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A-POSTERIORI ERROR ESTIMATES FOR OPTIMAL CONTROL

PROBLEMS WITH STATE AND CONTROL CONSTRAINTS

arnd rösch1, daniel wachsmuth2,

Abstract. We discuss the full discretization of an elliptic optimal control problem with pointwise
control and state constraints. We provide the first reliable a-posteriori error estimator that contains
only computable quantities for this class of problems. Moreover, we show, that the error estimator
converges to zero if one has convergence of the discrete solutions to the solution of the original
problem. The theory is illustrated by numerical tests.

1. Introduction. In this paper we consider the optimal control problem of min-
imizing the cost functional J given by

J(y, u) =
1

2
‖y − yd‖

2
L2(Ω) +

α

2
‖u‖2

L2(Ω) (1.1)

subject to

−∆y + y = u in Ω
y = 0 on Γ,

(1.2)

and

ua ≤ u ≤ ub a.e. in Ω, (1.3)

ya ≤ y ≤ yb in Ω. (1.4)

Let us define the set of admissible controls by

Uad := {u ∈ L2(Ω) : ua ≤ u ≤ ub a.e. in Ω}.

In order to guarantee existence and regularity of solutions, we assume for the whole
paper:

Assumption 1. Ω ⊂ R
n, n ∈ {2, 3}, is a convex polygonal domain; ua < ub are

constants; ya, yb ∈ C(Ω̄), yd ∈ L2(Ω), α ≥ 0.

Note that our problem and also the discretized counterparts are strictly convex.
Therefore, one has only to show the existence of a feasible point to get existence
and uniqueness of an optimal control ū and state ȳ. Under a Slater type assumption
we will state such a result in Theorem 2.3. Using the same assumption, one obtains
existence and uniqueness of solutions (ȳh, ūh) for sufficiently fine discretizations.

The distance of the solution (ȳh, ūh) to (ȳ, ū) can be estimated a-priori as ‖ūh −
ū‖L2(Ω) + ‖ȳh − ȳ‖H1(Ω) ≤ Ch2−n

2 −ε, ε ≥ 0, see e.g. [8, 17]. In order to generate
adaptively refined meshes, computable and localized a-posteriori error estimators are
inevitable. For work on dual-weighted residual error indicators for state constrained
problems we refer to [2, 10, 21]. The main drawback of this method is that the resulting
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error estimators are not computable since they depend on the unknown solution of
the continuous problem. The only work in context of residual error estimates is due to
[14]. However, this error estimator contains also an uncomputable part that involves
the Lagrange multipliers of the continuous problem. All cited papers contain different
heuristics to replace uncomputable quantities by computable ones. Our main goal is
to derive computable error bounds.

The main difficulty to obtain a computable error bound is that the errors in the
dual quantities ‖p̄h − p̄‖ and ‖µ̄i,h − µ̄i‖ cannot be majorized by ‖ūh − ū‖L2(Ω).
Hence, we completely avoid the use of the Lagrange multipliers and of the first-order
necessary optimality system of Theorem 2.3. In our main result Theorem 3.9 we
describe detailed all the different error contributions.

Moreover, we prove that the error estimate converges to zero if the discrete quantities
converge in a certain sense, see Section 4. Such a result does not seem to be available
even for pure control constrained problems, see the comments at the end of that
section.

Let us shortly describe the structure of our paper. Section 2 contains basic properties
of the optimal control problems and its discrete counterparts. A-posteriori error
estimates are derived in Section 3. The behavior of the error bound when the discrete
solutions converge is studied in Section 4. Numerical experiments are presented in
Section 5.

2. Optimality system and discretization.

2.1. The undiscretized problem. First, let us define the notion of weak so-
lutions of the state equation (1.2). A function y ∈ H1

0 (Ω) is called weak solution of
(1.2) if it satisfies the the weak formulation

a(y, v) = (u, v)L2(Ω) ∀v ∈ H1
0 (Ω), (2.1)

where the bilinear form a is defined as

a(y, v) = (∇y,∇v)L2(Ω)n + (y, v)L2(Ω).

Let us define the operators A : V := H2(Ω) ∩ H1
0 (Ω) → L2(Ω) by A = −∆ + I and

its dual A∗ : L2(Ω) → V ∗ by

(Aw, v) = 〈w, A∗v〉 ∀w ∈ V, v ∈ L2(Ω).

Lemma 2.1. For each control u ∈ L2(Ω) the state equation (1.2) admits a unique
weak solution y ∈ H2(Ω), and the mapping u 7→ y(u) is continuous from L2(Ω) to
H2(Ω), i.e. ‖y‖H2(Ω) ≤ C0‖u‖L2(Ω).
For the proof we refer to Grisvard [9].

Throughout the article we will assume the existence of a Slater point:

Assumption 2. There exists û ∈ Uad and τ ∈ R, τ > 0, such that the associated
state ŷ satisfies ya + τ ≤ ŷ ≤ yb − τ .

Please note, that this assumption implies that the state constraints cannot be active
on Γ, i.e. it holds ya < −τ and τ < yb on Γ since ŷ = 0 on Γ due to the Dirichlet
boundary conditions.
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Additionally, Assumption 2 implies that the feasible set of the control problem is
non-empty. Due to convexity, we get immediately the existence and uniqueness of
solutions.

Lemma 2.2. Under Assumption 2, the optimal control problem (1.1)–(1.4) admits a
unique solution (ȳ, ū).

The solution of the optimal control problem can be characterized by means of first-
order necessary optimality conditions. Due to Assumption 2, one can prove existence
of Lagrange multipliers, see e.g. [5, 20]. In the following, let us denote by M(Ω) =
C(Ω̄)∗ the space of regular Borel measures.

Theorem 2.3. Let (ȳ, ū) be a solution of the problem (1.1)–(1.3). Then there are
µ̄a, µ̄b ∈ M(Ω) and p̄ ∈ W 1,s(Ω), s < n

n−1 , such that the following system is satisfied,
which consists of adjoint equation

−∆p̄ = ȳ − yd − µ̄a + µ̄b in Ω,

p̄ = 0 on Γ = ∂Ω,
(2.2)

complementarity conditions for µ̄a and µ̄b

µ̄i ≥ 0, 〈µ̄i, ȳ − yi〉 = 0 i ∈ {a, b}, (2.3)

and the variational inequality

(αū + p̄, u − ū) ≥ 0 ∀u ∈ Uad. (2.4)

For the proof we refer to Casas [5].

2.2. Discretization. Let us fix the assumptions on the discretization of problem
(1.1)-(1.4) by finite elements. First let us specify the notation of regular meshes. Each
mesh T consists of closed cells T (for example triangles, tetrahedra, etc.) such that
Ω̄ =

⋃

T∈T T holds. We assume that the mesh is regular in the following sense: for
different cells Ti, Tj ∈ T , i 6= j, the intersection Ti ∩ Tj is either empty or a node, an
edge, or a face of both cells, i.e. hanging nodes are not allowed. Let us denote the
size of each cell by hT = diamT and define h(T ) = maxT∈T hT . For each T ∈ T , we
define RT to be the diameter of the largest ball contained in T .

We will work with a family of regular meshes F = {Th}h>0, where the meshes are
indexed by their mesh size, i.e. h(Th) = h. We assume in addition that there exists a
positive constant R such that

hT

RT
≤ R

holds for all cells T ∈ Th and all h > 0. With each mesh Th ∈ F , we associate
the finite-dimensional space Vh ⊂ H1

0 (Ω) that consists of polynomial finite element
functions of degree l ≥ 1.

