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STABILITY AND PRECONDITIONING FOR A HYBRID

APPROXIMATION ON THE SPHERE

Q. T. LE GIA, IAN H. SLOAN, AND ANDREW J. WATHEN

Abstract. This paper proposes a new preconditioning scheme for a linear sys-
tem with a saddle-point structure arising from a hybrid approximation scheme
on the sphere, an approximation scheme that combines (local) spherical radial
basis functions and (global) spherical polynomials. Making use of a recently
derived inf-sup condition [13] and the Brezzi stability and convergence the-
orem for this approximation scheme, we show that the linear system can be
optimally preconditioned with a suitable block-diagonal preconditioner. Nu-
merical experiments with a non-uniform distribution of data points support
the theoretical conclusions.

1. Introduction

Amongst approaches for scattered data approximation on the sphere, the hybrid
interpolation scheme of von Golitschek & Light [6] and Sloan & Sommariva [12],
which employs both radial basis functions and spherical polynomials, seems an
attractive method, especially when the data is concentrated in some regions (such
as over mountain ranges and trenches on the Earth’s surface), yet relatively sparse
in other regions. The underlying idea is that radial basis functions can give good
approximation for rapidly varying data over short distances, whereas the polynomial
component can more effectively represent smooth variations on a global scale. The
radial basis functions are centered at data points which are supposed given, and
the linear combination of radial basis functions is constrained to be orthogonal, in
a natural sense, to the finite dimensional space of polynomials.

However, the hybrid scheme poses difficulties in implementation, compared with
a pure radial basis function approximation, when the number of centers is large.
In the case of a pure radial basis function approximation with a (strictly) positive
definite kernel, the resulting linear system has a matrix that is positive definite,
allowing an iterative solution by the conjugate gradient method, and precondition-
ing by, for example, the additive Schwarz method, see [7]. For the hybrid scheme,
in contrast, the linear equations for the relevant expansion coefficients have the
saddle-point form, see [12],

(1)

[
A Q
QT 0

] [
α
β

]
=

[
fX
0

]
,

where A ∈ RN×N is a positive definite matrix arising from the radial basis func-
tion part of the function approximation, and Q ∈ RN×M is a matrix of spherical
harmonics evaluated at the data centers, with M ≤ N . (The matrices A and Q are
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defined properly in Section 2). The saddle-point structure means that the overall
matrix is not positive definite, and that the conjugate gradient method is no longer
a suitable iterative solver. More fundamentally, because the matrix has both pos-
itive and negative eigenvalues, the problem of constructing a good preconditioner
becomes more delicate. For a thorough review of strategies and challenges for the
numerical solution of saddle-point problems, see [2, 5].

In this manuscript we concentrate on the stability of the saddle-point formulation
of this hybrid scheme, and devise and validate a rapid preconditioned iterative
solution method for the solution of the equations from the approximation. We
make use of the Brezzi stability and convergence theorem well known in the context
of mixed finite elements, along with the new inf-sup condition of [13] to establish
convergence of the approximation scheme; and then use the inf-sup condition to
obtain an optimal preconditioner.

A leading contender amongst the solution methods for equations with the struc-
ture (1) (see [2]) is the block preconditioning method of [8] employing an approxi-
mation to the Schur complement

S := QTA−1Q.

The use of Schur complement approximations in preconditioners is by now well
established (see for example [5]) in the setting of mixed finite element methods. In
particular, Verfürth [14] showed that for the mixed finite element approximation
of the Stokes flow problem the Schur complement is spectrally equivalent to the
identity operator (or to the mass matrix or L2 projection matrix in the finite element
setting), making this a suitable approximation to the Schur complement. Verfürth’s
proof makes essential use of the Babuska-Brezzi or inf-sup condition (Assumption
2.1 in [14]), see [3, 4].

In the present setting, the Schur complement turns out to be spectrally equivalent
not to the identity operator/matrix, but rather to a specific diagonal but non-
constant matrix. This spectral equivalence, a main result of the paper, is stated in
Theorem 4. The key ingredient here, in analogy with the known inf-sup condition
for the Stokes flow problem, is the inf-sup stability condition recently established
by Sloan and Wendland [13] for the hybrid approximation problem.

