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Abstract

In this paper we construct polynomial lattice rules which have, in some sense,

small gain coefficients using a component-by-component approach. The gain co-

efficients, as introduced by Owen, indicate to what degree the method improves

upon Monte Carlo. We show that the variance of an estimator based on a scram-

bled polynomial lattice rule constructed component-by-component decays at a rate

of N−(2α+1)+δ , for all δ > 0, assuming that the function under consideration has

bounded variation of order α and whereN denotes the number of quadrature points.

An analogous result is obtained for Korobov polynomial lattice rules. It is also

established that these rules are almost optimal for the function space considered

in this paper. Furthermore, we discuss the implementation of the component-by-

component approach and show how to reduce the computational cost associated

with it. Finally, we present numerical results comparing scrambled polynomial lat-

tice rules and scrambled digital nets.
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1 Introduction

Quasi-Monte Carlo rules 1
N

∑N
n=1 f(xn), x1, . . . ,xN ∈ [0, 1]s, are equal weight integration

formulas used to approximate integrals over the unit cube [0, 1]s, where s is typically
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large. One can roughly divide quasi-Monte Carlo rules into lattice rules, see e.g. [18, 27],
and digital nets, see e.g. [7, 18]. In this paper we focus on digital nets, the construction
of which is based on linear algebra over finite fields, see [7, 18]. In particular, we are
interested in a special case of digital nets, so-called polynomial lattice rules, which are
constructed using polynomials over finite fields; polynomial lattice rules were introduced
in [19], see also [5, 7, 18].

Studying the approximation of integrals using quasi-Monte Carlo methods, one wants
to have information on the resulting integration errors. However, depending on the inte-
grand under consideration, estimates of integration errors might be very conservative or
unknown; a possible remedy to this problem is randomization, which allows us to obtain
statistical information on integration errors, [23]. Popular choices of randomization meth-
ods are digital shifts, see e.g. [6, 7], and scrambling as introduced by Owen [23], see also
[7, 10, 16, 24, 25, 30, 31, 32, 33]. In this paper, we focus on scrambling. In particular, we
are interested in the variance of the estimator

Î(f) =
1

bm

bm−1∑

h=0

f(yh), (1)

where the points {yh}
bm−1
h=0 are obtained by applying the scrambling algorithm to a poly-

nomial lattice rule. Notice that Î(f) is an unbiased estimator of
∫
[0,1]s

f(x)dx, that is,

E(Î(f)) =
∫
[0,1]s

f(x)dx, see [23].

The variance of the estimator given in Equation (1) admits the representation, see
[24],

Var(Î(f)) =
1

N

∑

l∈Ns
0\{0}

Γlσ
2
l (f), (2)

where N is the number of quadrature points. Equation (2) holds for any estimator
obtained by applying the scrambling algorithm to a point set {xh}

bm−1
h=0 such that xh ∈

[0, 1)s. Here, the values Γl are the so-called gain coefficients which depend only on the
quadrature points and the values σl(f) depend only on the integrand f . They are derived
from the crossed and nested Anova decomposition of f , see [24], and can be expressed in
terms of Haar coefficients of the function f , see [24], or also as a sum of certain Walsh
coefficients of f , see [7, Section 13.2]. In this sense, Equation (2) shows that Var(Î(f))
can be expressed as a weighted sum of gain coefficients, where we interpret the σ2

l (f) as
weights.

In our investigations we consider a space of functions for which σl(f) has a certain
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rate of decay. More precisely, for 0 < α ≤ 1 we introduce a norm of the form

‖f‖α = sup
l∈Ns

0

bα|l|1σl(f), (3)

where |l|1 = l1 + · · ·+ ls for l = (l1, . . . , ls). We show that α is related to the smoothness
of f in the following sense:

If f ∈ L2([0, 1]
s) has bounded variation of order α, then ‖f‖α <∞.

See Corollary 2.1 for details.
From (3) we obtain σl(f) ≤ b−α|l|1‖f‖α and by substituting this formula into (2) we

obtain

Var(Î(f)) ≤
1

N

∑

l∈Ns
0\{0}

Γlb
−2α|l|1‖f‖2α. (4)

To construct polynomial lattice rules of high quality we use

1

N

∑

l∈Ns
0\{0}

Γlb
−2α|l|1 (5)

as quality criterion. Notice that the sum (5) only depends on the quadrature points and
not on the function f . We show that (5) has a simple closed form for any 0 < α ≤ 1
which can easily be computed if the quadrature points are a digital net. The case α = 0
needs to be excluded since in this case (5) is infinite.

Our aim is to find polynomial lattice rules for which the weighted sum of gain coef-
ficients (5) is minimized. It is known from [24, 25, 31] that a small quality parameter
t of a digital (t,m, s)-net yields small gain coefficients. In fact, one has Γl = 0 for all
l ∈ Ns

0 \ {0} such that |l|1 ≤ m − t. Here, on the other hand, we aim to minimize (5)
since it can be used to bound the variance of the estimator Var(Î(f)). In other words,
we minimize the upper bound on the variance (4) for all functions f with ‖f‖α <∞ over
the class of polynomial lattice rules.

We introduce additional parameters γ = (γj)1≤j≤s in the norm (3) in the sense of
[29]. In this case the criterion (5) depends on the additional parameters γ = (γj)1≤j≤s,
in which case a small quality parameter t does not necessarily yield the smallest possible
gain coefficients anymore. In such a situation component-by-component constructions [28]
have proven useful since one can then optimize the quadrature points also with respect to
the γj. This is also the approach taken here. More precisely, we show that by constructing
polynomial lattice rules component-by-component one obtains a convergence of

Var(Î(f)) = O(N−(2α+1)+δ) for any δ > 0.
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Apart from δ, which can be arbitrarily close to 0, this rate is best possible as shown in
Section 6 for a large class of randomized algorithms. Further, if

∑∞
j=1 γj < ∞, then the

bound (4) does not depend on the dimension s. This result is stronger than what can be
obtained for (t,m, s)-nets, since the increase of the t value of the form t ≈ s prevents one
from obtaining a bound independent of the dimension only assuming that

∑∞
j=1 γj <∞.

This condition is also necessary, see [32] for a result on a related space. Hence the rules
we construct here are simultaneously optimal in terms of the convergence rate as well as
in terms of their dependence on the dimension.

Notice that the additional parameters γ = (γj)j≥1, as introduced in [29], have been
found to be very useful from both a theoretical and a practical point of view. They allow
us to associate more importance with some variables than with others, which ties in nicely
with concepts such as effective dimension, see, e.g., [2]. This has been used to explain the
success of quasi-Monte Carlo rules in finance.

We now give the structure of the paper. In Section 2, we recall the definition of
polynomial lattice rules, the scrambling algorithm and define the function space studied
in this paper. The variance of estimators based on scrambled polynomial lattice rules is
studied in Section 3. Next, in Sections 4 and 5, we construct polynomial lattice rules
for which the variance of the associated estimator converges at a rate of N−(1+2α)+δ , for
all δ > 0. The constructions are based on a component-by-component approach and the
Korobov construction respectively. In Section 6, we define a large class of randomized
algorithms, which includes adaptive ones, and consequently establish that the variance of
any estimator based on an algorithm from this class converges at most a rate of N−(1+2α)

for the function space under consideration in this paper. Hence our constructions are
almost optimal for the class of algorithms defined in Section 6. In Section 7, we study the
implementation of the component-by-component approach, in particular, we show how
to reduce the computational effort associated with it. This implementation is made use
of in Section 8, where we compare the performance of scrambled polynomial lattice rules
constructed in Section 4 to the performance of scrambled digital nets.

