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Abstract

Deckelnick and Dziuk (2009) proved a stability bound for a continuous-in-time
semidiscrete parametric finite element approximation of Willmore flow/elastic flow
of closed curves in Rd, d ≥ 2. We extend these ideas in considering an alternative
finite element approximation of the same flow that retains some of the features of
the formulations in Barrett, Garcke, and Nürnberg (2007b, 2008b, 2010b), in par-
ticular an equidistribution mesh property. For this new approximation, we obtain
also a stability bound for a continuous-in-time semidiscrete scheme. Apart from
the isotropic situation, we also consider the case of an anisotropic elastic energy. In
addition to the evolution of closed curves, we also consider the isotropic and ani-
sotropic elastic flow of a single open curve in the plane and in higher codimension
that satisfies various boundary conditions.

Key words. elastic flow, Willmore flow, Navier boundary conditions, clamped bound-
ary conditions, parametric finite elements, tangential movement, anisotropy
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1 Introduction

In this paper, we study gradient flows of elastic energies for curves. Elastic energies,
which are based on the integral of the squared curvature of a curve, have been considered
as early as 1738 by D. Bernoulli. A first definitive analysis of curvature energies using
methods of calculus of variations is due to Euler in 1743, see Euler (1952). Elastic
energies have many applications e.g. in rod theories, and in the theory of splines. For
a discussion of classical results and classical applications, we refer to Truesdell (1983).

†Department of Mathematics, Imperial College London, London, SW7 2AZ, UK
‡Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany

1



Recent applications include the modelling of DNA rings, see Goyal et al. (2005); Tu
and Ou-Yang (2008), edge completion in computer vision, see Mio et al. (2004), and in
theoretical efforts to understand curved nanostructures, see Tu and Ou-Yang (2008). The
simplest evolution problem related to curvature energies is the corresponding L2-gradient
flow, which we will numerically study in this paper for various curvature energies both
in 2d and for curves with higher codimension. We will also focus on the case of open
curves, which gives the additional feature that boundary conditions have to be prescribed
at the ends. We point out that boundary value problems for Euler–Lagrange equations
or gradient flows related to curvature energies are notoriously difficult, and only a few
results are known so far, see e.g. Deckelnick and Grunau (2007, 2009); Schätzle (2010)
and the references therein. In addition, we also generalize our numerical approaches for
elastic flows to anisotropic situations. Below we state the problems under consideration
in detail.

Let (Γ(t))t∈[0,T ] be a family of closed curves in Rd, d ≥ 2, parameterized by ~x(ρ, t) : I×
[0, T ] → Rd, where I := R/Z. Introducing the arclength s of the curve, i.e. ∂s = |~xρ|

−1 ∂ρ

on Γ(t) ≡ ~x(I, t), then
~κ := ~xss ⇒ ~κ . ~xs = 0 (1.1)

denotes the usual curvature vector of Γ. In the case d = 2, we can introduce curvature
via ~κ = κ ~ν with ~ν := −~x⊥

s and ·⊥ acting on a vector in R2 denoting a clockwise rotation
through 90◦.

For a given λ ∈ R, we will consider the following energy

Eλ(Γ, ~κ) :=

∫

Γ

[
1
2
|~κ|2 + λ

]
ds , (1.2)

where
∫
Γ
f ds :=

∫
I
f |~xρ| dρ for f : I → R. Analogously to the case of two-dimensional

hypersurfaces, the bending energy E0(Γ, ~κ), i.e. (1.2) with λ = 0, is often also called the
Willmore energy of the curve Γ. In this paper we will refer to (1.2) as the elastic energy
of Γ. The inclusion of the parameter λ either penalises growth (λ > 0) or encourages
growth (λ < 0) in the length of the curve. Another reason for the inclusion of λ is that as
a time-dependent parameter it can act as a Lagrange multiplier for a length preservation
constraint. Historically the minimization of an elastic energy under a length constraint
has received particular attention, see e.g. Euler (1952); and this has applications in e.g. rod
theory. In this paper we want to derive finite element approximations of the L2-gradient
flow of (1.2). This flow is of interest as a means to find stable critical points of (1.2). Here
we recall that critical points of (1.2) are called elasticae. Hence the L2-gradient flow of
(1.2), i.e.

~xt = −~∇2
s ~κ − 1

2
|~κ|2 ~κ + λ ~κ , (1.3)

is commonly called elastic flow of curves, or Willmore flow of curves. Here ~∇2
s · := ~∇s (~∇s ·)

and ~∇s ~η := ~P ~ηs is the normal component of ~ηs, where ~P := ~Id−~xs ⊗~xs is the projection
onto the part normal to Γ and ~Id is the identity operator/function on Rd. We note that
the velocity ~xt in (1.3) has no tangential component, i.e. ~xt . ~xs = 0.
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For d = 2 and λ > 0 global existence of smooth solutions for (1.3) was proved in Polden
(1996), while the corresponding result for curves in arbitrary codimension and λ ≥ 0 was
obtained in Dziuk et al. (2002). The latter paper also suggests a finite element approxi-
mation for (1.3). The first error analysis for a numerical approximation of (1.3), including
a stability result for a continuous-in-time semidiscrete finite element approximation, was
recently presented in Deckelnick and Dziuk (2009). It is the aim of this paper to extend
this stability analysis to an alternative finite element approximation, which retains some
of the features of the schemes presented in previous work by the authors, see Barrett,
Garcke, and Nürnberg (2007b, 2008b, 2010b); notably an equidistribution property.

The starting point for our schemes in the planar case d = 2 in Barrett, Garcke, and
Nürnberg (2007b, 2008b) was to allow for a nonzero tangential velocity in (1.3). Since
such a velocity has no influence on the geometric evolution of Γ(t), a valid alternative
L2-gradient flow formulation is

~xt . ~ν = −κss −
1
2
κ3 + λ κ , (1.4)

where, in the case d = 2 as ~κ = κ ν, we note that Eλ(Γ, ~κ) ≡ Eλ(Γ, κ) and that (1.3)
can equivalently be written as ~xt = (−κss −

1
2

κ3 + λ κ) ~ν. For the planar flow (1.4)
the present authors introduced fully practical finite element approximations in Barrett,
Garcke, and Nürnberg (2007b) and Barrett, Garcke, and Nürnberg (2008b), where the
schemes in the latter paper naturally generalize to the Willmore flow of two-dimensional
surfaces in R3. The schemes in Barrett, Garcke, and Nürnberg (2007b, 2008b) have in
common that an equidistribution property can be shown for the corresponding continuous-
in-time semidiscrete approximations. The case of closed curves in arbitrary codimension
was considered in Barrett, Garcke, and Nürnberg (2010b). In order to recover the desired
equidistribution under discretization, it is once again essential to allow for a nonzero
tangential velocity. Hence in Barrett, Garcke, and Nürnberg (2010b) the present authors
introduced the following L2-gradient flow formulation for (1.2):

~P ~xt = −(~∇s ~κ)s −
1
2
(|~κ|2 ~xs)s + λ ~κ ≡ −~∇2

s ~κ − 1
2
|~κ|2 ~κ + λ ~κ , (1.5)

and presented a fully practical finite element approximation based on the corresponding
weak formulation. The approximation is also generalized to the anisotropic elastic flow
in higher codimension, where the curvature energy (1.2) is replaced by an anisotropic
equivalent. We stress that it appears that for none of the mentioned schemes in Barrett,
Garcke, and Nürnberg (2007b, 2008b, 2010b) a stability analysis seems to be possible.

It is the aim of this paper to combine the techniques in Deckelnick and Dziuk (2009)
and Barrett, Garcke, and Nürnberg (2010b) in order to introduce fully practical approxi-
mations of (1.5), for which the continuous-in-time semidiscrete variants can be shown to
be stable and to have an equidistribution property. Moreover, we want to extend these
new approximations to the anisotropic elastic flow.

In the case of planar curves, i.e. d = 2, one could consider the energy

Ẽβ(Γ, κ) := 1
2

∫

Γ

(κ − β)2 ds , (1.6)
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where β ∈ R is a given so-called spontaneous curvature. Clearly, Ẽ0(Γ, κ) ≡ E0(Γ, κ).
However, it follows from the Gauß–Bonnet theorem that

∫
Γ

κ ds = 2 π m(Γ), where
m(Γ) ∈ Z denotes the turning number of Γ. Here, the turning number of a planar curve
is defined as the winding number of the normal around zero, which is well-defined for
continuous piecewise smooth curves. Noting this, we have that

∫

Γ

(κ − β)2 ds =

∫

Γ

[
κ2 + β2

]
ds − 2 β

∫

Γ

κ ds =

∫

Γ

[
κ2 + β2

]
ds − 4 β π m(Γ) . (1.7)

As m(Γ) is invariant for smooth flows, then (1.7) yields that such gradient flows of Ẽβ(Γ, κ)
and Eλ(Γ, κ) are equivalent for the choice λ = 1

2
β2. This also generalises to the anisotropic

case, see Lemma 2.1 below. Similarly for d ≥ 2 and a given ~β ∈ Rd, one could consider
the energy

Ẽ~β
(Γ, ~κ) := 1

2

∫

Γ

|~κ − ~β|2 ds .

Clearly, Ẽ~0(Γ, ~κ) ≡ E0(Γ, ~κ). Noting, on applying integration by parts, that

∫

Γ

~β . ~κ ds =

∫

Γ

~β . ~xss ds = 0 , (1.8)

we have that Ẽ~β(Γ, ~κ) = Eλ(Γ, ~κ) for the choice λ = 1
2
|~β|2. Hence for closed curves,

there is no advantage in considering the energies Ẽ~β
(Γ, ~κ), for d ≥ 2, and Ẽβ(Γ, κ), for

d = 2, over Eλ(Γ, ~κ) and Eλ(Γ, κ) ≡ Eλ(Γ, ~κ), respectively. Moreover, it follows from the
above analysis in the case d = 2 that the unique global minimizers of Eλ(Γ, ~κ) for λ > 0

are given by circles of radius (2 λ)−
1

2 . It is possible to generalize this result to d ≥ 2,
on recalling the fundamental theorem that

∫
Γ
|~κ| ds ≥ 2 π, with equality only for convex

curves in a plane, from Fenchel (1929); see also Chai and Kim (2000). In particular, it
then follows from the bounds

2 π ≤

∫

Γ

|~κ| ds ≤ |Γ|
1

2

(∫

Γ

|~κ|2 ds

) 1

2

≤ (2 λ)−
1

2 Eλ(Γ, ~κ) ,

where |Γ| denotes the length of Γ, and the fact that the right hand side equals to 2 π for

circles of radius (2 λ)−
1

2 , that such circles are the the unique global minimizers of Eλ(Γ, ~κ)
for λ > 0 in Rd, d ≥ 2.

Moreover, a further approach that will lead to similar, yet different, evolution equations
is to consider the energy Ẽβ(Γ, k) in R3, where

k := |~κ| = |~xss| (1.9)

denotes the curvature of Γ in the Frenet–Serret frame, sometimes also called absolute
curvature. Here the parameter β ∈ R≥0 prescribes an intrinsic curvature value, see e.g.
Goyal et al. (2005); Garrivier and Fourcade (2000); Swigon (2009); Lin and Schwetlick
(2004) for more details. In order to generalize our approach to full rod theory, the torsion
of the curve has to be considered. It is possible, building on the techniques introduced in
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this paper, to consider finite element approximations of the corresponding flows, and this
will form part of our future research in this area.

Another aspect of the present paper is the study of the elastic flow for open curves,
where now ~x(ρ, t) : [0, 1] × [0, T ] → Rd parameterizes (Γ(t))t∈[0,T ]. As the elastic flow
(1.5) is of fourth order, we need to prescribe two sets of boundary conditions at the two
endpoints of the curve. In this paper, we will consider the clamped boundary conditions

~x(0, t) = ~α0 , ~x(1, t) = ~α1 and ~xs(0, t) = ~ζ0 , ~xs(1, t) = ~ζ1 ,

where ~αi ∈ Rd and ~ζi ∈ Sd−1 := {~p ∈ Rd : |~p| = 1}, i = 0 → 1; and, in the case d = 2, the
symmetric Navier boundary conditions

~x(0, t) = ~α0 , ~x(1, t) = ~α1 and κ(0, t) = β , κ(1, t) = β , (1.10)

where β ∈ R. For these Navier boundary conditions, it is essential to consider the energy

Êβ(Γ, κ) :=

∫

Γ

[
1
2

κ2 − β κ
]
ds (1.11)

in order to recover the flow (1.4) together with (1.10). We remark that considering the

natural higher codimension analogue of (1.11), i.e. Ê~β(Γ, ~κ) :=
∫
Γ
[1
2
|~κ|2 − ~β . ~κ] ds for a

given ~β ∈ Rd leads to a flow satisfying the boundary conditions

~x(0, t) = ~α0 , ~x(1, t) = ~α1 and ~κ(0, t) = ~P (0, t) ~β , ~κ(1, t) = ~P (1, t) ~β . (1.12)

As the conditions (1.12) do not appear to have a natural physical interpretation, we do
not pursue this in detail in this paper. In the case of clamped boundary conditions, on
the other hand, we show that, as for closed curves, the gradient flows of (a) Ê~β

(Γ, ~κ)

and E0(Γ, ~κ), and (b) Êβ(Γ, κ) and E0(Γ, κ) are equivalent. Once again we are able
to introduce fully practical finite element approximations of these open curve problems,
for which the continuous-in-time semidiscrete variants can be shown to be stable and to
have an equidistribution property. Moreover, we extend these new approximations to the
anisotropic case. To our knowledge, the finite element approximations introduced here
are the first numerical approximations of such initial boundary value problems in the
literature. We note that solutions to the corresponding stationary problems have recently
been analysed in the graph case in Deckelnick and Grunau (2007, 2009).

The layout of this paper is the following. In the next section we introduce our new vari-
ational formulations of these elastic flow problems. In Section 3 we introduce continuous-
in-time semidiscrete finite element approximations of these problems. We show that such
approximations satisfy a stability bound and a mesh equidistribution property. In Section
4 we introduce the corresponding fully discrete versions of the semidiscrete approxima-
tions derived in the previous section. At every time level, a linear system has to be solved
for the approximations in the case that λ is a fixed given parameter. We show the well-
posedness of these linear systems under very mild restrictions on the mesh, and in Section
5 we discuss our approach for solving these linear systems. In situations where λ acts as
a Lagrange multiplier for a length constraint, we obtain a nonlinear system of equations
at every time level. Finally, in Section 6 we report on numerous numerical experiments,
which demonstrate the effectiveness of our fully discrete approximations.
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2 Variational formulations

2.1 Isotropic elastic flow

On defining the test function space

V 0,~τ := {~η ∈ V 0 : ~η . ~xs = 0} , where V 0 := H1(I, Rd) and V0 := H1(I, R) ,

the present authors in Barrett, Garcke, and Nürnberg (2010b) obtained the following
weak formulation of (1.5): Given Γ(0) = ~x(I, 0), with ~x(0) ∈ V 0, for all t ∈ (0, T ] find
Γ(t) = ~x(I, t), where ~x(t) ∈ V 0, and ~κ(t) ∈ V 0,~τ such that

〈~P ~xt − λ ~κ, ~χ〉Γ − 〈~∇s ~κ, ~∇s ~χ〉Γ − 1
2
〈|~κ|2 ~xs, ~χs〉Γ = 0 ∀ ~χ ∈ V 0,~τ , (2.1a)

〈~κ, ~η〉Γ + 〈~xs, ~ηs〉Γ = 0 ∀ ~η ∈ V 0 . (2.1b)

Here, and throughout, 〈·, ·〉Γ denotes the L2-inner product on Γ; that is, 〈u, v〉Γ :=∫
I
u . v |~xρ| dρ.

In this paper, we will derive an approximation based on an alternative formulation
of (1.5). We consider the L2-gradient flow of (1.2) for Γ(t) = ~x(I, t), with ~x ∈ V 0 and
~κ ∈ V 0, subject to the side constraints

〈~κ, ~η〉Γ + 〈~xs, ~ηs〉Γ = 0 ∀ ~η ∈ V 0 (2.2a)

and 〈~κ . ~xs, χ〉Γ = 0 ∀ χ ∈ U0 , (2.2b)

where U0 := L2(I, R). Here we should stress that the finite element discretization of
the constraints (2.2a,b), building on the ideas published in the series of papers Barrett,
Garcke, and Nürnberg (2007b,a, 2008b, 2010b,a), will lead to an induced tangential motion
that gives rise to an equidistribution property in the semidiscrete setting. Of course, on
the continuous level the side constraint (2.2b) is redundant, recall (1.1). We now consider
Eλ as a functional in ~x and ~κ. We want to compute its derivative, taking the constraints
(2.2a,b) into account. Using the formal calculus of PDE constrained optimization, see
e.g. Tröltzsch (2010), we now introduce the Lagrange multipliers ~y ∈ V 0 and z ∈ U0 for
(2.2a,b), and define the Lagrangian

L(~x, ~κ, ~y, z) := 1
2
〈~κ, ~κ〉Γ + λ |Γ| − 〈~κ, ~y〉Γ − 〈~xs, ~ys〉Γ + 〈~κ . ~xs, z〉Γ , (2.3)

where |Γ| := 〈1, 1〉Γ is the length of Γ. Hence we obtain, on taking variations [ δ
δ~x

L](~χ),

[ δ
δ~κ

L](~ξ), [ δ
δ~y
L](~η) and [ δ

δz
L](χ), that the direction of steepest descent of Eλ under the

constraints (2.2a,b) is given by −[ δ
δ~x

L](~χ), with the remaining variations of L set to zero.
In particular, we obtain the gradient flow

〈~P ~xt, ~χ〉Γ = 〈~∇s ~y, ~∇s ~χ〉Γ − 1
2
〈(|~κ|2 − 2 ~κ . ~y + 2 λ) ~xs, ~χs〉Γ − 〈z ~κ, ~χs〉Γ ∀ ~χ ∈ V 0 ,

(2.4a)

〈~κ + z ~xs − ~y, ~ξ〉Γ = 0 ∀ ~ξ ∈ V 0 , (2.4b)

〈~κ, ~η〉Γ + 〈~xs, ~ηs〉Γ = 0 ∀ ~η ∈ V 0 , (2.4c)

〈~κ . ~xs, χ〉Γ = 0 ∀ χ ∈ U0 . (2.4d)
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It follows from (2.4b,d) that ~P ~y = ~κ and z = ~y . ~xs. Hence the normal part of the
Lagrange multiplier ~y agrees with the curvature vector, but in addition it may have a
nonzero tangential component z. Overall our formal weak formulation of the L2-gradient
flow for (1.2) subject to (2.2a,b) can now be formulated as: Given Γ(0) = ~x(I, 0), with
~x(0) ∈ V 0, for all t ∈ (0, T ] find Γ(t) = ~x(I, t), where ~x(t) ∈ V 0, and ~y(t) ∈ V 0 such that

〈~P ~xt, ~χ〉Γ − 〈~∇s ~y, ~∇s ~χ〉Γ − 1
2
〈(|~P ~y|2 − 2 λ) ~xs, ~χs〉Γ + 〈(~y . ~xs) ~P ~y, ~χs〉Γ = 0 ∀ ~χ ∈ V 0 ,

(2.5a)

〈~P ~y, ~η〉Γ + 〈~xs, ~ηs〉Γ = 0 ∀ ~η ∈ V 0 . (2.5b)

An important property of the formulation (2.5a,b), which will have repercussions on the
discrete level, is that it is independent of the tangential part, ~y . ~xs, of the Lagrange
multiplier ~y. To see this, note that it immediately follows from (2.4b,c) that

−〈~∇s ~y, ~∇s ~χ〉Γ + 〈(~y . ~xs) ~P ~y, ~χs〉Γ = −〈~∇s ~κ, ~∇s ~χ〉Γ ∀ ~χ ∈ V 0 , (2.6)

which yields that (2.5a,b) is independent of ~y . ~xs. The identity (2.6) also gives an insight
into the connection between (2.5a,b) and (2.1a,b). In particular, this means that enforcing
(2.1a) also for test functions ~χ ∈ V 0 \ V 0,~τ yields no further conditions on ~x, as can be
seen on choosing ~χ = χ~xs in (2.1a) for all χ ∈ V0. Moreover, in common with similar
formulations of general geometric evolution equations in the series of papers Barrett,
Garcke, and Nürnberg (2007b,a, 2008a, 2010b), the tangential part (~Id − ~P ) ~xt, of the
velocity vector ~xt is not prescribed in (2.5a,b). Hence there does not exist a unique solution
to (2.5a,b). Under spatial discretization, the tangential part of the discrete approximation
to ~xt will be intrinsically fixed, and this choice will lead to an equidistribution property.
The nonuniqueness of ~y . ~xs, on the other hand, appears to persist on the discrete level.
However, under appropriate spatial and temporal discretization uniqueness of a fully
discrete solution is ensured.