An approximate solver for the primal operator (the radial basis function interpo-
lation matrix in this case) is also required. This could be provided, for example, by
the domain decomposition method of Le Gia, Sloan and Tran [7], or by any other
preconditioner for the pure radial basis function problem. The resulting block di-
agonal preconditioner is symmetric and positive definite, hence the preconditioned
MINRES method ([10],[5]) is applicable to the full problem (which is symmetric
but not positive definite).

In Section 2 we formulate the hybrid approximation scheme and establish no-
tation. Then in Section 3 we describe the inf-sup condition of [13], and use the
Brezzi theorem to establish stability and convergence of the scheme. In Section 4
we turn to preconditioning, establishing there the main spectral equivalence result.
In Section 5 numerical results are presented (using the primal preconditioner of [7])
and we conclude in Section 6.
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2. Problem formulation

Let X = XN = {x1,x2, . . . ,xN} be a set of N distinct points on the sphere S
d

in Rd+1. Using these as centers we define a radial basis function approximation
space

XXN
= XN := {

N∑

i=1

αiφ(·,xi) : α1, . . . , αN ∈ R}

with a suitable kernel function φ. The kernel is assumed to be (strictly) positive
definite, that is

N∑

i=1

N∑

j=1

αiφ(xi,xj)αj ≥ 0

for every set of points XN = {x1, . . . ,xN} ∈ Sd and for all N ∈ N, with equality
for distinct points xj only if α1 = α2 = . . . = αN = 0.

The native space Nφ is defined as the completion under the inner product

(2) 〈
∑

i

αiφ(·,xi),
∑

j

α′
jφ(·,xj)〉φ =

∑

i

∑

j

αiα
′
jφ(xi,xj)

of the linear space

Fφ := {
N∑

j=1

αjφ(·,xj), αj ∈ R,xj ∈ S
d, j = 1, . . . , N,N ∈ N},

where we insist that the points xj are distinct. The norm is as usual defined by

‖ · ‖φ = 〈·, ·〉1/2φ .

It is well-known that Nφ is a reproducing kernel Hilbert space (see [1]) with the
reproducing kernel φ(·, ·). That is

φ(x,y) = φ(y,x), x,y ∈ S
d

φ(·,y) ∈ Nφ, y ∈ S
d

and for f ∈ Nφ

(3) 〈f, φ(·,y)〉φ = f(y), y ∈ S
d.

The kernel function φ needs to be positive definite in order that the inner product
〈·, ·〉φ satisfy the positivity axiom for an inner product. Equivalently, the matrices
AX defined by

(4) (AX)i,j := φ(xi,xj), i, j = 1, . . . , N

are positive definite as well as symmetric for every X and every N ∈ N.
Taking now a fixed N ∈ N and a fixed set XN ⊂ Sd, we may define the usual

radial basis function interpolant to a continuous function f on Sd by

fN(x) =

N∑

j=1

αjφ(x,xj),

where α1, . . . , αN are such that

fN(xi) = f(xi), i = 1, . . . , N,
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which we may write as

N∑

j=1

φ(xi,xj)αj = f(xi) for i = 1, . . . , N.

That is, the vector α = (α1, . . . , αN )T of coefficients satisfies

(5) AXα = fX ,

where

(6) fX := (f(x1), . . . , f(xN ))T .

The hybrid approximation scheme of von Golitschek & Light [6] and Sloan &
Sommariva, see [13], employs not only the radial basis functions, but also spherical
polynomials of total degree up to some conveniently chosen L ≥ 0. We define

PL = span{Yℓ,k : k = 1, . . . ,M(d, ℓ), ℓ = 0, . . . , L},
where Yℓ,k is a spherical harmonic of degree ℓ, that is, the restriction to Sd of a
homogeneous harmonic polynomial inRd+1 of degree ℓ, andM(d, ℓ) is the dimension
of the space spanned by the spherical harmonics of degree ℓ. Then PL is the
set of spherical polynomials of degree ≤ L. We shall assume that {Yℓ,k : k =
1, . . . ,M(d, ℓ), ℓ = 0, 1, . . .} is an orthonormal set with respect to the usual L2

inner product, that is
∫

Sd

Yℓ,k(x)Yℓ′,k′(x)dω(x) = δℓ,ℓ′δk,k′ ,

where dω(x) denotes surface measure on Sd. Then it is well known that {Yℓ,k : k =
1, . . . ,M(d, ℓ), ℓ = 0, 1, . . .} is a complete orthonormal basis for L2(S