Furthermore, let us denote by Uh ⊂ L2(Ω) the corresponding control discretization.
Here, we have the following three possibilities in mind: discretization of controls by
piecewise constant or linear finite element functions, or the choice Uh = L2(Ω), which
corresponds to the so-called variational discretization introduced by Hinze [12].

Let us now introduce the discretized version of the optimal control problem (1.1)–
(1.4). This problem is given as: Find yh ∈ Vh and uh ∈ Uh that minimize

min J(yh, uh) =
1

2
‖yh − yd‖

2
L2(Ω) +

α

2
‖uh‖

2
L2(Ω) (2.5)
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subject to the discretized state equation

a(yh, vh) = (uh, vh)L2(Ω) ∀vh ∈ Vh, (2.6)

the control constraints

ua ≤ uh ≤ ub a.e. in Ω, (2.7)

and the discrete state constraints

ya(xi) ≤ yh(xi) ≤ yb(xi) for i = 1, .., K. (2.8)

Here, we denoted by xi, i = 1 . . .K, the nodes of the mesh T . Before proving existence
of solutions of this problem, we first state some auxiliary results

Lemma 2.4. Let yh and yh be the solution of (2.1) and (2.6) for the control uh. Let
CM > 1 be given such that max

T∈Th

hT ≤ CM min
T∈Th

hT is satisfied. Then the following

L∞-error estimate holds

‖yh − yh‖L∞(Ω) ≤ ch‖u‖L2(Ω).

For a proof, we refer to Braess [3].

Let us denote by Πh the L2(Ω)-projection onto Uh for piecewise constant functions.
For piecewise linear functions one can use a quasi-interpolation, see [18]. In the case
of the variational discretization we take Πh = I. In all three cases, this operator has
the following known approximation property.

Lemma 2.5. There is a constant cI independent of h such that

‖u − Πhu‖L2(Ω) ≤ cIh‖∇u‖L2(Ω)

is fulfilled for all u ∈ H1(Ω).

Regarding existence of solutions of the discrete optimal control problem, we have the
following result.

Lemma 2.6. Let CM > 1 be given and max
T∈Th

hT ≤ CM min
T∈Th

hT . Then, there exists a

mesh size h0 > 0 such that for all h ≤ h0 a feasible point of the discretized problem
exists.

Proof. We set ûh = Πhû, where û is the Slater point from Assumption 2. The function
ûh satisfies the control constraints. It remains to check the state constraints. Let us
denote the solutions of the discrete and continuous state equation associated to ûh by
ŷh and ŷh, respectively. We find

ŷh(xi) − ya(xi) ≥ τ − |ŷ(xi) − ŷh(xi)| − |ŷh(xi) − ŷh(xi)|

≥ τ − ‖ŷ − ŷh‖L∞(Ω) − ‖ŷh − ŷh‖L∞(Ω)

Here, ‖ŷ − ŷh‖L∞(Ω) becomes small for small h because of Lemmas 2.5 and 2.1. The

term ‖ŷh − ŷh‖L∞(Ω) reflects the pointwise discretization error, which tends to zero
for h → 0 due to Lemma 2.4. Consequently, for sufficiently small h the discrete lower
state constraints are fulfilled. Analogously, one shows that the upper state constraint
of the discrete problem is satisfied for h small enough. Hence, the point (ŷh, ûh) is
admissible for the discrete problem.
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As for the continuous problem, we get existence and uniqueness of solutions of the
discrete problem.

Lemma 2.7. Let Assumption 2 be satisfied and max
T∈Th

hT ≤ CM min
T∈Th

hT . Let the mesh-

size satisfy h < h0. Then the optimal control problem (2.5)–(2.8) admits a uniquely
determined solution (ȳh, ūh) for all meshes with mesh-size h < h0.

Proof. Due to Lemma 2.6 the feasible set of the discrete problem is non-empty for
h < h0. By standard arguments one concludes the existence of a unique solution of
this problem.

Let us remark that the existence of a feasible point for the discrete problem is not
guaranteed for arbitrary meshes with h < h0. This is due to the fact that a-priori
L∞-error estimates are derived using inverse inequalities. Then the relation between
minimal and maximal element size must be limited by some constant CM . Another
possibility are meshes for which a discrete maximum principle holds, see [7]. Usually,
sequences of adaptive refined grids do not satisfy these requirements. However, the
existence of a feasible point can be verified a-posteriori. If no feasible point exists, then
one can refine the mesh in a suitable way to get a feasible point for the new mesh.
We will use the following strategy. Our a-posteriori error estimator will contain a
term that measures the L∞(Ω)-norm of the violation of the state constraint, and
thus should ensure the solvability of the discrete systems for the adaptively generated
meshes.

Assumption 3. In the sequel, we assume that the discrete optimal control problem
admits a unique solution.

Analogous to the continuous problem, one finds that the solution of the discrete
problem can be characterized by a first-order optimality system.

Theorem 2.8. Let (ȳh, ūh) be a solution of the problem (2.5)–(2.8). Then there are
µ̄a, µ̄b ∈ M(Ω) and p̄h ∈ Vh, such that the following system is satisfied, which consists
of discrete adjoint equation

a(vh, p̄h) = (ȳh − yd, vh)L2(Ω) + 〈−µ̄a,h + µ̄b,h, vh〉 ∀vh ∈ Vh, (2.9)

complementarity condition

µ̄i,h =

K
∑

j=1

µ̄
j
i,hδ(xj), µ̄

j
i,h ≥ 0, µ̄

j
i,h(ȳh(xj) − yi(x)) = 0, i ∈ {a, b}, j ∈ {1, .., K},

(2.10)
and variational inequality

(αūh + p̄h, uh − ūh) ≥ 0 ∀uh ∈ Uh ∩ Uad.

Since the state constraints for the discrete problem were prescribed in the mesh nodes,
the Lagrange multipliers µ̄a,h and µ̄b,h are positive linear combinations of Dirac mea-
sures concentrated in the mesh nodes. Due to this representation, the complementar-
ity condition in (2.10) can be written as

〈µ̄i,h, ȳh − yi〉 = 0 i ∈ {a, b}.
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3. A-posteriori error estimates. In this section, we will derive an upper
bound for the error ‖ūh − ū‖L2(Ω). In order to avoid the difficulties mentioned in
the introduction, we will not work with the first-order optimality system given by
Theorem 2.3. We will work with the optimality of ū instead, i.e. J(ȳ, ū) ≤ J(y, u) for
all (y, u) satisfying the constraints (1.2)–(1.4).

Let us suppose that we have computed the solution (ȳh, ūh, p̄h, µ̄a,h, µ̄b,h) of the dis-
crete problem. At first, we have to find a pair (ỹ, ũ) ≈ (ȳh, ūh) that is feasible for the
continuous problem, which would give J(ȳ, ū) ≤ J(ỹ, ũ).