2 Preliminaries

In this section, we define polynomial lattice rules, recall the scrambling algorithm and
introduce the function space under consideration in this paper.
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2.1 Polynomial Lattice Rules

Polynomial lattice rules were introduced in [19], see also [5, 7, 18]. We fix a prime b and
denote by Zb the finite field containing b elements and by Zb((x

−1)) the field of formal
Laurent series over Zb. Elements of Zb((x

−1)) are formal Laurent series,

L =
∞∑

l=w

tlx
−l ,

where w is an arbitrary integer and all tl ∈ Zb. The field Zb((x
−1)) contains the field of

rational functions over Zb as a subfield. Finally, the set of polynomials over Zb is denoted
by Zb[x]. For an integer m, we denote by vm the map from Zb((x

−1)) to [0, 1) defined by

vm

(
∞∑

l=w

tlx
−l

)
=

m∑

l=max(1,w)

tlb
−l .

The following definition of polynomial lattice rules stems from [19], see also [7, 18].

Definition 2.1 Let b be prime and m be an integer. For a given dimension s ≥ 1,
choose p(x) ∈ Zb[x] with deg(p(x)) = m and q1(x), . . . , qs(x) ∈ Zb[x]. For 0 ≤ h < bm let
h = h0+h1b+ · · ·+hm−1b

m−1 be the b-adic expansion of h. With each such h we associate
the polynomial

h(x) =
m−1∑

r=0

hrx
r ∈ Zb[x] .

Then Sp,m(q), where q = (q1, . . . , qs), is the point set consisting of the bm points

xh =

(
vm

(
h(x)q1(x)

p(x)

)
, . . . , vm

(
h(x)qs(x)

p(x)

))
∈ [0, 1)s ,

for 0 ≤ h < bm. A quasi-Monte Carlo rule using the point set Sp,m(q) is called a polyno-
mial lattice rule.

We remark that polynomial lattice point sets are also digital nets, see [7, 17, 18].

For the remainder of the paper, we use the following notation: We write ~h for vectors
over Zb and h for vectors over Z or R. Polynomials over Zb are denoted by h(x) and
vectors of polynomials by h(x). Furthermore, given an integer h with b-adic expansion
h =

∑∞
r=0 hrb

r, we denote the associated polynomial by

h(x) =
∞∑

r=0

hrx
r .
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For arbitrary h(x) = (h1(x), . . . , hs(x)) ∈ Zb[x]
s and q(x) = (q1(x), . . . , qs(x)) ∈ Zb[x]

s,
we define the “inner product”

h(x) · q(x) =
s∑

j=1

hjqj(x) ∈ Zb[x]

and we write q(x) ≡ 0 (mod p(x)) if p(x) divides q(x) in Zb[x].
Finally, we introduce the dual lattice which plays an important role in numerical

integration, see [5, 7], which requires us to introduce the following function: For a non-
negative integer k with b-adic expansion k = k0 + k1b+ . . . we write trm(k) = k0 + k1b+
· · ·+ km−1b

m−1 and thus the associated polynomial

trm(k)(x) = k0 + k1x+ . . . km−1x
m−1 ∈ Zb[x]

has degree < m. For a vector k ∈ Ns
0, trm(k) is defined componentwise.

Definition 2.2 Let q(x) = (q1(x), . . . , qs(x)) ∈ Zb[x]
s, then the dual polynomial lattice of

Sp,m(q) is given by

D = Dp(q)

= {k ∈ N
s
0 :

trm(k1)(x) + · · ·+ trm(k2)(x)q2 + · · ·+ trm(ks)(x)qs(x) ≡ 0 (mod p(x))}.

2.2 The Scrambling Algorithm

The scrambling algorithm is a randomization algorithm which was introduced by Owen,
see [23] and also [8, 10, 24, 25, 30, 31, 33].

We now describe the scrambling algorithm using a generic point x ∈ [0, 1)s, where
x = (x1, . . . , xs) and

xj =
ξj,1
b

+
ξj,2
b2

+ . . . .

Then the scrambled point shall be denoted by y ∈ [0, 1)s, where y = (y1, . . . , ys),

yj =
ηj,1
b

+
ηj,2
b2

+ . . . .

The permutation applied to ξj,l, j = 1, . . . , s depends on ξj,k, for 1 ≤ k < l. In particular,
ηj,1 = πj(ξj,1), ηj,2 = πj,ξj,1(ξj,2), ηj,3 = πj,ξj,1,ξj,2(ξj,3) and in general

ηj,k = πj,ξj,1,...,ξj,k−1
(ξj,k) , k ≥ 2 ,



7

where πj and πj,ξj,1,...,ξj,k−1
, k ≥ 2 are random permutations of {0, 1, . . . , b− 1}. We assume

that permutations with different indices are mutually independent. Also, if we apply the
scrambling algorithm to x to obtain y, then y is uniformly distributed in [0, 1)s, see [23,
Proposition 2]. Finally, it was shown in [23] that the scrambling algorithm preserves the
(t,m, s)-net property with probability 1, i.e applying the scrambling algorithm to the
points of a (t,m, s)-net results in a (t,m, s)-net with probability 1.

2.3 A Weighted Walsh Function Space based on Variance

In this section, we introduce the function space under consideration in this paper. In
particular, we consider weighted spaces and for this purpose, we introduce a sequence of
positive, non-increasing weights γ = (γj)

∞
j=1. The purpose of the weights is to model the

importance of the different variables and we point out that the idea stems from [29]. For
s ∈ N, let [s] = {1, . . . , s} and for u ⊆ [s] let γ

u
:=
∏

j∈u γj be the weight associated with
the projection onto coordinates whose index is contained in u.

Walsh functions have been an important tool in the analysis of digital nets; in [14],
Walsh functions were used for the first time to analyze nets and the connection between
numerical integration using digital nets and Walsh functions was made in [6], see also [7].

We now briefly recall the definition of Walsh functions. Let N0 denote the set of
nonnegative and N the set of positive integers. Each k ∈ N has a unique b-adic repre-
sentation k =

∑a
i=0 kib

i with digits ki ∈ {0, . . . , b− 1} for 0 ≤ i ≤ a, where ka 6= 0. For
k = 0 we have a = 0 and k0 = 0. Similarly, each x ∈ [0, 1) has a b-adic representation
x =

∑∞
i=1 ξib

−i with digits ξi ∈ {0, . . . , b− 1} for i ≥ 1. This representation is unique in
the sense that infinitely many of the ξi must differ from b − 1. We define the kth Walsh
function in base b, walk : [0, 1) → C by

walk(x) := exp(2πi(ξ1k0 + · · ·+ ξa+1ka)/b) .

For dimension s ≥ 2 and vectors k = (k1, . . . , ks) ∈ Ns
0 and x = (x1, . . . , xs) ∈ [0, 1)s we

define walk : [0, 1)s → C by

walk(x) :=

s∏

j=1

walkj (xj) .

Studying integration errors resulting from the approximation of an integral based on a
digital net or a polynomial lattice rule, it is useful to consider the Walsh series of the
integrand f . For f ∈ L2([0, 1]

s), the Walsh series of f is given by

f(x) ∼
∑

k∈Ns
0

f̂(k)walk(x) , (6)
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where the Walsh coefficients f̂(k) are given by

f̂(x) =

∫

[0,1]s
f(x)walk(x)dx .

We do not necessarily have equality in Equation (6), however, the completeness of the
Walsh function system {walk : k ∈ Ns

0} (see for instance [7, Appendix A]), implies that

Var[f ] =
∑

k∈Ns
0\{0}

|f̂(k)|2 ,

where Var[f ] =
∫
[0,1]s

(f(x)− f)2dx, and where f =
∫
[0,1]s

f(x)dx.