Comparing (2.1a,b) and (2.5a,b) we observe that the main difference is that in the
latter, the Lagrange multiplier ~y is allowed to have a nonzero tangential component, while
in the former the curvature vector ~κ is always normal. As a result, the test spaces for the
first equations differ and, moreover, an additional fourth term is introduced in (2.5a). In
particular, in the new formulation it is possible to test (2.5a) with ~χ = ~xt; whereas (2.1a)

only allows for testing with ~χ = ~P~xt, which does not lead to straightforward estimates on
the discrete level. Apart from these differences, the two formulations (2.1a,b) and (2.5a,b)
are very close.

Remark. 2.1. In applications it is often natural to look at flows with a constraint on
the total length of the curve. A time-dependent λ(t) ∈ R can also be interpreted as a
Lagrange multiplier for a side constraint on |Γ(t)|. For the length preserving flow version
of (2.5a,b), we would choose

λ(t) =
〈~∇s ~y, ~∇s ~y〉Γ + 1

2
〈(|~P ~y|2 ~xs, ~ys〉Γ − 〈(~y . ~xs) ~P ~y, ~ys〉Γ

〈~xs, ~ys〉Γ
(2.7)

to yield |Γ(t)|t = 〈~xs, (~xt)s〉Γ = −〈~P ~y, ~xt〉Γ = −〈~y, ~P ~xt〉Γ = 0, where we note that (2.7) is

well-defined because 〈~xs, ~ys〉Γ = −〈~P ~y, ~y〉Γ = −〈~P ~y, ~P ~y〉Γ = −〈~κ, ~κ〉Γ.
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2.2 Anisotropic elastic flow

Here we generalize the previously introduced geometric evolution equations to the case of
anisotropic curve energy densities.

In many applications the energy of a curve in Rd depends locally on the orientation
in space. For the case of curves in Rd, d ≥ 2, the local orientation is given by the unit
tangent ~xs, cf. also Pozzi (2007). Hence we introduce an anisotropic curve energy of the
form

|Γ|φ := 〈φ(~xs), 1〉Γ =

∫

I

φ(~xρ) dρ ,

where φ ∈ C2(Rd \ {~0}, R>0) ∩ C(Rd, R≥0) is a given anisotropic energy density, which is
positively homogeneous of degree one, i.e.

φ(λ ~p) = λ φ(~p) ∀ ~p ∈ Rd , ∀ λ ∈ R≥0 . (2.8)

The one-homogeneity immediately implies that

φ′(~p) . ~p = φ(~p) and φ′′(~p) ~p = ~0 ∀ ~p ∈ Rd \ {~0} , (2.9)

where φ′ denotes the gradient and φ′′ the matrix of second derivatives of φ. In addition,
we assume that φ is strictly convex in the sense that there exists a positive constant c0

such that
~q . φ′′(~p) ~q ≥ c0 ∀ ~p, ~q ∈ Sd−1 with ~p . ~q = 0 . (2.10)

In the isotropic case it holds that

φ(~p) = |~p| ∀ ~p ∈ Rd ⇒ φ′(~q) = ~q , φ′′(~q) = ~Id − ~q ⊗ ~q ∀ ~q ∈ Sd−1 , (2.11)

and so φ(~xs) = 1, which means that |Γ|φ reduces to |Γ|, the length of Γ. A given anisotropy
can be visualized by its Wulff shape, Wulff (1901), which for d = 2 can be defined as

Wφ := {~q ∈ R2 : φ∗(~q⊥) ≤ 1} , (2.12)

where the dual of φ is defined by φ∗(~q) = sup~p∈R2\{~0}
~p . ~q

φ(~p)
; see e.g. Pozzi (2007). It is known

that among curves in R2 enclosing the same area, the boundary of a scaled Wulff shape
has the smallest weighted length | · |φ, see Fonseca and Müller (1991). Similarly, it can

be shown that the boundary of the scaled Wulff shape (2 λ)−
1

2 Wφ minimizes Eλ(Γ, κφ)
for λ > 0; see (2.24) below. For an introduction to anisotropic curve energies in general,
and to Wulff shapes in particular, we refer to Giga (2006), Deckelnick, Dziuk, and Elliott
(2005) and the references therein.

The first variation of |Γ|φ is given by

[
δ

δ~x
|Γ|φ](~η) = 〈φ′(~xs), ~ηs〉Γ = −〈[φ′(~xs)]s, ~η〉Γ .

The quantity
~κφ := [φ′(~xs)]s = φ′′(~xs) ~κ ∈ V 0,~τ (2.13)
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can be viewed as an anisotropic curvature vector; where, in deriving the inclusion, we have
recalled from (2.9) that φ′′(~xs) ~xs = ~0. For later use we remark that in the planar case,
d = 2, the following anisotropic version of the well-known planar Gauß–Bonnet theorem
holds.

Lemma. 2.1. Let d = 2, let Γ = ~x(I), with ~x ∈ C2(I, R2), be a closed curve in R2 and let

κφ := ~κφ . ~ν = ~ν . φ′′(~xs) ~xss = (~ν . φ′′(~xs) ~ν) κ (2.14)

denote the anisotropic curvature of Γ. Then it holds that

〈κφ, 1〉Γ = m(Γ)

∫ 2 π

0

φ((cosu, sin u)T ) du , (2.15)

where m(Γ) is the turning number of Γ.

Proof. Let θ ∈ C1([0, 1], R) denote, for each ρ ∈ [0, 1], an angle such that ~xs =
(cos θ, sin θ)T . It follows from (1.1) and our sign convention on the normal of Γ that
κ = θs = |~xρ|

−1 θρ. In addition, we have that θ(1) − θ(0) = 2 π m(Γ). We define the

function φ̂ ∈ C2(R) by setting

φ̂(u) := φ((cos u, sin u)T ) ∀ u ∈ R , (2.16)

so that φ̂ is periodic with period 2 π. Then, on recalling that ~ν = −~x⊥
s = (− sin θ, cos θ)T ,

it follows from (2.9) that

~ν . φ′′(~xs) ~ν = φ̂′′(θ) + φ̂(θ) . (2.17)

Hence, we have that

〈κφ, 1〉Γ = 〈~ν . φ′′(~xs) ~ν, κ〉Γ =

∫

I

[φ̂′′(θ) + φ̂(θ)] θρ dρ =

∫ 1

0

[φ̂′(θ) + Φ̂(θ)]ρ dρ

=
[
φ̂′(θ(ρ)) + Φ̂(θ(ρ))

]1
0

=
[
Φ̂(θ(ρ))

]1
0

=

∫ θ(1)

θ(0)

Φ̂′(u) du =

∫ θ(1)

θ(0)

φ̂(u) du

= m(Γ)

∫ 2 π

0

φ̂(u) du ,

where Φ̂(u) =
∫ u

0
φ̂(r) dr.

In Barrett, Garcke, and Nürnberg (2010b) the authors derived the L2-gradient flow of
the anisotropic elastic energy E0(Γ, ~κφ), recall (1.2), as

~P ~xt = −(φ′′(~xs) (~κφ)s)s −
1
2
(|~κφ|

2 ~xs)s ≡ −~∇s(φ
′′(~xs) (~κφ)s) −

1
2
|~κφ|

2 ~κ , (2.18)

where, in obtaining the equivalence above, we have noted from (2.13) and (2.9) that

1
2
(|~κφ|

2)s = (φ′′(~xs) ~κ) . (~κφ)s = [ [φ′′(~xs) (~κφ)s] . ~xs]s − [φ′′(~xs) (~κφ)s]s . ~xs

= −[φ′′(~xs) (~κφ)s]s . ~xs .
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In the case d = 2, (2.18) can be equivalently formulated, see Theorem 2.3 below, as

~xt . ~ν = −([~ν . φ′′(~xs) ~ν] (κφ)s)s −
1
2

κ2
φ κ , (2.19)

which in the isotropic case (2.11) clearly collapses to (1.4) with λ = 0. For later use, we
state a similarity solution of (2.19), which is the analogue for the anisotropic elastic flow
of the solution found in Soner (1993) for the anisotropic curve shortening flow.

Theorem. 2.1. Let d = 2 and let (2.10) hold. Then the weighted anisotropic elastic flow

[σ(~xs)]
−1 ~xt . ~ν = −([~ν . φ′′(~xs) ~ν] (κφ)s)s −

1
2

κ2
φ κ , (2.20)

where σ(~q) := φ(~q) (~q⊥ . φ′′(~q) ~q⊥) > 0 for ~q ∈ S1, has a similarity solution of the form

Γ(t) = {~q ∈ R2 : φ∗(~q⊥) = (1 + 2 t)
1

4} , (2.21)

i.e. the expanding boundary of the Wulff shape corresponding to the anisotropy φ.

Proof. As ∂Wφ is by definition convex, w.l.o.g. we can consider a parameteriza-
tion ~xo(θ) : R/(2 π Z) → ∂Wφ such that ~τo := (~xo)s = (cos θ, sin θ)T . Let ~νo(θ) :=

(− sin θ, cos θ)T and recall from (2.16) the definition of φ̂. Then it holds that

~xo(θ) = φ̂(θ) ~νo(θ) − φ̂′(θ)~τo(θ) , (2.22)

with curvature κo(θ) = −[φ̂′′(θ) + φ̂(θ)]−1, see e.g. Gurtin (1993, (1.10), (7.43)).

Now let ~x(θ, t) = z(t) ~xo(θ). Then it follows that the curvature is given by κ(θ, t) =

[z(t)]−1 κo(θ) = −[z(t) (φ̂′′(θ)+ φ̂(θ))]−1, which on combining with (2.14) and (2.17) yields
that κφ(θ, t) = −[z(t)]−1, and so (κφ(θ, t))s = 0 for all θ and t. Moreover, it follows from
(2.22) that

~xt(θ, t) . ~ν(θ, t) = ~xt(θ, t) . ~νo(θ) = z′(t) ~xo(θ) . ~νo(θ) = z′(t) φ̂(θ) .

It follows for ~x(θ, t) = z(t) ~xo(θ) that the flow (2.20) collapses to

[φ̂ (φ̂′′ + φ̂)]−1 z′ φ̂ = 1
2
[z3 (φ̂′′ + φ̂)]−1 ,

i.e. z′ = 1
2
z−3, which together with z(0) = 1 is solved by z(t) = (1 + 2 t)

1

4 . The desired
result now follows from (2.12).

The present authors in Barrett, Garcke, and Nürnberg (2010b) introduced a finite
element approximation of (2.18) based on the following weak formulation: Given Γ(0) =
~x(I, 0), with ~x(0) ∈ V 0, for all t ∈ (0, T ] find Γ(t) = ~x(I, t), where ~x(t) ∈ V 0, and
~κφ(t) ∈ V 0,~τ such that

〈~P ~xt, ~χ〉Γ − 〈φ′′(~xs) (~κφ)s, ~χs〉Γ − 1
2
〈|~κφ|

2 ~xs, ~χs〉Γ = 0 ∀ ~χ ∈ V 0,~τ , (2.23a)

〈~κφ, ~η〉Γ + 〈φ′(~xs), ~ηs〉Γ = 0 ∀ ~η ∈ V 0 . (2.23b)
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On recalling that in the isotropic case (2.11) it holds that φ′′(~xs) = ~P , we see that (2.18)
and (2.23a,b) are the natural anisotropic analogues of (1.5) and (2.1a,b), respectively, in
the case λ = 0.

Similarly to (1.8), it follows from (2.13) that for closed curves Ẽ~β
(Γ, ~κφ) = Eλ(Γ, ~κφ)

for the choice λ = 1
2
|~β|2. Hence, from now on we consider Eλ(Γ, ~κφ) for a general λ ∈ R.

In addition, in the case d = 2, similarly to (1.7), it follows from Lemma 2.1 that

Ẽβ(Γ, κφ) = E 1

2
β2(Γ, κφ) − β m(Γ)

∫ 2 π

0

φ((cos u, sin u)T ) du ; (2.24)

and hence, gradient flows of Ẽβ(Γ, κφ) are equivalent to gradient flows of Eλ(Γ, κφ) ≡
Eλ(Γ, ~κφ) for the choice λ = 1

2
β2. Moreover, the above analysis shows that the scaled

Wulff shapes (2 λ)−
1

2 Wφ having κφ = −(2 λ)
1

2 , recall the proof of Theorem 2.1, are the
unique global minimizers of Eλ(Γ, κφ) for λ > 0. In view of all this, for closed curves
we will just consider the energy Eλ(Γ, ~κφ) for d ≥ 2, and not consider the case d = 2
separately.

Analogously to the isotropic case treated beforehand, we consider the L2-gradient flow
for Eλ(Γ, ~κφ) subject to

〈~κφ, ~η〉Γ + 〈φ′(~xs), ~ηs〉Γ = 0 ∀ ~η ∈ V 0 (2.25a)

and 〈~κφ . ~xs, χ〉Γ = 0 ∀ χ ∈ U0 . (2.25b)

Introducing the Lagrange multipliers ~y ∈ V 0 and z ∈ U0 for (2.25a,b), we define the
Lagrangian

L(~x, ~κφ, ~y, z) := 1
2
〈~κφ, ~κφ〉Γ + λ |Γ| − 〈~κφ, ~y〉Γ − 〈φ′(~xs), ~ys〉Γ + 〈~κφ . ~xs, z〉Γ (2.26)

and hence we obtain, on taking variations and on setting 〈~P ~xt, ~χ〉Γ = −[ δ
δ~x

L](~χ), that

〈~P ~xt, ~χ〉Γ = 〈φ′′(~xs) ~∇s ~y, ~∇s ~χ〉Γ − 1
2
〈(|~κφ|

2 − 2 ~κφ . ~y + 2 λ) ~xs, ~χs〉Γ − 〈z ~κφ, ~χs〉Γ

∀ ~χ ∈ V 0 , (2.27a)

〈~κφ + z ~xs − ~y, ~ξ〉Γ = 0 ∀ ~ξ ∈ V 0 , (2.27b)

〈~κφ, ~η〉Γ + 〈φ′(~xs), ~ηs〉Γ = 0 ∀ ~η ∈ V 0 , (2.27c)

〈~κφ . ~xs, χ〉Γ = 0 ∀ χ ∈ U0 . (2.27d)

Clearly, it follows from (2.27b,d) that

~P ~y = ~κφ and z = ~y . ~xs . (2.28)

Overall, and similarly to (2.5a,b), our weak formulation for the gradient flow is then given
by

〈~P ~xt, ~χ〉Γ − 〈φ′′(~xs) ~∇s ~y, ~∇s ~χ〉Γ − 1
2
〈(|~P ~y|2 − 2 λ) ~xs, ~χs〉Γ + 〈(~y . ~xs) ~P ~y, ~χs〉Γ = 0

∀ ~χ ∈ V 0 , (2.29a)

〈~P ~y, ~η〉Γ + 〈φ′(~xs), ~ηs〉Γ = 0 ∀ ~η ∈ V 0 . (2.29b)
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Of course, in the isotropic case (2.29a,b) collapses to (2.5a,b), recall (2.11). And analo-
gously to the isotropic case, the system (2.29a,b) with (2.28) is equivalent to (2.27a–d).
The following theorem establishes that (2.29a,b) with (2.28) is indeed a weak formulation
for the L2-gradient flow of the energy Eλ(Γ, ~κφ).

Theorem. 2.2. Let (~x(t), ~y(t))t∈(0,T ] be a solution to (2.29a,b). Then we have that

d

dt
Eλ(Γ, ~P ~y) = −〈~P ~xt, ~P ~xt〉Γ ≤ 0 , (2.30)

where ~P ~y = ~κφ is the anisotropic curvature vector.