d).
For a given function f , the hybrid approximation scheme is then to find

(7) uN,L(x) =

N∑

j=1

αjφ(x,xj) ∈ XN

and

(8) pN,L(x) =

L∑

ℓ=0

M(d,ℓ)∑

k=1

βl,kYℓ,k(x) ∈ PL

such that

(9) uN,L(xi) + pN,L(xi) = f(xi),

or equivalently,

(10)
N∑

j=1

αjφ(xi,xj) +
L∑

ℓ=0

M(d,ℓ)∑

k=1

βℓ,kYℓ,k(xi) = f(xi), i = 1, . . . , N,

which is to be solved subject to the side condition

(11)

N∑

j=1

αjq(xj) = 0 ∀q ∈ PL.

The condition (11) is equivalent, via (3), to 〈q, uN,L〉φ = 0 for all q ∈ PL, forcing
the radial basis function component to be Nφ-orthogonal to PL. It also ensures
that the defining linear system is square and symmetric.
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The conditions (10),(11) can also be seen to be those which derive from the
solution of the constrained optimization problem

min
uN,L∈XN

1

2
‖uN,L − f‖2φ subject to 〈Yℓ,k, uN,L〉φ = 0

for all ℓ = 0, . . . , L, k = 1, . . . ,M(d, ℓ), the coefficients βℓ,k being the Lagrange
multipliers in the Lagrangian

L =
1

2
‖uN,L − f‖2φ +

L∑

ℓ=0

M(d,ℓ)∑

k=1

βℓ,k〈Yℓ,k, uN,L〉φ

=
1

2
‖uN,L − f‖2φ + 〈pN,L, uN,L〉φ.

This is therefore another way of expressing the hybrid approximation problem.
By choosing the spherical harmonic functions as the basis for PL in (11), we can

write (10),(11) as a so-called ‘saddle-point’ linear system of equations

(12)

[
AX QX,L
QTX,L 0

] [
α
β

]
=

[
fX
0

]
,

where AX is defined by (4), α is the vector of coefficients αj as defined above, β
is a vector containing the coefficients βℓ,k for k = 1, . . . ,M(d, ℓ), ℓ = 0, . . . , L, and
QX,L is the N ×M matrix defined by

(13) (QX,L)i,ℓk := Yℓ,k(xi), i = 1, . . . , N, k = 1, . . . ,M(d, ℓ), ℓ = 0, . . . , L,

and
M :=

∑

ℓ=0

M(d, ℓ) = dim (PL).

In the present application we need to prescribe more precisely the nature of the
kernel φ(x,y). In the first place we shall assume that it is zonal, meaning that

φ(x,y) = Φ(x · y)
for some function Φ ∈ C[−1, 1], where x ·y denotes the Euclidean inner product in
Rd+1. More precisely, we shall assume that φ(x,y) has an expansion of the form

(14) φ(x,y) =

∞∑

ℓ=0

M(d,ℓ)∑

k=1

aℓYℓ,k(x)Yℓ,k(y),

with aℓ > 0 for all ℓ ≥ 0. That the expansion is zonal follows from the addition
theorem for spherical harmonics,

M(d,ℓ)∑

k=1

Yℓ,k(x)Yℓ,k(y) =
M(d, ℓ)

ωd
Pℓ(d+ 1,x · y),

where Pℓ(d + 1, z) is the Legendre polynomial of degree ℓ in dimension d + 1 nor-
malized to Pℓ(d+ 1, 1) = 1, and ωd is the total surface measure of Sd,

ωd =

∫

Sd

dω(x).

In this situation it is well known that the inner product in Nφ can be written as

(15) 〈u, v〉φ =

∞∑

ℓ=0

M(d,ℓ)∑

k=1

ûℓ,kv̂ℓ,k
aℓ

,
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where

ûℓ,k =

∫

Sd

u(x)Yℓ,k(x)dω(x).

Indeed, as a special case of (15) we find

〈f, φ(·,y)〉φ =

∞∑

ℓ=0

M(d,ℓ)∑

k=1

f̂ℓ,kaℓYℓ,k
aℓ

=

∞∑

ℓ=0

M(d,ℓ)∑

k=1

f̂ℓ,kYℓ,k(y) = f(y),

thus verifying the reproducing kernel property (3).
If we further assume that for large ℓ

(16) aℓ ∼ (ℓ + 1)−2s,

then it follows from (15) and (16) that the native space Nφ is equivalent to the
Sobolev space Hs(Sd) with inner product

(17) 〈u, v〉Hs =

∞∑

ℓ=0

M(d,ℓ)∑

k=1

(ℓ + 1)2sûℓ,kv̂ℓ,k.

