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Abstract

A family of continuous piecewise linear finite elements for thin plate problems is
presented. We use standard linear interpolation of the deflection field to reconstruct a
discontinuous piecewise quadratic deflection field. This allows us to use discontinuous
Galerkin methods for the Kirchhoff–Love plate equation. Three example reconstructions
of quadratic functions from linear interpolation triangles are presented: a reconstruction
using Morley basis functions, a fully quadratic reconstruction, and a more general least
squares approach to a fully quadratic reconstruction. The Morley reconstruction is shown
to be equivalent to the Basic Plate Triangle. Given a condition on the reconstruction op-
erator, a priori error estimates are proved in energy norm and L2 norm. Numerical results
indicate that the Morley reconstruction/Basic Plate Triangle does not converge on unstruc-
tured meshes while the fully quadratic reconstruction show optimal convergence.
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1 Introduction
The Kirchhoff-Love plate equation is a fourth order partial differential equation modeling the
deflection of thin plates. To approximate solutions to this equation using standard finite ele-
ment methods C1 finite element spaces are required. The difficulty of creating such spaces on
unstructured triangulations is a well known problem. A possible C1 element is the conforming
Argyris triangle [1] which use a fifth order polynomial approximation. Nonconforming options
include the Morley triangle [10] and more recently discontinuous Galerkin (dG) methods [6, 8].
While it is clear that higher order elements are in many ways superior for modeling the plate
equation, an advantage of low order elements lies in modeling complex domains using few
degrees of freedom. With the extension to shells and the desired conformity when combining
shells and volumes the advantages of low order elements that only feature displacement de-
grees of freedom become obvious. While this is a possibility when using dG methods, current
formulations [6, 8] require at least piecewise quadratic polynomials to yield accurate results.
The focus of this paper is accurate modeling of the plate equation using a continuous piecewise
linear deflection field.

Several authors have tried to develop finite element methods for thin plate modeling using
a continuous piecewise linear deflection field. Since most terms in the variational formulation
then vanish there is a need to discretely approximate higher order quantities to retain sufficient
information. Therefore a common trait for this class of elements is that patches of elements
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are used for these approximations. Nay and Utku [11] used a patch of elements to reconstruct
a quadratic deflection field on each element using least squares approximation. Barnes [2]
introduced a facet triangular plate element where the normal curvature to each edge is approx-
imated from the change in normal gradient to neighboring elements. In a similar approach
Hampshire [7] derived a plate element where the stiffness was represented by torsional springs
at each edge. Also based on the idea of torsional springs at element edges Phaal and Calladine
[14, 15] presented a family of facet plate and shell elements which use quadratic polynomial
reconstruction to calibrate the spring coefficients. By using a mixed interpolation technique in
combination with finite volume concepts Oñate and Cervera [12] and Oñate and Zárate [13]
proposed a procedure for deriving linear thin plate and shell elements.

In this paper we present a framework for constructing continuous piecewise linear finite
elements for the Kirchhoff-Love plate equation. The fundamental idea is to use patches of a
continuous piecewise linear function to reconstruct a discontinuous piecewise quadratic func-
tion which is used in a dG formulation. We apply the framework for reconstructions in a finite
element formalism presented in [3] to a general dG method for the Kirchhoff-Love plate equa-
tion [8]. Three example reconstructions are presented and related to existing elements. Given
a condition on the reconstruction operator we prove a priori error estimates in the energy norm
and in the L2 norm.

The remainder of this paper is organized as follows; in Section 2 we present the Kirchhoff-
Love plate model and the discontinuous Galerkin method using piecewise quadratics contin-
uous at the nodes, in Section 3 we present three reconstructions from continuous piecewise
linears into piecewise quadratics, in Section 4 we prove a priori error estimates, and in Section
5 we present convergence studies and numerical examples.

