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Abstract

A new iterative algorithm for solving initial data inverse problems from par-
tial observations has been recently proposed in Ramdani, Tucsnak and Weiss [15].
Based on the concept of observers (also called Luenberger observers), this algo-
rithm covers a large class of abstract evolution PDE’s. In this paper, we are con-
cerned with the convergence analysis of this algorithm. More precisely, we provide
a complete numerical analysis for semi-discrete (in space) and fully discrete approx-
imations derived using finite elements in space and finite differences in time. The
analysis is carried out for abstract Schrodinger and wave conservative systems with
bounded observation (locally distributed).
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1 Introduction

The goal of this paper is to present a convergence analysis for the iterative algorithm
recently proposed in Ramdani, Tucsnak and Weiss [I5] for solving initial state inverse
problems from measurements over a time interval. This algorithm is based on the use
back and forth in time of observers (sometimes called Luenberger observers or Kalman
observers; see for instance Curtain and Zwart [3]). Let us emphasize that during the



last decade, observers have been designed for linear and nonlinear infinite-dimensional
systems in many works, among which we can mention for instance Auroux and Blum [I]
in the context of data assimilation, Deguenon, Sallet and Xu [5], Guo and Guo [8], Guo
and Shao [9] in the context of wave-type systems, Lasiecka and Triggiani [12], Smyshlyaev
and Krstic [I7] for parabolic systems and Krstic, Magnis and Vazquez [10] for the non
linear viscous Burgers equation.

Let us first briefly describe the principle of the reconstruction method proposed in [15]
in the simplified context of skew-adjoint generators and bounded observation operator.
We will always work under these assumptions throughout the paper. Given two Hilbert
spaces X and Y (called state and output spaces respectively), let A : D(A) — X be
skew-adjoint operator generating a Cyp-group T of isometries on X and let C' € L(X,Y)
be a bounded observation operator. Consider the infinite dimensional linear system given
by

{ A(t) = Az(t), Vt=0, (L1)

y(t) =Cz(t), Vtelo,r]. '

where 2z is the state and y the output function (throughout the paper, the dot symbol is
used to denote the time derivative). Such systems are often used as models of vibrating
systems (e.g., the wave equation, the beam equation,...), electromagnetic phenomena

(Maxwell’s equations) or in quantum mechanics (Schrédinger’s equation).

Figure 1: An initial data inverse problem for evolution PDE’s : How to reconstruct the
initial state (light grey) for a PDE set on a domain 2 from partial observation on O x [0, 7]
(dark grey)?

The inverse problem considered here is to reconstruct the initial state zy = z(0) of
system knowing (the observation) y(t) on the time interval [0, 7] (see Fig. [I)). Such
inverse problems arise in many applications, like thermoacoustic tomography Kuchment
and Kunyansky [L1] or data assimilation Puel [14]. To solve this inverse problem, we
assume here that it is well-posed, i.e. that (A, C) is exactly observable in time 7 > 0, i.e.
that there exists k. > 0 such that
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Following Liu [I3, Theorem 2.3.], we know that A™ = A — C*C (respectively A~ =
—A — C*(C') generate an exponentially stable Cy-semigroup T+ (respectively T~) on X.
Then, we introduce the following initial and final Cauchy problems, called respectively
forward and backward observers of
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Note that the states z* and 2z~ of the forward and backward observers are completely
determined by the knowledge of the output y. If we set L, = T T, then by [I5
Proposition 3.7], we have 1 := ||L||z(x) < 1 and by [I5, Proposition 3.3], the following
remarkable relation holds true

2= —1L,)"'27(0). (1.4)
In particular, one can invert the operator (I — IL,) using a Neumann series and get the

following expression for the initial state

o0

2= LI (0). (1.5)

n=0

Thus, at least theoretically, the reconstruction of the initial state is given by the above
formula. Note that the computation of each term in the above sum requires to solve the
two non-homogeneous systems and . In practice, the reconstruction procedure
requires the discretization of these two systems and the truncation of the infinite sum
in to keep only a finite number of back and forth iterations. For instance, if we
consider a space semi-discretization corresponding to a mesh size h (typically a finite
element approximation), one can only compute

200 = ZL,”zh (1.6)

where
o Ly, =T, T, , where ’]I‘fﬁ € L(X) are suitable space discretizations of T,

e 2, (0) € X}, is an approximation of 27 (0) in a suitable finite dimensional subspace
Xh of X,

e N, is a suitable truncation parameter.

Similarly, if a full discretization described by a mesh size h and a time step At is consid-

ered, one can compute
Np,at

Zo’h7At Z Lh AtK . (17)

where



— -
o Ly Aft Kk = Ty ar i Th At x> Where ']I‘h Arx are suitable space and time discretizations
of T

. (z,;)o € X, is an approximation of z=(0),
e Nj a¢ is a suitable truncation parameter.

For the sake of clarity, the precise definitions of the spaces and discretizations used will
be given later in the paper.

Our objective in this work is to propose a convergence analysis of 2y, and zpp At
towards zg. A particular attention will be devoted to the optimal choice of the truncation
parameters N, and Nj, a¢ for given discretization parameters (mesh s1ze h and time step
At). Let us emphasize that our error estimates (see (2.8), ([2.27), ( and (3.30))
provide in particular an upper bound for the maximum admissible noise under which
convergence of the algorithm is guaranteed. As usually in approximation error theory of
PDE’s, some regularity assumptions are needed to obtain our error estimates. Namely,
our result allows us to reconstruct only initial data contained in some subspace of X
(namely D (A?)). Moreover, our analysis only holds for locally distributed observation
(leading to bounded observation operators).

Throughout the paper, we denote by M a constant independent of 7, of the initial
state zg and of the discretization parameters h and At, but which may differ from line to
line in the computations.

The paper is organized as follows: in Section [2] we provide a convergence analysis
of the algorithm for an abstract Schrodinger type system, by considering successively
the semi-discretization (Subsection and the full discretization (Subsection [2.2)). In
Section [3] similar results are given for an abstract wave system. Once again, we tackle
successively the semi-discretization (Subsection and the full discretization (Subsec-
tion . Finally, the Appendix is devoted to the proof of two technical lemmas which
are used several times troughout the paper.

2 Schrodinger equation

Let X be a Hilbert space endowed with the inner product (-,-). Let Ay : D (Ay) — X be
a strictly positive self-adjoint operator and C' € L(X,Y’) a bounded observation operator,
where Y is an other Hilbert space. The norm in D(A§) will be denoted by || - ||o. We
assume that there exists some 7 > 0 such that (iAy, C) is exactly observable in time
7. Thus by Liu [I3, Theorem 2.3.], A™ = ¢4y — C*C (resp. A~ = —iAy — C*C) is the
generator of an exponentially stable Cy-semigroup T* (resp. T—). We want to reconstruct
the initial value zy of the following system

Ht) = iAoz(t), V>0,
{ y(t) = Cz(t), Vtel0,7], (2.1)

Throughout this section we always assume that z5 € D (A2). Thus by applying Theorem
4.1.6 of Tucsnak and Weiss [18], we have

2 € C([0,7],D(45)) N C ([0,7], D (Ay))-
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The forward and backward observers ([1.2)) and ({1.3)) read then as follows

{iﬁgiﬁmwo—mOf@+0w®,v“ﬂmﬂ (2:2)
(FO-twsoee oW, wed

Clearly, the above systems can be rewritten in the general form of an initial value Cauchy
problem (simply by using a time reversal for the second system)

{«w:imM@—cwww+ﬂm vt € [0,7],
(2.4)
q(0) = qo,

where we have set

e for the forward observer (2.2)) : F(t) = C*y(t) = C*Cz(t) and ¢y = 0,

e for the backward observer (2.3) : F(t) = C*y(r —t) = C*Cz(r — t) and ¢y =
zt(r) € D(4]).

2.1 Space Semi-Discretization
2.1.1 Statement of the main result

We use a Galerkin method to approximate system ([2.4]). More precisely, consider a family
1
(Xh)n>o of finite-dimensional subspaces of D <A§> endowed with the norm in X. We

1
denote 7, the orthogonal projection from D (Ag) onto X;,. We assume that there exist
M >0, 6 >0 and h* > 0 such that we have for all h € (0, h*)

I — oll < MR glly, Vo eD(AF). (2:5)

Given gy € D (A2), the variational formulation of (2.4 reads for all ¢ € [0,7] and all

1

peD <Ag ) as follows

{ (q(t), o) = £i {q(t), )
q(0) = qo-
Suppose that gy, € X, and Fj, are given approximations of ¢y and F' respectively in the

spaces X and L' ([0, 7], X). For all t € [0, 7], we define g, (t) € X}, as the unique solution
of the variational problem

{ (Gn(t), on) = Fiqn(t), n) 1 = (C*Can(t), on) + (Fu(t), @n) ,
an(0) = qo,n-

—(C"Cq(t), ) + (F(1),¢),

N|=

(2.6)

(2.7)

for all v, € Xj,.
The above approximation procedure leads in particular to the definition of the semi-
discretized versions ']I‘,f of the semigroups T* that we will use. Indeed, we simply set

T/ qo =~ Ty ,q0 = qn(t) T, qo = T}, ,q0 = qn(T — 1)



where g, is the solution of equation ([2.7)) with the corresponding sign and for Fj, = 0 and
go.» = Thqo- The approximation of L, = T, T} follows immediately by setting

— T— T+
Lhﬂ' - P]I‘h,ﬂ'v]rh,ﬂ' :

Assume that y;, is an approximation of the output y in L'([0,7],Y) and let 2} and z;
denote the Galerkin approximations of the solutions of systems ([2.2)) and ({2.3)), satisfying
for all t € [0, 7] and all ¢}, € X},

<"7:ler(t)7 90h> =1 <Z}er(t)7 90h>% - <C*C’Z}J;(t>7 90h> + <C*yh(t)? 90h> 3
z(0) = 0.