Technicalities aside, we remark that the essential difficulty in analysing the hy-
brid approximation is that XN and PL are both subsets of Nφ, and that in an
appropriate sense both can approximate Nφ as N or L tend to ∞. We need the inf-
sup condition, now to be introduced, to allow both subspaces to coexist comfortably
within the one approximation.

3. Inf-sup condition, and the Brezzi theorem

Typically, uniqueness of the solution and optimal error estimates for saddle-
point problems follow from so-called inf-sup conditions together with appropriate
coercivity of the primal operator. For us an essential tool will be the following inf-
sup theorem proved in [13]. In this theorem hX , for a given point set X = XN ⊂ Sd,
is the mesh norm, defined by

hX := sup
x∈Sd

inf
xj∈X

cos−1(x · xj).

In words, hX is the maximum geodesic distance from a point on Sd to the nearest
point of X .

Theorem 1. Let φ be a kernel satisfying (14) and (16) for some s > d/2. There
exist constants γ > 0 and τ > 0 depending only on d and s such that for all L ≥ 1
and all XN = {x1, . . . ,xN} ⊂ Sd satisfying hX ≤ τ/L the following inequality
holds:

inf
p∈PL\{0}

sup
v∈XN\{0}

〈p, v〉φ
‖v‖φ‖p‖φ

≥ γ.

To use this to prove stability we start with the following well-known theorem
from Brezzi [4], which is at the heart of most analyses of mixed finite elements.

Theorem 2. Let H and J be real Hilbert spaces, a(ξ1, ξ2) be a continuous bilinear
form on H × H and b(ψ, ξ) be a continuous bilinear form on J × H. Let {HN :
N ∈ N} and {JL : L ∈ N} be sequences of subspaces of H and J respectively. Set

K = {η ∈ H : b(θ, η) = 0 ∀θ ∈ J}, KN,L = {η ∈ HN : b(θ, η) = 0 ∀θ ∈ JL}.
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If

(18) ∃γ0 > 0 such that a(η, η) ≥ γ0‖η‖2H ∀η ∈ K ∪KN,L,

and

∃γ1 > 0 such that sup
η∈H\{0}

b(θ, η)

‖η‖H
≥ γ1‖θ‖J ∀θ ∈ J

(19) and sup
η∈HN\{0}

b(θ, η)

‖η‖H
≥ γ1‖θ‖J ∀θ ∈ JL,

then for every ℓ1 ∈ H ′ and ℓ2 ∈ J ′ and every N,L > 0 the discrete problem of
finding ξN,L ∈ HN and ψN,L ∈ JL such that

a(ξN,L, η) + b(ψN,L, η) = 〈ℓ1, η〉 ∀η ∈ HN

b(θ, ξN,L) = 〈ℓ2, θ〉 ∀θ ∈ JL

has a unique solution, and there exists a constant C = C(γ0, γ1) > 0 such that

‖ξ − ξN,L‖H + ‖ψ − ψN,L‖J ≤ C

(
inf

ξ̂N∈HN

‖ξ − ξ̂N‖H + inf
ψ̂L∈JL

‖ψ − ψ̂L‖J
)

where ξ ∈ H and ψ ∈ J are defined by

a(ξ, η) + b(ψ, η) = 〈ℓ1, ξ〉 ∀η ∈ H,

b(θ, ξ) = 〈ℓ2, θ〉 ∀θ ∈ J.