2 The Plate Model and dG Method

2.1 The Kirchhoff-Love Plate Model
The Kirchhoff-Love equilibrium equation governing the deflection of a thin elastic plate occu-
pying a plane domain Ω takes the form: Given f , find the deflection u such that

σi j,i j = f in Ω (2.1)

where we use the summation convention and the comma sign indicates differentiation. The
relationship between moments σi j and curvatures κi j is given by

σi j = λ∆uδi j +µκi j(u), i, j = 1,2 (2.2)

where δi j is the Kronecker delta, ∆ is the Laplacian, λ and µ are Lamé parameters, and κi j are
curvatures defined by κi j(u) = u,i j. Using Poisson’s ratio ν and bending stiffness D we can
write the Lamé parameters λ = Dν and µ = D(1− ν). The bending stiffness of the plate is
defined by

D =
E p3

12(1−ν2)
(2.3)

where E is Young’s modulus and p is the thickness of the plate.
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Let n = (n1,n2) be an outwards unit normal to the boundary Γ = ∂Ω and let t = (t1, t2) =
(n2,−n1) be a tangent to Γ. To define the boundary conditions we need the following quantities

u,n = u, jn j (2.4)
u,t = u, jt j (2.5)

Mnn = σi jnin j (2.6)
Mnt = σi jnit j (2.7)

T = σi j, jni +Mnt,t (2.8)

where u,n and u,t are normal and tangential gradients, Mnn and Mnt are bending and twisting
moments, and T is the transversal force.

We split the boundary into three disjoint parts Γ = ΓC ∪ΓS ∪ΓF and let these parts define
a clamped boundary, a simply supported boundary, and a free boundary. Let the set of angular
corners on ΓF be denoted XF . The boundary conditions read

u = u,n = 0 on ΓC (2.9)
u = Mnn = 0 on ΓS (2.10)
Mnn = T = 0 on ΓF (2.11)
Mn+t+ = Mn−t− at XF (2.12)

where {n+, t+} and {n−, t−} denote the normal and tangent of Γ at respective sides of an
angular corner.

Let Hs(ω) denote the Sobolev space of order s on the set ω ⊂Ω, with norm ‖·‖s,ω and semi-
norm |·|m,ω defined for m ≤ s. Introducing the following function space where the essential
boundary conditions are imposed

W = {v ∈ H2(Ω) : v = v,n = 0 on ΓC, v = 0 on ΓS} (2.13)

we recall that the standard variational statement reads: Find u ∈W such that

(σi j(u),κi j(v)) = ( f ,v) for all v ∈W (2.14)

The calculations leading to this variational statement will be performed in Section 2.1.2, albeit
on an element level.

2.1.1 The Mesh and Discontinuous Space

LetK= {K} be a triangulation of Ω into geometrically conforming shape regular triangles. We
denote the diameter of element K by hK and the global mesh size parameter by h = maxK∈K hK .
Further, let the mesh be quasi-uniform such that

ch≤ hK ≤Ch for all K (2.15)

where c and C are mesh independent constants. The set of edges in the mesh is denoted by
E = {E} and the set of nodes in the mesh is denoted by V = V(K) = V(E). We split E into
disjoint subsets

E = EI ∪EC∪ES∪EF (2.16)
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where EI is the set of edges in the interior of Ω, EC is the set of edges on ΓC, etc. Further, with
each edge we associate a fixed unit normal nE and a corresponding unit tangent tE such that for
edges on the boundary nE is the exterior unit normal. On each node ∂E belonging to edge E
we define ∂nE = 1 if tE points outwards from E and ∂nE =−1 is tE points inwards to E.

For reasons that become evident when we define the reconstruction operators we make a
special construction: for every exterior edge E ∈ E\EI we add a ghost element outside the
domain by placing an additional a degree of freedom, a ghost node, such that the ghost element
becomes anti-symmetric to the interior element, see Figure 1(b). We denote the set of ghost
elements by KG.