{ (2 (8),0n) =1 (2 (1), 90h>% +{C*Cz; (), n) — (C*yn(t), o),
2, (1) = 25 (7).

Thus, our main result in this subsection reads as follows.

Theorem 2.1. Let Ay : D(Ay) — X be a strictly positive self-adjoint operator and
C € L(X,Y) such that C*C € L (D (A32)) N L (D (Ay)). Assume that the pair (iAg, C)
is exactly observable in time 7 > 0 and set n := ||L;||zx) < 1. Let zo € D(A3) be the

initial value of (2.1) and 2y be defined by (1.6)).
Then there exist M > 0 and h* > 0 such that for all h € (0, h*)

20— soall < 0 | (2

A particular choice of N, leads to an explicit error estimate (with respect to h) as
shown in the next Corollary (the proof is left to the reader because of its simplicity)

Nh+1

+h97N5> ||Zo||2+Nh/O 1C" (y(s) — yn(s)) llds | .

Corollary 2.2. Under the assumptions of Theorem |2.1], we set
N, =0—.
Inn
Then, there exist M, > 0 and h* > 0 such that for all h € (0, h*)

20 — zonll < M, (h91n2h||zO||z+|1nh| e ) = o) ||ds). (2.8)
0

3
Remark 2.1. In fact, Theorem [2.1|still holds true for zy € D (Ag) (with the same proofs

and slightly adapting the spaces). Nevertheless, we have not been able to carry out this
analysis for the fully discrete approximation in this case. This is why we restricted our
analysis to the case of an initial data zy € D (A43).



2.1.2 Proof of Theorem [2.1]

Before proving Theorem 2.1 we first need to prove some auxiliary results. The next
Proposition, which constitutes one of the main ingredients of the proof, provides the
error estimate for the approximation in space of the initial value problem by using
the Galerkin scheme .

Proposition 2.3. Given qy € D (A§) and qon € Xy, let ¢ and gy, be the solutions of (2.6)
and (2.7) respectively. Assume that C*C € L (D (Ay)). Then, there exist M > 0 and
h* > 0 such that for allt € [0, 7] and all h € (0, h*)

Ima() — ()] < o — doall + MK [t (laolle + 1Z 1) + 2217 o]
t
T / |F(s) — Fa(s)|ds.
0

Proof. First, we substract (2.7) from (2.6) and obtain (we omit the time dependence for
the sake of clarity) for all ¢, € X},

(q — dn, o) = £i{q — qn, S%)% —(C*C(q—qn),en) + (F — F, 0n) -

Noting that (m,q — g, gph)% = 0 for all ¢, € X}, and that m,¢ makes sense by the regularity
of ¢ (see (4.1))), we obtain from the above equality that for all ¢, € X},

(Thd = Gn, on) = (Thq — 4, Pn) £ 1 (Thq — qn, S%)%
—(C*"C(q—qn) , on) +(F — Fu, ). (2.9)
On the other hand, setting
1 9
& = §||7Thq —anll”
we have '
En = Re (mhq — Gn, mhq — qn) -

Applying (2.9) with ¢, = m,q — ¢, and substituting the result in the above relation, we
obtain by using Cauchy-Schwarz inequality and the boundedness of C' that there exists
M > 0 such that

En < (Imnd — dll + Ml|mng — gll + | — Eyl)) lmng — anl]
—_——

=V2&,
En

V28,

d
Since = %VQ&L’ the integration of the above inequality from 0 to t yields

17na(t) — an(®)]l < Imago — qo.nll + /0 (Imng(s) = 4(s)ll + Mllmng(s) — a(s)]]) ds

+ [ ||F(s) — Fu(s)|lds. (2.10)



Thus, it remains to bound ||7,q(t) — ¢(t)|| and ||7rq(t) — q(t)|| for all ¢t € [0,7]. Using
([2.5) and the classical continuous embedding from D(A%) to D(AP) for a > B, we get
that

Imad(t) — ()] < MB (Il < MA®()])s, *
{ Ima(®) - a®ll < MW a(Olls < MWlg(D)lo, 7 OTh P E O

Using relations (4.2) and (4.3) proved in Lemma of the Appendix, we get for all
t € [0,7] and all h € (0, h*)

Imnd(t) — @) + mna(t) — a®)ll < MA® (lgollz + tIF 200 + [ Fll1,00) -
Substituting the above inequality in (2.10]), we get the result. |

Using the last result, we derive an error approximation for the semigroups T+ and for
the operator IL; = T, T} .

Proposition 2.4. Under the assumptions of Proposition the following assertions
hold true

1. There exist M > 0 and h* > 0 such that for allt € (0,7) and all h € (0, h*)
|7 g0 — Tit 10| < Mth||goll2. (2.11)
H?ThT;qO — T};thH < M(T — t)hQHQOHQ (212)

2. There exist M > 0 and h* > 0 such that for all n € N, all t € [0,7] and all
h € (0, h*), we have

LY g0 — Lj; ol < M (1 + n7)h?|qollo. (2.13)

Proof.
1. It suffices to take F' = F}, = 0 and gy = mrqo in Proposition [2.3]
2. We first note that

ILfq0 — L, q0ll < [[Li'q0 — mnlli' qol| + l|mnlliqo — Ly 1q0]l- (2.14)

Using ([2.5)) and the fact that ||Lq||z(p(a)) < 1 proved in Lemma {4.1] of the Appendix, the
first term in the above relation can be estimated as follows

ILi'qo — mLygol| < MA%|qolla, VA € (0, h*). (2.15)
For the second term in ([2.14]), we prove by induction that for all n € N
ImnLigo — Lit yqoll < Mnth®||goll2, VR € (0,R%). (2.16)
By definition, we have

| 7rlleqo — Lintqol| I7n T, T, qo — Ty, Ty 40l
|

< |7ThTt_Tz—fFQO - ']I‘f_z,tTl—f’—qOH + ||Ti_z,t(T?—qO - T;,tQO)H'
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By Lemma of the Appendix and equation ([2.12]), we get
70T T o — T T aoll < M(r — O laolla, Y € (0, 1),

Obviously || T} ||zcx) is uniformly bounded with respect to h (this follows for example

from (2.12))), and thus by (2.5)) and equation ({2.11]), we have

1T, (T g0 — T ,q0) 1T g0 — 7T qoll + |70 TS g0 — Th 4ol

<
< Mth®||goll2, VA € (0,h7).

Consequently
||7TthQO - Ith,,tQOH < MThGHQOH% Vh € (07 h*>7 (2‘17)

which shows that (2.16)) holds for n = 1. Suppose now that for a given n > 2, there holds
Iy g0 — Ly aoll < M(n — 1) qo]l - (2.18)
We write
Imnlliqo — Ly yqoll < [[mnllellf ™" go — Lt qol| + I1ape (L~ g0 — L, " qo)]-

Thanks to Lemma and to the uniform boundedness of || Ly || z(x) with respect to h
(which follows from the uniform boundedness of HTftH) and using (2.17) and (2.18), we
obtain

I7nll qo — Lthqu < M(T +(n = D)7)h o]l

which is exactly ([2.16] - Substituting (2.15)) and - in - we obtain the result. H

We are now able to prove Theorem [2.1]

Np,
of Theorem [2.1. Introducing the term Z L}, .2 (0), we rewrite 2o — 2o, in the following
n=0
form
20 — Zo.h :ZL?: - Z]L,”zh
n=0
=) LZz‘(O)—I—Z(]L” Lr) > +ZIL 0) — 2, (0)) .
n>Np n=0
Therefore, we have
Hz[)_ZOJZ” § 51+SQ+53, (219)

where we have set

(S =) |L2=(0)
n>Nh

ZH (Lr =1Ly )z (0)]],
(ZHL N )||z-<o>—z,:<o>||.