3.1. Construction of feasible control. Let us first define an auxiliary state
yh as the weak solution of the state equation with right-hand side ūh, i.e.

a(yh, v) = (ūh, v) ∀v ∈ H1
0 (Ω). (3.1)

Lemma 3.1. Let û denote the Slater point as given by Assumption 2. Let yh denote
the solution of (3.1). Let us define the violation of the state constraints by

esc := max(‖(ȳh − ya)−‖L∞(Ω), ‖(yb − ȳh)−‖L∞(Ω)). (3.2)

Then the state ỹ := (1 − σ)yh + σŷ associated to the control ũ := (1 − σ)ūh + σû is
admissible for the state constraints (1.4) if σ is chosen as

σ =
‖ȳh − yh‖L∞(Ω) + esc

τ + ‖ȳh − yh‖L∞(Ω) + esc
.

Proof. We find

(1 − σ)yh + σŷ ≥ (1 − σ)(ȳh − ‖ȳh − yh‖L∞(Ω)) + σ(ya + τ)

≥ ya + τ + (1 − σ)(ȳh − ‖ȳh − yh‖L∞(Ω) − ya − τ)

≥ ya + τ + (1 − σ)(−‖(ȳh − ya)−‖L∞(Ω) − ‖ȳh − yh‖L∞(Ω) − τ)

≥ ya + τ − (1 − σ)(τ + ‖ȳh − yh‖L∞(Ω) + esc),

which implies (1 − σ)yh + σŷ ≥ ya for 1 − σ ≤ τ
τ+‖ȳh−yh‖L∞(Ω)+esc

. An analogous

discussion for the upper state constraint yields the claim.

With the notation of the previous lemma, we have

ũ − ūh = σ(û − ūh), (3.3)

which allows to estimate the difference ‖ũ − ūh‖L2(Ω) provided upper bounds for σ

are available. The difference in the states ỹ − ȳh can be written as

ỹ − ȳh = ỹ − yh + yh − ȳh = σ(ŷ − yh) + yh − ȳh

= σ(ŷ − ȳh) + (1 − σ)(yh − ȳh).
(3.4)

Remark 3.2. Please note, that we did not use feasibility of ȳh for the discrete
optimization problem. Hence, Lemma 3.1 is valid without this assumption, which
means it is also applicable if the discrete optimization problem is solved for instance
by penalty methods.
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Remark 3.3. If the discrete space Vh is the space of piecewise linear polynomial
functions, then we can replace the constraint violation esc by the interpolation error
of the state constraint bounds. Let Ih denote the Lagrange (or nodal) interpolation
operator. Then the discrete state constraints (2.8) imply Ihya ≤ ȳh ≤ Ihyb on Ω̄. And
we can estimate in the previous proof

(1 − σ)yh + σŷ ≥ (1 − σ)(ȳh − ‖ȳh − yh‖L∞(Ω)) + σ(ya + τ)

≥ ya + τ + (1 − σ)(Ihya − ‖ȳh − yh‖L∞(Ω) − ya − τ),

which shows that we can replace esc by

ẽsc := max(‖(Ihya − ya)
−‖L∞(Ω), ‖(yb − Ihyb)

−‖L∞(Ω)).

If the functions ya, yb can be exactly represented by piecewise linear functions then
ẽsc = 0. This is in particular the case if both state constraints are constant functions.

3.2. Estimate of error in the control variational inequality. As one in-
gredient of the final error estimator we will develop an error estimator for the error
in the variational inequality (2.4). We will comment on the relation to existing work
at the end of Section 4.

At first, let us define the following subsets of Ω

Ω0,h :=
{

x ∈ Ω : ūh(x),−
1

α
p̄h(x) ∈ (ua, ub)

or ūh(x) = ua, αūh(x) + p̄h(x) < 0

or ūh(x) = ub, αūh(x) + p̄h(x) > 0
}

(3.5)

and

Ωa,h :=

{

x : ūh(x) ∈ (ua, ub),−
1

α
p̄h(x) ≤ ua

}

Ωb,h :=

{

x : ūh(x) ∈ (ua, ub),−
1

α
p̄h(x) ≥ ub

}

.

(3.6)

The set Ω0,h contains the points, where ūh and − 1
α p̄h are strict between the bounds,

and where ūh is at the bound but αūh + p̄h has the wrong sign. The sets Ωa,h and
Ωb,h contain points, where ūh is strictly between the bounds, but − 1

α p̄h is not feasible
with respect to these bounds. In addition, we have the following properties

αūh + p̄h ≥ α(ūh − ua) > 0 on Ωa,h,

αūh + p̄h ≤ α(ūh − ub) < 0 on Ωb,h.
(3.7)

Lemma 3.4. Let ūh ∈ Uad and p̄h ∈ L2(Ω) be given. Let the sets Ω0,h, Ωa,h, and
Ωb,h be defined according to (3.5) and (3.6). Then for each u ∈ Uad it holds

(αūh + p̄h, u − ūh) ≥ (χΩ0,h
(αūh + p̄h), u − ūh)

+ (χΩa,h
(αūh + p̄h), ua − ūh) + (χΩb,h

(αūh + p̄h), ub − ūh)
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Proof. The proof follows directly from the definition of the sets, and the properties of
ūh and αūh + p̄h on these sets, confer also (3.7).

In the derivation of the a-posteriori error estimate in Section 3.4, we will use the
following implication of the previous lemma.

Lemma 3.5. Let ūh ∈ Uad and p̄h ∈ L2(Ω) be given. Let the sets Ω0,h, Ωa,h, and
Ωb,h be defined according to (3.5) and (3.6). Then for each u ∈ Uad it holds

(αūh + p̄h, u − ūh) ≥ −
α

4
‖u − ūh‖

2
L2(Ω) − ‖ηvi‖

2
L2(Ω),

where ηvi = ηvi(ūh, p̄h) ∈ L2(Ω) is given by

η2
vi =

1

α
χΩ0,h

(αūh+ p̄h)2+χΩa,h
(αūh+ p̄h)(ūh−ua)+χΩb,h

(αūh + p̄h)(ūh−ub). (3.8)

Proof. The claim follows directly from the definition of ηvi and the inequality

(χΩ0,h
(αūh + p̄h), u − ūh) ≥ −

α

4
‖u − ūh‖

2
L2(Ω) −

1

α
‖αūh + p̄h‖

2
L2(Ω0,h).

The function ηvi will serve as a localizable error estimator for the error in the varia-
tional inequality.

3.3. Estimate of cost functional values with respect to the admissible

point. Due to the feasibility of (ỹ, ũ) the inequality 0 ≤ J(ỹ, ũ)−J(ȳ, ū) holds. Now,
we will derive an upper bound for J(ỹ, ũ) − J(y, u) for arbitrary feasible pairs (y, u)
in terms of the distance ‖u − ũ‖L2(Ω) and of residuals of the optimality system.

Lemma 3.6. Let (ỹ, ũ) be given by Lemma 3.1. Then it holds for all (y, u) satisfying
(1.2)–(1.4)

J(ỹ, ũ) − J(y, u) ≤ −
α

4
‖u − ũ‖2

L2(Ω) + ηa‖u − ũ‖L2(Ω) + ηb,

where ηa, ηb are real numbers depending on (ȳh, ūh, p̄h, µ̄a,h, µ̄b,h), (ỹ, ũ), and the data
of the problem but not on (y, u), see below (3.13).

Proof. Let us introduce the abbreviation r := ‖u − ũ‖L2(Ω).

Since ỹ and y are solutions to the elliptic equations for right-hand sides ũ and u

respectively, we have by Lemma 2.1 the regularity ỹ, y ∈ H2(Ω) ∩ H1
0 (Ω). Since we

have p̄h ∈ Vh ⊂ L2(Ω) the dual product 〈Aỹ − Ay, p̄h〉 is well-defined.

