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1 Introduction23

Angle conditions have several important roles in the analysis of the finite element method.24

They enable us to derive the optimal order interpolation bounds and prove convergence25

of the finite element method, to derive various a posteriori error estimates, to perform26

regular mesh refinements, to preserve qualitative properties of smooth solutions in FE -27

simulations, etc. Note that the only one obtuse triangle in a triangulation can completely28

destroy the discrete maximum principle (see [7, p. 329]).29

In order to clarify the situation with the convergence of the finite element method30

in the context of angle conditions, we consider a family F = {Th}h→0 of face-to-face31

triangulations of a polygonal domain into closed triangles. In 1968 Miloš Zlámal [19]32
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introduced the following minimum angle condition which states that there should exist a33

constant α0 such that for any triangulation Th ∈ F and any triangle K ∈ Th we have34

0 < α0 ≤ αK , (1)

where αK is the minimal angle of K. Under this (sufficient) condition he derived the35

optimal order bounds of the interpolation error in the Sobolev H1-norm (and H2-norm)36

and therefore also of the discretization error for the finite element method applied to37

second (and fourth) order elliptic equation with some boundary conditions. The same38

condition was also introduced by Alexander Žeńı̌sek [17] for the finite element method39

applied to a system of linear elasticity equations of second order, published in 1969.40

However, this paper was submitted already on April 3, 1968, whereas Zlámal’s paper on41

April 17, 1968. Nevertheless, condition (1) is known as Zlámal’s minimum angle condition,42

since [17] was published in Czech. For a generalization of the minimum angle condition43

into three-dimensional case see [4], and for higher dimensions see e.g. [5, 6, 8].44

In 1976, three research groups (see [2, 3, 11]) independently found that condition (1)45

can be weakened to prove the optimal rate of the interpolation error which by the well-46

known Céa’s lemma yields also the optimal rate of the discretization error of the finite47

element method. They derived the so-called maximum angle condition: There exists a48

constant γ0 such that for any triangulation Th ∈ F and any triangle K ∈ Th we have49

γK ≤ γ0 < π, (2)

where γK is the maximum angle of K.50

Clearly, (1) implies (2), since γK ≤ π − 2αK ≤ π − 2α0 ≡ γ0, but the converse51

implication does not hold.52

Note that John L. Synge [16] already in 1957 proved the optimal order of nodal53

linear interpolation under condition (2). This condition was later generalized in various54

directions, e.g., to three dimensions (see [13]), to general Sobolev norms ‖ ·‖k,p (for p 6= 2)55

[12], to anisotropic meshes [1], etc.56

In [2, p. 223], [15, p. 138], and [17, p. 365] there are examples showing that if the57

maximum angle condition (2) does not hold then the linear triangular finite elements loose58

their optimal interpolation order. The main idea of all these examples is the following.59

Take ε > 0 and the triangle K with vertices A1 = (−1, 0), A2 = (1, 0), and A3 = (0, ε)60

(see Figure 1). Consider the function v(x1, x2) = x2
1 and its linear interpolant61

(Lεv)(x1, x2) = −
x2

ε
+ 1 on K, (3)

i.e.,
(Lεv)(Ai) = v(Ai), i = 1, 2, 3.

Using the standard Sobolev space notation, (3), and the fact ∂v
∂x2

= 0, we find that62

‖v − Lεv‖
2
1,K ≥

∣

∣

∣

∂Lεv

∂x2

∣

∣

∣

2

0,K
=

1

ε2
measK =

1

ε
→ ∞ as ε → 0 and γK → π. (4)

We conclude that one badly shaped triangle in every triamgulation Th ∈ F can yield an63

arbitrary large interpolation error in the Sobolev H1-norm.64
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Figure 1: Degenerating triangle for γK → π.

For tetrahedral elements similar examples can also be constructed, see [13, p. 518].65

Namely, if the maximal angle between two faces or the maximal angle between edges66

tends to π, then the interpolation error may tend to ∞ like in (4).67

Examples similar to (3)–(4) caused numerical analysts to believe that large dihedral68

angles of simplicial elements (i.e., when the maximum angle condition (2) is not satisfied)69

produce also large discretization error when solving second order elliptic problems by the70

finite element method. For instance, Babuška and Aziz [2] state that the maximum angle71

condition (2) is essential for convergence of the finite element method, whereas D’Azevedo72

and Simpson [9, p. 1063] assert that (2) is necessary and sufficient for convergence. To73

the contrary, in this paper we show that the finite element method may converge even74

when (2) is violated.75

Let us emphasize that the Céa’s lemma gives only an upper bound of the discretization76

error by means of the interpolation error. Note that the discretization error is, in some77

cases, of the same order as the interpolation error. This was proved e.g. for uniform78

triangulations that satisfy the minimum angle condition (1) for a second order elliptic79

equation with smooth variable coefficients (see [14]). But in general, the discretization80

error can be much smaller than the interpolation error, as we will later demonstrate (see81