9




Note that the term S; is the truncation error of the tail of the infinite sum , the term
S, represents the cumulated error due to the approximation of the semigroups T* while
the term S3 comes from the approximation of the first iterate 2z~ (0) of the algorithm.

Since n = ||L;||zx) < 1, using relation (L.4), the first term can be estimated very
easily

a1
§1< Mzl (2.20)
The term Sy can be estimated using the estimate (2.13)) from Proposition
Np
$§ﬂw<§:O+nﬂ)hWXHMM Vh € (0, h").
n=0

Therefore, using (1.4) and the fact that ||L,|p2) < 1 (see Lemma in the above
relation, we finally get that

&SM@HHﬂM+WﬂmmM Vh € (0,h%). (2.21)

It remains to estimate the term Ss. As n = ||L; | zx) < 1, (2.13) implies that ||Lp | zcx)
is also uniformly with respect to h bounded by 1, provided A is small enough. Hence, we
have

S3 < MN, QZ‘(O) — 2, (0)] (2.22)
< MN, (||27(0) = w2~ (0)]| + ||mnz~(0) — 2, (0)]]) -
By using and ((1.4)), we immediately obtain that
|27(0) = 727 (0)|| < MA’|| . (2.23)

To estimate the second term 7,27 (0) — 2, (0), we apply twice Proposition first for
the time reversed backward observer z~ (7 — -) and then for the forward observer z* (the
time reversal step is introduced as in the formulation of Proposition [2.3] only initial value
Cauchy problems can be considered). After straightforward calculation we obtain that

for all h € (0,h*)
Iz (0) — 25 O] < MB [l (Dl + 100l ) + 721l oo
= [U1e =9 =t =) s+ [ 16" () = m(o) s, (224)
Applying of Lemma of the Appendix with zero initial data, we obtain that
127 (T)ll2 < TIIC™Yl200-

Therefore ([2.24]) also reads
|27 (0) = 2, (0)]] < MA (7 + 72)[|C"yll00 + 2/ 1C" (y(s) = yn(s)) llds.
0

As C*C € L(D(A2)) N L(D(Ap)) and ||z]j2.00 = ||20]]2 (since 14y is skew-adjoint), the

last relation becomes

1727 (0) = 2, (0)]] < MA*(7 + 7%) 202 + 2 / e ((s) = (o)) lds.

10



Substituting the above relation and ([2.23) in (2.22]), we get

Sy < M Ny, <h9(1 + 7+ 7 ||20]]2 + /OT 1C™ (y(s) — yn(s)) Hds) : (2.25)

Substituting (2.20)), (2.21)) and (2.25) in (2.19), we get for all h € (0, h*)

|20 — zonl| < M

?7Nh+1

N [0 0l) — (o) Hds] ,
0
which leads to the result (with possibly reducing the value of h*). |

2.2 Full Discretization
2.2.1 Statement of the main result

In order to approximate (2.6]), we use a finite difference scheme in time combined with
the previous Galerkin approximation in space. In others words, we discretize the time
interval [0, 7] using a time step At > 0. We obtain a discretization ¢, = kAt, where
0 < k < K and where we assumed, without loss of generality, that 7 = KAt. Given a
continuously differentiable function of time f, we approximate its derivative at time ¢,

by the formula
f(te) — f(te1)

f'(te) = Dy f () == At -

We suppose that qo; € X, and FF, for 0 < k < K, are given approximations of gy and
F(t;) in the space X. We define (¢F), for 0 < k < K, as the solution of the following
problem: for all ¢, € Xj:

{ (Dygk, o) = +i gk, on)
0 __
qn = 4q0,h-

1 (C*Cqf,on) + (Ff, on)

(2.26)

Note that the above procedure leads to a natural approximation Tf Az Of the continuous
semigroup Ttik by setting

+ ., o~ Tt 4k — o~ T — K=k
T} 90 ~ Ty Ak = s Ty od0 = Ty aveo == a, >

where ¢F solves (2.26]) with FF =0 for all 0 < k < K and for gy = mhq0. Obviously, this
also leads to an approximation of I, = T T} by setting

_ = +
IL'h,At,K - Th,At,KTh,At,K'

Assume that for all 0 < k < K, yF is a given approximation of y(t;) in Y and let
(zf{)k and (z}: )k be respectively the approximations of (2.2)) and (2.3) obtained via (2.26])

as follows:

11



e Forall 0 <k < K, (z,f)k = ¢F where ¢} solves (2.26) with Ff = C*y and ¢} = 0,

o Forall0 <k < K, ()" = ™" where gf solves [226) with F}: = C*yf* and
0 +\K
g = (z)".

Then, our main result (which is the fully discrete counterpart of Theorem [2.1]) reads as
follows

Theorem 2.5. Let Ay : D(Ag) — X be a strictly positive self-adjoint operator and
C € L(X,Y) such that C*C € L (D (A2)NL (D (Ay)). We assume that the pair (iAg, C)
is exactly observable in time T > 0. Let zy € D (A3) be the initial value of [2.1). With
the above notation, let zy At be defined by and denote 1 := ||L-||zx) < 1. Then
there exist M >0, h* > 0 and At* > 0 such that for all h € (0,h*) and all At € (0, At*)
we have

Np,at+1
|20 — 20,p,at]] < M[ (771 —

(4 AR (L4 ﬂNim) lzoll

K
+ NpacAt Z HC* (y(te) — yﬁ)” :
=0

Corollary 2.6. Under the assumptions of Theorem we set

In(h? + At)

Npar = I

Then, there exist M, > 0, h* > 0 and At* > 0 such that for all h € (0,h*) and
At € (0, At")

20 — zonaell < My |[(h® 4+ At) In*(h? + At)||z]|2

+ [In(n” + A ALY ||C(y(te) —wp)|||- (2:27)

=0

Remark 2.2. Contrarily to the semi-discrete case, we have not been able to extend our
results for zp in a larger space than D (A32).

2.2.2 Proof of Theorem [2.5

The proof of Theorem [2.5) goes along the same lines as the one of Theorem[2.1]in the semi-
discrete case and uses energy estimates similar to those developed in Fujita and Suzuki
[6l, p. 865]. The main ingredient for the convergence analysis is the following result (the
counterpart of Proposition which gives the error estimate for the approximation (in

space and time) of system ([2.6)) by (2.26]).

Proposition 2.7. Given initial states qo € D (A3) and qop € Xy, let ¢ and qF, for
0 < k < K, be respectively the solutions of (2.6) and (2.26). Assume that C*C €

12



L (D (Ao)). Then, there exist M > 0, h* > 0 and At* > 0 such that for all h € (0,h*),
all At € (0, At*) and all 0 < k < K:

k
\mmm—ﬁWQWm—%w+M{u2Nmm—ﬁn

(=1

1+ 20 [l + 1F Do+ 1) + 2P le]

Proof. Let r1(t;) denote the residual term in the first order Taylor expansion of ¢ around
tr_1, so that

i(te) = L) _A§<t’“—1) - émtk) — Diglty) — érl(tk), (2.28)

Subtracting (2.26)) from the continuous weak formulation (2.6)) applied for ¢t = ¢; and for
an arbitrary test function ¢ = ¢, € X}, we immediately get by using (2.28) that for all
1<k<K

—{(C*C (q(ty) — af) , on)

- Ait (r(te), on) + (F(tx) = Fy, on)

(Dy (q(tx) = ar) > n) = £i (maq(tr), on)

1
2

The above relation implies that
(Dy (mrq(tr) — i), on) = (Di (mhq(ts) — q(tr)) , on)
+ i (mhq(te) — qgﬂph>% —{C*C (q(tr) — ar) , on)
1
+ At (r1(te), on) + (F(tx) — Fy, on) . (2.29)
Now, for all 1 < k < K, let
1
& = 5 llmna(te) = gl

Using the identity

1
5 (lul* = [0l + lu = v]*) = Re (w —v,u), Vu,0 € X,

one easily obtains that for all 1 <k < K
D& < Re (Dy (mrq(ty) — q’;;) , Thq(t) — q’;£>

Substituting (2.29) with o5, = m,q(tx) — ¢ in the above inequality and using the bound-
edness of ', we obtain the existence of M > 0 such that for all 1 <k < K

Digf < [ID. (ma(t) — a(te)) |+ Mllma(t) — alee)|
@)+ 1) — B It — afll (2:30)
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Using the straightforward relations

DEF = (Dt\/;,’j> (\/;ﬁ+ W) : (2.31)
Imvatee) = il < V2 (/e + /i) (232

we obtain from (22.5) and (2.30]) that for all h € (0, h*)
1
DM%SMh%wmmmwwmg+gmwMme—wﬁ.