Let us write the differences of the cost functional as

J(ỹ, ũ) − J(y, u) =
1

2
‖ỹ − yd‖

2
L2(Ω) +

α

2
‖ũ‖2

L2(Ω) −
1

2
‖y − yd‖

2
L2(Ω) −

α

2
‖u‖2

L2(Ω)

+ 〈Aỹ − ũ − Ay + u, p̄h〉

= −
1

2
‖ỹ − y‖2

L2(Ω) −
α

2
‖ũ − u‖2

L2(Ω) + (αũ + p̄h, ũ − u)

+ 〈−A∗p̄h + ȳh − yd, ỹ − y〉 + (ỹ − ȳh, ỹ − y)

≤ −
α

2
r2 +

1

2
‖ỹ − ȳh‖

2
L2(Ω) + (αũ + p̄h, ũ − u)

+ 〈−A∗p̄h + ȳh − yd, ỹ − y〉.

(3.9)
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Now we will estimate the third and fourth addend on the right-hand side. By
Lemma 3.5 there exists ηvi ∈ L2(Ω) such that

(αūh + p̄h, u − ūh) ≥ −
α

4
‖u − ūh‖

2
L2(Ω) − ‖ηvi‖

2
L2(Ω) ∀u ∈ L2(Ω) : ua ≤ u ≤ ub.

We then obtain

(αũ + p̄h, ũ − u) = α(ũ − ūh, ũ − u) + (αūh + p̄h, ũ − ūh) + (αūh + p̄h, ūh − u)

≤ α(ũ − ūh, ũ − u) + (αūh + p̄h, ũ − ūh) +
α

4
‖u − ūh‖

2
L2(Ω) + ‖ηvi‖

2
L2(Ω)

≤
α

4
r2 +

3

2
α‖ũ − ūh‖L2(Ω) r +

α

4
‖ũ − ūh‖

2
L2(Ω)

+ (αūh + p̄h, ũ − ūh) + ‖ηvi‖
2
L2(Ω).

(3.10)

Due to the complementarity condition (2.10) on µ̄a,h and the feasibility ya ≤ y it
holds

〈µ̄a,h, ỹ − y〉 = 〈µ̄a,h, ỹ − ȳh + ȳh − ya + ya − y〉

= 〈µ̄a,h, ỹ − ȳh〉 + 〈µ̄a,h, ya − y〉

≤ 〈µ̄a,h, ỹ − ȳh〉.

For analogous reasons we find

−〈µ̄b,h, ỹ − y〉 ≤ −〈µ̄b,h, ỹ − ȳh〉.

Thus, the fourth addend in the estimate above can be estimated as

〈−A∗p̄h + ȳh − yd, ỹ − y〉

= 〈−A∗p̄h + ȳh − yd − µ̄a,h + µ̄b,h, ỹ − y〉 + 〈µ̄a,h, ỹ − y〉 − 〈µ̄b,h, ỹ − y〉

≤ 〈−A∗p̄h + ȳh − yd − µ̄a,h + µ̄b,h, ỹ − y〉 + 〈µ̄a,h − µ̄b,h, ỹ − ȳh〉

≤ C0‖−A∗p̄h + ȳh − yd − µ̄a,h + µ̄b,h‖H−2(Ω) · r + 〈µ̄a,h − µ̄b,h, ỹ − ȳh〉,

(3.11)

where we applied the H2(Ω)-regularity result Lemma 2.1 in the last step.

Combining (3.9)–(3.11), we can estimate the difference of the values of the cost func-
tional as

J(ỹ, ũ) − J(y, u) ≤ −
α

4
r2

+

(

3

2
α‖ũ − ūh‖L2(Ω) + C0‖−A∗p̄h + ȳh − yd − µ̄a,h + µ̄b,h‖H−2(Ω)

)

r

+
1

2
‖ỹ − ȳh‖

2
L2(Ω) +

α

4
‖ũ − ūh‖

2
L2(Ω) + (αūh + p̄h, ũ − ūh) + ‖ηvi‖

2
L2(Ω)

+ 〈µ̄a,h − µ̄b,h, ỹ − ȳh〉, (3.12)

which yields the claim with

ηa :=
3

2
α‖ũ − ūh‖L2(Ω) + C0‖−A∗p̄h + ȳh − yd − µ̄a,h + µ̄b,h‖H−2(Ω)

ηb :=
1

2
‖ỹ − ȳh‖

2
L2(Ω) +

α

4
‖ũ − ūh‖

2
L2(Ω) + (αūh + p̄h, ũ − ūh) + ‖ηvi‖

2
L2(Ω)

+ 〈µ̄a,h − µ̄b,h, ỹ − ȳh〉.

(3.13)
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Remark 3.7. If one uses interior point methods to solve the discretized problem,
then the discrete complementarity condition (2.10), in particular 〈µ̄i,h, ȳh − yi〉 = 0,
i ∈ {a, b}, is not satisfied in general. It turns out that the estimate of the previous
lemma holds true if ηa is replaced by η̃a given by

η̃a := ηa + 〈µ̄a,h, ȳh − ya〉 − 〈µ̄b,h, ȳh − yb〉,

which takes the violation of the discrete complementarity condition into account.

3.4. Upper bound for the error in the control and state. Using the so-
lution of the continuous problem as test functions in Lemma 3.6, we get directly an
estimate of the error in the controls.

Lemma 3.8. With the notations of the previous Lemma 3.6, it holds

‖ūh − ū‖2
L2(Ω) ≤ 2‖ũ − ūh‖

2
L2(Ω) +

8

α2
η2

a +
8

α
ηb.

Proof. By Lemma 3.6, optimality of (ȳ, ū), and feasibility of (ỹ, ũ), we obtain

0 ≤ J(ỹ, ũ) − J(y, u) ≤ −
α

2
‖ū − ũ‖2

L2(Ω) + ηa‖ū − ũ‖L2(Ω) + ηb,

which gives directly

‖ū − ũ‖2
L2(Ω) ≤

4

α2
η2

a +
4

α
ηb.

The claim follows with ‖ūh − ū‖2
L2(Ω) ≤ 2(‖ũ − ūh‖

2
L2(Ω) + ‖ū − ũ‖2

L2(Ω)).

Here, the quantity η2
a can be bounded from above, cf. (3.13), by

η2
a ≤

9

2
α2‖ũ − ūh‖

2
L2(Ω) + 2C2

0‖−A∗p̄h + ȳh − yd − µ̄a,h + µ̄b,h‖
2
H−2(Ω). (3.14)

Now we have everything at hand to derive the upper bound for the discretization error
of control and state. Let us emphasize that all quantities on the right-hand side of
the error estimate (3.15) are computable. In particular, the right-hand side does not
contain any component of the solution (ȳ, ū, p̄, µ̄a, µ̄b) of the continuous optimality
system.

Theorem 3.9. Let (ȳ, ū) be the solution of the continuous optimal control problem
(1.1)–(1.4). Let (ȳh, ūh, p̄h, µ̄a,h, µ̄b,h) be the solution of the discrete problem satisfying
(2.7)–(2.8), (2.10).