Let σ2
(lu,0)

=
∑

k∈L(lu,0)
|f̂(k)|2, where

L(lu,0) =
{
k ∈ N

s
0 : b

li−1 ≤ ki < bli for i ∈ u and ki = 0 for i ∈ [s] \ u
}
. (7)

Further let |l|1 =
∑s

j=1 lj for l = (l1, . . . , ls). For 0 < α ≤ 1 we define a weighted norm
for functions f ∈ L2([0, 1]

s) by

‖f‖α = max
u⊆[s]

γ−1/2
u

sup
lu∈N|u|

bα|lu|1σ(lu,0)(f). (8)

For 0 < α ≤ 1 define a space Vα,s,γ ⊆ L2([0, 1]
s) consisting of all functions f for which

‖f‖α < ∞. (One could of course use some ℓp norm instead of the supremum-norm to
define ‖ · ‖α and the function space, but these do not yield a quality criterion of the form
(5) which can be used for our construction, see (11) and Lemma 3.1 below.)

The following observation stems from [7, Section 13.5]: For a subinterval J =
∏s

i=1[xi, yi)
with 0 ≤ xi < yi ≤ 1 and a function f : [0, 1)s → R, let the function ∆(f, J) denote the
alternating sum of f at the vertices of J where adjacent vertices have opposite signs.
(Hence for f =

∏s
i=1 fi we have ∆(f, J) =

∏s
i=1(fi(xi)− fi(yi)).)

We define the generalized variation in the sense of Vitali of order 0 < α ≤ 1 by

V (s)
α (f) = sup

P

(
∑

J∈P

Vol(J)

∣∣∣∣
∆(f, J)

Vol(J)α

∣∣∣∣
2
)1/2

,

where the supremum is extended over all partitions P of [0, 1]s into subintervals and
Vol(J) denotes the volume of the subinterval J .

For α = 1 and if the partial derivatives of f are continuous on [0, 1]s we also have the
formula

V
(s)
1 (f) =

(∫

[0,1]s

∣∣∣∣
∂sf

∂x1 · · ·∂xs

∣∣∣∣
2

dx

)1/2

.
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Until now we did not take projections to lower-dimensional faces into account.
For ∅ 6= u ⊆ [s], let V

(|u|)
α (fu; u) be the generalized Vitali variation with coefficient

0 < α ≤ 1 of the |u|-dimensional function

fu(xu) =

∫

[0,1)s−|u|

f(x)dx[s]\u.

For u = ∅ we have f∅ =
∫
[0,1)s

f(x)dx[s] and we define V
(|∅|)
α (f∅; ∅) = |f∅|. Then

Vα(f) =


∑

u⊆[s]

(
V (|u|)
α (fu; u)

)2



1/2

(9)

is called the generalized Hardy and Krause variation of f on [0, 1]s.
A function f for which Vα(f) <∞ is said to be of finite variation of order α.
The following result is from [4] and [7, Section 13.5].

Corollary 2.1 Let b ≥ 2 be a natural number and let f ∈ L2([0, 1]
s) have bounded

variation Vα(f) <∞ of order 0 < α ≤ 1. Then

‖f‖α ≤ max

(
‖f‖L2γ

−1
∅ , Vα(f) max

∅6=u⊆[s]
γ−1/2
u

(b− 1)(α−1/2)+ |u|

)
.

Hence every function f ∈ L2([0, 1]
s) which has bounded variation of order 0 < α ≤ 1

is in Vα,s,γ. For the extreme case α = 0 one obtains V0,s,γ = L2([0, 1]
s), but this case is

not included in our investigations since the criterion (5) is infinite in this case, see (11)
and Lemma 3.1 below.

3 The Variance of Estimators based on Scrambled

Polynomial Lattice Rules

In this section, we discuss the variance of the estimator

Î(f) =
1

bm

bm−1∑

h=0

f(yh) , (10)

where the points y0, . . . ,ybm−1 are obtained by applying the scrambling algorithm to a
digital (t,m, s)-net over Zb.
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We use the following notation: For a non-negative integer k with b-adic expansion

k = k0 + k1b+ . . . ,

we write ~k = (k0, k1, . . . )
⊤, which is an infinite-dimensional vector, and we use

trm(~k) = (k0, k1, . . . , km−1)
⊤ .

We now introduce the integration problem studied in this paper, in particular, we are
interested in the worst-case variance of multivariate integration in Vα,s,γ using a scrambled
quasi-Monte Carlo rule Qbm,s:

Var(Qbm,s, Vα,s,γ) = sup
f∈Vα,s,γ ,‖f‖α≤1

Var[Î(f,Qbm,s)] ,

where Î(f,Qbm,s) denotes the estimator based on the point set obtained by applying
the scrambling algorithm to Qbm,s. We denote the quasi-Monte Carlo rule based on a
polynomial lattice rule Sp,m(q) by Qbm,s(q) and the associated worst-case variance by
Var(Qbm,s(q), Vα,s,γ). For k = κ0 + κ1b+ · · ·+ κa−1b

a−1 ∈ N0 let

rα,γ(k) =

{
1 if k = 0,
γ b
(b−1)bαa if k > 0.

For k = (k1, . . . , ks) ∈ Ns
0 let rα,γ(k) =

∏s
j=1 rα,γj (kj).

The next corollary gives a bound on the quantity Var(Qbm,s(q), Vα,s,γ).

Corollary 3.1 Let 0 < α ≤ 1, q ∈ Zb[x]
s be a generating vector for a polynomial lattice

rule with modulus p, and Var(Qbm,s(q), Vα,s,γ) be defined as above. Then

Var(Qbm,s(q), Vα,s,γ) ≤
∑

k∈Dp(q)\{0}

r2α+1,γ(k),

where Dp(q) is the dual polynomial lattice.

Proof. The corollary follows from the following facts: For any f ∈ L2([0, 1]
s), let Î(f)

be given by Equation (10) and {x0, . . . ,xbm−1} be a digital (t,m, s)-net over Zb with
generating matrices C1, . . . , Cs over Zb, then we have (see [31] or also [7, Section 13.5])

Var[Î(f)] =
∑

∅6=u⊆[s]

b|u|

(b− 1)|u|

∑

lu∈N|u|

σ2
(lu,0)

(f)

b|lu|1
|L(lu,0) ∩ D(C1, . . . , Cs)|,
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where D(C1, . . . , Cs) =
{
k ∈ Ns

0 : C
⊤
1 trm(

~k1) + · · ·+ C⊤
s trm(

~ks) = ~0
}

and L(lu,0) is given

in Equation (7). Furthermore, if the C1, . . . , Cs are the generating matrices of the point
set Sp,m(q), then for any k ∈ Ns

0 \ {0} we have

C⊤
1 trm(

~k1) + · · ·+ C⊤
s trm(

~ks) = ~0 ⇔ trm(k) · q ≡ 0 (mod p) ,

which was first established in [18, Lemma 4.40]. Using (8) and

∑

∅6=u⊆[s]

b|u|

(b− 1)|u|

∑

lu∈N|u|

1

b(2α+1)|lu|1
|L(lu,0) ∩ Dp(q)| =

∑

k∈Dp(q)\{0}

r2α+1,γ(k) ,

the result follows. �

We denote the bound in Corollary 3.1 by

B(q, α,γ) :=
∑

k∈Dp(q)\{0}

r2α+1,γ(k). (11)

This bound is almost the same as the square worst case error for integration in a certain
Walsh space considered in [5], see in particular [5, Lemma 4.1].