By (2.28)) and relations (4.2]) and (4.3) in Lemma of the Appendix, the last estimate
yields

and

Dyy/&y < M{W (goll2 + tkll F'll2.00 + [1£1]1,00)

+I1F () = Fill + 5 v ()l +—H7“1(tk)||} (2.33)

To conclude, it remains to bound the two last terms in the above estimate. By definition
of r1, we have

ri(te) = q(te—1) — q(te) + At §(ty),

in D <A ) and thus by the mean value theorem, we get

Il < At sup [li(s)]y + Al .

SE[tk—1,tx]
Using once again (4.3]), we obtain that there exists M > 0 such that
[ (E)lly < MAE ([lgoll2 + tkll Fll2.00 + [[Fll.00) - (2.34)

Now by the regularity of ¢ (see Lemma , the residual r; can be expressed via the
integral

rwwz/kﬁ@wq—@@,

tp—1
in X, and thus
Iri(te)ll < A% sup [lg(s)]].

SE[tk_l,tk]

Using equation ([2.4]) verified by ¢ and the boundedness of C, we have

nww=H%mH=w i) - coan + P}
40l + M1+ 1O

Hence, once again by (4.3)), we get
Irati) | < A2 (Jaollo + el Fllooe + 1l oo + 1Fl) (23
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Substituting inequalities (2.34]) and ([2.35]) in relation ([2.33]) provides estimates for Dy(/EF =

VB o
At
(since ||mhq(ty) — ¥l = /2EF). [ ]

Using this Proposition, we can derive an error estimate for the semigroup ']I‘ (for all
1 <k < K) and for the operator L, = T_ T} (the counterpart of Proposition [2.4).

,for k=1,..., K, that can be added together to get the desired inequality

Proposition 2.8. Under the assumptions of Proposition the following assertions
hold true

1. There exist M > 0, h* > 0 and At* > 0 such that for all h € (0,h*), all At €
(0,At*) and all0 < k < K

7T d0 — Tk arsdo| < Mte(h” + At)]qo]l- (2.36)
|70 Ts,00 = Thaesdol| < M(1 = t)(h” + A)]qo]l- (2.37)

2. There exist M >0, h* > 0 and At* > 0 such that for alln € N, all h € (0, h*), all
At € (0,At*) and all0 < k< K

(L, — Ly arr)qoll < M [2? +n7 (B + At)] [|go]|2- (2.38)

Proof.
1. It suffices to apply Proposition with F(t;) = FF =0 for all 0 < k < K and

qo,n,At = Th{o-
2. First, we note that

ILE g0 — Ly arxoll < LY go — 7Lt qol| + [[mnllt, go — Ly, At x90ll- (2.39)

Using (22.5), the fact that ||L}||zpay) < 1 (proved in Lemma of the Appendix), the
first term in the above relation can be estimated as follows

1LY g0 — muly gol| < Mh?|qoll2, VR € (0,R%). (2.40)

For the second term in ([2.39)), we prove by induction that for all n € N, all h € (0, h*)
and all At € (0, At*) (for some At* > 0)

7AYo — L aeutoll < MnT (B + At) [|golo. (2.41)
By definition, we have

Y

T T T g0 — Ty ark T ar k0
(mn Ty, — Ty ack) T o
+ HTE,At,k (T, — T;At,k) qo|| '

|mnLe, g0 — Linackol|

Using and Lemma , we get
H (ﬂ-hT;c — T};At,k) WhT;;qOH S M(T — tk) (h9 + At) HqOH2

15



Obviously || T}, allzcx) is uniformly bounded (with respect to h and At), and thus again

by ([2.36) - we have
HT;,At,k (ﬂ_hTz; — T;’L_,At,k) qOH S Mtk (he —+ At) HqOH2

So, by adding the two last inequalities, we obtain that

I7n L, go — Liackdoll < M7 (R + At) [|go]|2, (2.42)
showing that (2.41)) holds for n = 1. Suppose now that for some n > 2
Il g0 — Ly apsdoll < M(n— 1)1 (B” + At) [lgo 2. (2.43)

Writing
|7rlt: go — Ly acxoll < Imn e, Ly g0 — L aeemn Ly o]
+ || L, ae ke (mr Ly g0 — Ly Ay 140) I,

we get by using Lemma [4.1} the uniform boundedness of ||y a¢ k|| ccx) with respect to h

and At, (2.42)) and (2.43)) that
17l do = Ly, arpdoll < M [(1 +(n=1))7 (b + At)] [lgo],

which is exactly - Substituting (2.40) and (2.41] - in -, we obtain the result. W

We are now able to prove Theorem [2.5

Nn,at
of Theorem [2.5. We first introduce the term Z Ly a2 (0) to rewrite the approxima-
n=0
tion error zy — 2o p ¢ in the following form:
00 Np,at
n.,— n ~\0
20 — Z0,hAt = Z L727(0) — Z Lyatx (21)
n=0 n=
Np, At
Y. L0+ ) (L - Liak) 2 (0)
TL>Nh7At n=0
Np,at
_\0
ZLhAtK< 0) — (Zh)>
Therefore, we have
HZO — ZO,h,At” S Sl + Sg + 53, (244)

where we have set

Y

(S = > L2z (0)

n>Nh,At
Nn,at

So= 3 (L7 = Liauk) = O]

Np, At

Ss = z% ||LZ,At,KHc(X) HZ_(O) B <Z;)0 H

16



Since 1 = || L;||zx) < 1, the first term can be estimated very easily

nNh,AtJ’_l
S <M ]

12012 (2.45)

The second term Sy can be estimated using the estimate (2.38)) from Proposition

Np,at
Sy < M{ > (B +nr(h’ + At)) }Hz(())y|2, Vh € (0,h"), At € (0, At*).

n=0

Therefore, using (1.4)), the fact that ||L.||pa2) < 1 (see Lemma[4.1]) in the above relation,
we get that for all h € (0,h*) and At € (0, At*)

Sy < M [1 (1 +7)Npae + (14 T)N,i&] (B + At) [1z0]l2. (2.46)

It remains to estimate the term S3. As for the semi-discrete case, on can easily show that
| L, Atk || 2(x) is uniformly bounded by 1 (with respect to h and At), and thus we have

53 < MNh,At UZ_<0) - (Zf:)oll (2 47)
< MNpae (||27(0) = 27 (0)|| + [|maz™(0) = (2;,)°]]) - ‘
By using and , we immediately obtain that
Hz*(O) — ﬂhz*(O)H < MR?|| 2. (2.48)

To estimate the second term 7,27 (0) — (z;,)°, we apply twice Proposition first for
the time reversed backward observer z~ (7 — -) and then for the forward observer z* (the
time reversal step is introduced simply because Proposition is written for initial (and
not final) value Cauchy problems). After straightforward calculation we obtain that for
all h € (0,h*) and all At € (0, At*)

[7127(0) = (23)°]] < M(R” + At) [T(HZJ’(T)HQ +1C"ll1,00 + €79 )
K K
+ TQIIC*yllzoo] + A (O (y(r = te) =y ) |+ A IO (y(te) —wr) |- (2:49)
/=1 /=1

Applying (4.2)) of Lemma [4.2] of the Appendix with zero initial data, we obtain that
15 (T)ll2 < TIC Y200

AsC*C € L(D(A3))NL(D(Ap)) and ||z]|2.00 = ||20]|2 (since iAg is skew-adjoint), ([2.49)
also reads

[z (0) = (23,)°| < MR + At)(7 +72) |20l + 248 Y [C* (y(te) — wi) |l
£=0

Substituting the above relation and (2.48]) in (2.47)), we get

K
Sy < MNyar {(h@ F A1+ 7+ )0l + A S ICT (o) — o) H} (250
=0
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Substituting (2.45)), (2.46) and (2.50) in (2.44), we get for all h € (0,h*) and all At €
(0, At*)

nNh,At+1
I—n

IENIE

K
20 — zopaell < M {Nh,AtAtZ lC™ (y(te) = wa) || +

=0
+(h? + At) [1 + (14 74+ 7%)Nypae + (1 + T)Nﬁ,m] HZOH2} 7

which leads to the result (with possibly reducing the value of h* and At*). |

3 The wave equation

Let H be a Hilbert space endowed with the inner product (-,-). The corresponding norm

of H is denoted by || - ||. Let Ao : D (Ag) — H be a strictly positive self-adjoint operator

and Cy € L(H,Y) a bounded observation operator, where Y is an other Hilbert space.