Then there is a constant c > 0 that depends only on α, Ω, A, τ such that

‖ūh − ū‖2
L2(Ω) + ‖ȳh − ȳ‖2

L∞(Ω) ≤ c
(

r
(1)
state,L∞ + r

(2)
state,L∞ + r2

state,L2

+ r2
adjoint,L2 + r2

control,L2 + estate

)

(3.15)

where r
(1)
state,L∞ is the scaled L∞-error of the states given by

r
(1)
state,L∞ =

(

max
(

(αūh + p̄h, û − ūh) + 〈µ̄a,h − µ̄b,h, ŷ − ȳh〉, 0
)

+ ‖µ̄a,h − µ̄b,h‖M(Ω)

)

‖yh − ȳh‖L∞(Ω),

10



r
(2)
state,L∞ is the squared and scaled L∞-error of the states given by

r
(2)
state,L∞ =

(

‖û − ūh‖
2
L2(Ω) + ‖ŷ − ȳh‖

2
L2(Ω)

)

‖yh − ȳh‖
2
L∞(Ω),

rstate,L2 is the L2-error of the states given by

rstate,L2 = ‖yh − ȳh‖L2(Ω),

radjoint,L2 is the H−2(Ω)-residual in the adjoint equation

radjoint,L2 = ‖−A∗p̄h + ȳh − yd − µ̄a,h + µ̄b,h‖H−2(Ω),

rcontrol,L2 is the L2(Ω)-residual in the variational inequality defined by

rcontrol,L2 = ‖ηvi‖L2(Ω), where ηvi = ηvi(ūh, p̄h) is given by Lemma 3.5,

and estate is the weighted violation of the state constraints given by

estate = max
(

(αūh + p̄h, û − ūh) + 〈µ̄a,h − µ̄b,h, ŷ − ȳh〉, 0
)

esc

+
(

‖û − ūh‖
2
L2(Ω) + ‖ŷ − ȳh‖

2
L2(Ω)

)

e2
sc,

where esc is defined in Lemma 3.1, eq. (3.2).

Proof. Let us first combine the results of Lemma 3.6 with the estimate of η2
a in (3.14)

and the definition of ηb in Lemma 3.8, eq. (3.13), to obtain

‖ūh − ū‖2
L2(Ω) ≤ 40‖ũ− ūh‖

2
L2(Ω)

+
16C2

0

α2
‖−A∗p̄h + ȳh − yd − µ̄a,h + µ̄b,h‖

2
H−2(Ω)

+
8

α

(1

2
‖ỹ − ȳh‖

2
L2(Ω) + (αūh + p̄h, ũ − ūh) + ‖ηvi‖

2
L2(Ω)

+ 〈µ̄a,h − µ̄b,h, ỹ − ȳh〉
)

.

At first, we have by Lemma 3.1, cf. (3.3),

(αūh + p̄h, ũ − ūh) = (αūh + p̄h, û − ūh)σ

and

‖ũ − ūh‖
2
L2(Ω) = σ2‖û − ūh‖

2
L2(Ω).

With the help of (3.4) we get

〈µ̄a,h − µ̄b,h, ỹ − ȳh〉 = σ〈µ̄a,h − µ̄b,h, ŷ − ȳh〉 + (1 − σ)〈µ̄a,h − µ̄b,h, yh − ȳh〉

≤ σ〈µ̄a,h − µ̄b,h, ŷ − ȳh〉 + ‖µ̄a,h − µ̄b,h‖M(Ω)‖y
h − ȳh‖L∞(Ω).

Similarly, we can estimate using σ ≥ 0

‖ỹ − ȳh‖
2
L2(Ω) = ‖σ(ŷ − ȳh) + (1 − σ)(yh − ȳh)‖2

L2(Ω)

≤ 2
(

σ2‖ŷ − ȳh‖
2
L2(Ω) + ‖yh − ȳh‖

2
L2(Ω)

)

.
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Hence there is a constant c > 0 depending only on α, Ω, A such that

‖ūh − ū‖2
L2(Ω) ≤ c

{

‖û − ūh‖
2
L2(Ω)σ

2

+ ‖−A∗p̄h + ȳh − yd − µ̄a,h + µ̄b,h‖
2
H−2(Ω)

+ ‖ŷ − ȳh‖
2
L2(Ω)σ

2 + (αūh + p̄h, û − ūh)σ + ‖η‖2
L2(Ω)

+ 〈µ̄a,h − µ̄b,h, ŷ − ȳh〉σ
)

.

(3.16)

The value of σ can be bounded according to Lemma 3.1 by

σ ≤ τ−1(‖yh − ȳh‖L∞(Ω) + esc),

where esc is the state constraint violation defined in (3.2). Using this estimate in
(3.16), the claim follows.

In Section 4, we will prove convergence to zero of the upper bound (3.15) if the discrete
quantities converge in some sense to solutions of the optimality system in Theorem
2.3.

3.5. Localized a-posteriori error estimates. In the previous sections, we
developed error bounds for the discretization error. These bounds contain terms that
are still not fully accessible. In particular, it needs to be specified, how the L2- and
L∞-discretization errors of the states as well as the residual of the adjoint equation
can be calculated.

For the L2-error of the states, we have the following result, which is a standard
estimate, see e.g. [4]. Recall that ȳh is the solution of the discretized equation (2.6)
with right-hand side ūh, while yh is the solution of the elliptic equation (3.1) with the
same right-hand side ūh.

Lemma 3.10. There is a constant c > 0 depending on Ω, the polynomial degree l,
and the shape regularity of the triangulation such that

‖yh − ȳh‖L2(Ω) ≤ c η2
state,L2

with η2
state,L2 =

∑

T∈T η2
T,state,L2 and

η2
T,state,L2 =

(

h4
T ‖∆ȳh + ūh‖

2
L2(T ) + h3

T

∥

∥

∥

∥

[

∂ȳh

∂n

]∥

∥

∥

∥

2

L2(∂T\Γ)

)

.

Here,
[

∂ȳh

∂n

]

denotes the jump of the normal derivative across interior edges.

To estimate the L∞-error we use the following reliable and efficient error estimator
from [19].

Lemma 3.11. There is a constant c > 0 depending on Ω, the polynomial degree l,
and the shape regularity of the triangulation such that

‖yh − ȳh‖L∞(Ω) ≤ c ηstate,L∞

with ηstate,L∞ = maxT∈T ηT,state,L∞ and

ηT,state,L∞ = | log hmin|
2

(

h2
T ‖∆ȳh + ūh‖L∞(T ) + hT

∥

∥

∥

∥

[

∂ȳh

∂n

]
∥

∥

∥

∥

L∞(∂T\Γ)

)

.
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It remains to describe the estimation of the H−2-residual of the adjoint equation. For
a test function φ ∈ V = H1

0 (Ω)∩H2(Ω) we will employ the Lagrange interpolation Ihφ,
which has the property φ(xi) = (Ihφ)(xi) for all nodes xi. Due to the assumptions
on Vh we get Ihφ ∈ Vh. Let p̄h solve the discrete adjoint equation (2.9). We have

‖−A∗p̄h + ȳh − yd − µ̄a,h + µ̄b,h‖H−2(Ω)

= sup
φ∈V, ‖φ‖

H2(Ω)=1

〈−A∗p̄h + ȳh − yd − µ̄a,h + µ̄b,h, φ〉

= sup
φ∈V, ‖φ‖

H2(Ω)=1

〈−A∗p̄h + ȳh − yd − µ̄a,h + µ̄b,h, φ − Ihφ〉.