Proof. Differentiating (2.29b) with respect to t yields, on noting that

(~xs)t = ~P ~xt,s = ~∇s ~xt , (2.31)

that

〈(~P ~y)t, ~η〉Γ + 〈(~P ~y) . ~η, ~xs . ~xt,s〉Γ + 〈φ′′(~xs) ~∇s ~xt, ~∇s ~η〉Γ = 0 ∀ ~η ∈ V 0 . (2.32)

On choosing ~η = ~y in (2.32), we obtain that

〈(~P ~y)t, ~y〉Γ + 〈|~P ~y|2, ~xs . ~xt,s〉Γ + 〈φ′′(~xs) ~∇s ~xt, ~∇s ~y〉Γ = 0 . (2.33)

Combining (2.33) and (2.29a) with ~χ = ~xt yields that

〈(~P ~y)t, ~y〉Γ + 1
2
〈|~P ~y|2 + 2 λ, ~xs . ~xt,s〉Γ + 〈(~y . ~xs) ~P ~y, ~xt,s〉Γ = −〈~P ~xt, ~P ~xt〉Γ . (2.34)

The desired result (2.30) then follows from (2.34) and (2.28), on noting that

〈(~P ~y)t, (~Id − ~P ) ~y〉Γ = 〈(~P ~y)t, (~y . ~xs) ~xs〉Γ = −〈~P ~y, (~y . ~xs) (~xs)t〉Γ

= −〈(~y . ~xs) ~P ~y, ~xt,s〉Γ .

Corollary. 2.1. Let (~x(t), ~y(t))t∈(0,T ] be a solution to (2.5a,b) with λ(t) ∈ R chosen as
in (2.7). Then we have

d

dt
|Γ(t)| = 0 and

d

dt
E0(Γ, ~P ~y) = −〈~P ~xt, ~P ~xt〉Γ ≤ 0 , (2.35)

where ~P ~y = ~κ is the isotropic curvature vector.

Proof. As noted in Remark 2.1, choosing λ(t) as in (2.7) yields that |Γ(t)|t =
〈~xs, (~xt)s〉Γ = 0; and so the term involving λ in (2.34) vanishes.

12



2.3 Initial boundary value problems

In this section, we want to study the elastic flow (1.5) for a single open curve. Here
(Γ(t))t∈[0,T ] is given by a parameterization ~x(ρ, t) : [0, 1] × [0, T ] → Rd. As there is no
particular difficulty in allowing an anisotropic curve energy density, we will consider the
anisotropic elastic flow (2.18) throughout. As mentioned in the introduction, suitable
boundary conditions need to be considered at the two endpoints of the curve Γ(t), and
one can either fix position and angle(s) (clamped conditions), or fix position and curvature
(Navier conditions), see e.g. Deckelnick and Grunau (2007, 2009).

In what follows, we will derive the elastic flow (2.18), supplemented with various
suitable boundary conditions, in each case as an L2-gradient flow of an appropriately
chosen curvature integral.

Lemma. 2.2. Let β ∈ R, ~α0, ~α1, ~β ∈ Rd and let ~x(ρ, t) : [0, 1] × [0, T ] → Rd be such that
Γ(t) = ~x([0, 1], t) with ~x(0, t) = ~α0 and ~x(1, t) = ~α1. We compute the time derivative of

Ê~β
(Γ, ~κφ) as

d
dt
〈1

2
|~κφ|

2 − ~β . ~κφ, 1〉Γ = 〈~∇s(φ
′′(~xs) (~κφ)s) + 1

2
|~κφ|

2 ~κ, ~V〉Γ +
[
(~κφ − ~β) . φ′′(~xs) ~∇s

~V
]1
0

,

(2.36a)

where ~V := ~P ~xt. Similarly, in the case d = 2 we compute the time derivative of Êβ(Γ, κφ)
as

d
dt
〈1

2
κ2

φ − β κφ, 1〉Γ = 〈([~ν . φ′′(~xs) ~ν] (~κφ)s)s + 1
2

κ2
φ κ,V〉Γ + [(κφ − β) (~ν . φ′′(~xs) ~ν)Vs]

1
0 ,

(2.36b)
where V := ~xt . ~ν.

Proof. The fixed boundary conditions imply that ~xt(0, t) = ~xt(1, t) = 0 for all t ∈

(0, T ). Setting ~τ = ~xs we can write ~xt = ~V + v ~τ . Hence we have for all t ∈ (0, T ) that

v(0, t) = v(1, t) = 0 and ~V(0, t) = ~V(1, t) = ~0 . (2.37)

The following results are easily derived, see e.g. Dziuk et al. (2002, Lemma 2.1):

|~xρ|t = (vs − ~κ . ~V) |~xρ|, ∂t ∂s − ∂s ∂t = (~κ . ~V − vs) ∂s and ~τt = ~∇s
~V + v ~κ , (2.38)

where the last equality is just a rewrite of (2.31). On noting (2.13), (2.38) and (2.9), it
follows that

(~κφ)t = ([φ′(~xs)]s)t = ([φ′(~xs)]t)s + (~κ . ~V − vs) [φ′(~xs)]s

= (φ′′(~xs)~τt)s + (~κ . ~V − vs) ~κφ = (φ′′(~xs) (~∇s
~V + v ~κ))s + (~κ . ~V − vs) ~κφ

= (φ′′(~xs) ~Vs)s + (~κ . ~V) ~κφ + v (~κφ)s . (2.39)
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On noting (2.38), (2.39), (2.37) and (2.9), we then compute

d

dt
〈1

2
|~κφ|

2 − ~β . ~κφ, 1〉Γ

= 〈~κφ − ~β, (~κφ)t〉Γ + 〈1
2
|~κφ|

2 − ~β . ~κφ, vs − ~κ . ~V〉Γ

= 〈~κφ − ~β, (φ′′(~xs) ~Vs)s〉Γ + 1
2
〈|~κφ|

2 ~κ, ~V〉Γ + 〈[(1
2
|~κφ|

2 − ~β . ~κφ) v]s, 1〉Γ

= −〈(~κφ)s, φ
′′(~xs) ~Vs〉Γ + 1

2
〈|~κφ|

2 ~κ, ~V〉Γ +
[
(~κφ − ~β) . φ′′(~xs) ~∇s

~V
]1
0

= 〈~∇s(φ
′′(~xs) (~κφ)s) + 1

2
|~κφ|

2 ~κ, ~V〉Γ +
[
(~κφ − ~β) . φ′′(~xs) ~∇s

~V
]1
0

, (2.40)

and hence the desired result (2.36a).

The above is easily adapted to the energy Êβ(Γ, κφ) in the case d = 2. Now ~V = V ~ν
and ~κφ = κφ ~ν. It follows from (2.39) and (2.9) that

(κφ)t = (~κφ)t . ~ν = (Vs φ′′(~xs) ~ν)s . ~ν + κ κφ V + v (κφ)s

= (Vs ~ν . φ′′(~xs) ~ν)s + κ κφ V + v (κφ)s . (2.41)

We then adapt (2.40), using (2.41) in place of (2.39), to obtain that

d

dt
〈1

2
κ2

φ − β κφ, 1〉Γ

= 〈κφ − β, (κφ)t〉Γ + 〈1
2

κ2
φ − β κφ, vs − ~κ . ~V〉Γ

= 〈κφ − β, (Vs ~ν . φ′′(~xs) ~ν)s〉Γ + 1
2
〈κ2

φ κ,V〉Γ + 〈[(1
2

κ2
φ − β κφ) v]s, 1〉Γ

= −〈(κφ)s, (Vs ~ν . φ′′(~xs) ~ν)〉Γ + 1
2
〈κ2

φ κ,V〉Γ + [(κφ − β) (Vs ~ν . φ′′(~xs) ~ν)]
1

0

= 〈((κφ)s ~ν . φ′′(~xs) ~ν))s + 1
2

κ2
φ κ,V〉Γ + [(κφ − β) (Vs ~ν . φ′′(~xs) ~ν)]

1

0 ,

and hence the desired result (2.36b).

We are now in a position to state the strong formulations of gradient flows for the
energies

Ê~β,λ
(Γ, ~κ) := 〈1

2
|~κ|2 − ~β . ~κ, 1〉Γ + λ |Γ| and Êβ,λ(Γ, κ) := 〈1

2
κ2 − β κ, 1〉Γ + λ |Γ| .

In each case, we find that the elastic flow equation is satisfied in the interior of Γ.

Theorem. 2.3. Let λ, β ∈ R, ~β, ~α0, ~α1 ∈ Rd and ~ζ0, ~ζ1 ∈ Sd−1. Then the flow

~P ~xt = −~∇s(φ
′′(~xs) (~κφ)s) −

1
2
|~κφ|

2 ~κ + λ ~κ ≡ −(φ′′(~xs) (~κφ)s)s −
1
2
(|~κφ|

2 ~xs)s + λ ~κ

in (0, 1) × (0, T ) (2.42)

with the clamped boundary conditions

~x(0, t) = ~α0 , ~x(1, t) = ~α1 and ~xs(0, t) = ~ζ0 , ~xs(1, t) = ~ζ1 (2.43)

is an L2-gradient flow of Ê~β,λ
. Moreover, (2.42) with the boundary conditions

~x(0, t) = ~α0 , ~x(1, t) = ~α1 and ~κφ(0, t) = ~P (0, t) ~β , ~κφ(1, t) = ~P (1, t) ~β (2.44)
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is an L2-gradient flow of Ê~β,λ. If d = 2, then the flow

~xt . ~ν = −([~ν . φ′′(~xs) ~ν] (κφ)s)s −
1
2

κ2
φ κ + λ κ in (0, 1) × (0, T ) (2.45)

with the Navier boundary conditions

~x(0, t) = ~α0 , ~x(1, t) = ~α1 and κφ(0, t) = β , κφ(1, t) = β (2.46)

is an L2-gradient flow of Êβ,λ.

Proof. It immediately follows from (2.38) and (2.37) that

d

dt
|Γ| = 〈vs − ~κ . ~V, 1〉Γ = −〈~κ, ~V〉Γ + [v]10 = −〈~κ, ~V〉Γ .

Hence it remains to show that in each case the boundary terms in (2.36a) and (2.36b),
respectively, vanish. For the clamped conditions (2.43) we observe that ~τt(0, t) = ~τt(1, t) =
~0 and so ~∇s V(0, t) = ~∇s V(1, t) = ~0 for all t ∈ (0, T ), on recalling (2.38) and (2.37).
Hence, the boundary term in (2.36a) vanishes. The boundary conditions (2.44), on the

other hand, imply that [φ′′(~xs)(~κφ − ~P ~β)](0, t) = [φ′′(~xs)(~κφ − ~P ~β)](1, t) = ~0 for all
t ∈ (0, T ), on noting (2.9); and hence the desired result. Finally, in the case d = 2 it
immediately follows from the Navier conditions (2.46) that the boundary term in (2.36b)
vanishes.

Corollary. 2.2. The flow (2.42) with the clamped boundary conditions (2.43) is an
L2-gradient flow of the energy Eλ(Γ, ~κφ).

Proof. This follows immediately from Theorem 2.3 on noting that (2.42) and (2.43)

do not depend on ~β.

For later use, we introduce the definitions

V := H1((0, 1), Rd) and W := H1
0 ((0, 1), Rd)

and similarly U := L2((0, 1), R), V := H1((0, 1), R), W := H1
0 ((0, 1), R). We then have the

following weak formulations of (2.13) on the open curve Γ(t). For the clamped boundary
conditions (2.43), in the case d ≥ 2, we formulate this as ~κφ ∈ V with

〈~κφ, ~η〉Γ + 〈φ′(~xs), ~ηs〉Γ = φ′(~ζ1) . ~η(1) − φ′(~ζ0) . ~η(0) ∀ ~η ∈ V , (2.47a)

and 〈~κφ . ~xs, χ〉Γ = 0 ∀ χ ∈ U , (2.47b)

while for the Navier boundary conditions (2.46), in the case d = 2, we use the formulation
(κφ − β) ∈ W with

〈κφ ~ν, ~η〉Γ + 〈φ′(~xs), ~ηs〉Γ = 0 ∀ ~η ∈ W . (2.48)

As is standard, and unlike the clamped boundary case above, we use W instead of V in
(2.48) since we have no information about ~xs at the two endpoints.
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2.3.1 Clamped conditions

In view of Corollary 2.2, we have that (2.42) and (2.43) is an L2-gradient flow for
Eλ(Γ, ~κφ). Then, similarly to the closed curve case (2.29a,b), our weak formulation of
this gradient flow, subject to the side constraints (2.47a,b), is given by: Given Γ(0) =
~x([0, 1], 0) with ~x(0, 0) = ~α0 and ~x(1, 0) = ~α1, for all t ∈ (0, T ] find Γ(t) = ~x([0, 1], t),
where ~x(t) ∈ V with ~xt(t) ∈ W , and ~y(t) ∈ V such that

〈~P ~xt, ~χ〉Γ − 〈φ′′(~xs) ~∇s ~y, ~∇s ~χ〉Γ − 1
2
〈(|~P ~y|2 − 2 λ) ~xs, ~χs〉Γ + 〈(~y . ~xs) ~P ~y, ~χs〉Γ = 0

∀ ~χ ∈ W , (2.49a)

〈~P ~y, ~η〉Γ + 〈φ′(~xs), ~ηs〉Γ = φ′(~ζ1) . ~η(1) − φ′(~ζ0) . ~η(0) ∀ ~η ∈ V . (2.49b)

Here we observe that in the above formulation the fixed position conditions in (2.43)
are enforced strongly through ~xt ∈ W , while the angle conditions in (2.43) are enforced
weakly through (2.49b).

Theorem. 2.4. Let (~x(t), ~y(t))t∈(0,T ] be a solution to (2.49a,b). Then it holds that

d

dt
Eλ(Γ, ~P ~y) = −〈~P ~xt, ~P ~xt〉Γ ≤ 0 , (2.50)

where ~P ~y = ~κφ is the anisotropic curvature vector.

Proof. The proof follows along the same lines as the proof of Theorem 2.2, on noting
that ~xt ∈ W and ~y ∈ V .

Moreover, it is not difficult to show that (2.49a,b) with now ~y(t) ∈ W and the test space
V for (2.49b) replaced by W is a weak formulation of the flow (2.42) with homogeneous

boundary conditions (2.44); that is, ~β = ~0. However, since the boundary conditions (2.44)

are non-physical in the case ~β 6= ~0, we do not consider the flow (2.42) and (2.44) in detail
in this paper.

2.3.2 Navier conditions

We derive our weak formulation for (2.45) and (2.46) as an L2-gradient flow for Êβ,λ(Γ, κφ).
First, we observe that

Êβ,λ(Γ, κφ) = 1
2
〈(κφ − β)2, 1〉Γ + 1

2
(2 λ − β2) |Γ| .

For a family of open curves (Γ(t))t∈[0,T ] satisfying the boundary conditions (2.46), we then
define the Lagrangian

L(~x, κφ, ~y) := 1
2
〈κφ − β, κφ − β〉Γ + 1

2
(2 λ − β2) |Γ| − 〈κφ ~ν, ~y〉Γ − 〈φ′(~xs), ~ys〉Γ , (2.51)
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where ~y(t) ∈ W is a Lagrange multiplier for the side constraint (2.48). Hence we ob-

tain, on taking variations [ δ
δ~x

L](~χ), [ δ
δκφ

L](χ) and [ δ
δ~y
L](~η), and on setting 〈~P ~xt, ~χ〉Γ =

−[ δ
δ~x

L](~χ), that

〈~P ~xt, ~χ〉Γ = 〈φ′′(~xs) ~∇s ~y, ~∇s ~χ〉Γ − 1
2
〈[(κφ − β)2 + 2 λ − β2 − 2 κφ (~y . ~ν)] ~xs, ~χs〉Γ

− 〈κφ ~y, (~∇s ~χ)⊥〉Γ ∀ ~χ ∈ W , (2.52a)

〈κφ − β − ~y . ~ν, χ〉Γ = 0 ∀ χ ∈ W , (2.52b)

〈κφ ~ν, ~η〉Γ + 〈φ′(~xs), ~ηs〉Γ = 0 ∀ ~η ∈ W . (2.52c)

Clearly, it follows from (2.52b), (κφ − β) ∈ W and ~y ∈ W that

κφ − β = ~y . ~ν . (2.53)

Our weak formulation of this gradient flow is then given by: Given Γ(0) = ~x([0, 1], 0) with
~x(0, 0) = ~α0 and ~x(1, 0) = ~α1, for all t ∈ (0, T ] find Γ(t) = ~x([0, 1], t), where ~x(t) ∈ V
with ~xt(t) ∈ W , and ~y(t) ∈ W such that

〈~P ~xt, ~χ〉Γ − 〈φ′′(~xs) ~∇s ~y, ~∇s ~χ〉Γ + 1
2
〈[(~y . ~ν)2 + 2 λ − β2] ~xs, ~χs〉Γ − 〈(~y . ~ν + β) ~y⊥, ~χs〉Γ

= 0 ∀ ~χ ∈ W , (2.54a)

〈~P ~y, ~η〉Γ + 〈φ′(~xs), ~ηs〉Γ = −β 〈~ν, ~η〉Γ ∀ ~η ∈ W . (2.54b)

We note that in deriving (2.54a) we have observed that

−〈κφ (~y . ~ν) ~xs, ~χs〉Γ + 〈κφ ~y, (~∇s ~χ)⊥〉Γ = −〈κφ ~y⊥, ~χs〉Γ . (2.55)

Once again, it is easy to show that (2.54a,b) with (2.53) is equivalent to (2.52a–c). More-
over, we note that ~xt ∈ W and ~y ∈ W enforce the boundary conditions (2.46) strongly,
recall (2.53).

Theorem. 2.5. Let d = 2 and let (~x(t), ~y(t))t∈(0,T ] be a solution to (2.54a,b). Then it
holds that

d

dt
Êβ,λ(Γ, ~y . ~ν + β) = −〈~P ~xt, ~P ~xt〉Γ ≤ 0 , (2.56)

where ~y . ~ν + β = κφ is the anisotropic curvature.