The norm in D(A§) will be denoted by || - ||o. Given 7 > 0, we deal with the general
wave type system

W(t) + Aqw(t) =0, V>0,

Lot~ coate) vreoon)

and we want to reconstruct the initial value (wg, wy) = (w(0),w(0)) of knowing y(¢)
for t € [0, 7]. In order to use the general iterative algorithm described in the introduction,
we first rewrite (3.1) as a first order system of the form . To achieve this, it suffices
to introduce the following notation:

A1) = {“f(t)} , X=D (Aé) « H,

(3.1)

w(t)
A= (_(340 é) . D) =D(4) x D (45), (3.2)
CeL(X,)Y), C=1[0 C. (3.3)

The space X is endowed with the norm

z
o= Talg + Tl va= |2 ex.
2 2

Note that the operator A is selfadjoint but has no sign so that the problem studied here
does not fit into the framework of Section 2] We assume that the pair (A, C) is exactly
observable in time 7 > 0. Thus, according to Liu [I3, Theorem 2.3.], AT = A — C*C
(resp. A~ = —A — C*C) is the generator of an exponentially stable Cy-semigroup T+
(resp. T~). We set as usually
L, = T T?.
3

Throughout this section we always assume that (wg,w;) € D (A?) = D <A§> x D (Ap).
Thus by applying Theorem 4.1.6 of Tucsnak and Weiss [18], we have

weC <[O,T],D <A§>> N C ([0, 7], D (Ag)) N C? ([0,7],1) <A0>> .
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The forward and backward observers (|1.2)) and (|1.3|) read then as follows (as second-order
systems)

W (8) + Agw* (£) + CGCor* () = Ciy(t), vt € [0, 7],

{ wt(0) =0, w"(0)=0, ’ (3.4)
() + Agw™ () — C5Cou™(t) = =Cgy(t), V¥t € [0,7],

{ w (1) =wt(r), W (1) =uw (7). (3.5)

Clearly, the above two systems can be written as a general initial value Cauchy problem
of the same form (simply by using a time reversal for the second system)

{ Pt) + Aop(t) + C5Cop(t) = f(t),  Vt€[0,7], (3.6)
p(0) =po, p(0) =p; '

where we have set
o for the forward observer (3.4) : f(t) = Ciy(t) = CiCow(t) and (po,p1) = (0,0),

e for the backward observer c f(t) = —Ciy(t — t) = —CiCow(r — t) and
(o, p1) = (w'(7), —i* () € D (42) = D (45 ) x D (Ag).

Let us emphasize that with these notation, the semigroups T* are given by the relations

wiebel o mRl e

where p solves (3.6 with f = 0.
In the next two subsections, we propose a convergence analysis of semi-discretized and

fully discretized approximation schemes for the forward and backward observers and
. Our proof is based on the convergence analysis of the semi and fully discretizations
of . As far as we know, the existing literature on the convergence analysis of full
discretizations of wave-type systems concern only the particular cases of conservative
systems (i.e. without damping), see e.g. Raviart and Thomas [16, p. 197] or Dautray
and Lions [4, p. 921] and systems with constant damping coefficients Geveci and Kok
[7]. For a recent review of numerical approximation issues related to the control and the
observation of waves, we refer the reader to the review paper of Zuazua [19).

3.1 Space Semi-Discretization
3.1.1 Statement of the main result

We use a Galerkin method to approximate system ({3.6]). More precisely, consider a family

1

(Hp)n>o of finite-dimensional subspaces of D (Ag) endowed with the norm in H. We

1
denote 7, the orthogonal projection from D (Ag) onto Hj,. We assume that there exist
M > 0,6 >0 and h* > 0 such that we have for all h € (0, ")

Imup — oll < MR glly, Vo eD(AF). (3.8)
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Given (pg, p1) € D (A?), the variational formulation of (3.6) reads for all ¢ € [0, 7] and all

1

peD <A3> as follows
[ B0 -0, + CGC0A =0, DL
p(0) =po, p(0) = p. '

Suppose that (po,p1n) € Hp x Hy and f), are given approximations of (pg,p;) and f
respectively in the spaces X and L' ([0,7], H). We define p;(t) as the solution of the
variational problem

{ {Bn(t), n) + (n(t), o) 1 + (CGCoPn(L), on) = (fult), on), VL €0,7],

. 3.10
Pr(0) =Dpon,  Pr(0) = pip. (3.10)

for all t € [0, 7] and all ¢}, € H.
The above approximation procedure leads in particular to the definition of the semi-
discretized versions Tf of the semigroups T* that we will use. Indeed, we simply set

28 R i B | R e B

where pj, solves (3.10) for f, = 0 and (pon,p1n) = (Thpo, Thp1). The semi-discretized
counterpart of L, = T T} is then given by

— T— T+
Lhﬂ' - Th,TTh,T :

Assume that yj, is an approximation of the output y in L'([0, 7], Y") and let w; and w;,
denote the Galerkin approximations of the solutions of systems (3.4) and (3.5)), satisfying
for all t € [0, 7] and all ¢, € Hy,

w;[(O) =0, w;[(O) =0, .
{@%mww+wﬂmwg—«mmq@wwz—@mmwm, .
wy, (7) = wy (), by, (1) =y (7). '

With the above notation, the main result of this section reads as follows.

Theorem 3.1. Let Ay : D(Ag) — H be a strictly positive self-adjoint operator and
Co € L(H,Y) such that C;Cy € E(D A§>) ﬂE(D (Aé)) Define (A,C) by
and (3.3). Assume that the pair (A, C) is ezactly observable in time T > 0 and set
n = ||Lrllzx) < 1. Let (wo,w1) € D <A§> x D (Ag) be the initial value of and let
(wo,n, w1,n) be defined by

BﬂziMJEQ- .19
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Then there exist M > 0 and h* > 0 such that for all h € (0, h*)

nNh+1
o = woally + s = wisl < 21| (%

#1072 (ol + ol

+ N [ 165 ws) = ) Hds] .
0
Corollary 3.2. Under the assumptions of Theorem |3.1], we set

Np =60—.
Inn

Then, there exist M, > 0 and h* > 0 such that for all h € (0, h*)
lwo — woulls + llwr — w1 4]l < M, [/ﬁ n? b ([l |y + flwr 1)
+ \hlh\/ 1€ (y(s) = yn(s)) HdS]- (3.15)
0

3.1.2 Proof of Theorem [3.1]

The next Proposition provides the error estimate for the approximation of (3.9)) by using
the Galerkin scheme (3.10)).

3
Proposition 3.3. Given (py,p1) € D <A§> XD (Ao) and (pon,p1,n) € Hp X Hy, let p and

pr be the solutions of (3.9) and (3.10) respectively. Assume that C5Cy € L (D (Ag))
Then, there exist M > 0 and h* > 0 such that for allt € [0, 7] and all h € (0, h*)

l7ap(8) = POl + [lmap(t) = pa(B)]] < M{I|7Thpo = ponlly + 71 = puall

+ 0 [t (IIpolly + o1l + 171 g.00) + 220 } T / 1£(5) = fuls)ds.

Proof. First, we substract (3.10)) from (3.9)) to obtain (we omit the time dependence for
the sake of clarity) for all ¢, € Hj,

(D — Py on) + (p = pn,on) 1 + (CoCo (D — Pn) s on) = (f — fn, on) -

1
2

Noting that (m,p — p, pn)1 = 0 for all ¢, € Hj, and that 7, makes sense by the regularity

1
2
of p (this is a direct consequence of relation (4.1)) from Lemma used with ¢ = {ﬂ ),
we obtain from the above equality that for all ¢, € Hy,

= (mnp — P, on) +{(CoCo (Pr — P) s on) +{f — fn, on) -
(3.16)

(ThD — D, 1)+ (ThD — Phs ©n)

1
2
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On the other hand, setting

1 .. 1
En = z|lmnp — pull> + < lmap — pal3,
2 2 2
we have _
En = (TP — P, ThD — Pu) + (TP — Dh, ThD —I'?h>% -

Applying (3.16]) with , = m,p — pp and substituting the result in the above relation, we
obtain by using Cauchy-Schwarz inequality and the boundedness of Cyy that there exists
M > 0 such that

én < (1w = 3l + Mllmp — Il + 1 = fall) {17 = ul]
—_——
<V2&,
n
V2&E,

d
Since = %‘/25’”" the integration of the above inequality from 0 to ¢ yields

l7ap(8) = POl + [lmap(t) = Pa(B)]] < M{Hmpo = ponlly + 71 = prall

+/0 (H?Thﬁ(S)—ﬁ(S)H+H7rhl>(8)—15(8)!!)d8+/0 Hf(S)—fh(S)HdS}- (3.17)

Thus, it remains to bound ||7,5(¢) — p(t)|| and ||mp(t) — p(¢)|| for all ¢ € [0,7]. Using
(3.8) and the classical continuous embedding from D(A%) to D(AP) for a > B, we get
that

{ lmndi(t) = B(0)| < MR5(0)] 3. vte 0., he (0h),

lmap(t) — p)I| < ME°|lp()]| < ME°(|p(t)]s,
Using relations (4.3) proved in Lemma of the Appendix for the first order unknown

9= Bj and the right-hand side F' = [?] , we get for all £ € [0,7] and all h € (0, A7)

Imait) = B+ (@) — 50 < MK (polls + sl + 1+ 17130

Substituting the above inequality in (3.17]), we get the result. [ |

Thanks to the last result, we are now in position to derive an error approximation
for the semigroups T* and for the operator I, = T, T,". This result has been recently
proved in the preprint [2] but we prefer to include the proof for the sake of completeness
and clarity.