To apply this theorem, we first observe that the hybrid approximation with
its defining equations (10) and (11) can be written, using the reproducing kernel
property (3), as the problem of finding uN,L ∈ XN and pN,L ∈ PL such that

(20) 〈uN,L, η〉φ + 〈pN,L, η〉φ = 〈f, η〉φ ∀η ∈ XN ,

(21) 〈q, uN,L〉φ = 0 ∀q ∈ PL.
To use Theorem 2 we take H = Nφ, J = PL, HN = XN and JL = PL, with
the inner product on Nφ being defined by (2), and the bilinear forms a(·, ·) and
b(·, ·) both equal to the Nφ inner product. The coercivity condition (18) is trivially
satisfied on the whole space H = Nφ with γ0 = 1 since

a(u, u) = 〈u, u〉φ = ‖u‖2φ.
The existence of a constant γ1 independent of N and L satisfying (19) is ensured
by Theorem 1, provided hX ≤ τ/L. The first part of Theorem 2 then confirms that
the solution of the system (20) and (21) exists and is unique provided hX ≤ τ/L.
The last part of that theorem defines the comparison quantities: it defines uL ∈ Nφ

and pL ∈ PL such that

〈uL, η〉φ + 〈pL, η〉φ = 〈f, η〉φ ∀η ∈ Nφ,

〈q, uL〉φ = 0 ∀q ∈ PL.
The second equation says that uL is orthogonal to the space PL. In principle the
orthogonality is with respect to the Nφ inner product, but because of the zonal
property of the kernel it is easy to see that this is the same as the L2 orthogonal
projection. Indeed, from (15) we have

〈q, uL〉φ = 0 ∀q ∈ PL =⇒ (ûL)ℓ,k = 0 for ℓ ∈ [0, L] =⇒ 〈q, uL〉L2
= 0 ∀q ∈ PL.
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The first of the latter set of equations then becomes, on specialising the choice of
η to q ∈ PL,

〈pL, q〉φ = 〈f, q〉φ ∀q ∈ PL,
thus pL is the orthogonal projection of f on the subspace PL with respect to either
the L2 or the Nφ inner products. We write this orthogonal projection as PLf . Now
we can write pL = PLf , and uL = f − pL = f − PLf . Theorem 2 with ξ = uL and
ψ = pL now gives the following convergence result, recovering a result obtained by
a direct argument in [13]. Note that even though we have taken J = PL in the
theorem, the constants γ0 and γ1 do not depend on L, and hence neither does C.

Theorem 3. Let φ be a kernel satisfying (14) and (16) for some s > d/2. There
exist constants C > 0 and τ > 0 depending only on d and s such that for all L ≥ 1
and all X = XN = {x1, . . . ,xN} ⊂ Sd satisfying hX ≤ τ/L the solutions of (7),(8)
and (9) satisfy

(22) ‖f − uN,L − pN,L‖φ ≤ C inf
ξ̂N∈XN

‖(f − PLf)− ξ̂N‖φ.

Explicit error bounds in the L2 norm for f ∈ Hs and f ∈ H2s can then be
obtained as in [13].

4. Preconditioning

Now we turn our attention to the linear algebra aspects of the hybrid approxi-
mation described in Section 2.

We have noted already that the hybrid approximation can be written as the
linear system (12), with AX , QX,L and f defined by (4),(13), and (6).

The solution of saddle-point linear systems such as (1) has received much atten-
tion in recent years - see [2] for an overview of possible approaches. In particular,
it was shown in [8] that a suitable preconditioner for the saddle point system

(23)

[
A Q
QT 0

]

with positive definite A is

(24)

[
A 0
0 S

]
,

where

S = QTA−1Q

is the Schur complement. This is because of the remarkable fact that the product
of (23) by the inverse of (24) is a diagonalisable matrix with just three distinct

eigenvalues, namely 1, (1±
√
5)/2. Thus an appropriate Krylov subspace iteration

such as MINRES (see [10]) will converge in just three iterations. While this is
generally not a practical preconditioner, an approximate preconditioner of the form

(25)

[
Â 0

0 Ŝ

]
,

where Â is a preconditioner for the problem (5) involving only A, and Ŝ is a suitable
Schur complement approximation, will lead to rapid convergence.
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In the present work we shall assume that an approximate preconditioner Â for
A = AX is already available; one example would be the domain decomposition
preconditioner from [7] - this is the one we employ in the numerical results presented
in the next section. Our interest here is in finding an appropriate approximation
to the Schur complement SX = QTX,LA

−1
X QX,L. We shall see that this is handed to

us by the inf-sup result in Theorem 1.
That inf-sup condition can be stated as

sup
v∈XN\{0}

〈p, v〉φ
‖v‖φ

≥ γ1‖p‖φ ∀p ∈ PL,

provided hX ≤ τ/L. With the help of the Cauchy-Schwarz inequality, this can be
strengthened to a two-sided inequality,

(26) ‖p‖φ = sup
v∈Nφ\{0}

〈p, v〉φ
‖v‖φ

≥ sup
v∈XN\{0}

〈p, v〉φ
‖v‖φ

≥ γ1‖p‖φ ∀p ∈ PL,

provided hX ≤ τ/L. To find an equivalent matrix expression, we write p ∈ PL and
v ∈ XN as

p =

L∑

ℓ=0

M(d,ℓ)∑

k=1

βℓ,kYℓ,k, v =

N∑

i=1

αiφ(·,xi).

