assumption 2 can be verified similarly as in Example 3 when the sequence $\left\{\alpha_{n}\right\}$ is given by $\alpha_{n}=1 / k_{n}$ for some integers $k_{n} \geq 1$.

References

1. A. B. Bakushinsky and M. Yu. Kokurin, Iterative Methods for Approximate Solutions of Inverse Problems, Mathematics and its applications, Springer, 2004.
2. R. S. Dembo, S. C. Eisenstat and T. Steihaug, Inexact Newton methods, SIAM J. Numer. Anal., 19 (1982), 400-408.
3. H. W. Engl, M. Hanke and A. Neunauer, Regularization of Inverse Problems, Kluwer, Dordrecht, 1996.
4. M. Hanke, A regularizing Levenberg-Marquardt scheme with applications to inverse groundwater filtration problems, Inverse Problems, 13(1997), 79-95.
5. M. Hanke, The regularizing Levenberg-Marquardt scheme is of optimal order, J. Integeral Equations and Applications, 22 (2010), no. 2, 259-283.
6. M. Hanke, A. Neubauer and O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numer. Math., 72 (1995), 21-37.
7. M. Hochbruck, M. Hönig and A. Ostermann, A convergence analysis of the exponential Euler iteration for nonlinear ill-posed problems, Inverse Problems, 25 (2009), no.7, article no. 075009.
8. Q. Jin, Error estimates of some Newton-type methods for solving nonlinear inverse problems in Hilbert scales, Inverse Problems, 16 (2000), no. 1, 187-197.
9. Q. Jin, On a regularized Levenberg-Marquardt method for solving nonlinear inverse problems, Numer. Math., 115 (2010), no. 2, 229-259.
10. J. Köhler and U. Tautenhahn, Error bounds for regularized solutions of nonlinear ill-posed problems, J. Inv. Ill-Posed Problems 3 (1995), 47-74.
11. A. Lechleiter and A. Rieder, Towards a general convergence theory for inexact Newton regularizations, Numer. Math. 114 (2010), no. 3, 521-548.
12. F. Natterer, Error bounds for Tikhonov regularization in Hilbert scales, Appl. Anal., 18 (1984), 29-37.
13. A. Neubauer, On Landweber iteration for nonlinear ill-posed problems in Hilbert scales, Numer. Math., 85 (2000), 309-328.
14. A. Rieder, On the regularization of nonlinear ill-posed problems via inexact Newton iterations, Inverse Problems, 15(1999), 309-327.
15. A. Rieder, On convergence rates of inexact Newton regularizations, Numer. Math. 88(2001), 347-365.
16. U. Tautenhahn, Error estimates for regularization methods in Hilbert scales, SIAM J. Numer Anal., 33 (1996), 2120-2130.
17. U. Tautenhahn, On a general regularization scheme for nonlinear ill-posed problems: II. regularization in Hilbert scales, Inverse Problems, 14 (1998), 1607-1616.

[^0]: ${ }^{1}$ Throughout this paper we will always use C to denote a generic constant independent of δ and n. We will also use the convention $\Phi \lesssim \Psi$ to mean that $\Phi \leq C \Psi$ for some generic constant C.