Proof. Differentiating (2.54b) with respect to t yields that

〈(~P ~y)t, ~η〉Γ + 〈(~P ~y) . ~η, ~xs . ~xt,s〉Γ + 〈φ′′(~xs) ~∇s ~xt, ~∇s ~η〉Γ = −β 〈~νt + (~xs . ~xt,s) ~ν, ~η〉Γ

∀ ~η ∈ W . (2.57)

On choosing ~η = ~y ∈ W in (2.57), we obtain that

〈(~P ~y)t, ~y〉Γ + 〈(~y . ~ν)2, ~xs . ~xt,s〉Γ + 〈φ′′(~xs) ~∇s ~xt, ~∇s ~y〉Γ = −β 〈~νt + (~xs . ~xt,s) ~ν, ~y〉Γ .
(2.58)
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Combining (2.58) and (2.54a) with ~χ = ~xt ∈ W yields that

〈(~P ~y)t, ~y〉Γ + 1
2
〈3 (~y . ~ν)2 + 2 λ − β2, ~xs . ~xt,s〉Γ − 〈(~y . ~ν) ~y⊥, ~xt,s〉Γ + 〈~P ~xt, ~P ~xt〉Γ

= −β 〈(~xt,s)
⊥ + ~νt + (~xs . ~xt,s) ~ν, ~y〉Γ . (2.59)

Noting that ~νt = −(~∇s ~xt)
⊥, recall (2.31), and that

~y⊥ = (~y . ~ν) ~xs − (~y . ~xs) ~ν ,

yields that (2.59) collapses to

〈(~P ~y)t, ~y〉Γ + 1
2
〈(~y . ~ν)2 + 2 λ − β2, ~xs . ~xt,s〉Γ + 〈(~y . ~xs) ~P ~y, ~xt,s〉Γ = −〈~P ~xt, ~P ~xt〉Γ .

(2.60)

The desired result (2.56) then follows from (2.60) and (2.31), similarly to (2.34), on noting

that Êβ,λ(Γ, ~y . ~ν + β) = 1
2
〈|~Py|2, 1〉Γ + 1

2
(2 λ − β2) |Γ| = Eλ(Γ, ~P ~y) − 1

2
β2 |Γ|.

Remark. 2.2. Also in the case of open curves we can consider a constraint on the total
length of the curve, recall Remark 2.1 to handle the case of homogeneous Navier boundary
conditions in the isotropic case. Testing (2.54b) with ~η = ~xt and (2.54a) with ~χ = ~y
yields an equation for λ(t) in order to fulfill the length constraint. This equation is not
well-defined if and only if Γ(t) is a straight line, which is a steady state.

Alternatively, in order to handle a length constraint in any of our variational formu-
lations, including the case of clamped boundary conditions, we introduce the Lagrangian

L(~x, ~κφ, ~y, z, λ) := 1
2
〈~κφ, ~κφ〉Γ + λ (|Γ| − l) − 〈~κφ, ~y〉Γ − 〈φ′(~xs), ~ys〉Γ + 〈~κφ . ~xs, z〉Γ

where l > 0 is a given length. We now consider λ ∈ R as an unknown and a variation
with respect to λ gives the additional equation

|Γ| = l . (2.61)

For example, as the length preserving variant of the elastic flow in the case of clamped
boundary conditions we then obtain (2.49a,b) with the additional unknown λ(t) and the
additional constraint (2.61) for l := |Γ(0)|. Similarly to Theorem 2.4, it is a simple matter

to show that this length preserving flow fulfills d
dt

E0(Γ, ~P ~y) = −〈~P ~xt, ~P ~xt〉Γ ≤ 0.

3 Semidiscrete finite element approximation

In this section we introduce continuous-in-time semidiscrete finite element approximations
of the curvature flows discussed in Section 2. In particular, we will repeat on a discrete
level the considerations in Section 2 and, as a consequence, we will derive spatially discrete
finite element approximations that are stable and that fulfil an equidistribution property,
similarly to the semidiscrete schemes considered in e.g. Barrett, Garcke, and Nürnberg
(2007b, 2010b).
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We introduce the decomposition I = ∪J
j=1Ij , J ≥ 3 of I = R/Z into intervals given by

the nodes qj , Ij = [qj−1, qj ]. Let hj = |Ij| and h = maxj=1→J hj be the maximal length of
a grid element. Then the necessary finite element spaces are defined as follows

V h
0 := {~χ ∈ C(I, Rd) : ~χ |Ij

is linear ∀ j = 1 → J} =: [V h
0 ]d ⊂ H1(I, Rd),

where V h
0 ⊂ H1(I, R) is the space of scalar continuous (periodic) piecewise linear func-

tions, with {χj}
J
j=1 denoting the standard basis of V h

0 . In addition, let πh : C(I, R) → V h
0

be the standard Lagrange interpolation operator, and similarly for all the other finite
element spaces, e.g. πh : C(I, Rd) → V h

0 . Throughout this paper, we make use of the
periodicity of I, i.e. qJ ≡ q0, qJ+1 ≡ q1 and so on.

From now on we will consider a family (Γh(t))t∈[0,T ] of polygonal curves parameterized

by ~Xh(t) ∈ V h
0 . Here we make the natural assumption that

(Ch
0 ) Let ~Xh(qj , t) 6= ~Xh(qj+1, t) and ~Xh(qj−1, t) 6= ~Xh(qj+1, t), j = 1 → J , for all

t ∈ [0, T ].

In addition, we recall that 〈u, v〉Γh =
∫

I
u . v | ~Xh

ρ | dρ and, if u, v are piecewise continuous,
with possible jumps at the nodes {qj}

J
j=1, we define the mass lumped inner product

〈u, v〉hΓh := 1
2

J∑

j=1

| ~Xh(qj) − ~Xh(qj−1)|
[
(u . v)(q−j ) + (u . v)(q+

j−1)
]
, (3.1)

where we define u(q±j ) := lim
εց0

u(qj ± ε).

For the following considerations it will be crucial to define a discrete analogue of the
projection ~P = ~Id−~xs⊗~xs on the continuous level. It turns out that replacing ~P with the
obvious choice ~P h := ~Id− ~Xh

s ⊗ ~Xh
s is not ideal. Although this leads to a stable scheme, the

derived approximation in general will not satisfy an equidistribution property. Ultimately,
this will lead to a fully discrete approximation that has inferior properties compared to
other choices of discrete projections, see Remark 3.1 below. In particular, replacing ~P
with a vertex based projection, see (3.6) below, will give rise to all the desired properties.

To this end, we introduce the following differential operators on Γh. Let Ds, D̂s :
V h

0 → V h
0 be such that

(Ds η)(qj) =
| ~Xh(qj) − ~Xh(qj−1)| ηs(q

−
j ) + | ~Xh(qj+1) − ~Xh(qj)| ηs(q

+
j )

| ~Xh(qj) − ~Xh(qj−1)| + | ~Xh(qj+1) − ~Xh(qj)|

=
η(qj+1) − η(qj−1)

| ~Xh(qj) − ~Xh(qj−1)| + | ~Xh(qj+1) − ~Xh(qj)|
, j = 1 → J ,

(3.2a)

(D̂s η)(qj) =
(Ds η)(qj)

|(Ds
~Xh)(qj)|

=
η(qj+1) − η(qj−1)

| ~Xh(qj+1) − ~Xh(qj−1)|
, j = 1 → J ,

(3.2b)
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where, as usual, Ds : V h
0 → V h

0 is defined component-wise. We then define ~θh, ~ωh
d ∈ V h

0

to be

~θh = Ds
~Xh and ~ωh

d = D̂s
~Xh =

~θh

|~θh|
, (3.3)

which, on recalling assumption (Ch
0 ), are well-defined. Here we recall that the discrete

vertex unit tangents ~ωh
d , with this notation, have previously been introduced in Barrett,

Garcke, and Nürnberg (2010b). We note for future reference that

〈 ~Xh
s , ~ξ〉hΓh = 〈~θh, ~ξ〉hΓh ∀ ~ξ ∈ V h

0 ; (3.4)

and similarly,
〈|~θh|−1 ~ηs, ~ξ〉

h
Γh , = 〈D̂s ~η, ~ξ〉hΓh ∀ ~η, ~ξ ∈ V h

0 . (3.5)

Let
~Qh := ~Id − ~ωh

d ⊗ ~ωh
d : V h

0 → V 0 . (3.6)

Hence for all ~χ ∈ V h
0 , ( ~Qh ~χ)(qj) is the projection of ~χ(qj) onto the subspace of Rd normal

to ~ωh
d (qj) for j = 1 → J . For future reference, we note also that for ~η ∈ V h

0 it holds that

[
δ

δ ~Xh
~ωh

d ](~η) = πh
[
~Qh
(
D̂s ~η

)]
and hence [~ωh

d ]t = πh
[
~Qh
(
D̂s

~Xh
t

)]
. (3.7)

3.1 Isotropic elastic flow

In what follows we state a discrete analogue of (2.5a,b), as well as theorems regarding
the stability and equidistribution property of this semidiscrete continuous-in-time finite
element approximation. In particular, we will show that the scheme is an L2-gradient
flow for the discrete energy

Eh
λ(Γh, ~κh) := 1

2
〈~κh, ~κh〉hΓh + λ |Γh| ,

where ~κh ∈ V h
0 is a discrete curvature vector of Γh. Details of its derivations as well as

proofs of the theorems, which are very close to the details in the continuous case, will be
presented only in the anisotropic setting in §3.2, below.

Given Γh(0) = ~Xh(I, 0), with ~Xh(0) ∈ V h
0 , for all t ∈ (0, T ] find Γh(t) = ~Xh(I, t) with

~Xh(t) ∈ V h
0 , and ~Y h(t) ∈ V h

0 such that

〈 ~Qh ~Xh
t , ~χ〉hΓh − 〈~∇s

~Y h, ~∇s ~χ〉Γh − 1
2
〈(| ~Qh ~Y h|2 − 2 λ) ~Xh

s , ~χs〉
h
Γh

+ 〈|~θh|−1 (~Y h . ~ωh
d ) ~Qh ~Y h, ~χs〉

h
Γh = 0 ∀ ~χ ∈ V h

0 , (3.8a)

〈 ~Qh ~Y h, ~η〉hΓh + 〈 ~Xh
s , ~ηs〉Γh = 0 ∀ ~η ∈ V h

0 . (3.8b)
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Theorem. 3.1. Let (Ch
0 ) hold and let ( ~Xh(t), ~Y h(t))t∈(0,T ] be a solution to (3.8a,b). Then

d

dt
Eh

λ(Γh, ~Qh ~Y h) = −〈 ~Qh ~Xh
t , ~Qh ~Xh

t 〉
h
Γh ≤ 0 , (3.9)

where ~κh = πh[ ~Qh ~Y h] is the discrete curvature vector of Γh.

Proof. The result (3.9) follows from Theorem 3.3, below, for the special case φ(·) = | · |.

Next we show an equidistribution property for the scheme (3.8a,b).

Theorem. 3.2. Let (Ch
0 ) hold and let ( ~Xh(t), ~Y h(t))t∈(0,T ] denote a solution to (3.8a,b).

For a fixed time t ∈ (0, T ] let ~ah
j− 1

2

:= ~Xh(qj) − ~Xh(qj−1), j = 1 → J . Then it holds for

j = 1 → J that
|~ah

j+ 1

2

| = |~ah
j− 1

2

| if ~ah
j+ 1

2

∦ ~ah
j− 1

2

. (3.10)

Proof. The proof is identical to the proof in Barrett, Garcke, and Nürnberg (2010b,
Remark 3.3). Moreover, the result (3.10) directly follows from Theorem 3.4, below, for
the special case φ(·) = | · |.

Theorem 3.2 establishes that the scheme (3.8a,b) will always equidistribute the nodes
along Γh if the corresponding intervals are not locally parallel. Although it does not
appear possible to prove an analogue for the fully discrete setting, in practice we see that
the nodes are moved tangentially so that they are eventually equidistributed.

Remark. 3.1. As an alternative to (3.8a,b), one can also consider the following semidis-

crete approximation of (2.5a,b): Given Γh(0) = ~Xh(I, 0), with ~Xh(0) ∈ V h
0 , for all

t ∈ (0, T ] find Γh(t) = ~Xh(I, t) with ~Xh(t) ∈ V h
0 , and ~Y h(t) ∈ V h

0 such that

〈~P h ~Xh
t , ~χ〉hΓh − 〈~∇s

~Y h, ~∇s ~χ〉Γh − 1
2
〈(|~P h ~Y h|2 − 2 λ) ~Xh

s , ~χs〉
h
Γh

+ 〈(~Y h . ~Xh
s ) ~P h ~Y h, ~χs〉

h
Γh = 0 ∀ ~χ ∈ V h

0 , (3.11a)

〈~P h ~Y h, ~η〉hΓh + 〈 ~Xh
s , ~ηs〉Γh = 0 ∀ ~η ∈ V h

0 . (3.11b)

Similarly to Theorem 3.1, it is then not difficult to show that d
dt

Eh
λ(Γh, ~P h ~Y h) ≤ 0.

However, it does not appear possible to relate this stability result to the decrease of the
energy in (3.9) for some discrete curvature approximation belonging to V h

0 , since the

function ~P h ~Y h is discontinuous piecewise linear. In addition, it does not appear possible
to prove an equidistribution property, as in Theorem 3.2, for (3.11a,b); and this leads to
meshes that are not well distributed for a fully discrete variant in practice. Hence, we do
not pursue the scheme (3.11a,b) any further.

Remark. 3.2. Deckelnick and Dziuk (2009) considered the following semidiscrete ap-

proximation of (1.3): Given Γh(0) = ~Xh(I, 0), with ~Xh(0) ∈ V h
0 , for all t ∈ (0, T ] find

Γh(t) = ~Xh(I, t) with ~Xh(t) ∈ V h
0 , and ~κh(t) ∈ V h

0 such that

〈 ~Xh
t , ~χ〉hΓh − 〈~∇s ~κh, ~∇s ~χ〉Γh − 1

2
〈(|~κh|2 − 2 λ) ~Xh

s , ~χs〉
h
Γh = 0 ∀ ~χ ∈ V h

0 , (3.12a)

〈~κh, ~η〉hΓh + 〈 ~Xh
s , ~ηs〉Γh = 0 ∀ ~η ∈ V h

0 . (3.12b)
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They showed that d
dt

Eh
λ(Γh, ~κh) ≤ 0, and in addition established existence, uniqueness and

error bounds for a solution to (3.12a,b).

3.2 Anisotropic elastic flow

Similarly to the continuous setting in (2.27a–d), we consider the L2-gradient flow of the
discrete energy

Eh
λ(Γh, ~κh

φ) = 1
2
〈~κh

φ, ~κ
h
φ〉

h
Γh + λ |Γh| , (3.13)

where ~κφ ∈ V h
0 , subject to the side constraints

〈~κh
φ, ~η〉

h
Γh + 〈φ′( ~Xh

s ), ~ηs〉Γh = 0 ∀ ~η ∈ V h
0 (3.14a)

and 〈~κh
φ . ~Xh

s , χ〉hΓh = 0 ∀ χ ∈ V h
0 . (3.14b)

Hence ~κh
φ is the natural discrete analogue of the anisotropic curvature vector ~κφ, recall

(2.13). Here we remark that it is also natural to consider the mass-lumped inner products
〈·, ·〉hΓh in (3.14a,b), as this gives rise to more practical approximations that in addition
satisfy an equidistribution property in the isotropic case (2.11). As a consequence, we
also employ numerical integration in the discrete energy (3.13). Introducing the Lagrange

multipliers ~Y h ∈ V h
0 and Zh ∈ V h

0 for (3.14a,b) with ~Xh, ~κh
φ ∈ V h

0 , and the discrete
analogue of the Lagrangian (2.26); we can derive the following system:

〈 ~Qh ~Xh
t , ~χ〉hΓh = 〈φ′′( ~Xh

s ) ~∇s
~Y h, ~∇s ~χ〉Γh − 1

2
〈(|~κh

φ|
2 − 2~κh

φ . ~Y h + 2 λ) ~Xh
s , ~χs〉

h
Γh

− 〈Zh ~κh
φ, ~χs〉

h
Γh ∀ ~χ ∈ V h

0 , (3.15a)

〈~κh
φ + Zh ~Xh

s − ~Y h, ~ξ〉hΓh = 0 ∀ ~ξ ∈ V h
0 , (3.15b)

〈~κh
φ, ~η〉

h
Γh + 〈φ′( ~Xh

s ), ~ηs〉Γh = 0 ∀ ~η ∈ V h
0 , (3.15c)

〈~κh
φ . ~Xh

s , χ〉hΓh = 0 ∀ χ ∈ V h
0 . (3.15d)

It immediately follows from (3.15b,d), (3.3) and (3.4) that

~κh
φ = πh[ ~Qh ~Y h] and Zh = πh

[
|~θh|−1 ~Y h . ~ωh

d

]
. (3.16)

Hence the system (3.15a–d) can be equivalently rewritten as: Given Γh(0) = ~Xh(I, 0),

with ~Xh(0) ∈ V h
0 , for all t ∈ (0, T ] find Γh(t) = ~Xh(I, t) with ~Xh(t) ∈ V h

0 , and ~Y h(t) ∈ V h
0

such that

〈 ~Qh ~Xh
t , ~χ〉hΓh − 〈φ′′( ~Xh

s ) ~∇s
~Y h, ~∇s ~χ〉Γh − 1

2
〈(| ~Qh ~Y h|2 − 2 λ) ~Xh

s , ~χs〉
h
Γh

+ 〈|~θh|−1 (~Y h . ~ωh
d ) ~Qh ~Y h, ~χs〉

h
Γh = 0 ∀ ~χ ∈ V h

0 , (3.17a)

〈 ~Qh ~Y h, ~η〉hΓh + 〈φ′( ~Xh
s ), ~ηs〉Γh = 0 ∀ ~η ∈ V h

0 . (3.17b)

Clearly (3.17a,b) in the isotropic case (2.11) collapses to the isotropic scheme (3.8a,b).
Moreover, we note that (3.17a,b) with (3.16) is equivalent to (3.15a–d).
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The following theorem establishes the stability of the above semidiscrete finite element
approximation. It is the direct discrete analogue of Theorems 2.2. On recalling (3.16),
the theorem establishes that (3.17a,b) with (3.16) formulates an L2-gradient flow of the
discrete energy (3.13).

Theorem. 3.3. Let (Ch
0 ) hold and let ( ~Xh(t), ~Y h(t))t∈(0,T ] be a solution to (3.17a,b). Then

we have that
d

dt
Eh

λ(Γh, ~Qh ~Y h) = −〈 ~Qh ~Xh
t , ~Qh ~Xh

t 〉
h
Γh ≤ 0 , (3.18)

where ~κh
φ = πh[ ~Qh ~Y h] is the discrete anisotropic curvature vector of Γh.

Proof. Differentiating (3.17b) with respect to t yields, on noting that ( ~Xh
s )t = ~P h ~Xh

t,s

= ~∇s
~Xh

t , that

〈( ~Qh ~Y h)t, ~η〉
h
Γh + 〈( ~Qh ~Y h) . ~η, ~Xh

s . ~Xh
t,s〉

h
Γh + 〈φ′′( ~Xh

s ) ~∇s
~Xh

t , ~∇s ~η〉Γh = 0 ∀ ~η ∈ V h
0 .