As in [5], B(q, α,γ) can easily be computed and therefore be used as a quality cri-
terion for polynomial lattice rules. We write logb for the logarithm in base b and we set
b2α⌊logb 0⌋ = 0.

Lemma 3.1 Let B(q, α,γ) be given by Equation (11). Then

B(q, α,γ) = −1 +
1

bm

bm−1∑

h=0

s∏

j=1

(
1 +

b

b− 1
γjφα(xh,j)

)
, (12)

where for x ∈ [0, 1) we set

φα(x) =
b− 1− b2α⌊logb x⌋(b2α+1 − 1)

b(b2α − 1)
.

A detailed proof of this result can be found in [1].
In the next remark, we show that if we construct a polynomial lattice rule which

achieves optimal convergence rates for functions in Vα,s,γ for some given 0 < α ≤ 1, then
this polynomial lattice rule also achieves optimal convergence rates for functions in Vα′,s,γ′

where α ≤ α′ ≤ 1. This means that the polynomial lattice rule constructed to achieve
optimal convergence rates for functions of smoothness α adjusts itself to the optimal rate
of convergence, as long as the smoothness α′ of the function under consideration satisfies
α′ ≥ α.
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Remark 3.1 Assume that for a fixed α, 0 < α ≤ 1, we have constructed a polynomial
lattice rule Sp,m(q) such that

B(q, α,γ) ≤ Cs,α,γ,δN
−(1+2α)+δ, (13)

for all δ > 0, where Cs,α,γ,δ is permitted to depend on s, α,γ and δ. We point out that
explicit constructions of polynomial lattice rules satisfying Equation (13) are given in
Sections 4 and 5. It follows immediately from Jensen’s inequality, that

B(q, α,γ)
1+2α′

1+2α ≥ B(q, α′,γ
1+2α′

1+2α ),

for α ≤ α′ ≤ 1. Making use of Assumption (13), we conclude that

B(q, α′,γ
1+2α′

1+2α ) ≤ C
1+2α′

1+2α

s,α,γ,δ N
−(1+2α′)+δ 1+2α′

1+2α ,

for all δ > 0. In particular, this observation motivates the construction of polynomial
lattice rules for which α < 1, as the resulting point sets still achieve optimal convergence
rates for functions of bounded variation of order α′, where α ≤ α′ ≤ 1.

4 Component-By-Component Construction of Poly-

nomial Lattice Rules

In this section, we show how to construct a polynomial lattice rule using a component-
by-component approach so that the bound given in Equation (11) converges at a rate
of N−1−2α+δ, for any δ > 0. We remark that in [7, Theorem 13.24], the corresponding
result for digital nets was presented. A component-by-component (CBC) approach was
first considered in [28] in the context of constructing lattice rules. Subsequently, the CBC
algorithm has been applied to the construction of polynomial lattice rules in [5].

We use Rb,m to denote the set of all non-zero polynomials in Zb[x] with degree at most
m− 1, i.e.

Rb,m := {q ∈ Zb[x] : deg(q) < m and q 6= 0} .

It is clear that |Rb,m| = bm − 1 and furthermore it follows from the construction principle
described in Subsection 2.1 that the polynomials qj can be restricted to Rb,m. Algorithm
1 gives the CBC algorithm.

The next theorem shows that Algorithm 1 indeed constructs a q∗
d ∈ Rd

b,m so that

B((q∗1, . . . , q
∗
d), α,γ) converges at a rate of N−1−2α+δ, for any δ > 0.
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Algorithm 1 CBC algorithm

Require: b a prime, s,m ∈ N and weights γ = (γj)j≥1.
1: Choose an irreducible polynomial p ∈ Zb[x], with deg(p) = m.
2: Set q1 = 1.
3: for d = 2 to s do
4: find qd ∈ Rb,m by minimizing B((q1, . . . , qd), α,γ) as a function of qd.
5: end for
6: return q = (q1, . . . , qs).

Theorem 4.1 Let b be prime and p ∈ Zb[x] be irreducible, with deg(p) = m ≥ 1. Suppose
(q∗1, . . . , q

∗
s) ∈ Rs

b,m is constructed using Algorithm 1. Then for all d = 1, . . . , s we have

B((q∗1, . . . , q
∗
d), α,γ) ≤

1

(bm − 1)1/λ

d∏

j=1

[
1 + γλj Cb,α,λ

]1/λ
,

for all 1
2α+1

< λ ≤ 1 where

Cb,α,λ = max

(
1

(b2α − 1)λ
,
(b− 1)1−λ

b2αλ − b1−λ

)
. (14)

A proof of this result can be obtained by making a few modifications to the proof
of [5, Theorem 4.4], which is included in [1]. The additional term (b2α − 1)−λ in the
definition of Cb,α,λ arises from the one-dimensional case for which we have (we assume
k = κ0 + κ1b+ · · ·+ κa−1b

a−1)

B((1), α,γ) = γ1
b

b− 1

∞∑

k=1,bm|k

b−αa

= γ1
b

b− 1

∞∑

l=m+1

(b− 1)bl−m−1b−(2α+1)l

=
1

b(2α+1)m

γ1
b2α − 1

≤
1

(bm − 1)1/λ
[1 + γλ1 (b

2α − 1)−λ]1/λ,

for all 1
2α+1

< λ ≤ 1. The induction with respect to the dimension can be carried out as
in the proof of [5, Theorem 4.4].

The next result discusses the tractability of Algorithm 1.
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Corollary 4.1 Let b be prime, p ∈ Zb[x] be irreducible with deg(p) = m ≥ 1 and N = bm.
Suppose q∗

s ∈ Rs
b,m is constructed using Algorithm 1. Then we have the following:

1.
B(q∗

s, α,γ) ≤ cs,α,γ,δ (N − 1)−(2α+1)+δ , for all 0 < δ ≤ 2α,

where

cs,α,γ,δ =
s∏

j=1

[
1 + γ

1
2α+1−δ

j Cb,α,(2α+1−δ)−1

]2α+1−δ

.

2. Assume
∞∑

j=1

γ
1

2α+1−δ

j <∞. (15)

Then cs,α,γ,δ ≤ c∞,α,γ,δ <∞ and we have

B(q∗
s, α,γ) ≤ c∞,α,γ,δ(N − 1)−(2α+1)+δ , for all 0 < δ ≤ 2α.

Thus the bound B(q∗
s, α,γ) is bounded independently of the dimension.

3. Under the assumption

A := lim sup
s→∞

∑s
j=1 γj

s
<∞,

we obtain cs,α,γ,2α ≤ c̃η(b− 1)2αs
A+η

b2α−1 and therefore

B(q∗
s, α,γ) ≤ c̃ηs

A+η

b2α−1 (N − 1)−1

for all η > 0, where the constant c̃η only depends on η. Thus the bound B(q∗
s, α,γ)

satisfies a bound which depends only polynomially on the dimension.

The proof is similar to the proof of [5, Corollary 4.5] and can be found in [1].

5 Construction of Korobov Polynomial Lattice Rules

In this section, we construct Korobov polynomial lattice rules. The ideas underlying
this algorithm stem from the construction of lattice rules, see [12]. We remark that
the construction of Korobov polynomial lattice rules has been examined in [5], see also
[13]. We denote the generating vector for the Korobov polynomial lattice rule by ψ(q) =
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Algorithm 2 Korobov algorithm

Require: b a prime, s,m ∈ N and weights γ = (γj)j≥1.
1: Choose an irreducible polynomial p ∈ Zb[x], with deg(p) = m.
2: Find q∗ ∈ Rb,m by minimizing B(ψ(q), α,γ).