the right of Figure 4).82

In Section 2 we give illustrative two-dimensional examples showing that the practical83

convergence rate of the discretization error seems to be of optimal order (i.e. very small)84

even though the maximal angle over all triangles tends to π like in (4), i.e., the maximum85

angle condition is not necessary. In Section 3 we generalize this example to simplicial86

elements of an arbitrary space dimension. Finally, in Section 4 we present some numerical87

results for the red refinement algorithm for tetrahedral partitions.88

2 Why is the maximum angle condition not neces-89

sary ?90

Keeping in mind the result (4), we now show that the discretization error can be very small,91

whereas the interpolation error is large. For simplicity, consider the Poisson equation with92

the homogeneous Dirichlet boundary conditions in the unit square Ω = (0, 1)× (0, 1),93

−∆u = f in Ω, u = 0 on ∂Ω, (5)

where f ∈ L2(Ω). Since Ω is convex, its weak solution is from the Sobolev space H2(Ω)94

[10] and thus continuous by the Sobolev imbedding theorem.95
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Example 1: We will define two special families F1 and F2 of nested triangulations of
Ω. To this end we first introduce uniform rectangular meshes of the given unit square
consisting of congruent rectangles. Its horizontal sides will be divided into 2k equal parts
and the vertical parts will be divided into 4k equal parts for k = 0, 1, 2, . . . To construct
the family F1 we divide each rectangle by its diagonal with a positive slope (see Figure 2),
whereas for the family F2 we take both diagonals (see Figure 3). We observe that the first
family F1 satisfies the maximum angle condition (2) with γ0 = π/2 for all k, whereas for
the second family F2 we observe that γK → π for every second triangle. Let Vh and Wh

be finite element spaces of continuous and piecewise linear functions over triangulations
from F1 and F2, respectively. Obviously,

Vh ⊂ Wh.

Denote by uh ∈ Wh the standard Galerkin approximation of the weak solution u of96

(5). Let Lhu stands for the linear interpolant of u in Vh. Then by Céa’s lemma (see [8])97

there exists a constant C > 0 such that98

‖u− uh‖1 ≤ C inf
wh∈Wh

‖u− wh‖1 ≤ C inf
vh∈Vh

‖u− vh‖1 ≤ C‖u− Lhu‖1 ≤ C ′h|u|2 as h → 0,

(6)
where the last inequality can be proved under the assumption (2) (see e.g. [2, 11, 12])
for another constant C ′ > 0 independent of the discretization parameter h. This example
shows that the discretization error tends to 0 at least linearly in the H1-norm even though
the maximal angle of every second triangle from any Th ∈ F2 tends to π. In Figure 4 we
observe the practical rates of convergence on F1 and F2 for problem (5) with the following
right-hand side

f(x1, x2) = π2 sin πx1 sin πx2.

Figure 2: Family F1 satisfying the maximum angle condition.

Figure 3: Family F2 that does not satisfy the maximum angle condition.
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Figure 4: The practical convergence rates for the families F1 (left) and F2 (right). The
horizontal axis corresponds to the discretization parameter and the vertical axis corre-
sponds to the H1-norm of the discretization and interpolation errors. The difference
between interpolation and discretization errors on the left figure is very small, which
cannot be seen from the graph.

Example 2: Another supportive example is illustrated by Figures 5 and 6. In this case,99

the family F3 even satisfies the minimum angle condition (1) and the maximal angle of100

every third triangle from any Th ∈ F4 tends to π (see Figure 6). We can define finite101

element spaces Vh and Wh over triangulations from F3 and F4 as in the previous example102

so that Vh ⊂ Wh, and derive (6) again.103

Figure 5: Family F3 satisfying the minimum angle condition.
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Figure 6: Family F4 that does not satisfy the maximum angle condition.

3 Some generalization of two-dimensional examples104

to arbitrary space dimension105

Let the unit d-cube Ω = (0, 1)d, d ∈ {2, 3, . . . }, be divided uniformly into congruent
d-blocks. Consider for instance the d-block

B = (0, h1)× · · · × (0, hd).

Without loss of generality we may assume that

h1 ≥ h2 ≥ · · · ≥ hd,

where h−1
i is integer for i ∈ {1, . . . , d}. Moreover, let

h1 = h1(k) = 2−k and hd = hd(k) = 4−k for k = 0, 1, 2, . . .