Since µ̄a,h and µ̄b,h are a linear combination of Dirac measures concentrated in the
mesh nodes, it holds

〈−µ̄a,h + µ̄b,h, φ − Ihφ〉 = 0,

which implies

‖−A∗p̄h + ȳh − yd − µ̄a,h + µ̄b,h‖H−2(Ω) = sup
φ∈V, ‖φ‖

H2(Ω)=1

〈−A∗p̄h + ȳh − yd, φ − Ihφ〉.

Following [1] we obtain

Lemma 3.12. There is a constant c > 0 depending on Ω, the polynomial degree l,
and the shape regularity of the triangulation such that

‖−A∗p̄h + ȳh − yd − µ̄a,h + µ̄b,h‖H−2(Ω) ≤ c η2
adjoint,L2

with η2
adjoint,L2 =

∑

T∈T η2
T,adjoint,L2 and

η2
T,adjoint,L2 =

(

h4
T ‖∆p̄h + ȳh − yd‖

2
L2(T ) + h3

T

∥

∥

∥

∥

[

∂p̄h

∂n

]
∥

∥

∥

∥

2

L2(∂T\Γ)

)

.

Although this result of [1] is formulated only for n = 2, l = 1, and a single Dirac
measure, the proofs carry over one-to-one to the case considered here: n ∈ {2, 3},
general FE-space Vh with l ≥ 1, right-hand side consists of linear combination of
Dirac measures concentrated in the nodes.

In these Lemmata, we cited only the reliability estimates (i.e. upper error bounds).
For all three estimators also lower error bounds (efficiency estimates) are available.

The localization of the estimator of the error in the variational inequality is an obvious
choice. Let us define

η2
T,control,L2 := ηvi|T ,

where ηvi = η(ūh, p̄h) is the function constructed in Lemma 3.5.

Combining the estimates of this section with the result of Theorem 3.9, we get our
main result, which is the localized a-posteriori error estimate.

Theorem 3.13. Let (ȳ, ū) be the solution of the continuous optimal control problem
(1.1)–(1.4). Let (ȳh, ūh, p̄h, µ̄a,h, µ̄b,h) satisfy (2.7)–(2.8), (2.10).
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Then there is a constant c > 0 depending on α, Ω, τ , and the shape regularity of the
triangulation, and a weight ω∞,h > 0 such that

‖ūh − ū‖2
L2(Ω) + ‖ȳh − ȳ‖2

L∞(Ω) ≤ c
(

η2
L2 + ω∞,h ηstate,L∞ + estate

)

with η2
L2 =

∑

T∈T η2
T,L2 and

η2
T,L2 = η2

T,state,L2 + η2
T,control,L2 + η2

T,adjoint,L2 .

The weight ω∞,h depends on the discrete quantities (ȳh, ūh, p̄h, µ̄a,h, µ̄b,h). The map-
ping from (ȳh, ūh, p̄h, µ̄a,h, µ̄b,h) to ω∞,h is bounded from C(Ω̄) × L2(Ω) × L2(Ω) ×
M(Ω) × M(Ω) to R.

Proof. The result follows directly from Theorem 3.9 and Lemmata 3.10, 3.11, and
3.12. The quantity ω∞,h is given by

ω∞,h = max
(

(αūh + p̄h, û − ūh) + 〈µ̄a,h − µ̄b,h, ŷ − ȳh〉, 0
)

+ ‖µ̄a,h − µ̄b,h‖M(Ω)

+
(

‖û − ūh‖
2
L2(Ω) + ‖ŷ − ȳh‖

2
L2(Ω)

)

‖yh − ȳh‖L∞(Ω),

cf. the definition of r
(1)
state,L∞ and r

(2)
state,L∞ in Theorem 3.9. The mapping ūh 7→ yh is

bounded from L2(Ω) to L∞(Ω) by Lemma 2.1, which proves the claimed boundedness
of ω∞,h.

3.6. Marking strategy. It remains to describe, how to mark elements for re-
finement. Here, we follow the common strategy to mark elements that have rela-
tively large local error indicators. In our case, see Theorem 3.13, the error indicator
contains two terms with different accumulation properties: η2

L2 =
∑

T∈T η2
T,L2 and

ηstate,L∞ = maxT∈T (ηT,state,L∞ + eT,state).

As marking strategy we employ the one used in [19]. Let us define

η2
2 := η2

L2

η∞ := ω∞,h ηstate,L∞ + estate

η := max(η2, η∞).

We choose an error indicator ηi if it is relatively large compared to the total error,
that is if ηi ≥ θ1η, i ∈ {2,∞}. For a chosen error indicator ηi, we mark elements by
the maximum strategy, that is, elements T̂ with ηT̂ ,i ≥ θ2 maxT∈Th

ηT,i are marked

for refinement. Here, the parameters θ1, θ2 are taken from (0, 1). In our computations
we used θ1 = 0.2, θ2 = 0.8.

4. Convergence of error bound. In this section we will prove the convergence
to zero of the error bound of Theorem 3.9 if the solution of the discrete system
converges in the following sense.

Assumption 4. Let a sequence of meshes Tk with associated solutions of the dis-
crete problem {(ȳhk

, ūhk
, p̄hk

, µ̄a,hk
, µ̄b,hk

)} be given. Let us assume that we have the
following properties of this sequence:

(i) The sequence (ȳhk
, ūhk

) converges strongly to (ȳ, ū) in C(Ω̄) × L2(Ω).
(ii) The sequence (p̄hk

, µ̄a,hk
, µ̄b,hk

) is bounded in W 1,q(Ω) × M(Ω) × M(Ω) with
2n

2+n < q < n
n−1 .
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(iii) For each subsequence (p̄hk′
, µ̄a,hk′

, µ̄b,hk′
) with p̄hk′

⇀ p̄ in W 1,q(Ω), q > 2n
2+n ,

and (µ̄a,hk′
, µ̄b,hk′

) ⇀∗ (µ̄a, µ̄b) in M(Ω)×M(Ω) the limit element (p̄, µ̄a, µ̄b)
is a Lagrange multiplier to (ȳ, ū), i.e. the system (2.2)–(2.4) is satisfied.

Please note, that the requirements of this assumption are satisfied for a uniform
refinement of the mesh, see e.g. [13, Chapter 3]. However, convergence of the mesh
size h → 0 is not explicitly required.

Let us recall the error representation of Theorem 3.9, which reads

‖ūh − ū‖2
L2(Ω) + ‖ȳh − ȳ‖2

L∞(Ω) ≤ c
(

r
(1)
state,L∞ + r

(2)
state,L∞ + r2

state,L2

+ r2
adjoint,L2 + r2

control,L2 + estate

)

.

Lemma 4.1. Let Assumption 4 be satisfied. Then it holds

r
(1)
state,L∞ + r

(2)
state,L∞ + r2

state,L2 + r2
adjoint,L2 + estate → 0

for k → ∞.

Proof. Let us define yhk to be the solution of (3.1) to the control ūhk
. Then we have

‖yhk − ȳhk
‖L∞(Ω) ≤ ‖yhk − ȳ‖L∞(Ω) + ‖ȳ − ȳhk

‖L∞(Ω)

≤ C‖ūhk
− ū‖L2(Ω) + ‖ȳ − ȳhk

‖L∞(Ω).

which proves that r
(1)
state,L∞ , r

(2)
state,L∞ , and similarly rstate,L2 converge to zero under

the Assumption 4.