(1, q, . . . , qs−1) (mod p). As in Section 4, we work with the bound B(ψ(q), α,γ) and now
state the algorithm showing how to construct Korobov polynomial lattice rules.

We obtain the following bound for B(ψ(q∗), α,γ), where q∗ is constructed using Algo-
rithm 2. The proof of the following theorem can be obtained by making a few modifications
to the proof of [5, Theorem 4.7], which are presented in [1].

Theorem 5.1 Let b be prime, s ≥ 2 and let p ∈ Zb[x] be irreducible with deg(p) = m ≥ 1.
A minimizer q∗ obtained from Algorithm 2 satisfies

B(ψ(q∗), α,γ) ≤
s1/λ

(bm − 1)1/λ

s∏

j=1

(
1 + γλj Cb,α,λ

)1/λ
,

for all 1
2α
< λ ≤ 1, where Cb,α,λ > 0 is given by (14).

We point out that the bounds in Theorems 4.1 and 5.1 only differ by the additional
factor s1/λ. We remark that the same observation was made in [5] and is also known
from the lattice rule case. This leads to the conclusion that the Korobov construction is
inferior to the component-by-component construction.

In the next corollary, we discuss the tractability of Algorithm 2.

Corollary 5.1 Let b be prime, s ≥ 2, p ∈ Zb[x] be irreducible with deg(p) = m ≥ 1
and N = bm. Suppose q∗ ∈ Rb,m is constructed using Algorithm 2. Then we have the
following:

1.
B(ψ(q∗), α,γ) ≤ cs,α,γ,ss

2α+1−δ(N − 1)−(2α+1)+δ , for all 0 < δ ≤ 2α,

where

cs,α,γ,δ =
s∏

j=1

(
1 + γ

1
2α+1−δ

j Cb,α,(2α+1−δ)−1

)2α+1−δ

.

2. Under the assumption

A := lim sups→∞

∑s
j=1 γj

log s
<∞
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we obtain
cs,α,γ,2α ≤ c̃ηs

A+η

b2α−1

and therefore

B(ψ(q∗), α,γ) ≤ c̃ηs
1+ A+η

b2α−1 (N − 1)−1,

for all η > 0, where the constant c̃η only depends on η. Thus the bound B(ψ(q∗), α,γ)
satisfies a bound which depends only polynomially on the dimension.

The proof is again similar to the proof of Corollary [5, Corollary 4.8] and can be found
in [1].

6 A Lower Bound on the Worst-Case Variance

In this section, we produce a lower bound on the worst-case variance discussed in Sec-
tion 3. As we rely on [20, Section 2.2.4, Proposition 1] to establish the result, the class of
algorithms to which our result applies is the same as the class considered there. We now
recall the definition of this class. Following [20, Section 1.1], we use the notation

S(f) =

∫

[0,1]s
f(x)dx,

for f ∈ Vα,s,γ and consider approximating S : Vα,s,γ → R using a mapping S̃ : Vα,s,γ → R.
As in [20, Section 1.1], we assume that in general, the function f ∈ Vα,s,γ is not known,
but we have some information on f available, which is denoted by L, where L : Vα,s,γ → H
and an approximation S̃ : Vα,s,γ → R only uses the information L if it can be written as
follows S̃ = ϕ◦L, where ϕ : H → R is a an arbitrary mapping, referred to as an (idealized)
algorithm in [20]. In particular, we allow our approximation nodes to be chosen adaptively
and define the following information operator:

IN =
{
L : Vα,s,γ → R

N |L(f) = (f(a1), f(a2[f(a1)]), . . . , f(aN [f(a1), . . . , f(aN−1)])) ,

where a1 ∈ [0, 1]s and ai : R
i−1 → [0, 1]s for i = 2, . . . , s

}

and we can now introduce the class of all approximations considered in this section:

AN =
{
S̃ : Vα,s,γ → R|S̃ = ϕ ◦ L with ϕ : RN → R and L ∈ IN

}
.

We remark that non-adaptive algorithms are of course included in AN , consider S̃ = ϕ◦L,
where L(f) = (f(a1), . . . f(aN)). Now, following [20, Section 2.1], we can define the
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randomized algorithms considered in this paper, referred to as generalized Monte Carlo
methods in [20]: A random variable Q = (Q(ω))ω∈Ω is called a randomized algorithm
in AN if (Ω, B, µ) is a probability space and Q(ω) ∈ AN for all ω ∈ Ω. The set of
all randomized algorithms is denoted by ∗C(AN), hence randomly scrambled nets (and
therefore polynomial lattice rules) are also included in this set. We now present the lower
bound on the worst-case variance, which applies to all randomized algorithms in ∗C(AN).

Theorem 6.1 Let ∗C(AN ), Vα,s,γ be defined as above. Then

inf
Q∈∗C(AN )

sup
f∈Vα,s,γ

Var(Î(f,Q)) ≥ C̃N−2α−1,

for some constant C̃ independent of N where

Var(Î(f,Q)) =

∫

Ω

[
Î(f,Q(ω))−

∫

Ω

Î(f,Q(ω′))dµ(ω′)

]2
dµ(ω).

Proof. We remark that this proof follows along the lines of the proof of [8, Theorem 10].
We only consider s = 1, since integration in Vα,1,γ1 is no harder than integration in Vα,s,γ
with s > 1, as the one-dimensional space Vα,1,γ1 can be identified with the subspace of
Vα,s,γ consisting of functions depending only on the first variable. We let N be any given
natural number and choose an integer m such that

bm−1 < 2N ≤ bm .

We define basic intervals

Bm,a =

[
a

bm
,
a + 1

bm

)
, a = 0, 1, . . . , bm − 1 ,

and let ga(x) = 1Bm,a(x) be the characteristic function of Bm,a. Then

∫

[0,1]

ga(x)gc(x)dx =

{
b−m if a = c,
0 otherwise.

We now define

g =
bm−1∑

a=0

ξaga ,



18

where ξa ∈ {1,−1} and bound σ2
l (g). Using Plancharel’s identity we obtain that for any

l ≥ 0 we have

σ2
l (g) ≤

∞∑

l′=0

σ2
l′(g) =

∫ 1

0

g2(x)dx =
bm−1∑

a,c=0

ξaξc

∫ 1

0

ga(x)gc(x)dx =
1

bm

bm−1∑

a=0

ξ2a = 1.

Further, for k ≥ bm we have

ĝ(k) =

∫ 1

0

g(x)walk(x)dx =

bm−1∑

a=0

ξa

∫ 1

0

ga(x)walk(x)dx =

bm−1∑

a=0

ξa

∫ (a+1)/bm

a/bm
walk(x)dx = 0,

since
∫ (a+1)/bm

a/bm
walk(x)dx = 0 for k ≥ bm and hence for l > m we have

σ2
l (g) =

bl−1∑

k=bl−1

|ĝ(k)|2 = 0.

We set fa = γ1b
−αmga for a = 0, 1, . . . , bm − 1. These fa have disjoint support and

∫

[0,1]

fa(x)dx ≥ γ1b
−(α+1)m.