Next we define a number of function spaces: Let CP1(S) denote the space of continuous
piecewise linear functions with support on a set of elements S

CP1(S) = {v ∈C0(Ω) : v|K ∈ P1(K) for all K ∈ S} (2.17)

and let CP1 denote the space of continuous piecewise linear functions with support on K∪KG
and zero on the clamped and the simply supported boundary

CP1 = {v ∈ CP1(K∪KG) : v = 0 on x ∈ EC∪ES} (2.18)

Furthermore, let DP2 denote the space of discontinuous piecewise quadratic polynomials

DP2 = {v : v|K ∈ P2(K) for all K ∈ K} (2.19)

and finally let DPV denote the space of discontinuous piecewise quadratic polynomials that
are continuous at the nodes and zero on nodes associated with the clamped and the simply
supported boundaries

DPV = {v ∈ DP2 : v continuous in x ∈ V , v = 0 in x ∈ V(EC∪ES)} (2.20)

To formulate our method we will use the following notation for the average

〈v〉=
{
(v++ v−)/2 E ∈ EI

v+ E ∈ E \EI
(2.21)

and for the jump

[v] =

{
v+− v− E ∈ EI

v+ E ∈ E \EI
(2.22)

of a function v at an edge E, where v± = limε→0+ v(x∓ εnE) with x ∈ E.

2.1.2 Variational Formulation on an Element

As a motivation for the dG method we will here derive a variational formulation on each ele-
ment. We multiply (2.1) by a test function v ∈ H4 = H4(Ω) and integrate over K. Applying
Green’s formula two times gives

(σi j,i j,v)K =−(σi j,i,v, j)K +(σi j,i,vn j)∂K

= (σi j,v,i j)K− (σi jni,v, j)∂K +(σi j,i,vn j)∂K

= (σi j,v,i j)K− (Mnn,v,n)∂K− (Mnt ,v,t)∂K +(σi j,i,vn j)∂K

(2.23)
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where we use that v, j = v,nn j + v,tt j in the last equality.
Partial integration along an edge segment E gives

(Mnt ,v,t)E =−(Mnt,t ,v)E +(Mnt ,vn∂E)∂E (2.24)

Combining (2.23) and (2.24) we have the following variational formulation on the element
level

(σi j(u),κi j(v))K−
∑

E⊂∂K

(
(Mnn,v,n)E − (T,v)E +(Mnt ,vn∂E)∂E

)
= ( f ,v)K (2.25)

for all v ∈ H4.

2.1.3 Discrete Moments and Corner Forces

By giving definitions of the bending and twisting moments and the transversal force on ele-
ment edges for functions in DPV which is consistent for functions in H4 we can extend the
elementwise variational statement (2.25) to a variational statement on H4 +DPV . Following
the procedure in [8] and motivated by the proof of Lemma 4.5 below we for v ∈ H4 +DPV
introduce the following definitions of these quantities on each element edge E ∈ E unless pre-
viously defined by boundary conditions:

Mnn(v) = 〈Mnn(v)〉−βh−1P0[v,n] (2.26)
T (v) = 〈T (v)〉 (2.27)

Mnt(v) = 〈Mnt(v)〉 (2.28)

where β is a positive parameter and P0 is the L2 projection onto the space of constants. Using
these definitions in (2.25) and summing over all elements K ∈ K yields a variational statement
on H4 +DPV .

Due to the nodal continuity of H4+DPV terms containing the twisting moment will vanish
on all interior edges. On the boundary pointwise twisting moments will appear where the
boundary is not smooth, but given the homogeneous boundary conditions these terms will be
zero on ΓC∪ΓS as v = 0, and also zero on ΓF due to (2.12).

The resulting variational statement is nonsymmetric but we may symmetrize the variational
statement without affecting consistency as the added terms become zero for the exact solution.

Next we present the resulting variational statement on H4 +DPV .