Proposition 3.4. Let II;, = [%h ﬂ(_)] Under the assumptions of Pfr’opositz'on the
h

following assertions hold true
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1. There exist M > 0 and h* > 0 such that for all t € (0,7) and all h € (0, h*)

s~ [2]| < 2108 (il + 1) (319
|z =z [ < v =0 (ol + 1t 19

2. There exist M > 0 and h* > 0 such that for all n € N, all t € [0,7] and all
h € (0,h*), we have

Do
Ly —Ly
|- 2]

' < M(1+n1)hf <||p0||g + ||p1||1> : (3.20)

Proof.
1. From relations (3.7) and (3.11) defining the continuous and the semi-discretized

semigroups T* and T3, (3.18) and (3.19) follow immediately from Proposition
3
2. Let t € [0, 7] and (po,p1) € D <A§> x D (Ap). We have

H(L?-—l£¢>{§ﬂ

Using (3.8) and the fact that ||Lq||z(pa)) < 1 proved in Lemma [4.1| of the Appendix, the
first term in the above relation can be estimated as follows

< - ma )

\+Wnﬂ$—mm>ﬁﬂ
P1

’ . (3.21)

| -y [

< ME (lpolly + Ipilly) , Vhe (0. (3:22)

For the second term in ([3.21)), let us prove by induction that for all n € N

H(HhL?——Lz» E?}
1

< Mnrh? (lpolly +llpalli) . VR € (0,07), Ve € [0,7].  (3.23)
We have
H(tht —Ly,) [2(1) H = H(H;{]I";’]I‘zr — T};tT;,t) {Po}

P1 ’
- Bl

IN

- Y
Th,t(T;— - TL&) { 0}
b1

By Lemma [4.1] of the Appendix and equation (3.19)), we get

— - p
H(HhTt _Th,t>Tz:,|— {pﬂ

<= 08 (Il + ll) Vi€ ©00),

Obviously || T} ||zcx) is uniformly bounded (with respect to h), and thus by (3.8) and
equations (3.18)-(3.19), we have (by using the triangle inequality)

i

- p
Th,t(T;L - T;,t) {pﬂ

<3 (Il + ) ¥ 00),
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Consequently

o2 ]

<2t (Il + Ioalh) e Qe for] (320)
which shows that (3.23)) holds for n = 1. Suppose now that for a given n > 2, there holds

-
P

<M=l ). (325)

we obtain by using (3.24)) and (3.25|) that (thanks to Lemma 4.1/ and the uniform bound-
edness of ||| z(x) with respect to h)

From

it g3

|

s - )

1

’ < H(Hthwl — Ly, L) m

1

me—m»@]
1

‘ < Mnth? (||p0||g + Hp1||1) )

which is exactly (3.23). Substituting (3.22)) and (3.23) in (3.21]), we obtain the result. W
Now, we can turn to the proof of Theorem

Np _
of Theorem[3.1. Introducing the term Z]LZJ [g_ gg;], we first rewrite the error term
n=0

)= o) - Soue [120] - S5 [0 e s
][] - 3 e ]+ 35 s [0
S [ 2]

Therefore, we have

(R EERER o2
where we have set , | )
5= 3 [ fra)l
s, = i (Lr-1;,) [Zjiﬁgﬂ H >
= (i) [0
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Note that the term S is the truncation error of the tail of the infinite sum (1.5]), the
term S5 represents the cumulated error due to the approximation of the semigroups T+

while the term S3 comes from the approximation of the first iterate [w <0)} of the

w~(0)
reconstruction algorithm.
Since n = ||L-|/zx) < 1, the first term can be estimated very easily using relation

)

Nh+].

S1 < M — (lhwoly + lwally) (3.27)

The term Sy can be estimated using the estimate (3.20)) from Proposition

Ny

Sy <M (Z(l +m)> h’ (Hw’(O)H% + Hu‘f(O)Hl) , Vhe(0,n).

n=0

Therefore, using (1.4) and the fact that [|L,|p2) < 1 (see Lemma in the above
relation, we finally get that

Sy < M[1 + (147N, + N,ﬂ h? (HwOH% + Hw1||1> . Vhe (0,7 (3.28)

Finally, let us estimate the term Ss. As [|Ly, ;|| £(x) is uniformly bounded by 1 with respect
to h, we have

S3

IA

MN ([l (0) = wy (0)y + [l (0) = w5 (0)]])
MN( || (0) = muw™ (O], + [[maw™ (0) = wy ()], (3.29)
[l (0) = mpi™ (O] + [|mni™ (0) — iy, (0)]] ).

A

By using (3.8) and ({1.4]), we immediately obtain that

7 (0) = m O]y + i (0) — maai~ (0)] < MA® (Jwolly + ). (330
To estimate ||m,w™(0) — wg(O)H% + ||mpw ™ (0) — w,, (0)]|, we apply twice Proposition
first for the time reversed backward observer w™ (7 —-) and then for the forward observer
w™ (the time reversal is introduced just because Proposition can only be applied to
initial value Cauchy problems). After straightforward calculation we obtain that for all
h € (0, h*)

[7nw™(0) — wy, (0)|[1 + [lmato™(0) — wiy, (0)
< MA® | 7([lw* (1)l + 1t (Ol + 1G9l o) + 721l o)
+ [ 7165 w) — wnlo) ds. (331
0

Applying (4.2)) of Lemma of the Appendix with zero initial data, we obtain that

lw*(D)lls + 1™ (Pl < 71CGyloo-
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Therefore (3.31)) also reads
I (0) = wy, (0|1 + ™ (0) — o (0)]] < MA* (T + 7)1 Cyllh,c0

n / 1G5 (u(s) — w(s)) ds.

AsCiCh e L <D <AO>> ne <D <A0>> and [|wl]s o, + [[1]l100 = [[wo]l3 + [lwn ]y (since A

is skew-adjoint), the last relation becomes
I (0) = wy (O)13 + i (0) = iy ()| < MA?( +7%) (Jhwoll + Il 1)
+ [ 163 w9 = (o) s
Using the above relation and in , we get

0.2 M, (#4747 (laoll + i) + [ 1G5 (06 = oD s ). (332

Substituting (3.27)), (3.28)) and (3.32)) in (3.26]), we get for all A € (0, h*)

||wo — w0,h||% + w1 — wy ] <

nNh-‘rl
M (—1 — + 0 [1+ (1474 7°)Ny + 7N7] > (HwOH% + leHl)

+ N [ 165 ws) = ) Hds] ,
0
which leads to the result (with possibly reducing the value of h*). |

3.2 Full Discretization
3.2.1 Statement of the main result

In order to approximate in space and time, we use a finite difference scheme in time
combined with the previous Galerkin approximation in space. We discretize the time
interval [0, 7] using a time step At > 0. We obtain a discretization t;, = kAt, where
0 < k < K and where we assumed, without loss of generality, that 7 = KAt. Given a
function of time f of class C2, we approximate its first and second derivative at time #;,

by
(1) =~ Duf(ty) o= 1= Iem)
I"(te) = Dy f(ty,) := J(te) — Qf(Zc;;) + f(tk_2).

We suppose that (pon.ar, praat) € Hy x Hy and fF, for 0 < k < K, are given approxima-
tions of (po, p1) and f(tx) in the space X and H respectively. We define the approximate
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solution (pf)o<p<r of (3.9) as the solution of the following problem: pf € Hj such that
for all ¢, € Hy

{ (Dup}, on) + <ph,soh> +{(C;CoDwf, on) = (fFon)y, 2<k<K (3.33)

ph = Po,h,At> ph = ph + Atpl,h,At

Note that the above procedure leads to a natural approximation ']I‘f Az Of the continuous
operators ']I'i by setting

T+ Po ~ T+ Po — Ph,
12 2 h,At.k i _Dtpi
(3.34)
ro ro T K-k
— |Po - Po| . by,
T ~T = _
tk _pl_ h,At,k _pl_ __Dtth k‘:|

where pf solves (3.33) with ff = 0 for all 0 < k < K and for (ponas,Praar) =
(7hpo, mrp1). Obviously, this also leads to a fully discretized approximation of the operator

L, = T_TF by setting
_ - +
]Lh,At,K - Th,At7KTh,At,K'

Assume that for all 0 < k < K, y¥ is a given approximation of y(t;) in Y and let (w;)k

and (w,:)k be respectively the approximations of (3.4 and (3.5)) obtained via (3.33) as
follows:

e For all 0 < k£ <

K, (w;[)k = p} where pf solves (3.33) with ff = Ciyf and
(Po,h,At, P1p,AL) 0

( Y )7
e Forall 0 <k < K, (w;)k = piF where pf solves (3.33) with ff = —CiyX ™" and
K

(Po.nat, Praar) = (w)E, —Dy(wi)).