With the help of the reproducing property (3), we find

〈p, v〉φ =
L∑

ℓ=0

M(d,ℓ)∑

k=1

N∑

i=1

βℓ,kαi〈Yℓ,k, φ(·,xi)〉φ

=

L∑

ℓ=0

M(d,ℓ)∑

k=1

N∑

i=1

βℓ,kαiYℓ,k(xi) = βTQTX,Lα,

and

‖v‖φ = 〈v, v〉1/2φ = (
N∑

i=1

N∑

j=1

αiαjφ(xi,xj))
1/2 = (αTAXα)

1/2.

Also, with the aid of (15) we obtain

‖p‖φ =




L∑

ℓ=0

M(d,ℓ)∑

k=1

β2
ℓ,k

aℓ




1

2

=
(
βTΛLβ

) 1

2 ,

where ΛL is the M ×M diagonal matrix given by

(27) (ΛL)ℓk,ℓ′k′ = δℓℓ′δkk′/aℓ.

Thus in matrix terms (26) can be written as

(28) (βTΛLβ)
1

2 ≥ sup
α∈RN\{0}

βTQTX,Lα

(αTAXα)
1

2

≥ γ1(β
TΛLβ)

1

2 ∀β ∈ R
M .

Because AX is symmetric and positive definite, the central term can be simplified

by the substitution α = A
− 1

2

X a, making it

sup
a∈RN\{0}

βTQTX,LA
− 1

2

X a

(aTa)
1

2

= (βTQTX,LA
−1
X QX,Lβ)

1

2 ,
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with the last step following because the supremum over a is clearly achieved by

a = (βTQTX,LA
− 1

2

X )T . Thus in matrix terms (26) can be expressed as

(29) βTΛLβ ≥ βTQTX,LA
−1
X QX,Lβ ≥ γ21β

TΛLβ ∀β ∈ R
M .

Through the above arguments we have established the following theorem.

Theorem 4. Let φ be a kernel satisfying (14) and (16) for some s > d/2, and let
AX and QX,L be given by (4) and (13). For all L ≥ 1 and hX ≤ τ/L, where τ is as

in Theorem 1, the Schur complement SX = QTX,LA
−1
X QX,L is spectrally equivalent

to the diagonal matrix ΛL given by (27).

It follows from the theorem that our practical recommendation for the hybrid
problem is a preconditioner of the form

(30)

[
Â 0
0 ΛL

]
,

where Â is an approximation to A, and ΛL is defined by (27).

5. Numerical examples

We will use the following kernel

φ(x,y) = ψ(|x− y|) = ψ(
√
2− 2x · y), x,y ∈ S

2,

where the radial basis function ψ(r) is one of the three choices

ψ0(r) = (1− r)2+, ψ1(r) = (1− r)4+(4r + 1), ψ2(r) = (1− r)6+(35r
2 + 18r + 3)

with (x)+ = x for x ≥ 0 and 0 otherwise. Note that ψ0 ∈ C0(R3), ψ1 ∈ C2(R3)
and ψ2 ∈ C4(R3) and each is positive definite (see [15]). We comment that we have
not here employed any scaling of the compactly supported RBFs. Using functions
with smaller support would improve matrix conditioning, but because it would also
reduce approximation accuracy we have chosen not to use any scaling. It is shown
theoretically in [9] and verified numerically in Figure 1 that the coefficients aℓ in the
expansion of the kernel φ defined from ψ1 are of order (1 + ℓ)−5. This is consistent
with (16) but because the constants in the equivalence are large we have chosen to
work directly with the Fourier-Legendre coefficients aℓ, which being 1-dimensional
integrals are easily evaluated numerically. For the sphere S2, we have

aℓ = 2π

∫ 1

−1

Φ(t)Pℓ(3, t)dt, where Φ(t) = ψ(
√
2− 2t).