2.1.4 Extended Variational Statement

The extended variational statement reads: Find u ∈ H4 +DPV such that

a(u,v) = l(v) for all v ∈ H4 +DPV (2.29)
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where the bilinear form is defined by

a(v,w) =
∑
K∈K

(σi j(v),κi j(w))K

−
∑

E∈E\(ES∪EF )

(
(〈Mnn(v)〉 , [w,n])E +([v,n] ,〈Mnn(w)〉)E

−β (h−1P0[v,n],P0[w,n])E

)
+
∑

E∈E\EF

(
(〈T (v)〉 , [w])E +([v] ,〈T (w)〉)E

)
(2.30)

where β is a real parameter and the linear functional is defined by

l(v) = ( f ,v) (2.31)

We now move on to formulate the dG method.

2.2 The dG Method with Piecewise Quadratics Continuous at Nodes
The dG method for the plate equation with piecewise quadratic functions continuous at the
nodes can now be formulated as follows: Find U ∈ DPV such that

a(U,v) = l(v) for all v ∈ DPV (2.32)

where the bilinear form is given by (2.30) and the linear functional is given by (2.31). Note
that the last sum in the bilinear form (2.30) gives no contribution as 〈T (v)〉 = 0 for v ∈ DPV .
The boundary condition u,n = 0 on ΓC is weakly enforced via the β penalty term while the
condition u = 0 on ΓC∪ΓS is strongly enforced at the nodes.

For a more general dG method for the plate equation without the restriction to nodal conti-
nuity and piecewise quadratics in the approximation of the deflection field we refer to [8].

2.3 The dG Method with Embedded Continuous Piecewise Linears
To formulate our method using a continuous piecewise linear deflection field we use the frame-
work presented in [3] for using reconstructions in a finite element formalism. We let R be
a reconstruction operator which embeds the space of continuous piecewise linear polynomial
functions CP1 into the space DPV of discontinuous piecewise quadratic polynomials continu-
ous at the nodes:

R : CP1 ↪→DPV (2.33)

Also let the following criterion on the reconstruction operator hold: For v ∈ CP1

v =Rv, for all x ∈ V (2.34)

The discontinuous Galerkin method with embedded continuous piecewise linear functions
takes the following form: Find U ∈ CP1 such that

a(RU,Rv) = l(Rv), for all v ∈ CP1 (2.35)
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where a(·, ·) and l(·) are defined in (2.30) and (2.31). The clamped boundary condition is
weakly enforced by the β penalty parameter onRU . As U coincides withRU at the nodes we
can choose to strongly enforce u = 0 on ΓC∪ΓS directly on U .

3 Examples of Reconstruction Operators
In this section we consider three reconstruction operators in the presented framework, all of
which embed continuous piecewise linear functions into DPV . To reconstruct a quadratic
function on an element K these operators use the vertex information in a patch of elements.
In the first example we reconstruct into the space of the quadratic Morley basis functions,
which is the subspace of functions in DPV that have continuous normal derivative at element
edge midpoints. We show that this method is equivalent to the Basic Plate Triangle presented in
[12, 13]. The second example is a fully quadratic reconstruction intoDPV using a four element
patch. In the last example reconstruction we handle special cases where the fully quadratic
reconstruction breaks down due to the mesh configuration. A least squares approach to fully
quadratic reconstruction is used to allow larger patches when fully quadratic reconstruction
from a four element patch fails.

3.1 Patch of Elements
To reconstruct a complete quadratic polynomial six independent degrees of freedom are re-
quired. Thus, a patch of continuous piecewise linear elements is needed to represent sufficient
information. We denote the patch that is used for reconstructing a quadratic function on ele-
ment K byN (K) and let it consist of connected elements in a neighborhood of K. Let the patch
have finite size such that

diam(N (K))≤ChK (3.1)

where C is a mesh independent constant.
In a triangle mesh a patch N (K) typically is the standard four element patch illustrated in

Figure 1(a) consisting of K and the three elements neighboring K. For elements neighboring
the boundary the patch will include a ghost element outside the domain for each element edge
belonging to the boundary, see Figure 1(b). As defined in Section 2.1.1 the locations of the
ghost nodes are set such that the ghost elements are anti-symmetric with respect to K, thus
preserving properties of structured meshes.