Set

f = γ1b
−αmg =

bm−1∑

a=0

ξafa,

then we get σ2
l (f) ≤ γ21b

−2αm for 0 ≤ l ≤ m and σ2
l (f) = 0 for l > m. Hence

‖f‖α = γ−1
1 sup

l∈N
bαlσl(f) ≤ γ−1

1 sup
1≤l≤m

bαlγ1b
−αm ≤ 1

and the result follows now from [20, Section 2.2.4, Proposition 1(ii)]. �

Remark 6.1 For a large class of randomized algorithms, including adaptive ones, we
have shown that the worst-case variance in the Walsh function space Vα,s,γ behaves like
N−(1+2α). In Sections 4 and 5 we presented two algorithms which achieve worst-case
variances of order N−(1+2α)+δ, for all δ > 0, and are hence almost optimal for the class
of algorithms ∗C(AN).
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7 Implementation of the Component-By-Component

Algorithm

In this section, we show how to implement the CBC algorithm from Section 4. Our
approach is based on [22], but we simplify the algorithm using ideas from [3]. Using ideas
from [21, 22], we obtain, for d ≥ 2,

B(q, α,γ)

=
1

bm

bm−1∑

h=0

d∏

j=1

(
1 +

b

b− 1
γjφα(xh,j)

)
− 1

=
1

bm

d∏

j=1

(
1 +

b

b− 1
γjφα(x0,j)

)
− 1 +

1

bm

bm−1∑

h=1

pd−1(h)

(
1 +

b

b− 1
γdφα(xh,d)

)
,

where

pd−1(h) =

d−1∏

j=1

(
1 +

b

b− 1
γjφα(xh,j)

)
.

Let ω
(

hqd
p

)
= φα(xh,d), where h and qd denote the polynomials associated with h and

qd and p denotes the polynomial p = p(x) ∈ Zb[x]. Following [21], we now introduce the
following matrix

Ωp =

[
ω

(
hq

p

)]

q=1,...,bm−1
h=1,...,bm−1

, (16)

i.e. rows are indexed by q and columns by h.
Let pd−1 = (pd−1(1), . . . ,pd−1(b

m − 1))⊤. Following [21], we have an update rule for
pd given by

pd = diag

((
1(bm−1)×(bm−1) +

b

b− 1
γdΩp

)
vqd

)
pd−1,

where diag(x) denotes the diagonal matrix with the elements of x on its diagonal and
zero elsewhere and where we use vj to denote a selection vector with 1 in position j and
0 elsewhere.

We now use the notation Bd−1 = (B((qd−1, 1), α,γ), . . . , B((qd−1, b
m − 1), α,γ))⊤.

Then

Bd−1 =

[
−1 +

1

bm

d∏

j=1

(
1 +

b

b− 1
γjφα(xh,j)

)]
1(bm−1)×1
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+
1

bm

(
1(bm−1)×(bm−1) +

b

b− 1
γdΩp

)
pd−1

=

[
−1 +

1

bm

d∏

j=1

(
1 +

b

b− 1
γjφα(x0,j)

)]
1(bm−1)×1

+
1

bm

bm−1∑

h=1

pd−1(h)1(bm−1)×1 +
1

bm
b

b− 1
γdΩppd−1.

In the next lemma, we summarize an observation from [3]. Let

Π(g) = [Πk,l]k=1,...,bm−1
l=1,...,bm−1

where

Πk,l =

{
1 if k(x) ≡ gl(x) (mod p)
0 otherwise

(17)

and
Π(g−1) =

[
Π−1

k,l

]
k=1,...,bm−1
l=1,...,bm−1

where

Π−1
k,l =

{
1 if k(x) ≡ g−l(x) (mod p)
0 otherwise,

(18)

be two permutation matrices, where g is a primitive element which generates all elements
of (Zb[x]/p)

∗ =
{
g0, g1, . . . , gb

m−1
}
; such an element g is known to exist since the multi-

plicative group of every finite field is cyclic. Let tk = deg(gk (mod p)), k = 0, 1, . . . , bm−2,
and set

A3 =
[
b2αti−j (mod bm−1)

]
i=1,...,bm−1
j=1,...,bm−1

(19)

and note that A3 is a circulant matrix, which allows us to use Fast Fourier Transforms
(FFTs) as in [21, 22]. We now state the lemma.

Lemma 7.1 Let p be an irreducible polynomial, let g be a primitive element of (Zb[x]/p)
∗,

and let Π(g), Π(g−1), A3 and Ωp be defined as above. Then

Ωp = 1(bm−1)×(bm−1)
b− 1

b(b2α − 1)
−
b2α+1 − 1

b(b2α − 1)
b−2αmΠ(g)A3Π(g

−1)⊤ .
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Proof. It follows from the definition of φα(x)

φα

(
vm

(
hq

p

))
=

b− 1

b(b2α − 1)
−

(b2α+1 − 1)b−2αa0,h,q

b(b2α − 1)
,

where a0,h,q denotes the smallest integer a so that ξh,q,a 6= 0, and where

vm

(
hq

q

)
=
ξh,q,1
b

+
ξh,q,2
b2

+ . . . .

Hence

Ωp =
b− 1

b(b2α − 1)
1(bm−1)×(bm−1) −

b2α+1 − 1

b(b2α − 1)
A1,

where
A1 =

[
b−2αa0,h,q

]
q=1,...,bm−1
h=1,...,bm−1

.

Now assume that for w ∈ Zb[x] we have

w(x)

p(x)
= u1,wx

−1 + u2,wx
−2 + . . . , (20)

where uj,w ∈ Zb. Then

vm

(
hq

p

)
= u1,hqb

−1 + u2,hqb
−2 + · · ·+ um,hqb

−m ,

hence, a0,h,q is the smallest integer a so that ua,hq 6= 0, h, q ∈ Zb[x] (note that p 6 |h, q).
The matrix A2 given by

A2 = Π⊤(g)A1Π(g
−1)

is circulant. Indeed it can be checked that

A2 =
[
b−2αa

0,g−j ,gi
]
i=1,...,bm−1
j=1,...,bm−1

, (21)

where g−j and gi in Equation (21) denote the integers associated with the polynomials
g−j (mod p) and gi (mod p). We let a0,g−j ,gi = ri−j and note that rk = rk′ for k ≡ k′

(mod bm − 1), as gb
m−1 ≡ 1 (mod p), hence

A2 =
[
b−2αri−j

]
i=1,...,bm−1
j=1,...,bm−1

.
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The matrix A2 is circulant and rk is the smallest integer r such that ur,gk 6= 0, which
implies using Equation (20) that

deg(gk (mod p)) = deg(p)− rk ,

and consequently
rk = m− deg(gk (mod p)) .

Now denoting
tk = deg(gk (mod p)) ,

we get
A2 = b−2αmA3 ,

where A3 is given by Equation (19) and the result follows. �

Note that if the polynomial p in the lemma above is primitive, then one can choose
the primitive element g(x) = x. In Algorithm 3 we show how to implement the CBC
algorithm from Section 4. Several remarks regarding Algorithm 3 are in order.

Algorithm 3 Fast CBC algorithm

Require: b a prime, s,m ∈ N and weights γ = (γj)j≥1.
1: Choose a primitive polynomial p ∈ Zb[x], with deg(p) = m, and choose g(x) = x.
2: µ0 := 1(bm−1×1).
3: for d = 1 to s do
4: B̃d = A3µd−1.

5: wd = argminw∈Rb,m
B̃d(w) .

6:

µd = diag

(
11×(bm−1)

(
1 +

γd
(b2α − 1)

)
− γd

(b2α+1 − 1)b−2αm

(b− 1)(b2α − 1)
A3(wd, :)

)
µd−1 .

7: end for
8: return q = (q1, . . . , qs).

Remark 7.1 As in [21, 22], we search for the minimum in the permuted space, hence we
minimize B̃d = Π⊤(g)Bd−1. However, as in [21, 22], the component zd can be found by
mapping back wd using Π(g).
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Remark 7.2 We have µd = Π⊤(g−1)pd and consequently update µd using µd−1. Hence
we do not need to permute back and forth, but can complete the algorithm in the permuted
space.