(3.19)

On choosing ~η = ~Y h in (3.19), we obtain that

〈( ~Qh ~Y h)t, ~Y h〉hΓh + 〈| ~Qh ~Y h|2, ~Xh
s . ~Xh

t,s〉
h
Γh + 〈φ′′( ~Xh

s ) ~∇s
~Xh

t , ~∇s
~Y h〉Γh = 0 . (3.20)

Combining (3.20) and (3.17a) with ~χ = ~Xh
t yields that

〈( ~Qh ~Y h)t, ~Y h〉hΓh + 1
2
〈(| ~Qh ~Y h|2 + 2 λ), ~Xh

s . ~Xh
t,s〉

h
Γh + 〈|~θh|−1(~Y h . ~ωh

d) ~Qh ~Y h, ~Xh
t,s〉

h
Γh

= −〈 ~Qh ~Xh
t , ~Qh ~Xh

t 〉
h
Γh . (3.21)

The desired result (3.18) then follows from (3.21) on noting that

〈( ~Qh ~Y h)t, (~Id − ~Qh) ~Y h〉hΓh = 〈( ~Qh ~Y h)t, (~Y
h . ~ωh

d ) ~ωh
d〉

h
Γh = −〈 ~Qh ~Y h, (~Y h . ~ωh

d ) (~ωh
d )t〉

h
Γh

= −〈(~Y h . ~ωh
d ) ~Qh ~Y h, D̂s

~Xh
t 〉

h
Γh

= −〈|~θh|−1 (~Y h . ~ωh
d ) ~Qh ~Y h, ~Xh

t,s〉
h
Γh ,

where we have recalled (3.6), (3.7) and (3.5).

Corollary. 3.1. Let (Ch
0 ) hold and let ( ~Xh(t), ~Y h(t))t∈(0,T ] be a solution to (3.8a,b) with

λ(t) =
〈~∇s

~Y h, ~∇s
~Y h〉Γh + 1

2
〈| ~Qh ~Y h|2 ~Xh

s , ~Y h
s 〉

h
Γh − 〈|θh|−1(~Y h . ~ωh

d ) ~Qh ~Y h, ~Y h
s 〉

h
Γh

〈 ~Xh
s , ~Y h

s 〉Γh

.

(3.22)
Then we have that

d

dt
|Γh(t)| = 0 and

d

dt
Eh

0 (Γh, ~Qh ~Y h) = −〈 ~Qh ~Xh
t , ~Qh ~Xh

t 〉
h
Γh ≤ 0 , (3.23)

where ~κh = πh[ ~Qh ~Y h] is the discrete isotropic curvature vector of Γh.
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Proof. The first part of the proof is a discrete analogue of Remark 2.1. We note
that the choice of λ(t) yields that |Γ(t)|t = 〈 ~Xh

s , ( ~Xh
t )s〉Γh = −〈~Y h, ~Qh ~Xh

t 〉
h
Γh = 0, and

λ(t) is well-defined because 〈 ~Xh
s , ~Y h

s 〉Γh = −〈~κh, ~κh〉hΓh < 0, on recalling (Ch
0 ). The energy

inequality in (3.23) then follows similarly to the proof of Corollary 2.1.

Next we show a weighted equidistribution property for the scheme (3.17a,b), when the
anisotropy is of a certain form. To this end, we introduce

φ(~p) =

L∑

ℓ=1

φℓ(~p) =

L∑

ℓ=1

[~p . ~Gℓ ~p]
1

2 ⇒ φ′(~p) =

L∑

ℓ=1

[φℓ(~p)]−1 ~Gℓ ~p ∀ ~p ∈ Rd \ {~0} ,

(3.24)

where ~Gℓ ∈ Rd×d, ℓ = 1 → L, are symmetric and positive definite. It is a simple matter to
show that φ of the form (3.24) satisfies all our earlier assumptions, e.g. (2.8) and (2.10).

Theorem. 3.4. Let (Ch
0 ) hold and let ( ~Xh(t), ~Y h(t))t∈(0,T ] denote a solution to (3.17a,b).

For a fixed time t ∈ (0, T ] let ~ah
j− 1

2

:= ~Xh(qj) − ~Xh(qj−1), j = 1 → J . Then it holds for

j = 1 → J that

φ(~ah
j+ 1

2

) − φ(~ah
j− 1

2

) + φ′(~ah
j+ 1

2

) .~ah
j− 1

2

− φ′(~ah
j− 1

2

) .~ah
j+ 1

2

= 0 if ~ah
j+ 1

2

∦ ~ah
j− 1

2

. (3.25a)

For φ of the form (3.24), this implies that

L∑

ℓ=1

λ
(ℓ)
j φℓ(~a

h
j+ 1

2

) =

L∑

ℓ=1

λ
(ℓ)
j φℓ(~a

h
j− 1

2

) if ~ah
j+ 1

2

∦ ~ah
j− 1

2

, (3.25b)

where λ
(ℓ)
j := 1 − [φℓ(~a

h
j+ 1

2

) φℓ(~a
h
j− 1

2

)]−1 (~ah
j+ 1

2

. ~Gℓ ~a
h
j− 1

2

) ∈ [0, 2], ℓ = 1 → L, with λ
(ℓ)
j > 0

if ~ah
j+ 1

2

∦ ~ah
j− 1

2

. In the special case that L = 1 this yields that

φ(~ah
j+ 1

2

) = φ(~ah
j− 1

2

) if ~ah
j+ 1

2

∦ ~ah
j− 1

2

. (3.25c)

Proof. On choosing ~η = ~ωh
d (qj) χj in (3.17b) and noting that πh[ ~Qh ~ωh

d ] = ~0, it follows
that (

φ′(~ah
j+ 1

2

) − φ′(~ah
j− 1

2

)
)

.
(
~ah

j+ 1

2

+ ~ah
j− 1

2

)
= 0 , j = 1 → J , (3.26)

which yields (3.25a). Similarly to Barrett, Garcke, and Nürnberg (2008a, (2.24)) it follows
from (3.26) for φ of the form (3.24) that

L∑

ℓ=1

[ φℓ(~a
h
j+ 1

2

) − φℓ(~a
h
j− 1

2

) ] [1 −
~ah

j+ 1

2

. ~Gℓ ~a
h
j− 1

2

φℓ(~a
h
j+ 1

2

) φℓ(~a
h
j− 1

2

)
] = 0 ,

which yields (3.25b). Finally, (3.25c) follows immediately from (3.25b) on recalling that

λ
(ℓ)
j > 0 if ~ah

j+ 1

2

∦ ~ah
j− 1

2

In the special case L = 1 we note that Theorem 3.4 gives equidistribution with respect
to φ, provided that intervals are not locally parallel. In the isotropic case this yields an
equidistribution of the vertices, as discussed in Theorem 3.2.
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3.3 Initial boundary value problems

Let [0, 1] = ∪J
j=1Ij, be a decomposition of [0, 1] into intervals Ij = [qj−1, qj] based on the

nodes {qj}
J
j=0, as before. The appropriate finite element spaces are then defined by

V h := {~χ ∈ C([0, 1], Rd) : ~χ |Ij
is linear ∀ j = 1 → J} ⊂ V

and similarly for the spaces W h ⊂ W , V h ⊂ V and W h ⊂ W .

In this section, we consider a family (Γh(t))t∈[0,T ] of curves parameterized by ~Xh(t) ∈
V h. Here we make the natural assumption that

(Ch) Let ~Xh(qj , t) 6= ~Xh(qj+1, t), j = 0 → J − 1, and ~Xh(qj−1, t) 6= ~Xh(qj+1, t), j = 1 →
J − 1, for all t ∈ [0, T ].

Then we introduce the (obvious) open curve analogues ~θh, ~ωh
d ∈ V h and ~Qh of (3.3)

and (3.6). In particular, we introduce the differential operators Ds, D̂s : V h → V h via
the analogues of (3.2a,b) for the interior nodes qj, j = 1 → J − 1, and via setting

(Ds η)(q0) = (D̂s η)(q0) = ηs |I1 and (Ds η)(qJ) = (D̂s η)(qJ) = ηs |IJ
,

for the boundary nodes. Then ~θh, ~ωh
d ∈ V h are defined via (3.3), as before. With these

definitions it is easy to see that (3.4), (3.5) and (3.7) still hold with V h
0 replaced by V h.

In addition, in the planar case, d = 2, we define ~νh := −( ~Xh
s )⊥ and ~ωh := −(~θh)⊥ ∈ V h,

and set
~Qh

ω := ~ωh ⊗ ~ωh ≡ |~ωh|2 ~Qh .

Here we note that as generally |~ωh(qj)| < 1, the operator ~Qh
ω in general is not a projection.

We note also for all ~χ, ~η ∈ W h that

〈~ωh, ~η〉hΓh = 〈~νh, ~η〉hΓh and 〈 ~Qh
ω ~χ, ~η〉hΓh = 〈~χ . ~ωh, ~η . ~νh〉hΓh . (3.27)

3.3.1 Clamped conditions

A spatially discrete variant of (2.49a,b) is given by the following approximation. Given

Γh(0) = ~Xh([0, 1], 0), with ~Xh(0) ∈ V h and ~Xh(0, 0) = ~α0, ~Xh(1, 0) = ~α1, for all t ∈ (0, T ]

find Γh(t) = ~Xh([0, 1], t) with ~Xh(t) ∈ V h and ~Xh
t (t) ∈ W h, and ~Y h(t) ∈ V h such that

〈 ~Qh ~Xh
t , ~χ〉hΓh − 〈φ′′( ~Xh

s ) ~∇s
~Y h, ~∇s ~χ〉Γh − 1

2
〈(| ~Qh ~Y h|2 − 2 λ) ~Xh

s , ~χs〉
h
Γh

+ 〈|~θh|−1 (~Y h . ~ωh
d ) ~Qh ~Y h, ~χs〉

h
Γh = 0 ∀ ~χ ∈ W h , (3.28a)

〈 ~Qh ~Y h, ~η〉hΓh + 〈φ′( ~Xh
s ), ~ηs〉Γh = φ′(~ζ1) . ~η(1) − φ′(~ζ0) . ~η(0) ∀ ~η ∈ V h . (3.28b)

Similarly to (2.49a,b) we note that in the above approximation the fixed position condi-
tions in (2.43) are enforced strongly, while the angle conditions in (2.43) are approximated
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weakly. In a complete analogue to the proof of Theorem 3.3, using the V h analogues of
(3.5), (3.6) and (3.7), it is then straightforward to prove stability for (3.28a,b), i.e. that a
solution satisfies

d

dt
Eh

λ(Γh, ~Qh ~Y h) = −〈 ~Qh ~Xh
t , ~Qh ~Xh

t 〉
h
Γh ≤ 0 .

However, looking ahead to the fully discrete approximation that will be used in prac-
tice, in order to prove its well-posedness it will be necessary for the testing procedure to
replace the projection ~Qh in (3.28b) with the modified operator

~Qh
⋆(ρ) :=

{
~Qh(ρ) ρ ∈ (0, 1) ,
~Id ρ ∈ {0, 1} .

(3.29)

In order to achieve this, we now consider the L2-gradient flow of Eh
λ(Γh, ~κh

φ), where ~κh
φ ∈

V h, subject to the side constraints

〈~κh
φ, ~η〉

h
Γh + 〈φ′( ~Xh

s ), ~ηs〉Γh = φ′(~ζ1) . ~η(1) − φ′(~ζ0) . ~η(0) ∀ ~η ∈ V h (3.30a)

and 〈~κh
φ . ~Xh

s , χ〉hΓh = 0 ∀ χ ∈ W h . (3.30b)

Here it is crucial to use the test space W h in (3.30b), as (a) this will give rise to the

desired altered projection ~Qh
⋆ in (3.28b) and as (b) the resulting scheme will still satisfy

an equidistribution property; see Theorem 3.7 below. Defining the discrete analogue
of the Lagrangian (2.26) and taking variations; we can derive the following system for
~Xh, ~κh

φ,
~Y h ∈ V h and Zh ∈ W h with ~Xh

t ∈ W h: (3.15a,b,d), now with the test spaces

W h, V h and W h, respectively, supplemented with (3.30a). In place of (3.16), on noting
the V h analogue of (3.4), we now obtain

~κh
φ = πh[ ~Qh

⋆
~Y h] and Zh = πh

W

[
|~θh|−1 ~Y h . ~ωh

d

]
,

where πh
W : C([0, 1], R) → W h is the standard Lagrange interpolation operator with zero

Dirichlet boundary conditions. An equivalent reformulation of the derived conditions is
then given as follows. Given Γh(0) = ~Xh([0, 1], 0), with ~Xh(0) ∈ V h and ~Xh(0, 0) = ~α0,
~Xh(1, 0) = ~α1, for all t ∈ (0, T ] find Γh(t) = ~Xh([0, 1], t) with ~Xh(t) ∈ V h and ~Xh

t (t) ∈

W h, and ~Y h(t) ∈ V h such that

〈 ~Qh ~Xh
t , ~χ〉hΓh − 〈φ′′( ~Xh

s ) ~∇s
~Y h, ~∇s ~χ〉Γh − 1

2
〈(| ~Qh

⋆
~Y h|2 − 2 λ) ~Xh

s , ~χs〉
h
Γh

+ 〈πh
W [|~θh|−1 (~Y h . ~ωh

d )] ~Qh
⋆

~Y h, ~χs〉
h
Γh = 0 ∀ ~χ ∈ W h , (3.31a)

〈 ~Qh
⋆

~Y h, ~η〉hΓh + 〈φ′( ~Xh
s ), ~ηs〉Γh = φ′(~ζ1) . ~η(1) − φ′(~ζ0) . ~η(0) ∀ ~η ∈ V h . (3.31b)

Theorem. 3.5. Let (Ch) hold and let ( ~Xh(t), ~Y h(t))t∈(0,T ] be a solution to (3.31a,b). Then
we have that

d

dt
Eh

λ(Γh, ~Qh
⋆

~Y h) = −〈 ~Qh ~Xh
t , ~Qh ~Xh

t 〉
h
Γh ≤ 0 , (3.32)

where ~κh
φ = πh[ ~Qh

⋆
~Y h] is the discrete anisotropic curvature vector of Γh.
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Proof. The proof is an adaption of the proof of Theorem 3.3. Differentiating (3.31b)

with respect to t, choosing ~η = ~Y h and combining (3.31a) with ~χ = ~Xh
t yields the following

analogue of (3.21)

〈( ~Qh
⋆

~Y h)t, ~Y h〉hΓh + 1
2
〈(| ~Qh

⋆
~Y h|2 + 2 λ), ~Xh

s . ~Xh
t,s〉

h
Γh + 〈πh

W [ |~θh|−1(~Y h . ~ωh
d )] ~Qh

⋆
~Y h, ~Xh

t,s〉
h
Γh

= −〈 ~Qh ~Xh
t , ~Qh ~Xh

t 〉
h
Γh . (3.33)

The desired result (3.32) then follows from (3.33) on noting that

〈( ~Qh
⋆

~Y h)t, (~Id − ~Qh
⋆)

~Y h〉hΓh

= 〈( ~Qh
⋆

~Y h)t, π
h
W [(~Y h . ~ωh

d ) ~ωh
d ]〉hΓh = −〈 ~Qh

⋆
~Y h, πh

W [(~Y h . ~ωh
d ) (~ωh

d)t]〉
h
Γh

= −〈πh
W [~Y h . ~ωh

d ] ~Qh
⋆

~Y h, D̂s
~Xh

t 〉
h
Γh = −〈πh

W [ |~θh|−1 (~Y h . ~ωh
d )] ~Qh

⋆
~Y h, ~Xh

t,s〉
h
Γh ,

where we have recalled (3.29) and the V h versions of (3.7) and (3.5).

We remark that the scheme (3.31a,b) with now ~Y h(t) ∈ W h and the test space V h for
(3.31b) replaced by W h is a stable semidiscrete approximation of the flow (2.42) with the

homogeneous boundary conditions (2.44), i.e. ~β = ~0.

3.3.2 Navier conditions

We now consider the planar case, d = 2, and derive a stable semidiscrete approximation
of the system (2.52a–c). To this end, we consider the L2-gradient flow of the discrete
energy

Êh
β,λ(Γ

h, κh
φ) := 1

2
〈κh

φ − β, κh
φ − β〉hΓh + 1

2
(2 λ − β2) |Γh| ,

where (κh
φ − β) ∈ W h, subject to the side constraint

〈κh
φ ~νh, ~η〉hΓh + 〈φ′( ~Xh

s ), ~ηs〉Γh = 0 ∀ ~η ∈ W h . (3.34)

Observe that (3.34) is a discrete analogue of (2.48). Introducing the Lagrange multiplier
~Y h ∈ W h for (3.34), defining the discrete Lagrangian Lh corresponding to (2.51) and
taking variations of Lh, we can derive the following system:

〈 ~Qh
ω

~Xh
t , ~χ〉hΓh = 〈φ′′( ~Xh

s ) ~∇s
~Y h, ~∇s ~χ〉Γh − 1

2
〈[(κh

φ − β)2 − 2 κh
φ

~Y h . ~νh] ~Xh
s , ~χs〉

h
Γh

− 〈κh
φ

~Y h, (~∇s ~χ)⊥〉hΓh ∀ ~χ ∈ W h , (3.35a)

〈κh
φ − β − ~Y h . ~νh, χ〉hΓh = 0 ∀ χ ∈ W h , (3.35b)

〈κh
φ ~νh, ~η〉hΓh + 〈φ′( ~Xh

s ), ~ηs〉Γh = 0 ∀ ~η ∈ W h . (3.35c)

Once again, ~νh = −( ~Xh
s )⊥, recall (2.55), yields that

−〈κh
φ (~Y h . ~νh) ~Xh

s , ~χs〉
h
Γh + 〈κh

φ
~Y h, (~∇s ~χ)⊥〉hΓh = −〈κh

φ (~Y h)⊥, ~χs〉
h
Γh .