3.2 Morley Reconstruction
It is well known that the nonconforming Morley element [10] shows optimal convergence in
the approximation of the Kirchhoff-Love plate bending equation. As noted in [8] this element
is naturally derived in the setting of dG methods for the plate equation by letting β → ∞ in
(2.30). An advantage of reconstruction using Morley basis functions is that the jump in the
normal derivative at the edge midpoint per definition is zero which results in that all interior
and exterior edge terms E ∈ E\EC disappear in the bilinear form (2.30).
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K

(a) Standard four element
patch.

K
Γ

(b) Patch on boundary.

Figure 1: Standard patches for (a) interior elements and (b) elements neighboring the boundary.

The Morley basis functions are constructed so that the deflection field is continuous at the
nodes and the gradient in the normal direction is continuous at each edge midpoint xE . Clearly
this is a subspace of DPV and as such we define the space of Morley functions

DPM= {v ∈ DPV : [v,n]|xE
= 0 for all E ∈ E \ (ES∪EF)} (3.2)

We define the reconstruction of the normal gradient at an element edge to be the average
normal gradient of the two neighboring linear triangles. Let V(K) be the set of nodes for ele-
ment K and let VE(K) be the set of edge midpoints for element K. The reconstruction operator
R : CP1 ↪→DPM is defined by (Ru)|K = (RKu)|K whereRK : CP1(N (K))→P2(N (K)) is
defined as follows

RK :

{
RKv = v , x ∈ V(K)

(RKv),n = 〈v,n〉 , x ∈ VE(K)
(3.3)

Next, we will show that this choice of reconstruction yields a method equivalent to the Basic
Plate Triangle.

3.2.1 Equivalence with Basic Plate Triangle

The Basic Plate Triangle (BPT) presented in [12, 13] is a triangular plate element using contin-
uous piecewise linear deflections and is derived by combining finite element and finite volume
techniques. We will now describe our interpretation for derivation of the BPT in the presented
setting, whereafter we will show equivalence with the method produced by the above choice of
Morley reconstruction.

The BPT is a mixed interpolation method where the curvatures and moments are approxi-
mated using piecewise constant functions and the deflection field is approximated using func-
tions in CP1. The fundamental idea in this derivation is that by using partial integration of the
curvatures such that

(κi j(u),1)K = (u,i j,1)K =
(
u,i,n j

)
∂K , i, j = 1,2 (3.4)

and equivalently for the moments

(σi j(u),1)K =
(
λu,nδi j +µu,in j,1

)
∂K , i, j = 1,2 (3.5)
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these terms can be estimated using a CP1 deflection field.
Starting with the element contribution to the bilinear form (2.30) on each element we have

aK(u,v) = (σi j(u),κi j(v))K (3.6)

By using that the curvatures and moments are assumed constant on the element and applying
(3.4) and (3.5) we get

aK(u,v) =
1
|K|(σi j(u),1)K(κi j(v),1)K =

1
|K|
(
λu,nδi j +µu,in j,1

)
∂K

(
v,i,n j

)
∂K (3.7)

A deflection field U ∈ CP1 is then assumed. As the gradient of a continuous piecewise linear
function is undefined on element edges they are defined as the average gradient of neighboring
elements

U,i|E ≡ 〈U,i〉 , i = 1,2 (3.8)

and likewise for the gradient of the test function v ∈ CP1. Note that this definition of the
gradient on edges makes all edge terms from the bilinear form (2.30) to be zero in the method,
except for edges E ∈ EC, i.e. the clamped boundary. In the derivation of the BPT the normal
gradients naturally appear due to the partial integration and are thus enforced weakly on the
clamped boundary. Thus, there is no need to extend patches on clamped edges with ghost
elements but if we would the boundary condition would read

〈U,n〉= 0, on E ∈ EC (3.9)

The BPT method is formulated as follows: Find U ∈ CP1 such that∑
K∈K

âK(U,v) = l(v), for all v ∈ CP1 (3.10)

where

âK(U,v) =
1
|K|
(
λ 〈U,n〉δi j +µ 〈U,i〉n j,1

)
∂K

(
〈v,i〉 ,n j

)
∂K (3.11)