For the preconditioner, as described in [7], the matrix A is preconditioned using
a domain decomposition technique. First, given a fixed parameter 0 < ν < π, an
appropriate set of centers {p1, . . . ,pJ} ⊂ X is chosen over the whole sphere so that

min
i6=j

cos−1(pi · pj) ≥ ν.

Second, with another fixed parameter 0 < µ < π/3, we decompose the point set X
into a collection of smaller sets Xj, for j = 1, . . . , J , defined by

Xj := {x ∈ X : cos−1(x · pj) ≤ µ}.
The sets Xj with cardinality mj, for j = 1, . . . , J , may overlap each other and must
satisfy ∪Jj=1Xj = X . The restriction operator from R

N to R
mj is denoted by Rj
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Figure 1. Numerical values of (ℓ+ 1)5aℓ

and the extension operator from Rmj to RN is RTj . Given a vector r ∈ RN , the

action of the preconditioner Â is given by

Â−1r =

J∑

j=1

RTj (Aj)
−1Rjr

where the matrix Aj is the restriction of the full matrix A on the subdomain Xj

(see [7] for more details).
By Theorem 4 the diagonal matrix ΛL defined by (27) is spectrally equivalent to

SX = QTX,LA
−1
X QX,L. The block diagonal preconditioner for (23) is therefore the

matrix (30).
The results here are for interpolation of the function

f(x, y, z) = exp(x+ y + z) + [0.01− x2 − y2 − (z − 1)2]2+,

consisting of a smooth first term and a second term whose support is a cap of
Euclidean radius 0.1.

Using each of the kernel functions φ obtained from the radial basis functions
ψm,m = 0, 1, 2, we employ N = 2000, 4000, 8000, 16000 and 32000 points, and
maximum polynomial degree L = 0, 5, 10, 15, 20, 25. In each case, a thousand of
the points were generated in a cap about the z axis subtending an angle of 0.1
radians at the origin and the remaining points distributed outside this cap. The
Saff-Kuijlars equal area algorithm described in [11] was used to generate these
points in the following manner. Firstly the Saff-Kuijlars points are generated on
the whole sphere and those in the cap region are discarded. Then a similar equal
area construction only for the cap is used to generate 1000 points in this region.
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m N 2000 4000 8000 16000 32000
0 L = 0 207 ( 14) 228 ( 62) 273 ( 297) 294 ( 1229) 367 ( 6277)

L = 5 813 ( 57) 1116 (304) 1531 (1662) 1996 ( 8297) 2535 (43513)
L = 10 1053 ( 77) 1488 (413) 2240 (2463) 3016 (12573) 4001 (67005)
L = 15 1080 ( 85) 1492 (498) 2208 (2475) 3037 (12788) 4270 (71728)
L = 20 1126 ( 99) 1466 (464) 2032 (2334) 2777 (17227) 3832 (66025)
L = 25 1262 (123) 1467 (499) 1976 (2382) 2562 (11069) 3461 (58451)

1 L = 0 1041 ( 75) 790 ( 218) 695 ( 755) 912 ( 3954) 995 (17436)
L = 5 2654 (193) 4293 (1194) 3564 (3889) 3172 (13736) 2321 (40754)
L = 10 3647 (280) 4370 (1237) 4047 (4488) 5335 (42445) 3381 (59228)
L = 15 3267 (265) 4308 (1281) 4021 (4594) 3792 (16908) 2808 (48999)
L = 20 2883 (264) 2923 ( 935) 3329 (6906) 3977 (17987) >24 hours
L = 25 2659 (265) 2837 (1006) 3295 (4048) 2756 (12735) 3461 (61280)

2 L = 0 1079 ( 82) 1578 (457) 1903 ( 2164) 2743 (12233) 2671 (48177)
L = 5 1978 (152) 2594 (757) 14424 (16476) >24 hours >40 hours
L = 10 2205 (176) 3130 (929) 13569 (15603) >24 hours >40 hours
L = 15 2402 (205) 2803 (873) 11970 (14053) >24 hours >40 hours
L = 20 1796 (169) 1869 (624) 8710 (10687) 13551 (63016) >40 hours
L = 25 1615 (168) 1758 (629) 6417 ( 8239) 10299 (48420) >40 hours

Table 1. MINRES iteration count (CPU time) without preconditioning

The number of MINRES iterations and the CPU time in seconds required for
convergence to a residual norm tolerance of 10−9 are tabulated for the unprecondi-
tioned case in Table 1 and for the preconditioner introduced here in Table 2. The
computer code is written in Fortran 90, compiled with the Intel compiler and run
on a single core of an SGI Altix XE320 with two Intel Xeon X5472 CPUs.