The next corollary gives information on the computational complexity of Algorithm
3. We use

a =




b2αt0

b2αt1
...

b2αtbm−2 .


 (22)

to denote the vector generating the circulant matrix A3 in Lemma 7.1 and Algorithm 3.

Corollary 7.1 Assume that the vector a in Equation (22) has been precomputed and
stored using O(bm) memory. Then Algorithm 3 can be completed in time O(sbmm) and
memory O(bm).

For a proof, see [21, 22] or also [7, Section 10.3].

8 Numerical Experiments

In this section, we numerically investigate the performance of the CBC algorithm pre-
sented in Section 4; we rely on Section 7 for the implementation of the algorithm. In
Tables 1 - 3, we present values of B(q, α,γ) for different choices of α and γ, where q is
constructed using Algorithm 3.

We compare the performance of the CBC algorithm to the performance of digital
nets. As was done with scrambled polynomial lattice rules in Section 3, we can study the
variance of the estimator Î(f) given in Equation (10), consider the worst-case variance of
multivariate integration in Vα,s,γ and bound this variance as follows:

Var(Qbm,s(C1, . . . , Cs), Vα,s,γ) ≤
∑

k∈D(C1,...,Cs)\{0}

r2α+1,γ(k), (23)

where C1, . . . , Cs are the generating matrices of the digital net under consideration and
D(C1, . . . , Cs) is its dual space. We denote the bound (23) by B((C1, . . . , Cs), α,γ),
and remark that B((C1, . . . , Cs), α,γ) can also be computed using Equation (12), where
{xh}

bm−1
h=0 is the digital net generated by C1, . . . , Cs.

Consequently, we compare the values ofB(q, α,γ) to the values ofB((C1, . . . , Cs), α,γ)
in Tables 1 - 3; in each cell, the top number corresponds to the CBC construction and
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the bottom one to the digital net. We choose the following digital nets: For s = 1, we
simply choose equidistributed points, xh = h

bm
, h = 0, . . . , bm − 1, for s = 5, we use

Pirsic’s implementation of Niederreiter-Xing points, [26], and for s = 50 and s = 100, we
use Sobol points as constructed in [11]; we point out that for the CBC construction, we
choose b = 2 and likewise, the digital nets under consideration are digital nets over Z2.

We derive the following conclusions from the tables: For s = 1, as expected, we
obtain the optimal rate of convergence, 2−(2α+1)m, and observe the same values for the
CBC construction as for the digital nets. Regarding the case s = 5, the values are
comparable, however, the Niederreiter-Xing construction seems to be slightly better than
the CBC construction for the examples considered. Finally, for s = 50 and s = 100,
the performances of the two methods are again comparable, however, this time, the CBC
construction seems to outperform the digital nets.
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α = 0.5 α = 1
m = s = 1 s = 5 s = 50 s = 100 s = 1 s = 5 s = 50 s = 100

4
3.91e-03 1.46e+00 7.04e+13 7.92e+28 8.14e-05 4.37e-02 1.10e+05 1.95e+11
3.91e-03 1.48e+00 7.04e+13 7.92e+28 8.14e-05 4.90e-02 1.10e+05 1.95e+11

5
9.77e-04 6.16e-01 3.52e+13 3.96e+28 1.02e-05 1.09e-02 5.52e+04 9.74e+10
9.77e-04 6.34e-01 3.52e+13 3.96e+28 1.02e-05 1.32e-02 5.52e+04 9.74e+10

6
2.44e-04 2.66e-01 1.76e+13 1.98e+28 1.27e-06 3.45e-03 2.76e+04 4.87e+10
2.44e-04 2.61e-01 1.76e+13 1.98e+28 1.27e-06 3.17e-03 2.76e+04 4.87e+10

7
6.10e-05 1.08e-01 8.80e+12 9.90e+27 1.59e-07 9.05e-04 1.38e+04 2.44e+10
6.10e-05 1.04e-01 8.80e+12 9.90e+27 1.59e-07 7.19e-04 1.38e+04 2.44e+10

8
1.53e-05 4.24e-02 4.40e+12 4.95e+27 1.99e-08 2.36e-04 6.90e+03 1.22e+10
1.53e-05 3.93e-02 4.40e+12 4.95e+27 1.99e-08 1.48e-04 6.90e+03 1.22e+10

9
3.81e-06 1.74e-02 2.20e+12 2.48e+27 2.48e-09 6.10e-05 3.45e+03 6.09e+09
3.81e-06 1.44e-02 2.20e+12 2.48e+27 2.48e-09 2.86e-05 3.45e+03 6.09e+09

10
9.54e-07 6.41e-03 1.10e+12 1.24e+27 3.10e-10 1.29e-05 1.72e+03 3.04e+09
9.54e-07 5.21e-03 1.10e+12 1.24e+27 3.10e-10 5.56e-06 1.72e+03 3.04e+09

11
2.38e-07 2.29e-03 5.50e+11 6.19e+26 3.88e-11 2.56e-06 8.62e+02 1.52e+09
2.38e-07 1.82e-03 5.50e+11 6.19e+26 3.88e-11 1.01e-06 8.62e+02 1.52e+09

12
5.96e-08 8.39e-04 2.75e+11 3.09e+26 4.85e-12 5.03e-07 4.31e+02 7.61e+08
5.96e-08 6.17e-04 2.75e+11 3.09e+26 4.85e-12 1.78e-07 4.31e+02 7.61e+08

13
1.49e-08 3.09e-04 1.37e+11 1.55e+26 6.06e-13 1.05e-07 2.15e+02 3.81e+08
1.49e-08 2.06e-04 1.37e+11 1.55e+26 6.06e-13 3.07e-08 2.16e+02 3.81e+08

14
3.73e-09 1.12e-04 6.87e+10 7.74e+25 7.58e-14 2.56e-08 1.08e+02 1.90e+08
3.73e-09 6.76e-05 6.87e+10 7.74e+25 7.57e-14 5.17e-09 1.08e+02 1.90e+08

15
9.31e-10 3.66e-05 3.44e+10 3.87e+25 9.27e-15 4.98e-09 5.38e+01 9.52e+07
9.31e-10 2.18e-05 3.44e+10 3.87e+25 9.33e-15 8.54e-10 5.39e+01 9.52e+07

16
2.33e-10 1.29e-05 1.72e+10 1.93e+25 1.22e-15 8.92e-10 2.69e+01 4.76e+07
2.33e-10 6.94e-06 1.72e+10 1.93e+25 1.11e-15 1.38e-10 2.69e+01 4.76e+07

Table 1: Values of B(q, α,γ) and B((C1, . . . , Cs), α,γ) for γj = 1, j = 1, . . . , s and q

constructed using the CBC algorithm; the top number gives the value of B(q, α,γ), the
bottom the value of B((C1, . . . , Cs), α,γ).
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α = 0.5 α = 1
m = s = 1 s = 5 s = 50 s = 100 s = 1 s = 5 s = 50 s = 100

4
3.42e-03 4.64e-01 2.03e+01 2.04e+01 7.12e-05 1.47e-02 2.82e-01 2.83e-01
3.42e-03 4.84e-01 2.04e+01 2.06e+01 7.12e-05 1.83e-02 3.46e-01 3.48e-01

5
8.54e-04 1.87e-01 9.99e+00 1.01e+01 8.90e-06 3.54e-03 1.16e-01 1.17e-01
8.54e-04 1.95e-01 1.01e+01 1.01e+01 8.90e-06 4.45e-03 1.38e-01 1.39e-01