Because of yhk
→ ȳ in C(Ω̄) and the feasibility of ȳ with respect to the control

constraints, the state constraint violation esc and consequently estate tend to zero.

Let weak (weak∗) converging subsequences (p̄hk′
, µ̄a,hk′

, µ̄b,hk′
) be given. Then by

compact embeddings and after extracting another subsequence p̄hk′′
→ p̄ in L2(Ω)

and (µ̄a,hk′
, µ̄b,hk′

) → (µ̄a, µ̄b) in H−2(Ω). Hence radjoint,L2 → 0 for this subsequence.
Since the subsequence (k′) was chosen arbitrary, it follows radjoint,L2 → 0 for k → ∞.

The discussion of the estimator rcontrol,L2 is more involved, and thus we state and
prove it separately. For convenience, let us recall its definition. In Theorem 3.9 we
set rcontrol,L2 := ‖ηvi‖L2(Ω), where ηvi was given by Lemma 3.5 and defined by

η2
vi =

1

α
χΩ0,h

(αūh + p̄h)2 + χΩa,h
(αūh + p̄h)(ūh − ua) + χΩb,h

(αūh + p̄h)(ūh − ub),

where the sets Ω0,h, Ωa,h, Ωb,h were defined as

Ω0,h =
{

x ∈ Ω : ūh(x),−
1

α
p̄h(x) ∈ (ua, ub)

or ūh(x) = ua, αūh(x) + p̄h(x) < 0

or ūh(x) = ub, αūh(x) + p̄h(x) > 0
}

and

Ωa,h =

{

x : ūh(x) ∈ (ua, ub),−
1

α
p̄h(x) ≤ ua

}

Ωb,h =

{

x : ūh(x) ∈ (ua, ub),−
1

α
p̄h(x) ≥ ub

}

.
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Lemma 4.2. Let Assumption 4 be satisfied. Then it holds

rcontrol,L2 → 0.

Proof. Since the controls uhk
are feasible for the discrete problem, they are uniformly

bounded in L∞(Ω). Hence, the sequence uhk
converges to ū in Ls(Ω) for all 2 ≤

s < ∞. Moreover, as argued above, each weakly converging subsequence p̄hk′
has a

strongly converging subsequence p̄hk′′
→ p̄ in L2(Ω). By Assumption 4, we have that

the variational inequality (2.4) is satisfied.

In the course of the proof, we will bound ‖ηvi‖L2(Ω) in terms of ‖p̄hk′′
− p̄‖L2(Ω) and

‖ūhk′′
− ū‖Ls(Ω), s > 2. To simplify the notation, we will drop the index k′′.

At first, let us note that

ηvi(x)2 ≤
1

α
|αūh(x) + p̄h(x)|2 (4.1)

follows directly from the definition of ηvi, Ωa,h, and Ωb,h, confer also (3.7).

Now, we will discuss upper bounds of ηvi on different subsets of Ω.

Case (1): Ω1 = {x ∈ Ω : αū(x) + p̄(x) = 0}.

Using (4.1) it follows directly

‖ηvi‖
2
L2(Ω1) ≤ α−1‖αūh + p̄h − (αū + p̄)‖2

L2(Ω1)

≤ α−1(α‖ūh − ū‖L2(Ω) + ‖p̄h − p̄‖L2(Ω))
2.

(4.2)

Case (2a): Ω2,a = {x ∈ Ω : ūh(x) = ū(x) = ua}. Here, we have

‖ηvi‖
2
L2(Ω2,a) = α−1‖(αūh + p̄h)−‖2

L2(Ω2,a)

= α−1
∥

∥(αūh + p̄h)− − (αū + p̄)−
∥

∥

2

L2(Ω2,a)

≤ α−1(α‖ūh − ū‖L2(Ω) + ‖p̄h − p̄‖L2(Ω))
2.

Case (2b): Ω2,b = {x ∈ Ω : ūh(x) = ū(x) = ub}. Analogous to Case (2a).

Case (3a): Ω3,a = {x ∈ Ω : ū(x) = ua} ∩ Ωa,h. Here, we have by definition of ηvi

ηvi(x)2 = (αūh + p̄h)(ūh − ua) = (αūh + p̄h)(ūh − ū).

Hence, it holds ‖ηvi‖
2
L2(Ω3,a) ≤ ‖αūh + p̄h‖L2(Ω)‖ūh − ū‖L2(Ω).

Case (3b): Ω3,b = {x ∈ Ω : ū(x) = ub} ∩ Ωb,h. Analogous to Case (3a).

Case (4a): Ω4,a = {x ∈ Ω : ūh(x),− 1
α p̄h(x) ∈ (ua, ub), ū(x) = ua, − 1

α p̄(x) < ua}.
The inequality − 1

α p̄(x) < ua = ū(x) < − 1
α p̄h(x) implies

|αūh + p̄h| ≤ α|ūh − ū| + α|ū − (−α−1p̄h)| ≤ α|ūh − ū| + | − p̄ − (−p̄h)|

which proves with (4.1)

‖ηvi‖
2
L2(Ω4,a) ≤

1

α
‖αū(x) + p̄(x)‖2

L2(Ω4,a) ≤ ‖p̄h − p̄‖2
L2(Ω4,a).
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Case (4b): Ω4,b = {x ∈ Ω : ūh(x),− 1
α p̄h(x) ∈ (ua, ub), ū(x) = ub, − 1

α p̄(x) < ub}.
Analogous to Case (4a).

Case (5a): Ω5,a = {x ∈ Ω : ū(x) = ua} ∩ Ωb,h. Here, we have − 1
α p̄(x) ≤ ua < ub <

− 1
α p̄h(x). By Chebyshev’s inequality, we obtain

|Ω5,a| ≤
∣

∣

{

x : α−1|p̄h(x) − p̄(x)| ≥ |ub − ua|
}∣

∣

≤

∫

Ω\Ω2

|p̄h(x) − p̄(x)|2

α2|ub − ua|2

≤
1

(α|ub − ua|)2
‖p̄h − p̄‖2

L2(Ω).

Together with the definition ηvi on Ωb,h, we find

‖ηvi‖
2
L2(Ω5,a) ≤ |Ω5,a|

1/2‖αūh + p̄h‖L2(Ω)‖ūh − ub‖L∞(Ω) ≤ c‖p̄h − p̄‖L2(Ω).

Case (5b): Ω5,b = {x ∈ Ω : ū(x) = ub} ∩ Ωa,h. Analogous to Case (5a).

Case (6): Ω6 = {x ∈ Ω : ū(x), ūh(x) ∈ {ua, ub}, ū(x) 6= ūh(x)}. That is, here the
control constraints are active at ū and ūh but both are not equal. Similarly as in Case
(5a) we estimate

|Ω6| ≤
∣

∣

{

x : |ū(x) − ūh(x)| ≥ |ub − ua|
}∣

∣

≤

∫

Ω\Ω2

|ūh(x) − ū(x)|s

|ub − ua|s

≤
1

|ub − ua|s
‖ūh − ū‖s

Ls(Ω),

which yields due to Ω6 ⊂ Ω0,h

‖ηvi‖
2
L2(Ω6)

≤
1

α
|Ω6|

1−2/s‖αūh + p̄h‖
2
Ls(Ω) ≤ C‖ūh − ū‖s−2

Ls(Ω).