Then, our main result (the fully discrete counterpart of Theorem [3.1]) reads as follows

Theorem 3.5. Let Ay : D(Ay) — H be a strictly positive self-adjoint operator and
Co € L(H,Y) such that CyCy € £(D AO>) nc(p <A0>) Define (A,C) by
and . Assume that the pair (A,C’3) 1s exactly observable in time T > 0 and set
n = ||L-|lzx) < 1. Let (wo,w1) € D (Ag) X D (Ap) be the initial value of and let

(Wo.n.at, W1 pat) be defined by

[Z?:ii] ZH‘MM[ 2)] (3.35)

(wy)! = (w,)°
At '

where Dy(w; )t =
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Then there exist M > 0, h* > 0 and At* > 0 such that for all h € (0,h*) and
At € (0, At")

[Jwo — wO,h,AtH% + |lwr — wipadl

/]/INh,AtJ’_l 0 9
<M | T+ (n + A8) L+ 7) N oy | (lwolly + sl

-n

K

ey e - ) |
=0

Corollary 3.6. Under the assumptions of Theorem we set

In(h? + At)

Npat = I

Then, there exist M, > 0, h* > 0 and At* > 0 such that for all h € (0,h*) and
At € (0, At")

lwo — wopalls + llwn —wigadl < M, [W + AW + At (Jlwolly + w1
K
+ |In(n? + At)| Atz 1C5 (y(te) = up) || } . (3.36)
=0

3.2.2 Proof of Theorem [3.5]

As in the semi-discrete case, the main ingredient for the convergence analysis is the
following result (the counterpart of Proposition [3.3)) which gives the error estimate for

the full approximation of the general system (3.9) by (3.33)).

3
Proposition 3.7. Given (pg,p1) € D (Ag) x D(Ao) and (popnat,Prant) € Hy X Hy,
let p and (pf)i be the solutions of (3.9) and (3.33) respectively. Assume that C;Cy €
L (D (A&)) Then, there exist M > 0, h* > 0 and At* > 0 such that for all1 < k < K,
all h € (0,h*) and all At € (0, At*)
Imup(te) — Bl + mi(ts) — Dapl | < M{Hmpo ~ ponadly + Imamn — pusael

+ (" + :8) [t (Ipolly + Wpall + 11y + 1711 ) + 8201l
k
+ oS 7 - £l
(=1

Proof. Denote by ry(t;) the residual term in the first order Taylor expansion of p around
tr—1. Then

p(ty) = 2t _Af(t’“) _ Aitrl(tk) — Dip(ty) — Aitrl(tk), (3.37)
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We have

|mnp(te) — Depf]| < ||1Thp(tk)—7thtp(tk)I|+||Dt(7rhp(tk)—pﬁ)l|
< EHH(%)H + || De(mp(te) — f)||

Therefore, the error we need to bound satisfies
) 1
17np(ts) — pilly + llmp(te) — Dippll < 24/EF + @l (3.38)
where we have set for all 1 <k < K
g1 kY (|2 k|2
& = 5 {HDt (mhp(te) — D) H + H7Thp(tk) —ph”%} :

On the other hand, if 75(¢;) denote the residual term first order the Taylor expansion of
p around t;_q, then

p(te) —p(te-1) 1

q(tx) = Al = ag"2t),

~pltk) — 2p(tk 1) + p(te— 2) 1 1

- A2 T AR (r1(te) — ri(te-1)) — Erz(tk)
yielding

p(tr) = Dup(ty) — Wk, (3.39)
where
1 1
V= N (r1(te) — r1(te-1)) + A_tTZ(tk)

Using (3.37) and (3.39)), the variational formulation written for ¢ = ¢, and for an
arbitrary test function ¢ = ¢, € Hj, takes the form

(Dup(te) =", on) + (map(tr), on)

1
2

+ <C§Co (Dtp(tk) - Aitﬁ(tk)> ; 90h> = (f(tx), ¢n) -
Subtracting from the above relation implies that for all 2 < k < K and all ¢}, € Hy:
(Dyu(p(ty) — p})s on) + (mnp(te) — pf, S0h>; = — <C*Cth (p(te) — pF) » on)
+ (0 en) + 55 - (CoCora(th) o) + (f(t) = v on) -
From the above relation, we get that
( Dy (mp(tr) — pii) s sn) + (mup(tr) — v, 90h>% = (D (mnp(te) — p(tr)) , ¢n)

— (C3CoDy (p(te) — p1t) o) + (VF, on) + é (C3Cori(t), on) + (f(tr) = fF. on) -
(3.40)

Using the identity

(lul® = ol* + llw = v][*) =Re (u—v,u), Vu,veH,

DN | —

29



one easily obtains that for all 2 < k < K

Dtg}]f < <Dtt (Whp(tk) - pi) , Dy (Whp@k) - P§)>
+ (map(ty) — pf, Dy (map(te) — pf))

NI

Taking ¢, = D (Whp(tk) — p’fL) in (3.40) and substituting in the above inequality and
using the boundedness of Cy, we obtain the existence of M > 0 such that forall2 < k < K

Dl < M[HDU (map(t) = ()| + 1Ds (map(te) — p(t)] + ¥

+ g ln@l+ 1560 = 1] IDmpten) = o). G4

Using relations ([2.31]) and ([2.32)), we obtain from ({3.8]) and (3.41]) that for all h € (0, h*)

1
D€k < M{h" (1Pl + 1Dty ) + 101+ s el + 11 2) — f;fu}.

By (3.37)), (3.39) and relations (4.2)) and (4.3) in Lemma of the Appendix for the first
order formulation of (3.6]), the last estimate yields

Diyfek < M {8 (il + Il + e + 171 .) + 1570) = JE)

h? h?
+ sl = rte-n)lly + 5 (Il + Irs(6o)l)

- ﬁ”ﬁ(tk) —ri(te1)|| + é (Ilrl(tk)H - H'f’g(tk)H) } (3.42)

To conclude, it remains to bound the terms including the residuals r; and r5 in the above
estimate. By definition of 75, we have

ro(ty) = p(te) — p(te—1) — At p(tr),
1
in D (Ag), and thus by the mean value theorem, we get

Ira(to)lly < At sup  [5(s)y + Al

s€[tg—1,tx]

Using once again (4.3), we obtain that there exists M > 0 such that

Ira(t)lly < MAL (1lpolly + Ipall + bl f oo + 1113 00 ) - (3.43)

Now by the regularity of p (see Lemmal[d.2)applied to the first order formulation of (3.6)),
the residual r, can be expressed via the integral

ro(ty) = /t d p(s) (tp_1 — 8)ds,

3
oy ds

30



in H, and thus
lr2(te) | < A sup

SE[tg—1,tx]

a5 ) H |
Using equation (3.6 verified by p and the boundedness of Cy, we have

’ dt? H H H - H%{ — Aop(t) — C5Cop(?) +f<t>}”’ (3.44)
< B+ MIBE) + 1 D]
Hence, once again by (4.3)), we get

Ira(t)ll < MAE (Ipolly + Iprlly + tall oo + 1l + 1l ) - (3.45)

For the term implying r;, we note that

ri(te) = / " ()t — 5)ds,

tk—1

in D <A ) Hence, by a similar argument and (| .,
Ira(ll < Mlira()lly < MAE (lpolls + pall + tall flaoe + 1 F10) - (346)

1
Then, we write in D (Ag)

ri(ty) — ra(ter) = / (s — A — (8)) (ths — 5) ds.

tp—2

Using the above relation, it comes by using once again (|4.3))
lri(te) = ri(te-)lls < MAE sup [li(s)]1,

S€(tk—25tk—1)

< MAE (lpolly + Iprlls + bl e + 1113 00) - (3:47)

Finally
Iri(t) = it < A / G| asas
3 d’p
< MAt sup —(s)
$E€(th—3,tk—1) ds?

Using ((3.44)) and ., we get
I (te) = i (1)) < MAE (polly + ol + ol f oo + 11l e+ 11l ) - (3.48)

Substituting (3.43)), (3.49)), (3.46), (3.47) and (3.48) in relation (3.42)) provides estimates

VEE e

for Di\/EF = At , for Kk = 1,..., K. By adding all these inequalities, we
immediately get an upper bound for \/&F, and thus the desired inequality thanks to
(3-38) and (3.46). u
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Using this Proposition, we can derive an error estimate for the semigroup T (for all
0 < k < K) and for the operator L, = T T (the counterpart of Proposition |3.4]).