6
2.14e-04 7.75e-02 4.91e+00 4.95e+00 1.11e-06 1.04e-03 4.78e-02 4.82e-02
2.14e-04 7.46e-02 4.94e+00 4.98e+00 1.11e-06 9.29e-04 5.30e-02 5.34e-02

7
5.34e-05 2.96e-02 2.40e+00 2.42e+00 1.39e-07 2.54e-04 1.85e-02 1.87e-02
5.34e-05 2.80e-02 2.44e+00 2.47e+00 1.39e-07 1.97e-04 2.39e-02 2.41e-02

8
1.34e-05 1.17e-02 1.17e+00 1.18e+00 1.74e-08 5.77e-05 7.39e-03 7.45e-03
1.34e-05 1.01e-02 1.20e+00 1.21e+00 1.74e-08 3.79e-05 1.08e-02 1.09e-02

9
3.34e-06 4.43e-03 5.66e-01 5.71e-01 2.17e-09 1.29e-05 2.84e-03 2.87e-03
3.34e-06 3.54e-03 5.89e-01 5.95e-01 2.17e-09 6.98e-06 4.94e-03 4.97e-03

10
8.34e-07 1.56e-03 2.72e-01 2.75e-01 2.72e-10 3.03e-06 1.08e-03 1.09e-03
8.34e-07 1.22e-03 2.88e-01 2.90e-01 2.72e-10 1.28e-06 2.24e-03 2.26e-03

11
2.09e-07 5.45e-04 1.30e-01 1.31e-01 3.40e-11 6.24e-07 4.01e-04 4.06e-04
2.09e-07 4.10e-04 1.42e-01 1.43e-01 3.40e-11 2.22e-07 9.58e-04 9.66e-04

12
5.22e-08 1.93e-04 6.20e-02 6.26e-02 4.24e-12 1.16e-07 1.49e-04 1.51e-04
5.22e-08 1.35e-04 6.73e-02 6.80e-02 4.24e-12 3.79e-08 3.59e-04 3.64e-04

13
1.30e-08 7.07e-05 2.94e-02 2.97e-02 5.31e-13 2.48e-08 5.43e-05 5.51e-05
1.30e-08 4.38e-05 3.33e-02 3.36e-02 5.30e-13 6.34e-09 2.11e-04 2.13e-04

14
3.26e-09 2.27e-05 1.39e-02 1.40e-02 6.62e-14 4.56e-09 1.99e-05 2.02e-05
3.26e-09 1.40e-05 1.58e-02 1.60e-02 6.62e-14 1.04e-09 8.23e-05 8.31e-05

15
8.15e-10 8.01e-06 6.49e-03 6.57e-03 8.49e-15 1.10e-09 7.15e-06 7.26e-06
8.15e-10 4.41e-06 7.70e-03 7.78e-03 8.22e-15 1.67e-10 4.44e-05 4.48e-05

16
2.04e-10 2.68e-06 3.02e-03 3.06e-03 9.99e-16 1.81e-10 2.57e-06 2.61e-06
2.04e-10 1.37e-06 3.76e-03 3.80e-03 8.88e-16 2.64e-11 2.14e-05 2.15e-05

Table 2: Values of B(q, α,γ) and B((C1, . . . , Cs), α,γ) for γj = 0.875j, j = 1, . . . , s and q

constructed using the CBC algorithm; the top number gives the value of B(q, α,γ), the
bottom the value of B((C1, . . . , Cs), α,γ).
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α = 0.5 α = 1
m = s = 1 s = 5 s = 50 s = 100 s = 1 s = 5 s = 50 s = 100

4
3.91e-03 2.75e-02 4.75e-02 4.90e-02 8.14e-05 7.68e-04 1.80e-03 1.88e-03
3.91e-03 3.20e-02 5.97e-02 6.17e-02 8.14e-05 1.27e-03 4.40e-03 4.62e-03

5
9.77e-04 8.98e-03 1.78e-02 1.84e-02 1.02e-05 1.48e-04 4.88e-04 5.20e-04
9.77e-04 1.25e-02 2.22e-02 2.30e-02 1.02e-05 3.13e-04 1.23e-03 1.30e-03

6
2.44e-04 2.95e-03 6.29e-03 6.56e-03 1.27e-06 3.37e-05 1.20e-04 1.31e-04
2.44e-04 3.20e-03 7.23e-03 7.66e-03 1.27e-06 3.62e-05 2.47e-04 2.89e-04

7
6.10e-05 8.96e-04 2.22e-03 2.35e-03 1.59e-07 5.05e-06 2.91e-05 3.31e-05
6.10e-05 1.11e-03 2.65e-03 2.88e-03 1.59e-07 8.38e-06 6.91e-05 9.12e-05

8
1.53e-05 2.96e-04 7.86e-04 8.36e-04 1.99e-08 1.04e-06 6.94e-06 8.16e-06
1.53e-05 3.44e-04 1.00e-03 1.12e-03 1.99e-08 1.37e-06 2.16e-05 3.52e-05

9
3.81e-06 9.34e-05 2.81e-04 3.02e-04 2.48e-09 1.90e-07 1.67e-06 2.02e-06
3.81e-06 9.15e-05 3.27e-04 3.64e-04 2.48e-09 1.60e-07 4.70e-06 6.18e-06

10
9.54e-07 2.78e-05 9.54e-05 1.03e-04 3.10e-10 4.07e-08 4.20e-07 5.14e-07
9.54e-07 2.69e-05 1.19e-04 1.32e-04 3.10e-10 2.49e-08 1.83e-06 2.37e-06

11
2.38e-07 8.95e-06 3.34e-05 3.64e-05 3.88e-11 6.34e-09 9.59e-08 1.21e-07
2.38e-07 8.25e-06 4.10e-05 4.71e-05 3.88e-11 3.76e-09 3.25e-07 5.44e-07

12
5.96e-08 2.68e-06 1.18e-05 1.30e-05 4.85e-12 1.30e-09 2.36e-08 3.03e-08
5.96e-08 2.54e-06 1.46e-05 1.68e-05 4.85e-12 6.34e-10 1.16e-07 1.64e-07

13
1.49e-08 8.29e-07 4.05e-06 4.50e-06 6.06e-13 2.04e-10 5.79e-09 7.61e-09
1.49e-08 7.08e-07 4.69e-06 5.76e-06 6.06e-13 9.21e-11 2.45e-08 5.16e-08

14
3.73e-09 2.50e-07 1.40e-06 1.57e-06 7.58e-14 4.11e-11 1.40e-09 1.88e-09
3.73e-09 1.97e-07 1.60e-06 1.98e-06 7.57e-14 1.29e-11 7.04e-09 2.04e-08

15
9.31e-10 7.70e-08 4.91e-07 5.54e-07 9.27e-15 6.15e-12 3.45e-10 4.79e-10
9.31e-10 5.59e-08 5.50e-07 7.09e-07 9.33e-15 1.74e-12 2.52e-09 4.52e-09

16
2.33e-10 2.34e-08 1.71e-07 1.95e-07 1.22e-15 1.00e-12 8.51e-11 1.22e-10
2.33e-10 1.69e-08 1.89e-07 2.52e-07 1.11e-15 2.70e-13 9.54e-10 1.45e-09

Table 3: Values of B(q, α,γ) and B((C1, . . . , Cs), α,γ) for γj = j−2, j = 1, . . . , s and q

constructed using the CBC algorithm; the top number gives the value of B(q, α,γ), the
bottom the value of B((C1, . . . , Cs), α,γ).
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