The preconditioning is seen to be effective: as anticipated from the theory above,
the number of iterations remains approximately constant over all choices of N for
each degree L. Indeed, for each N aside from the simple case L = 0 (in which the
radial basis function approximation matrix is only supplemented by one row and
one column), the iteration counts grow only slowly with increasing L.

In order to determine the descriptiveness of the bound (29) we have also com-
puted the generalised eigenvalues λi of the pencil QTX,LA

−1
X QX,L − λΛL for the

case N = 4000 points, for m = 0, 1 and for L = 5, 10, 15, 20, 25. Note that the
generalised eigenvalues are exactly the eigenvalues of Λ−1

L (QTX,LA
−1
X QX,L). The

minimum and maximum computed eigenvalues are given in Table 3. It is notice-
able how close the largest eigenvalue is to the analytical upper bound of 1 and that,
although the lowest eigenvalue does decrease for larger L, it remains reasonably
close to 1. (Note that for fixed X and increasing L the inf-sup condition must
eventually break down.)

6. Conclusions

By employing a recent inf-sup stability result of Sloan and Wendland, we have
derived an effective preconditioned iterative solver for the hybrid radial basis func-
tion and spherical polynomial approximation scheme of Sloan and Sommariva. The
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m N 2000 4000 8000 16000 32000
0 L = 0 31 ( 6) 39 (18) 30 ( 51) 29 (225) 39 ( 959)

L = 5 59 (11) 71 (31) 58 ( 96) 62 (465) 75 (1802)
L = 10 70 (13) 88 (39) 70 (116) 71 (532) 89 (2120)
L = 15 76 (15) 93 (43) 76 (128) 76 (572) 96 (2279)
L = 20 83 (17) 98 (48) 80 (138) 82 (780) 99 (2393)
L = 25 95 (20) 97 (50) 80 (142) 84 (649) 104 (2505)

1 L = 0 43 ( 8) 75 (34) 35 ( 66) 29 (227) 47 (1161)
L = 5 76 (15) 128 (57) 83 (138) 74 (557) 105 (2559)
L = 10 91 (18) 148 (67) 98 (163) 94 (705) 136 (3296)
L = 15 98 (19) 168 (78) 96 (163) 100 (758) 148 (3615)
L = 20 107 (22) 170 (83) 103 (180) 103 (788) 153 (3754)
L = 25 106 (23) 174 (89) 103 (185) 113 (870) 161 (3972)

2 L = 0 64 (13) 149 ( 61) 46 ( 81) 30 ( 243) 61 (1419)
L = 5 95 (19) 157 ( 70) 88 (151) 103 ( 797) 140 (3380)
L = 10 95 (19) 171 ( 71) 102 (176) 111 ( 861) 146 (3425)
L = 15 112 (23) 187 (123) 113 (199) 118 ( 923) 165 (3614)
L = 20 119 (25) 197 ( 86) 115 (207) 133 (1052) 196 (4301)
L = 25 125 (28) 201 ( 91) 119 (220) 131 (1046) 203 (4433)

Table 2. MINRES iteration count(CPU time) with precondition-

ing Â and Ŝ

m L 5 10 15 20 25
0 λmin 0.9987434 0.9899326 0.9623012 0.9068357 0.8348191

λmax 0.9997653 0.9997658 0.9997674 0.9997753 0.9998099
1 λmin 0.9999955 0.9999125 0.9993989 0.9973949 0.9908182

λmax 0.9999986 0.9999986 0.9999986 0.9999986 0.9999989

Table 3. Extreme eigenvalues of QTX,LA
−1
X QX,L − λΛL for N = 4000

preconditioner requires only a good approximation for the radial basis function in-
terpolation problem and a simple diagonal scaling matrix for the Schur complement
based on the Fourier-Legendre coefficients of the kernel function used in the radial
basis function interpolant. We have established theoretically that the precondi-
tioner for the Schur complement is optimal.
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