Let us argue that the splitting introduce by the cases above covers Ω. Due to first order
optimality conditions, Ω can be divided in sets, where αū + p̄ = 0 and ū ∈ {ua, ub}.
The first possibility is covered by Case (1). The case that both ū and ūh are at the
bounds is contained in Case (2) and Case (6). Now it remains to cover the set, where
ū ∈ {ua, ub} and ūh ∈ (ua, ub). The subset, where − 1

α p̄h is not in (ua, ub), is discussed
in Case (3) and Case (5). And Case (4) covers the subset, where − 1

α p̄h is in (ua, ub).

Summing up all the estimates, we find the convergence ηvi → 0 in L2(Ω) for the
subsequence (k′′) chosen above. This implies that for every subsequence of (ūhk

, p̄hk
)

we can choose a subsequence such that the corresponding quantity ηvi converges to
zero, which finishes the proof.

As a consequence of these results we obtain the main result of this section.

Theorem 4.3. Let Assumption 4 be satisfied. Then the error bound given by Theorem
3.9 converges to zero for k → ∞, e.g.

(

r
(1)
state,L∞ + r

(2)
state,L∞ + r2

state,L2 + r2
adjoint,L2 + r2

control,L2 + estate

)

→ 0.
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Let us now comment on different available error estimators for the error in the varia-
tional inequality connected to the control constraints. To the best of our knowledge,
all estimators in the literature contain in their upper bounds quantities that do not
tend to zero as (ūh, p̄h) converges, which makes it difficult to prove a convergence
result similar to Lemma 4.2.

Let us first compare our findings to the error estimator as considered by Krumbiegel
and Rösch [15]. Their error estimator ηKR coincides with ηvi as developed here except
for the definition on the sets Ωa,h, Ωb,h, i.e.

ηKR = χΩ0,h
ηvi +

1

α
χΩa,h∪Ωb,h

(αuh + ph)2.

which implies ‖ηvi‖
2
L2(Ω) ≤ ‖ηKR‖

2
L2(Ω) by (3.7). The error estimator ηKR does not

allow a convergence proof comparable to Lemma 4.2. To this end consider the follow-
ing example: let the constant functions ua = 0, ub = 1, α = 1, ū = 0, p̄ = p̄h = 1, and
ūh = h be given. That means, the values are chosen in such a way that Ωa,h = Ω and
correspond to the Case (3a) in the proof of Lemma 4.2. Our error estimator gives
‖ηvi‖

2
L2(Ω) = (αūh + p̄h, ūh − ua) = (αh + 1) · h · |Ω| → 0 as h → 0. The estimator of

[15] yields ‖ηKR‖
2
L2(Ω) = 1

α‖αh + 1‖2
L2(Ω), which does not converge to zero as h → 0.

Similar situations as in the example will occur if one uses interior point methods to
get rid of the control constraints in the discrete optimization problem.

Second, let us comment on the error estimator analyzed by Hintermüller, Hoppe,
Iliash, and Kieweg in [11]. There an efficient and reliable error estimator for opti-
mal control problems with a lower control bound is developed. They prove that the
estimator is equivalent (up to higher order terms) to the error

‖ȳ − ȳh‖H1(Ω) + ‖p̄ − p̄h‖H1(Ω) + ‖ū − ūh‖L2(Ω) + ‖σ − σh‖L2(Ω),

with σ := αū + p̄ and σh := αūh + Πhp̄h. However, it is not clear, whether it holds
‖σ − σh‖L2(Ω) → 0 if (uh, ph) converges to (ū, p̄). Indeed, for Case (3a) in the proof
of Lemma 4.2 one has the following. If (uh, ph) are solutions of the discrete optimal
control problem it holds αuh + Πhph = 0 on this set, since uh is not at the control
bounds. This implies that

‖σ − σh‖L2(Ω) = ‖(αū + p̄) − (αuh + Πhph)‖L2(Ω3,a) = ‖αū + p̄‖L2(Ω3,a).

However, since ū = ua holds on Ω3,a by definition, this quantity is in general non-zero.
In order to prove ‖σ − σh‖L2(Ω) → 0, one has to prove in addition that the measure
of Ω3,a tends to zero.

Finally, we comment on the error estimator for control constrained optimal control
problems as considered by Li, Liu, and Yan [16]. The error estimator developed there
converges to zero under the assumption that (ȳh, ūh, p̄h) converges to (ȳ, ū, p̄), an
assumption on the regularity of the active sets, and the assumption h → 0. Clearly
our convergence result Lemma 4.2 holds under weaker assumptions on ūh, p̄h.

5. Numerical experiment. Let us report on numerical results with adaptive
refinement using the error estimator developed in the present article.

The data of the example is taken from [6]. It was originally posed for Ω = B1(0). We
modified it to work with Ω = [−1, 2]2.
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The data of the problem is given in polar coordinates. For convenience we define
r =

√

x2
1 + x2

2. Let us set

ū(r) = −
1

2πα
χ{r≤1}(log r + r2 − r3)

ȳ(r) =
1

2πα
χ{r≤1}

(

r2

4
(log r − 2) +

r3

4
+

1

4

)

p̄(r) = −αū(r)

µ̄a(r) = δ0(r)

f(r) =
1

8π
χ{r≤1}(4 − 9r + 4r2 − 4r3)

yd(r) = ȳ(r) +
1

2π
χ{r≤1}(4 − 9r)

ya(r) =
1

2πα

(

1

4
−

r

2

)

.

The problem features one lower state constraint, there are no upper state constraint
and no control constraints given.

One can verify that (ȳ, ū, p̄, µ̄a) is the solution of the problem: Minimize J(y, u) given
by

J(y, u) =
1

2
‖y − yd‖

2
L2(Ω) +

α

2
‖u‖2

L2(Ω)

subject to

−∆y = u + f in Ω
y = 0 on Γ,

and

ya ≤ y in Ω.

Moreover, one can verify that

û(r) = χ{r≤1}(−12 + 18r) ŷ(r) = χ{r≤1}(1 + 3r2 − 2r3)

fulfills Assumption 2 with τ = 0.24999.

Due to the special structure of the problem, the dual quantities are uniquely de-
termined. Please note, that the adjoint state has a pronounced singularity. Since
the data of the problem are smooth, there is no chance to perform an a-priori mesh
refinement to resolve the singularity.

To avoid superconvergence effects, we ensured that the point x = (0, 0) cannot be
a node of the grid for any refined mesh. This is achieved with a coarse grid mesh
generated as a uniform triangulation with 8 triangles.

Figure 5.1 shows the adaptively refine mesh after 5 refinement steps. It shows local
refinement around the singularity at (0, 0), which appears only in the adjoint equa-
tion and thus is not identifiable a-priori. The right-hand plot compares the error
‖ūh − ū‖L2(Ω) for adaptive and uniform mesh refinement. Clearly, the adaptive mesh
refinement leads to a better approximation of the solution with respect to the number
of unknowns.
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Fig. 5.1. Adaptively refined mesh; Comparison of ‖ūh − ū‖
L2(Ω) vs. number of unknowns for

uniform vs. adaptive refinement

6. Conclusion. In this article, we developed a fully computable a-posteriori
error estimator for state and control constrained optimal control problems. Moreover,
we showed that the estimator tends to zero if the solution of the discretized problems
converge to the solution of the undiscretized problem.
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