We will again consider two families F5 and F6 of nested simplicial partitions. Parti-106

tions from F5 are based on Kuhn’s partition (see [7]). For instance, if k = 0 then Ω is107

decomposed into d! nonobtuse simplices defined as follows108

Kσ = {x = (x1, . . . , xd) ∈ Rd | 0 ≤ xσ(1) ≤ · · · ≤ xσ(d) ≤ 1}, (7)

where σ ranges over all permutations of the numbers 1, 2, . . . , d. For k ≥ 1 all the109

resulting d-blocks are decomposed into d-simplices in a topologically similar way. None110

of the dihedral angles of these simplices is greater than π/2.111

To define the family F6 we denote by G the centre of gravity of each d-block. Consider112

again Kuhn’s partition of each (d− 1)-dimensional facet of a given d-block. Now we take113

the convex hull of G and each (d−1)-dimensional simplex from the block boundary. This114

gives required d-simplices. Some of them contain large dihedral angles tending to π as115

k → ∞.116

To show this, we can consider, without loss of generality, the nonobtuse d-simplex117

with vertices A0 = (0, 0, . . . , 0), A1 = (1, 0, . . . , 0), . . . , Ad−1 = (1, . . . , 1, 0), and Ad =118

(1, . . . , 1, ε), with ε tending to zero.119

Introducing the mid-point G = (1
2
, . . . , 1

2
, ε
2
) of the longest edge, we see that the

subsimplex A0A1 . . . Ad−1G is from the family F2 (up to scaling). Now, the hyperplane
containing its facet A0A1 . . . Ad−2G is described by the following equation:

−εxd−1 + xd = 0

and the one containing the adjacent facet A1A2 . . . Ad−1G is of the form

εx1 + xd − ε = 0.
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The angle γε between these two hyperfaces can be calculated via scalar product of their120

normals. This gives cos(π − γε) = 1/(1 + ε2) that tends to 1 as ε → 0, which means that121

the angle γε between the chosen facets tends to π.122

We can now consider problem (5) in arbitrary space dimension. If its solution is123

smooth enough, the Lagrange interpolation operator is well defined and (6) holds again.124

In fact, a more universal statement, applicable also for nonsimplicial elements, can be125

formulated as follows. Consider a general elliptic problem in a weak form: Find u ∈ V126

such that127

a(u, v) = F (v) ∀v ∈ V, (8)

where V is a Hilbert space, a(·, ·) is a continuous V -elliptic bilinear form, and F (·) is a128

linear continuous functional over V , see [8]. Then we have:129

Theorem 1 Let {Vh}h→0 and {Wh}h→0 be two families of spaces of piecewise polynomial130

finite element functions such that Vh ⊂ Wh ⊂ V . Assume that for each v ∈ V131

lim
h→0

inf
vh∈Vh

‖v − vh‖V = 0, (9)

i.e., the union
⋃

h>0 Vh is dense in V . Then

‖u− uh‖V → 0,

where uh ∈ Wh is the standard finite element approximation of the weak solution u ∈ V132

of elliptic boundary value problem (8).133

P r o o f : From Cea’s lemma and (9), we obtain134

‖u− uh‖V ≤ C inf
wh∈Wh

‖u− wh‖V ≤ C inf
vh∈Vh

‖u− vh‖V → 0 as h → 0.

2135

4 Red refinement techniques136

Let Ω = (0, 1)3 and consider the problem137

−∆u = sin πx sin πy sin πz in Ω and u = 0 on ∂Ω. (10)

The initial mesh is Kuhn’s division of the cube into six nonobtuse tetrahedra (see (7)).138

In [18] Zhang proposes a special kind of red refinement of tetrahedral partitions that does139

not produce large dihedral angles tending to π.140

Consider the standard red refinement algorithm for a tetrahedron into eight subte-141

trahedra, using two different strategies, the longest-diagonal and shortest-diagonal refine-142

ment, for dividing the interior octahedron (see Figure 7).143

In the longest-diagonal refinement, the interor octahedron is divided by taking the144

longest diagonal as a common edge for all resulting subtetrahedra. In the shortest-diagonal145

refinement, the shortest edge is chosen as the common edge. This will lead to considerably146

slower decay of h, the longest edge in the mesh, in comparison to the shortest-diagonal147

refinement. In practice, this means that certain value of h is obtained for smaller number of148
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Figure 7: Red refinement of a tetrahedron.

degrees of freedom for the shortest-diagonal refinement, compared to the longest-diagonal149

refinement.150

In some sense using h as a measure for convergence is not correct in this example.151

Although the optimal O(h) convergence rate would be obtained, the number of degrees of152

freedom required to achieve the same accuracy for the both algorithms would be totally153

different.154

In Figure 8, we have visualized the convergence rate in the H1-norm for the prob-155

lem (10). The initial partition is again Kuhn’s division of the cube into six nonobtuse156

tetrahedra (see (7)). The practical rate of convergence for the longest-diagonal refine-157

ment is about h1/2 and for the shortest-diagonal refinement h. However, when degrees of158

freedom are compared, the longest-diagonal refinement performs considerably worse. In159

this case, the shortest-diagonal refinement seems to have the practical convergence rate160

of O(N−1/3), whereas the longest-diagonal refinement O(N−1/10), where N is the number161

of degrees of freedom in the mesh.162
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Figure 8: The H1-norm of the discretization error versus the number of degrees of freedom
and the discretization parameter.

This example shows us that sometimes large angles really do matter, i.e., the maximum163

angle condition is essential, even though it is not necessary.164
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