Moreover, it follows from (κh
φ − β) ∈ W h, ~Y h ∈ W h, (3.35b) and (3.27) that

κh
φ − β = πh[~Y h . ~ωh] . (3.36)
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Hence we can rewrite (3.35a–c) equivalently as follows. Given Γh(0) = ~Xh([0, 1], 0), with
~Xh(0) ∈ V h and ~Xh(0, 0) = ~α0, ~Xh(1, 0) = ~α1, for all t ∈ (0, T ] find Γh(t) = ~Xh([0, 1], t)

with ~Xh(t) ∈ V h and ~Xh
t (t) ∈ W h, and ~Y h(t) ∈ W h such that

〈 ~Qh
ω

~Xh
t , ~χ〉hΓh − 〈φ′′( ~Xh

s ) ~∇s
~Y h, ~∇s ~χ〉Γh + 1

2
〈[(~Y h . ~ωh)2 + 2 λ − β2] ~Xh

s , ~χs〉
h
Γh

− 〈(~Y h . ~ωh + β) (~Y h)⊥, ~χs〉
h
Γh = 0 ∀ ~χ ∈ W h , (3.37a)

〈 ~Qh
ω

~Y h, ~η〉hΓh + 〈φ′( ~Xh
s ), ~ηs〉Γh = −β 〈~ωh, ~η〉hΓh ∀ ~η ∈ W h . (3.37b)

Similarly to (2.54a,b) with (2.53) we note that in the above approximation the bound-
ary conditions in (2.46) are enforced strongly. In particular, it follows from (3.36) that

κh
φ(0, t) = κh

φ(1, t) = β for all t ∈ (0, T ], where we recall that ~Y h(t) ∈ W h.

Theorem. 3.6. Let d = 2, let (Ch) hold and let ( ~Xh(t), ~Y h(t))t∈(0,T ] be a solution to
(3.37a,b). Then we have that

d

dt
Êh

β,λ(Γ
h, ~Y h . ~ωh + β) = −〈 ~Xh

t . ~ωh, ~Xh
t . ~ωh〉hΓh ≤ 0 , (3.38)

where κh
φ = πh[~Y h . ~ωh] + β is the discrete anisotropic curvature of Γh.

Proof. Differentiating (3.37b) with respect to t yields, on noting (3.27), that

〈(~Y h . ~ωh)t, ~η . ~νh〉hΓh + 〈~Y h . ~ωh, ~η . ~νh
t 〉

h
Γh + 〈(~Y h . ~ωh) (~η . ~νh), ~Xh

s . ~Xh
t,s〉

h
Γh

+ 〈φ′′( ~Xh
s ) ~∇s

~Xh
t , ~∇s ~η〉Γh = −β 〈~νh

t + ( ~Xh
s . ~Xh

t,s) ~νh, ~η〉hΓh ∀ ~η ∈ W h . (3.39)

On choosing ~η = ~Y h ∈ W h in (3.39), and recalling (3.27), we obtain that

〈(~Y h . ~ωh)t, ~Y h . ~ωh〉hΓh + 〈~Y h . ~ωh, ~Y h . ~νh
t 〉

h
Γh + 〈(~Y h . ~ωh) (~Y h . ~νh), ~Xh

s . ~Xh
t,s〉

h
Γh

+ 〈φ′′( ~Xh
s ) ~∇s

~Xh
t , ~∇s

~Y h〉Γh = −β 〈~νh
t + ( ~Xh

s . ~Xh
t,s) ~νh, ~Y h〉hΓh . (3.40)

Combining (3.40) and (3.37a) with ~χ = ~Xh
t ∈ W h yields the desired result (3.38), on

recalling that ~νh
t = −(~∇s

~Xh
t )⊥ and that (~Y h)⊥ = (~Y h . ~νh) ~Xh

s − (~Y h . ~Xh
s ) ~νh.

Theorem. 3.7. Let (Ch) hold and let ( ~Xh(t), ~Y h(t))t∈(0,T ] denote a solution to (3.31a,b)

or to (3.37a,b). For a fixed time t ∈ (0, T ] let ~ah
j− 1

2

:= ~Xh(qj) − ~Xh(qj−1), j = 1 → J .

Then it holds that ~Xh(t) satisfies (3.25a–c) for j = 1 → J − 1.

Proof. On choosing ~η = ~ωh
d (qj) χj , for j = 1 → J −1, in (3.31b) or (3.37b), and noting

that ~ωh(qj) . ~ωh
d(qj) = 0, for j = 1 → J − 1, in the latter case; then the proof follows

exactly as the proof of Theorem 3.4.

We note, as before, for L = 1 the above theorem gives equidistribution with respect
to φ, provided that intervals are not locally parallel; and in the isotropic case this yields
an equidistribution of the vertices, as discussed in Theorem 3.2.
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Remark. 3.3. Replacing the test and trial spaces W h in (3.37a,b) with the space V h
0 in

the closed curve case, we can immediately introduce the following alternative semidiscrete
approximation to (3.17a,b) for the flow (2.45) in the case of a closed curve in the plane.

Given Γh(0) = ~Xh(I, 0), with ~Xh(0) ∈ V h
0 , for all t ∈ (0, T ] find Γh(t) = ~Xh(I, t) with

~Xh(t) ∈ V h
0 , and ~Y h(t) ∈ V h

0 such that

〈 ~Qh
ω

~Xh
t , ~χ〉hΓh − 〈φ′′( ~Xh

s ) ~∇s
~Y h, ~∇s ~χ〉Γh + 1

2
〈[(~Y h . ~ωh)2 + 2 λ] ~Xh

s , ~χs〉
h
Γh

− 〈~Y h . ~ωh (~Y h)⊥, ~χs〉
h
Γh = 0 ∀ ~χ ∈ V h

0 , (3.41a)

〈 ~Qh
ω

~Y h, ~η〉hΓh + 〈φ′( ~Xh
s ), ~ηs〉Γh = 0 ∀ ~η ∈ V h

0 . (3.41b)

In addition, we immediately have the following result. A solution ( ~Xh(t), ~Y h(t))t∈(0,T ] to
(3.41a,b) satisfies

d

dt
Eh

λ(Γh, ~Y h . ~ωh) ≤ −〈 ~Xh
t . ~ωh, ~Xh

t . ~ωh〉hΓh ≤ 0 , (3.42)

where κh
φ := πh[~Y h . ~ωh] defines the discrete anisotropic curvature of Γh.

Remark. 3.4. Similarly to Corollary 3.1, we can also consider a constraint on the total
length of the curve in the anisotropic case, as well as in the case of open curves. In
particular, mimicking on the discrete level the procedure in Remark 2.2, we can introduce
the discrete Lagrangian Lh( ~Xh, ~κφ, ~Y h, Zh, λ) := 1

2
〈~κφ, ~κφ〉

h
Γh + λ (|Γh| − l)− 〈~κφ, ~Y h〉h

Γh −

〈φ′( ~Xh
s ), ~Y h

s 〉Γh + 〈~κφ . ~Xh
s , Zh〉hΓh, where l > 0 is a given length. We now consider λ ∈ R

as an unknown and a variation with respect to λ gives the additional equation

|Γh| = l . (3.43)

For example, as the length preserving approximation of the elastic flow in the case of
clamped boundary conditions we then obtain (3.31a,b) with the additional unknown λ(t)
and the additional constraint (3.43) for l := |Γh(0)|. Similarly to Theorem 3.5, it is then
a simple matter to show that this semidiscrete approximation fulfills d

dt
|Γh(t)| = 0 and

d
dt

Eh
0 (Γh, ~Qh

⋆
~Y h) = −〈 ~Qh ~Xh

t , ~Qh ~Xh
t 〉

h
Γh ≤ 0.

4 Fully discrete finite element approximation

In this section we introduce fully discrete variants of the semidiscrete finite element ap-
proximations derived in Section 3.

Let 0 = t0 < t1 < . . . < tM−1 < tM = T be a partitioning of [0, T ] into possibly
variable time steps τm := tm+1 − tm, m = 0 → M − 1. We set τ := maxm=0→M−1 τm.
Given Γ0 = ~X0(I), our fully discrete approximation will define a sequence of polygonal

curves Γm, m = 0 → M , where Γm = ~Xm(I) with ~Xm ∈ V h
0 . Similarly to (3.1), we define

〈u, v〉Γm =
∫

I
u . v | ~Xm

ρ | dρ and, for the case that u, v are piecewise continuous, we also
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define the mass lumped inner product

〈u, v〉hΓm := 1
2

J∑

j=1

| ~Xm(qj) − ~Xm(qj−1)|
[
(u . v)(q−j ) + (u . v)(q+

j−1)
]
.

Furthermore, we note that on Γm we have almost everywhere that

us . vs =
uρ . vρ

| ~Xm
ρ |2

and ~∇s ~u . ~∇s ~v =
~P m ~uρ . ~P m ~vρ

| ~Xm
ρ |2

=
~P m ~uρ . ~vρ

| ~Xm
ρ |2

,

where ~P m = ~Id − ~Xm
s ⊗ ~Xm

s . Similarly to (3.3) and (3.6), we introduce the definitions
~θm, ~ωm

d ∈ V h
0 and ~Qm, which are based on ~Xm in place of ~Xh(t). For the case d = 2 we

introduce, in addition, ~νm := −( ~Xm
s )⊥, as well as ~ωm ∈ V h

0 and ~Qm
ω := ~ωm ⊗ ~ωm.

Before we introduce our approximations, we have to make the following very weak
assumptions.

(Cm
0 ) Let ~Xm(qj) 6= ~Xm(qj+1) and ~Xm(qj−1) 6= ~Xm(qj+1), j = 1 → J , and in addition let⋃J

j=1{~ω
m
d (qj)}

⊥ = Rd.

4.1 Isotropic elastic flow

We have the following fully discrete approximation of (3.8a,b). Find ( ~Xm+1, ~Y m+1) ∈
V h

0 × V h
0 such that

〈 ~Qm
~Xm+1 − ~Xm

τm

, ~χ〉hΓm − 〈~Y m+1
s , ~χs〉Γm + 〈(~Id − ~P m) ~Y m

s , ~χs〉Γm

= 1
2
〈(| ~Qm ~Y m|2 − 2 λ) ~Xm

s , ~χs〉
h
Γm − 〈|~θm|−1 (~Y m . ~ωm

d ) ~Qm ~Y m, ~χs〉
h
Γm ∀ ~χ ∈ V h

0 ,
(4.1a)

〈 ~Qm ~Y m+1, ~η〉hΓm + 〈 ~Xm+1
s , ~ηs〉Γm = 0 ∀ ~η ∈ V h

0 , (4.1b)

where, here and throughout, ~Y 0 is a suitably chosen initial value. Of course, for the above
we let ~Y 0 ∈ V h

0 , while for the open curve schemes in §4.3 we let ~Y 0 ∈ V h.

Theorem. 4.1. Let the assumptions (Cm
0 ) hold. Then there exists a unique solution

( ~Xm+1, ~Y m+1) ∈ V h
0 × V h

0 to (4.1a,b).

Proof. The result follows from Theorem 4.2, below, for the special case φ(·) = | · |.
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4.2 Anisotropic elastic flow

A wide class of anisotropies can either be modelled or at least very well approximated
by (3.24), see Barrett, Garcke, and Nürnberg (2008c), and for our fully discrete approxi-
mations we will restrict ourselves to anisotropies of the form (3.24). Here we recall that
the authors in Barrett, Garcke, and Nürnberg (2008a, 2010b) introduced the linearized

semi-implicit approximation ~Φ( ~Xm
s ) ~Xm+1

s of φ′(~xs), where

~Φ(~q) =

L∑

ℓ=1

[φℓ(~q)]
−1 ~Gℓ ∀ ~q ∈ Sd−1 ⇒ ~Φ(~q) ~q = φ′(~q) ∀ ~q ∈ Sd−1 . (4.2)

On employing the above linearization, the authors in Barrett, Garcke, and Nürnberg
(2008a, 2010b) introduced parametric finite element approximations for anisotropic geo-
metric evolution equations in the plane and in Rd, respectively; and showed that for the
class of anisotropy densities that correspond to the choice (3.24), unconditionally stable
fully discrete approximations are obtained for certain gradient flows of the weighted length
functional |Γ|φ. For later purposes we also note for all ~p ∈ Rd \ {~0} that

φ′′(~p) =

L∑

ℓ=1

[φℓ(~p)]−1
[
~Id − [φℓ(~p)]−2 ( ~Gℓ ~p) ⊗ ~p

]
~Gℓ (4.3)

is positive semi-definite.

The natural extension of (4.1a,b) to the anisotropic flow (2.18) for anisotropies of the

form (3.24) is then: Find ( ~Xm+1, ~Y m+1) ∈ V h
0 × V h

0 such that

〈 ~Qm
~Xm+1 − ~Xm

τm

, ~χ〉hΓm − 〈~Φ( ~Xm
s ) ~Y m+1

s , ~χs〉Γm + 〈(~Φ( ~Xm
s ) − φ′′( ~Xm

s )) ~Y m
s , ~χs〉Γm

= 1
2
〈(| ~Qm ~Y m|2 ~Xm

s − 2 λ), ~χs〉
h
Γm − 〈|~θm|−1 (~Y m . ~ωm

d ) ~Qm ~Y m, ~χs〉
h
Γm ∀ ~χ ∈ V h

0 ,
(4.4a)

〈 ~Qm ~Y m+1, ~η〉hΓm + 〈~Φ( ~Xm
s ) ~Xm+1

s , ~ηs〉Γm = 0 ∀ ~η ∈ V h
0 . (4.4b)

On recalling (2.9) and (4.2), we note that (4.4a,b) is a fully discrete variant of the semidis-
crete scheme (3.17a,b).

Theorem. 4.2. Let the assumptions (Cm
0 ) hold. Then there exists a unique solution

( ~Xm+1, ~Y m+1) ∈ V h
0 × V h

0 to (4.4a,b).

Proof. As (4.4a,b) is a linear system, existence follows from uniqueness. To investigate

the latter, we consider the system: Find ( ~X, ~Y ) ∈ V h
0 × V h

0 such that

〈 ~Qm ~X, ~χ〉hΓm − τm 〈~Φ( ~Xm
s ) ~Ys, ~χs〉Γm = 0 ∀ ~χ ∈ V h

0 , (4.5a)

〈 ~Qm ~Y , ~η〉hΓm + 〈~Φ( ~Xm
s ) ~Xs, ~ηs〉Γm = 0 ∀ ~η ∈ V h

0 . (4.5b)
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Choosing ~χ = ~Y in (4.5a) and ~η = ~X in (4.5b) yields that

τm

L∑

ℓ=1

〈[φℓ( ~Xm
s )]−1 ~Gℓ

~Ys, ~Ys〉Γm +

L∑

ℓ=1

〈[φℓ( ~Xm
s )]−1 ~Gℓ

~Xs, ~Xs〉Γm = 0 .

It follows from the positive definiteness of ~Gℓ, ℓ = 1 → L, that ~X = ~Xc ∈ Rd and
~Y = ~Y c ∈ Rd. Hence it follows from (4.5a,b) that πh[ ~Qm ~Xc] = πh[ ~Qm ~Y c] = ~0. The

assumptions (Cm
0 ) then yield that ~Xc = ~Y c = ~0. Hence there exists a unique solution

( ~Xm+1, ~Y m+1) ∈ V h
0 × V h

0 to (4.4a,b).

Remark. 4.1. We note that the natural semi-implicit fully discrete approximation of
(3.17a,b) has −〈φ′′( ~Xm

s ) ~Y m+1
s , ~χs〉Γm instead of the last two terms on the left-hand side of

(4.4a). However, then existence and uniqueness of the discrete solution ( ~Xm+1, ~Y m+1) ∈
V h

0×V h
0 to this modified system is in general no longer guaranteed. In particular, existence

and uniqueness can only be guaranteed if

〈φ′′( ~Xm
s ) ~Ys, ~Ys〉Γm = 0 (4.6)

for ~Y ∈ V h
0 implies that ~Y is constant, which is only true if the curve Γm has nowhere

locally parallel segments. To see this, observe that if the two segments meeting at ~Xm(qj)
are parallel, then (4.6), on recalling (2.9), imparts no information on the tangential part

of ~Y (qj). In addition, we observed in practice that even for curves Γm where existence and
uniqueness is theoretically guaranteed, the resulting linear system is very ill conditioned,
and so numerical blow-up can be observed. Hence our preference for the scheme (4.4a,b).

Remark. 4.2. In Barrett, Garcke, and Nürnberg (2010b), the authors introduced the fol-
lowing fully discrete approximation of (2.23a,b), where they defined the following subspace
of V h

0 :
V h,m

0,~τ := {~η ∈ V h
0 : ~η(qj) . ~ωm

d (qj) = 0 , j = 1 → J} .

Find ( ~Xm+1, ~κm+1
φ ) ∈ V h

0 × V h,m
0,~τ , such that

〈 ~Qm
~Xm+1 − ~Xm

τm

, ~χ〉hΓm − 〈φ′′( ~Xm
s ) (~κm+1

φ )s, ~χs〉Γm − 1
2
〈|~κm

φ |
2 ~Xm

s , ~χs〉
h
Γm = 0

∀ ~χ ∈ V h,m
0,~τ , (4.7a)

〈 ~Qm ~κm+1
φ , ~η〉hΓm + 〈~Φ( ~Xm

s ) ~Xm+1
s , ~ηs〉Γm = 0 ∀ ~η ∈ V h

0 , (4.7b)

where ~κ0
φ ∈ V h,0

0,~τ is suitably chosen. On noting that ~χ, ~κm+1
φ ∈ V h,m

0,~τ , it is easy to see that
(4.7a,b) is the scheme (3.20), (3.18b) from Barrett, Garcke, and Nürnberg (2010b) for the
case λ = 0. While the scheme (4.7a,b) is fully practical and while existence of a unique

solution ( ~Xm+1, ~κm+1
φ ) ∈ V h

0 × V h,m
0,~τ is easily established, it does not appear possible to

derive a stability result similar to Theorem 3.3 for the semidiscrete continuous-in-time
version of (4.7a,b).

In the isotropic situation (2.11), a fully discrete approximation of the stable semidis-
crete scheme (3.12a,b) as considered in Deckelnick and Dziuk (2009), is given by: Find
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( ~Xm+1, ~κm+1) ∈ V h
0 × V h

0 such that

〈
~Xm+1 − ~Xm

τm

, ~χ〉hΓm − 〈~∇s ~κm+1, ~∇s ~χ〉Γm − 1
2
〈(|~κm|2 − 2 λ) ~Xm+1

s , ~χs〉Γm = 0 ∀ ~χ ∈ V h
0 ,

(4.8a)

〈~κm+1, ~η〉hΓm + 〈 ~Xm+1
s , ~ηs〉Γm = 0 ∀ ~η ∈ V h

0 . (4.8b)

4.3 Initial boundary value problems

Similarly to §3.3, we extend the previously given definitions to ~θm, ~ωm
d ∈ V h and, in the

case d = 2, to ~ωm ∈ V h for the open curve case Γm = ~Xm([0, 1]). We make the following
assumption for our fully discrete approximations.