Proposition 3.8. Let II;, = {%h 79} Under the assumptions of Propositz’on the
h

following assertions hold true

1. There exist M > 0, h* > 0 and At* > 0 such that for all h € (0,h*), all At €
(0, At*) and all 0 < k < K

s = Traead (2 | < 20 = 0000 + 80 (Il + Ik 350

2. There exist M > 0, h* > 0 and At* > 0 such that for alln € N, all h € (0, h*), all
At € (0,At*) and all0 <k < K

|t~ s [2]| < a0 rin + 20) (Il + Il 2o)

b1

Proof.
1. From relations (3.11)) and (3.34) defining the continuous and the fully discretized
+ + . . L.
operators T;, and Tj 5, ., (3.49) and (3.50) follow immediately from Proposition .
2. First, we note that

(3.52)

H(Ltk o Lh,At,k) {Pﬂ + H(Hthk B Lh,At,k) {pﬂ

Using (3.8), the fact that ||L}||zpay) < 1 (proved in Lemma of the Appendix), the
first term in the above relation can be estimated as follows

n n p
=Jon-man )

| - me) ]

<t (Il + ll) . e ). (55

For the second term in ([3.52)), we prove by induction that for all n € N, all h € (0, h*)
and all At € (0, At*) (for some At* > 0)

|, ~ s 20| < a0 4 0) (ol + houli).— (350
By definition, we have
H(Hthk — Lyatk) Bﬂ H = (T, T = Ty ackThoacs) [?1)] 7
R p
< (HhTtk - Th,At,k)HhT;; {pﬂ
- + + Po
+ ‘ Ty a e (WnTy, — T aer) LQJ ‘ :
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Using (3.50) and Lemma , we get

- - p
H(HhTtk - Th,At,k)HhT:; {pﬂ

<7 = )0+ 89 (Il + o)

Obv1ously Ty, arillz(x) is uniformly bounded (with respect to h and At), and thus again

by (3.49) we have

TraeaIT = Thaes) 2] < 2200 + 30) (1l + ).

(L, ~ L [0]| < 3070+ 80 (Il + Iilh) . 359)

showing that (3.54]) holds for n = 1. Suppose now that for some n > 2

n—1 n—1 DPo
s - |2

< M= 700+ 80 (Il + ). (350
Writing
’ < H(HthkL?,;l — Ly ack Ly ) m

b1 '
+ || L, ac e (LY po — LA, 1po)]|

n n p
|z, - a0 [2)

we get by using Lemma [4.1] the uniform boundedness of ||Ly a¢x| z(x) with respect to h
and At, and ((3.56)) that

n n p
H(Hhﬂ‘tk — L ack) {pﬂ

which is exactly ([3.54 - Substituting (3.53)) and (| - in - we obtain the result. H

We are now able to prove Theorem [3.5

< [0+ 0= )i + 80] (Il + )

Np,at
. : w=(0) .. |wo Wo At
of Theorem[3.5. Introducing the term Ly . , We can rewrite —
f 5.9 8 nz:% h,At, K [w (0)} [wl} lwl,h,At

in the following form

][] =3 (] - 3 e )
R {$E8§]+;< L) [0

*NZLK([ t 0 - Do )>D
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Therefore, we have
l|wo — wO,hAt”% + [|wy — wypat < S1+ S2+ Ss, (3.57)

where we have set

n>Np At

3 e -1 [0 |

$= )
Nn Atk

S Wl ) [0

n=0

Note that the term S is the truncation error of the tail of the infinite sum ((1.5]), the term
S, represents the cumulated error due to the approximation of the semigroups T+ while

the term S3 comes from the approximation of the first iterate [5_2831 of the algorithm.
Since n = ||L.||z(x) < 1, using relation (L.4)), the first term can be estimated very

easily
Ny, AL +1

S, < M”l_n (ol + el ) - (3.58)

The term S, can be estimated using the estimate (3.51]) from Proposition . for all
he (0,h*) and all At € (0, At*)

Np,at

Sp < M S (W nr) | (0 +a8) (o O)lly + [~ (0)]1)

n=0

Therefore, using (1.4) and the fact that [|L;|p2) < 1 (see Lemma in the above
relation, we finally get that for all h € (0, h*) and all At € (0, At*)

Sy < M [1 (14 7)Njae + N;M} (n + At) (HwOH% + leul) , (3.59)

It remains to estimate the term Ss;. By the uniform boundedness of || Ly a¢ x|l zx) by 1
with respect to h and At*, we have

S < MNpar (Il (0) = (w3, )lly + 167 (0) = D))
MNpae( [ (0) = ™ ), + mae(0) = (w;)°] (3.60)
[l (0) = s (O)]| + || i (0) = Dilewp )] ).

IN

By using (3.8) and (1.4]), we immediately obtain that
lw™(0) = myw™ (0)|1 + [~ (0) — mpe™ (0)]| < M (h? + At) (Hong + lelll) . (3.61)

To estimate ||m,w™(0) — (w,:)OH% + ||mpw™ (0) — Dy(w;, )|, we apply twice Proposition
first for the time reversed backward observer w™~ (7 —-) and then for the forward observer
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w™ (the time reversal is introduced because Proposition as it is formulated, concerns

initial value Cauchy problems). After straightforward calculation we obtain that for all
h € (0,h*) and all At € (0, At*)

I~ (0) = (gl + i (0) = D)
< M (1 + 1) [Tu\w*mug 0 () + 1501y ) + 72 Gl

+AtZHC* (t—10)— \+AtZHC* (te) —yp) [l (3.62)

Applying (4.2) of Lemma of the Appendix with zero initial data, we obtain that
lw™ ()l + [l ()l < 7ICFYl1.00-
Therefore (3.62)) also reads
l7nw™(0) = (wy, )°lls + [~ (0) — Dy(wy )| £ M (h + At) (1 4+ 7%) | Cyll,o0

K
+ 248> G (y(te) —wr) |-
=0

3 1
As CiCy € L <D (Ag)) ne (D (Ag)) and (]| o, + [|tl]1.00 = [wollz + [[wn 1 (since A
is skew-adjoint), the last relation becomes

7w ™(0) — (wy, )1y + (|74~ (0) = Dy(uwy)'|
K
< M (1 -+ 2) (7 7) (ol + ) + 288 3 1G5 (ute) — )
=0
Substituting the above relation and (3.61)) in (3.60]), we get

Sy < MNpac| (B -+ A8) (147 +72) (Jlwolly + flwn 1)

+At2 165 (it = ) 1] 03

Substituting (3.58)), (3.59) and (3.63) in (3.57)), we get for all A € (0,h*) and all At €
(0, At*)

|wo — wO,h,AtH% + [Jwy — wy pae]| <

nNh,At+1
M ( - + (R + At) [1+ (1 +7+7*) N, + 7N/ ) <||w0||% + Hw1||1>

K
+ NuaAt Y [1Cy (y(te) — ) H] :
=0

which leads to the result (with possibly reducing the value of h* and At*). |
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Appendix

Let A: D(A) — X askew-adjoint operator and C' € L(X,Y) such that C*C € L (D (A)).
Assume that A — C*C' generates a Cy-semigroup of contractions on X.

Lemma 4.1. The operator A — C*C generates a Cy-semigroup of contractions on D (A)
and D (A?).

Proof. As C' € L(X,Y) is bounded, we clearly have D (A) = D (A — C*C). Moreover,
C*C € L(D(A)) implies that D (A%) = D ((A — 0*0)2). The result follows then from
[18, Proposition 2.10.4]. [ |

Lemma 4.2. Given qo € D(A?) and F € C([0,7],D(A4%) N C*([0,7],D(A)), let q

denote the solution of the initial value problem

{ q(t) = Aq(t) — C*Cq(t) + F(t), te(0,7),
q(0) = qo.

Then, we have the following statements

1. Regularity:

g€ C([0,7],D(A*) nC ([0, 7],D(4)) N C*([0,7], X), (4.1)
2. Bound for q:
la®)lle < llgolla + tllFllace, — fora=0,1,2, (4.2)
3. Bound for ¢ : there exists M > 0 such that
1G(O)lle < M (lgollatr + tFllasroe) + [[Fllape, — fora=0,1, (4.3)

where || Fla.00 = sup [|[F(t)]a-
te[0,7]

Proof.
1. By [18, Theorem 4.1.6], we have ¢ € C ([0, 7], D (A?))NC* ([0, 7], D (A)). But since
C*C € L(D(A)) and F € C([0,7],D (A?))NC* ([0,7],D(A)), we have
(A—C*C)q(t) € C(0,7],D(A)NC* ([0, 7], X) .

The last inclusion follows then from the fact that ¢(t) = (A — C*C)q(t) in D (A).
2. By Duhamel’s formula, we have

la®lle =

snmmu+/nmsﬂ@mw,
0
< Naolle + e F o

where we have used Lemma for the last inequality.
3. Using the estimate (4.2) obtained for ¢(t) and the continuity of the embeddings
D (A% — D(A) — X, we easily get

gl = [I (A= C*C) q(t) + F(t)]|a,

< lg®)llar + Mllg(B)lla + [|Fllac0,
< M ([lollatr + [ Fllatr,00) + 1 F]laco-

Y
(0%

t
th(] +/ Tt,sF(S)dS
0
t
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