(Cm) Let ~Xm(qj) 6= ~Xm(qj+1), j = 0 → J −1, and ~Xm(qj−1) 6= ~Xm(qj+1), j = 1 → J −1,

and let
⋃J−1

j=1 {~ω
m
d (qj)}

⊥ = Rd.

4.3.1 Clamped conditions

We introduce the time discrete analogue ~Qm
⋆ of (3.29). Our fully discrete analogue of

the semidiscrete approximation (3.31a,b) is then given as follows. Given ~X0 ∈ V h with
~X0(0) = ~α0 and ~X0(1) = ~α1, for m = 0 → M − 1 find (δ ~Xm+1, ~Y m+1) ∈ W h × V h, with
~Xm+1 = ~Xm + δ ~Xm+1, such that

〈 ~Qm
⋆

δ ~Xm+1

τm

, ~χ〉hΓm − 〈~Φ( ~Xm
s ) ~Y m+1

s , ~χs〉Γm + 〈(~Φ( ~Xm
s ) − φ′′( ~Xm

s )) ~Y m
s , ~χs〉Γm

= 1
2
〈(| ~Qm

⋆
~Y m|2 − 2 λ) ~Xm

s , ~χs〉
h
Γm − 〈πh

W [|~θm|−1 (~Y m . ~ωm
d )] ~Qm

⋆
~Y m, ~χs〉

h
Γm

∀ ~χ ∈ W h , (4.9a)

〈 ~Qm
⋆

~Y m+1, ~η〉hΓm + 〈~Φ( ~Xm
s ) ~Xm+1

s , ~ηs〉Γm = φ′(~ζ1) . ~η(1) − φ′(~ζ0) . ~η(0) ∀ ~η ∈ V h . (4.9b)

As δ ~Xm+1 ∈ W h it follows that ~Qm
⋆ in the first term in (4.9a) can be replaced by ~Qm, so

that (4.9a,b) is indeed a fully discrete variant of the semidiscrete approximation (3.31a,b).
We prefer the stated version of (4.9a) as it makes the resulting linear system more sym-
metric.

Theorem. 4.3. Let the first assumptions in (Cm) hold, so that (4.9a,b) is well-defined.

Then there exists a unique solution (δ ~Xm+1, ~Y m+1) ∈ W h × V h to (4.9a,b).

Proof. As (4.9a,b) is a linear system, existence follows from uniqueness. To investigate

the latter, we consider the system: Find (δ ~X, ~Y ) ∈ W h × V h such that

〈 ~Qm
⋆ δ ~X, ~χ〉hΓm − τm 〈~Φ( ~Xm

s ) ~Ys, ~χs〉Γm = 0 ∀ ~χ ∈ W h , (4.10a)

〈 ~Qm
⋆

~Y , ~η〉hΓm + 〈~Φ( ~Xm
s ) δ ~Xs, ~ηs〉Γm = 0 ∀ ~η ∈ V h . (4.10b)
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Choosing ~χ = δ ~X in (4.10a) and ~η = ~Y in (4.10b), and combining, yields that πh[ ~Qm
⋆

~δX]

= πh[ ~Qm
⋆

~Y ] = ~0, and hence that ~Y ∈ W h. On choosing ~χ = ~Y in (4.10a) and ~η = δ ~X in

(4.10b), it follows from the positive definiteness of ~Gℓ, ℓ = 1 → L, that δ ~X = ~Xc ∈ Rd and
~Y = ~Y c ∈ Rd. Recalling that δ ~X, ~Y ∈ W h then immediately yields that ~Xc = ~Y c = ~0.
Hence there exists a unique solution (δ ~Xm+1, ~Y m+1) ∈ W h × V h to (4.9a,b).

Remark. 4.3. The natural fully discrete analogue of (3.28a,b) is given by (4.9a,b) with
~Qm

⋆ replaced by ~Qm and with πh
W removed. It is then no longer straightforward to establish

existence and uniqueness for this approximation. In particular, it is not possible to infer
from (4.10a,b), with ~Qm

⋆ replaced by ~Qm, that ~Y ∈ W h and hence that ~X = ~Y = ~0. Of
course, this problem can be overcome on the fully discrete level by considering instead
(4.9b) with the right hand side correction term 〈( ~Qm

⋆ − ~Qm) ~Y m, ~η〉hΓm, which would yield
a different fully discrete analogue of (3.28a,b). However, both of these schemes performed
badly in practice, and hence our preference for the approximation (4.9a,b).

We note that the scheme (4.9a,b) with a zero right hand side in (4.9b) and with V h

replaced by W h is a fully discrete approximation of the flow (2.42) with the homogeneous

boundary conditions (2.44) with ~β = ~0.

4.3.2 Navier conditions

The fully discrete analogue of the semidiscrete approximation (3.37a,b) is given as follows.

Given ~X0 ∈ V h with ~X0(0) = ~α0 and ~X0(1) = ~α1, for m = 0 → M − 1 find (δ ~Xm+1,
~Y m+1) ∈ W h × W h, with ~Xm+1 = ~Xm + δ ~Xm+1, such that

〈 ~Qm
ω

δ ~Xm+1

τm

, ~χ〉hΓm − 〈~Φ( ~Xm
s ) ~Y m+1

s , ~χs〉Γm + 〈(~Φ( ~Xm
s ) − φ′′( ~Xm

s )) ~Y m
s , ~χs〉Γm

= −1
2
〈[(~Y m . ~ωm)2 + 2 λ − β2] ~Xm

s , ~χs〉
h
Γm + 〈(~Y m . ~ωm + β) (~Y m)⊥, ~χs〉

h
Γm

∀ ~χ ∈ W h , (4.11a)

〈 ~Qm
ω

~Y m+1, ~η〉hΓm + 〈~Φ( ~Xm
s ) ~Xm+1

s , ~ηs〉Γm = −β 〈~ωm, ~η〉hΓm ∀ ~η ∈ W h . (4.11b)

Theorem. 4.4. Let the assumptions (Cm) hold. Then there exists a unique solution

(δ ~Xm+1, ~Y m+1) ∈ W h × W h to (4.11a,b).

Proof. The proof follows similarly to the proof of Theorem 4.2.

Remark. 4.4. Similarly to (4.11a,b), a fully discrete variant of (3.41a,b) is given by:

Find ( ~Xm+1, ~Y m+1) ∈ V h
0 × V h

0 such that

〈 ~Qm
ω

~Xm+1 − ~Xm

τm

, ~χ〉hΓm − 〈~Φ( ~Xm) ~Y m+1
s , ~χs〉Γm + 〈(~Φ( ~Xm) − φ′′( ~Xm)) ~Y m

s , ~χs〉Γm

= −1
2
〈[(~Y m . ~ωm)2 + 2 λ] ~Xm

s , ~χs〉
h
Γm + 〈~Y m . ~ωm (~Y m)⊥, ~χs〉

h
Γm ∀ ~χ ∈ V h

0 ,
(4.12a)

〈 ~Qm
ω

~Y m+1, ~η〉hΓm + 〈~Φ( ~Xm) ~Xm+1
s , ~ηs〉Γm = 0 ∀ ~η ∈ V h

0 . (4.12b)
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In the case d = 2 the scheme (4.12a,b) is an alternative to the fully discrete approximation
(4.4a,b). But as there is no advantage in using (4.12a,b) we do not pursue this scheme
any further. We remark that both schemes, with the choice λ = 1

2
β2, may be used to

approximate gradient flows for the spontaneous curvature energy (1.6) in the case d = 2.

Remark. 4.5. For any of our fully discrete schemes, we can approximate the correspond-
ing length preserving flow by replacing the fixed given λ ∈ R by a λm+1 ∈ R, where this
unknown is chosen so that |Γm+1| = |Γ0|. Then we obtain fully discrete versions of the
semidiscrete schemes discussed in Remark 3.4. In each case, the fully discrete approxima-
tion then leads to a nonlinear system of equations at each time level, which can be solved
by a root finding method in terms of λm+1, e.g. the secant method.

5 Solution of the linear systems

For an arbitrary n ∈ N, let ~Idn ∈ (Rd×d)n×n be the identity matrix. We introduce also the

diagonal matrix ~MQ ∈ (Rd×d)J×J , and the stiffness matrices A ∈ RJ×J , ~A, ~Aφ, ~AQ, ~A, ~Aφ

∈ (Rd×d)J×J with entries

[ ~MQ]kl := 〈χk, χl
~Qm〉hΓm , Akl := 〈[χk]s, [χl]s〉Γm , ~Akl := Akl

~Id1,

[ ~Aφ]kl := 〈[χk]s, [χl]s ~Φ( ~Xm
s )〉Γm , [ ~AQ]kl := 1

2
〈| ~Qm ~Y m|2 [χk]s, [χl]s〉

h
Γm

~Id1,

and ~Akl := 〈[χk]s, [χl]s ~P m〉Γm , [ ~Aφ]kl = 〈[χk]s, [χl]s φ′′( ~Xm
s )〉Γm . (5.1)

5.1 Isotropic elastic flow

The linear system for the scheme (4.1a,b) reads as follows. Find (~Y m+1, δ ~Xm+1) ∈ (Rd)J×
(Rd)J such that

(
~A − 1

τm

~MQ

~MQ
~A

)(
~Y m+1

δ ~Xm+1

)
=

(
( ~A − ~A) ~Y m + (λ ~A − ~AQ) ~Xm + ~f0

− ~A ~Xm

)
, (5.2)

where ~f0 ∈ (Rd)J with [~f0]j = 〈|~θm|−1 (~Y m . ~ωm
d ) ~Qm ~Y m, [χj]s〉

h
Γm , j = 1 → J .

5.2 Anisotropic elastic flow

The linear system for the approximation (4.4a,b) is given by: Find (~Y m+1, δ ~Xm+1) ∈
(Rd)J × (Rd)J such that

(
~Aφ − 1

τm

~MQ

~MQ
~Aφ

)(
~Y m+1

δ ~Xm+1

)
=

(
( ~Aφ − ~Aφ) ~Y m + (λ ~A − ~AQ) ~Xm + ~f0

− ~Aφ
~Xm

)
, (5.3)

where we recall the definition of ~f0 from (5.2).
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Remark. 5.1. Let ~P~τ : (Rd)J → Xm
0,~τ := {~z ∈ (Rd)J : ~zj . ~ωm

d (qj) = 0 , j = 1 → J} be the

orthogonal projection onto Xm
0,~τ . In addition, let ~Aκ be defined as ~AQ in (5.1) with ~Qm ~Y m

replaced by ~κm
φ . Then the linear system for the approximation (4.7a,b) is given by: Find

(~κm+1
φ , δ ~Xm+1) ∈ Xm

0,~τ × (Rd)J such that
(

~P~τ
~Aφ

~P~τ − 1
τm

~MQ

~MQ
~Aφ

)(
~κm+1

φ

δ ~Xm+1

)
=

(
−~P~τ

~Aκ
~Xm

− ~Aφ
~Xm

)
, (5.4)

where we have noted that ~P~τ
~MQ = ~MQ

~P~τ = ~MQ.

5.3 Initial boundary value problems

In addition to the open curve analogues of (5.1), we introduce the matrices ~M⋆, ~Mω, ~AQ⋆
,

~Aω ∈ (Rd×d)(J+1)×(J+1) with entries

[ ~M⋆]kl := 〈χk, χl
~Qm

⋆ 〉
h
Γm , [ ~AQ⋆

]kl := 1
2
〈| ~Qm

⋆
~Y m|2 [χk]s, [χl]s〉

h
Γm

~Id1 ,

[ ~Mω]kl := 〈χk, χl
~Qm

ω 〉
h
Γm , [ ~Aω]kl := 1

2
〈[(~Y m . ~ωm)2 − β2] [χk]s, [χl]s〉

h
Γm

~Id1 .

Moreover, let
~PW : (Rd)J+1 → W := {~z ∈ (Rd)J+1 : ~z0 = ~zJ = ~0}

be the orthogonal projection onto W.

5.3.1 Clamped conditions

The linear system for the scheme (4.9a,b) can be formulated as: Find (~Y m+1, δ ~Xm+1) ∈
RJ+1 × W such that
(

~PW
~Aφ − 1

τm

~PW
~M⋆

~PW

~M⋆
~Aφ

~PW

)(
~Y m+1

δ ~Xm+1

)
=

(
~PW [( ~Aφ − ~Aφ) ~Y m + (λ ~A − ~AQ) ~Xm + ~f ]

− ~Aφ
~Xm + ~d

)
,

(5.5)

where ~f ∈ (Rd)J+1 with [~f ]j = 〈πh
W [|~θm|−1 (~Y m . ~ωm

d )] ~Qm
⋆

~Y m, [χj]s〉
h
Γm , j = 0 → J ; and

where ~d ∈ (Rd)J+1 with ~d0 = −φ′(~ζ0), ~dJ = φ′(~ζ1) and ~di = ~0, i = 1 → J − 1.

5.3.2 Navier conditions

The linear system for the scheme (4.11a,b) can be formulated as: Find (~Y m+1, δ ~Xm+1) ∈
W × W such that
(

~PW
~Aφ

~PW − 1
τm

~PW
~Mω

~PW

~PW
~Mω

~PW
~PW

~Aφ
~PW

)(
~Y m+1

δ ~Xm+1

)

=

(
~PW [( ~Aφ − ~Aφ) ~Y m + (λ ~A + ~Aω) ~Xm −~b]

−~PW [ ~Aφ
~Xm + ~c]

)
, (5.6)
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where ~b, ~c ∈ (R2)J+1 with ~bj = 〈(~Y m . ~ωm + β) (~Y m)⊥, [χj]s〉
h
Γm and ~cj = β 〈~ωm, χj〉

h
Γm,

j = 0 → J .

5.4 Solution methods

All of the stated linear systems in this section can be written as
(

~PX 0

0 ~PY

)(
~AY − 1

τm

~M
~M ~AX

)(
~PY 0

0 ~PX

)(
~Y m+1

δ ~Xm+1

)
=

(
~PX 0

0 ~PY

)(
~fX

~fY

)
, (5.7a)

~PY
~Y m+1 = ~Y m+1 , ~PX δ ~Xm+1 = δ ~Xm+1 , (5.7b)

where, apart from the obvious block matrices and right-hand sides, ~PX and ~PY are pro-
jections onto the Euclidean solution spaces for δ ~Xm+1 and ~Y m+1, respectively. Of course,
for the closed curve systems in §5.1 and §5.2 it holds that ~PX = ~PY = ~IdJ , and so (5.7a)
can be directly solved with a sparse factorization solver. Here we employ the package
UMFPACK, see Davis (2004).

In the open curve case, when the projections ~PX or ~PY may have a nontrivial kernel,
it is possible to solve the system (5.7a) with a preconditioned BiCGSTAB iterative solver,
see e.g. Barrett et al. (1994), where a natural preconditioner is

(
~PY 0

0 ~PX

)(
~AY − 1

τm

~M
~M ~AX

)−1(
~PX 0

0 ~PY

)
(5.8)

if this is well-defined, and otherwise (5.8) with ~AX and ~AY replaced by diag( ~AX) and

diag( ~AY ), respectively. In each case, the inverses in (5.8) may be computed with the help
of UMFPACK.

A more efficient solution method, which has the additional advantage that it is guaran-
teed to find the unique solution to (5.7a,b) even when the system is very badly conditioned,
is to find a solution to the underdetermined system (5.7a) over (Rd)J+1 × (Rd)J+1, and

then to orthogonally project that solution back to the solution space with the help of ~PX

and ~PY , where we know that the solution is unique. Finding a solution of the singular sys-
tem (5.7a) is done with the help of the sparse QR factorization package SuiteSparseQR,
see Davis (2011). We used this latter method throughout in our numerical experiments.

6 Numerical results

Throughout the numerical experiments for closed curves we take ~Y 0 = ~κ0
φ, where ~κ0

φ ∈ V h
0

is the usual (anisotropic) discrete curvature vector on Γ0 defined by

〈~κ0
φ, ~η〉

h
Γ0 + 〈~Φ( ~X0

s ) ~X0
s , ~ηs〉Γ0 = 0 ∀ ~η ∈ V h

0 .
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Figure 1: (d = 2) Evolution for (4.8a,b), (4.7a,b) and (4.1a,b). Plots of ~X(t), t = 0, 2, 4, 6.
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Figure 2: (d = 2) Plots of the energy Eh
0 (Γm, ~Qm ~Y m+1) (left) and the element ratio (right)

for (4.1a,b).

Unless otherwise stated we fix λ = 0 throughout, and use the discretization parameters
J = 100, τ = 10−3. For later purposes, we define

~X(t) := t−tm−1

τ
~Xm + tm−t

τ
~Xm−1 t ∈ [tm−1, tm] m ≥ 1.

Finally, we stress that no remeshing was used for any of the experiments presented in this
section.

6.1 Isotropic elastic flow

First, we compare the existing schemes in the literature; that is (4.8a,b) from Deckelnick
and Dziuk (2009) and (4.7a,b) from Barrett, Garcke, and Nürnberg (2010b) to our new
approximation (4.1a,b). As the initial curve we choose a 2 : 1 lemniscate, and let the
time discretization parameters be τ = 5 × 10−4 and T = 6. In Figure 1 we compare
the results for the schemes (4.8a,b), (4.7a,b) and (4.1a,b). It is clear that the lack of
tangential motion in the scheme (4.8a,b) in this case results in very non-uniform element
sizes. On the other hand, the results in Figure 2, where we show a plot of the discrete
energy Eh

0 (Γm, ~Qm ~Y m+1) and of the r := h ~Xm/ℓ ~Xm , with h ~Xm := maxj=1→J | ~X
m(qj) −

~Xm(qj−1)| and ℓ ~Xm := minj=1→J | ~X
m(qj) − ~Xm(qj−1)|, over time, show that we get close

to equidistribution in practice for the scheme (4.1a,b).

In Figure 3 we present some results for positive values of λ, so that growth in the length
of the curve is penalized. In particular, we set λ = 1

2
, 2 and 8. On recalling (1.6) and

(1.7), we observe that the results in Figure 3 may also be interpreted as approximations

for the gradient flow of Ẽβ(Γ, κ) with β = 1, 2 and 4, respectively. In particular, the
minimizing steady states are given by circles of radius 1, 1

2
and 1

4
, respectively.
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Figure 3: (d = 2) Evolutions for λ = 1
2
, 2, 8. Plots show ~X(t) at times t = 0, 0.5, . . . , 10,

t = 0, 0.2, . . . , 2, and t = 0, 0.05, . . . , 0.3, respectively.

6.2 Anisotropic elastic flow

In this subsection, we show some numerical experiments for our approximation (4.4a,b).
We begin with a computation for the similarity solution from Theorem 2.1 in the case
d = 2. To this end, we fix φ(~p) = [ε2 p2

1 + p2
2]

1

2 , i.e. φ is of the form (3.24) with L = 1 and
~G1 = ~G :=

(
ε2 0
0 1

)
. Hence the Wulff shape Wφ is given by an ellipse. On recalling (4.3),

we obtain that

σ( ~Xm
s ) = φ( ~Xm

s ) [~νm . φ′′( ~Xm
s ) ~νm] = ~νm .

[
~Id − [φ( ~Xm

s )]−2 ( ~G ~Xm
s ) ⊗ ~Xm

s

]
~G~νm

= ~νm . ~G~νm − ( ~Xm
s . ~G ~Xm

s )−1 ( ~Xm
s . ~G~νm)2 .

On incorporating the term [σ( ~Xm
s )]−1 into the first term on the left-hand side of (4.4a),

we can approximate the flow (2.20) by this modification of (4.4a,b); and similarly for the
scheme (4.12a,b).

We compare the solutions from our approximations (4.4a,b) and (4.12a,b) with the
true solution

~x(ρ, t) = (1 + 2 t)
1

4 (cos g(ρ), ε sin g(ρ))T , (6.1)

where g(ρ) = 2πρ + 0.1 sin (2πρ) in order to make the initial distribution of nodes non-

uniform. Here we compute the error ‖ ~X −~x‖L∞ := maxm=1→M ‖ ~Xm −~x(·, tm)‖L∞, where

‖ ~Xm − ~x(·, tm)‖L∞ := maxj=1→J minρ∈J | ~X
m(qj) − ~x(ρ, tm)|, between ~X and the true

solution ~x on the interval [0, T ] by employing a Newton method. The numbers in Table 1,
where we report on the errors for T = 1 and τ = 0.5 h2, indicate a convergence rate for
the errors of O(h2).

Next, we reproduce the evolutions for the flow (2.18) that were presented in Figures
20, 21 and 22 in Barrett, Garcke, and Nürnberg (2010b) for the scheme (4.7a,b). First we
repeat the experiment in Figure 1, but now for our scheme (4.4a,b) and for the anisotropic
energy densities φ(~p) =

√
0.25 p2

1 + p2
2 and φ(~p) =

√
p2

1 + 0.25 p2
2, see Figure 4. We observe

that in each case the lemniscate clearly aligns itself with the chosen anisotropy. There
are only minor differences between the results shown in Figure 4 and the plots in Figure
20 in Barrett, Garcke, and Nürnberg (2010b). The next experiments are for a trefoil knot
in R3, and in particular the initial curve is given by

~x(ρ, 0) = ((2 + cos(6 π ρ)) cos(4 π ρ), (2 + cos(6 π ρ)) sin(4 π ρ), sin(6 π ρ))T , ρ ∈ I .
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ε = 0.5 ε = 0.1

J (4.4a,b) (4.12a,b) (4.4a,b) (4.12a,b)

128 8.8676e-04 9.0700e-04 1.1383e-02 6.8666e-03

256 2.2217e-04 2.2734e-04 2.6458e-03 1.7818e-03

512 5.5621e-05 5.6923e-05 6.5288e-04 4.5071e-04

1024 1.3917e-05 1.4243e-05 1.6286e-04 1.1312e-04

Table 1: Absolute error ‖ ~X − ~x‖L∞ for the test problems.
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Figure 4: (d = 2, φ(~p) =
√

0.25 p2
1 + p2

2 (left) and φ(~p) =
√

p2
1 + 0.25 p2

2 (right)) Aniso-

tropic elastic flow of a lemniscate. Plots of ~X(t), t = 0, 1, . . . , 6.

We use the anisotropic energy density φ(~p) =
√

0.75 p2
1 + p2

2 + p2
3. The numerical results

for our scheme (4.4a,b) are shown in Figure 5. The same computation for the density
φ(~p) =

√
p2

1 + 0.75 p2
2 + p2

3 can be seen in Figure 6. The reader will note that the presented
results differ significantly from the ones shown in Barrett, Garcke, and Nürnberg (2010b,
Figs. 21, 22). In particular, the final coordinate planes in which the solutions settle down
are different. It has since come to our attention that the results in Barrett, Garcke, and
Nürnberg (2010b, Figs. 20, 21, 22) are based on a faulty numerical implementation of the

operator ~P~τ
~Aφ

~P~τ in the anisotropic setting, recall (5.4). The correct implementation of
the scheme (4.7a,b) yields numerical results that are graphically indistinguishable from
the ones in Figures 4, 5 and 6. Hence the three incorrect plots in Barrett, Garcke, and
Nürnberg (2010b) and the last paragraph in §5.6 in that article should be ignored.

In order to complete the picture, we present in Figure 7 the same computation for
φ(~p) =

√
p2

1 + p2
2 + 0.75 p2

3.

6.3 Initial boundary value problems

In all of the following experiments we consider an open curve attached to the endpoints
of the unit interval [0, 1], i.e. we set ~α0 = ~0 and ~α1 = ~e1. Unless otherwise stated we fix
d = 2 and choose the isotropic case (2.11) with λ = 0. The discretization parameters are
J = 100 and τ = 10−3 throughout.

We recall that several theoretical results on the steady state solutions of the (isotropic)
flows considered in this subsection have been derived in Deckelnick and Grunau (2007).
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Figure 5: (φ(~p) =
√

0.75 p2
1 + p2

2 + p2
3) Plots of ~X(t) at times t = 0, 0.5, 2, 10, 20, 200. A

2d plot of ~X(T ) in the x1 − x2 plane below.
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Figure 6: (φ(~p) =
√

p2
1 + 0.75 p2

2 + p2
3) Plots of ~X(t) at times t = 0, 0.5, 2, 10, 20, 200. A

2d plot of ~X(T ) in the x1 − x2 plane below.
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Figure 7: (φ(~p) =
√

p2
1 + p2

2 + 0.75 p2
3) Plots of ~X(t) at times t = 0, 0.5, 2, 10, 20, 200.

In particular, the authors in that paper considered the case where the steady state is a
smooth graph solution.

6.3.1 Clamped conditions

As an initial value for ~Y 0 ∈ V h we choose ~Y 0 = πh[ ~Q0 ~κ0
φ], where ~κ0

φ ∈ V h is such that

〈~κ0
φ, ~η〉

h
Γ0 + 〈~Φ( ~X0

s ) ~X0
s , ~ηs〉Γ0 = φ′(~ζ1) . ~η(1) − φ′(~ζ0) . ~η(0) ∀ ~η ∈ V h .

For the parameters ~ζi, i = 0 → 1, in (2.43) we always set

~ζ0 =

(
cos δ0

sin δ0

)
and ~ζ1 =

(
cos δ1

− sin δ1

)
, (6.2)

where δi ∈ [0, 2 π), i = 0 → 1, describe the contact angles that the curve makes with the
x1-axis at both ends. We remark that for the clamped conditions (6.2) with δi ∈ (−π

2
, π

2
),

i = 0 → 1, it was shown in Deckelnick and Grunau (2007, Theorem 2) that among all
smooth graphs over [0, 1], there exists a unique minimizer of the elastic energy E0(Γ, κ).
In all our numerical experiments with δi ∈ (−π

2
, π

2
), i = 0 → 1, we did observe a numerical

steady state that is a graph.

At first, we consider the symmetric case (6.2) with δ0 = −δ1. For the numerical results
in Figure 8, we start with a unit semicircle and use our fully discrete scheme (4.9a,b).
In all our runs for δ0 < π

2
the evolution finds a numerical steady state, i.e. a discrete

approximation to the known minimizer from Deckelnick and Grunau (2007, Theorem 2).
The run for δ0 = 45◦ in Figure 8 is such an example. For contact angles δ0 > π

2
we can

observe unlimited growth, as can be seen on the right of Figure 8.

For contact angles δ0 > 120◦, our algorithm could not integrate the evolution starting
from a semicircle. However, when starting with the solution ~X(1) obtained from above for
δ0 = 115◦, then also evolutions for larger contact angles can be computed. In Figure 9 we
show the evolutions for δ0 = −δ1 = 135◦, 180◦, 225◦, 250◦. For the latter two evolutions
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Figure 8: (d = 2) Evolutions for (4.9a,b) with (6.2) and δ0 = −δ1 = 45◦, 90◦, 115◦.

Plots show ~X(t) at times t = 0, 0.01, 0.02, 1, at times t = 0, 0.1, 0.2, 1 and at times

t = 0, 0.1, . . . , 1, respectively. Plots of the discrete energy Eh
0 (Γm, ~Qm

⋆
~Y m+1) below.
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Figure 9: (d = 2) Evolutions for (4.9a,b) with (6.2) and δ0 = −δ1 = 135◦, 180◦, 225◦, 250◦.

Plots show ~X(t) at times t = 0, 0.1, . . . , 1.
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Figure 10: (d = 2) Evolution for (4.9a,b) with (6.2) and δ0 = −δ1 = 45◦. Plots of ~X(0)

and ~X(10).

we used the final curve ~X(1) from the run with δ0 = 180◦ as initial data. The continued
growth in the curves in Figure 8 and 9 is easily explained with the scaling behaviour of
the elastic energy, and it also complements the theoretical results from Deckelnick and
Grunau (2007, Theorem 2).

Next we present an experiment that demonstrates the equidistribution property proven
for the semidiscrete schemes in e.g. Theorem 3.7. To this end, we repeated the first
computation in Figure 8, but now use a very nonuniform polygonal approximation of the
initial semi-circle. In particular, Γ0 consists of a sequence of vertices on the left half of the
semi-circle together with the vertex at ~α1. The numerical results for our approximation
(4.9a,b) can be seen in Figure 10, where we observe that at time T = 10 the polygonal
curve ΓM is close to being equidistributed.

In addition, we also present some evolutions for the even choice (6.2) with δ0 = δ1.
Starting from a straight line, we present computations for δ0 = δ1 = 15◦, 25◦, 45◦, 65◦,
80◦, 90◦, where when necessary we used the final solution of the previous run as initial
data for the next larger δ0. Here we recall from Deckelnick and Grunau (2007, Theorem 4),
that for δ0 ∈ (−π

2
, π

2
) the existence of a steady state solution is guaranteed. Interestingly,

when we increase δ0 to a value larger than 90◦, then unlimited growth of the curve can in
general be observed again. See Figure 12 for an example with δ0 = δ1 = 100◦. Here we
take as initial data the final solution from Figure 11 for δ0 = 90◦. In Figure 13 we present
a numerical steady state for the flow with a δ0 = 90◦ contact angle prescribed on the left
and a δ1 = 0◦ contact angle at the right.

In Figure 14 we show evolutions for some nonzero values of λ. We set δ0 = −δ1 = 75◦ in
(6.2) and let λ = −2, 0 or 20. As expected, the length of the curve is increasing/decreasing
for negative/positive λ compared to the minimizer of the elastic energy, i.e. the steady
state for the flow with λ = 0.

For the first experiment in three dimensions we set ~ζ0 = 1
2
(1, 1, 2

3

2 )T and ~ζ1 =
1
2
(1,−1, 2

3

2 )T in (4.9a,b). The numerical results for the same initial curve as in Fig-
ure 8 can be seen in Figure 15, where we show results for λ = 0 and λ = 1. For the
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Figure 11: (d = 2) Evolutions for (4.9a,b) with (6.2) and δ0 = δ1 =

15◦, 25◦, 45◦, 65◦, 80◦, 90◦. Plots show ~X(0) and ~X(1).
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Figure 12: (d = 2) Evolution for (4.9a,b) with (6.2) and δ0 = δ1 = 100◦. The plot shows
~X(t) at times t = 0, 0.1, . . . , 1.
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Figure 13: (d = 2) Numerical steady state for (6.2) with δ0 = 90◦ and δ1 = 0◦.
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Figure 14: (d = 2) Evolutions for (4.9a,b) with (6.2) and δ0 = −δ1 = 75◦ for λ = −2, 0, 20.

Plots show ~X(t) at times t = 0, 0.1, . . . , 1.
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Figure 16: (d = 3) Evolution for (4.9a,b) with ~ζ0 = ~ζ1 = ~e2 and λ = 1. Plots show ~X(t)
at times t = 0, 2, 3, . . . , 7, 10.

helix experiment in Figure 16 we chose ~ζ0 = ~ζ1 = ~e2 and set λ = 1. The helix itself is
parameterized by

~x0(ρ) = (ρ, sin(8 πρ), cos(8 π ρ))T , ρ ∈ [0, 1] .

Under our approximation of the elastic flow (2.42) with clamped boundary conditions
(2.43) the helix unravels and attains a numerical steady state which we conjecture is an
approximation of the global minimizer for (1.2) among all curves satisfying (2.43). For
this experiment, we used the fine spatial discretization parameter J = 512.

Next we perform some experiments for the length preserving variant of (4.9a,b), recall
Remark 4.5. First we repeat the experiments from Figure 8, but now for the finer time step
τ = 10−4. In Figure 17 we show the obtained numerical steady states for certain boundary
contact angles. In each case, the presented polygonal curve is an approximation to the
elasticae of length |Γ(0)| = π

2
for the given boundary conditions. The length preserving

variant of the helix experiment in Figure 16 can be seen in Figure 18. Here we used
the discretization parameters J = 512 and τ = 10−2. Finally, we also show a numerical
approximations for the flow (2.42) with the homogeneous boundary conditions (2.44), i.e.
~β = ~0, where λ(t) in (2.42) is chosen such that length is preserved. For this computation
we use the length preserving variant of the scheme discussed at the end of §4.3.1. See
Figure 19 for the results of this numerical computation, where we used the fine spatial
discretization parameter J = 512. We note that the curve displayed in the final plot in
Figure 19 lies in a two-dimensional hyperplane. We conjecture that stable steady states of

47



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-0.2  0  0.2  0.4  0.6  0.8  1  1.2

Figure 17: (d = 2) Numerical steady states for the length preserving variant of (4.9a,b)
with (6.2) and δ0 = −δ1 = 0◦, 45◦, 130◦. Here |ΓM | ≈ π

2
.

the length preserving elastic flow with homogeneous Navier boundary conditions always
lie in a two-dimensional hyperplane.

6.3.2 Navier conditions

As an initial value for ~Y 0 ∈ W h we choose the solution of

〈~Y 0, ~η〉hΓ0 + 〈~Φ( ~X0
s ) ~X0

s , ~ηs〉Γ0 = −β 〈~ω0, ~η〉hΓ0 ∀ ~η ∈ W h .

It was shown in Deckelnick and Grunau (2007, Theorem 1 ) that a stable stationary
solution in the shape of a smooth graph exists for the flow (2.42) with (2.46) if and only
if |β| < βmax := 1.343799725.... We now investigate this result numerically. To this end,
we start the flow with the initial curve Γ(0) = [0, 1] and observe the flow for increasing
values of |β|. The results for our fully discrete finite element approximation (4.11a,b) are
shown in Figure 20, where as expected we observe continued growth in the curve only for
|β| > βmax.

We should note that when we start with an initial curve far “above” the steady state
profile, then, for |β| sufficiently large, the flow does not settle on this stationary solution.
Instead, it will continuously decrease the energy by expanding the length of the curve
continuously. We show this behaviour in Figure 21 for an example with β = −1 > −βmax,
where we use a unit semicircle as initial data. For this experiment, we use the fine
discretization parameters J = 512 and τ = 10−4.

Conclusions

On utilizing the ideas in Deckelnick and Dziuk (2009) and Barrett, Garcke, and Nürnberg
(2010b), we introduced fully practical approximations of isotropic elastic flow of closed
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Figure 18: (d = 3) Evolution for the length preserving variant of (4.9a,b) with ~ζ0 = ~ζ1 =

~e2. Plots show ~X(t) at times t = 0, 15, 20, 25, 30, 40, 50, 100, 200, 300, 400, 1500.
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Figure 19: (d = 3) Approximation of the length preserving variant of (2.42) with (2.44)

with ~β = ~0. Plots show ~X(t) at times t = 0, 1, 5, 10, 20, 50, 100, 200, 300, 1000, 5000, 10000.
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Figure 21: (d = 2) Evolution of (4.11a,b) and the energy Êh
β,0(Γ

m, ~Y m . ~ωm+β) for β = −1.

Plot shows ~X(t) at times t = 0, 0.2, . . . , 10.

curves in Rd, d ≥ 2, for which semidiscrete variants can be proven to be stable and
to have an equidistribution property. These ideas extend to anisotropic flows, where
the mesh equidistribution property is replaced with a nontrivial criterion that depends
on the given anisotropy, yielding the first stable semidiscrete schemes for anisotropic
elastic flow in the literature. For a single open curve, we considered the isotropic and
anisotropic elastic flow under clamped and Navier boundary conditions, respectively. As
before, the semidiscrete variants of these schemes are stable and satisfy an equidistribution
property. In addition, as far as we are aware, these are the first approximations of these
initial boundary value problems in the literature. The presented ideas can be extended
to introduce similarly stable finite element approximations of the geodesic elastic flow,
where the evolving curve is constrained to lie on a fixed two-dimensional manifold. This
work is currently in progress; see Barrett, Garcke, and Nürnberg (2011a). Moreover, on
utilizing ideas in Dziuk (2008), the techniques presented here for curves can be generalized
to consider stable approximations for the Willmore flow of two-dimensional hypersurfaces
in R3, which maintain the good mesh properties of the schemes in Barrett, Garcke, and
Nürnberg (2008b). This work is also currently in progress; see Barrett, Garcke, and
Nürnberg (2011b). Finally, extending the ideas presented here for a single open curve to
the elastic flow of curve networks, where several open curves meet at junction points is
another avenue for future research. It is hoped that the latter can be extended to the
Willmore flow of surface clusters and surfaces with line energy, which play an important
role in the modelling of biomembranes with locally varying physical properties.
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Kristallflächen. Z. Krist., 34, 449–530.

54