The average gradient of U is constant on each edge which means the integrals are exactly
evaluated by midpoint quadrature. We get

âK(U,v) =
1
|K|

(∑
E∈∂K

hE
(
λ 〈U,n〉δi j +µ 〈U,i〉n j

)∣∣
xE

)(∑
E∈∂K

hE
(
〈v,i〉n j

)∣∣
xE

)
(3.12)

where xE is the midpoint of each edge.
We will now show that the proposed method (2.35) when using the above Morley recon-

struction is equivalent to the BPT (3.10, 3.12). As previously noted reconstructions into Morley
space give no edge terms in the bilinear form (2.30), except for the clamped boundary, so the
finite element method reads: Find U ∈ CP1 such that∑

K∈K
aK(RKU,RKv)+

∑
E∈EC

aE(RKU,RKv) = l(RKv), for all v ∈ CP1 (3.13)
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where aK(·, ·) is defined in (3.6) and aE(·, ·) can be identified in the bilinear form (2.30). This
boundary term allows us to enforce clamped boundary conditions weakly. As (RU),n = 〈U,n〉
in the Morley reconstruction the enforcement of the clamped boundary condition is equivalent
to (3.9) for large enough β .

Apart from the difference in how clamped boundary conditions are enforced, there is also
a difference in how the load is calculated in the two methods. Disregarding this difference
for now, if we can show that âK(U,v) = aK(RKU,RKv) for our choice of RK , the Morley
reconstruction yields a method equivalent to the BPT. As the reconstructed functions in the
above equation are quadratic, both curvatures κi j and moments σi j are constant. Thus, we may
apply the calculations of (3.7) and yield

aK(RKU,RKv) =
1
|K|
(
λ (RKU),nδi j +µ(RKU),in j,1

)
∂K

(
(RKv),i,n j

)
∂K (3.14)

As the gradient (RKU),i, i = 1,2 is a linear function, the integrals in the expression above are
also exactly evaluated through midpoint quadrature. Thus, we have

aK(RKU,RKv) =
1
|K|

(∑
E∈∂K

hE
(
λ (RKU),nδi j +µ(RKU),in j

)∣∣
xE

)
×(∑

E∈∂K

hE
(
(RKv),in j

)∣∣
xE

)
(3.15)

where xE is the midpoint of each edge. Comparing (3.12) with (3.15) we see that the methods
are equivalent if (RKw),i|xE = 〈w,i〉 |xE , i= 1,2 for w∈ CP1. Looking at the normal component
of the gradient we have

(RKw),n|xE = 〈w,n〉 |xE (3.16)

by definition of the reconstruction operatorRK . As the reconstructed functionRKw is quadratic
and equal to w at the triangle nodes we know that the derivative ofRKw at a midpoint xE in the
tangential direction is equal to the derivative in the tangential direction of the plane defined by
the triangle nodes. Using that w,t is continuous over element edges we have

(RKw),t |xE = w,t |xE = 〈w,t〉 |xE (3.17)

Thus (RKw),i|xE = 〈w,i〉 |xE , i = 1,2 which means that the Morley reconstruction yields a
method equivalent with BPT, apart from the mentioned differences in enforcement of clamped
boundary conditions and in load calculation.

3.3 Fully Quadratic Reconstruction
For this reconstruction operator we consider for each triangle K the neighborhood N (K) of
triangles that share an edge with K. Let V(N (K)) be the set of nodes inN (K). Then we define
(Ru)|K = (RKu)|K whereRK : CP1(N (K))→P2(N (K)) is defined as follows

RK : (RKv)(x) = v(x) , x ∈ V(N (K)) (3.18)

In general, except for some special configurations of the nodes in N (K), this is a well posed
problem.
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xa

xb xc

xd

xEK+
K−

Figure 2: Illustration of two neighboring elements on a structured mesh.

3.3.1 Relation to Morley Reconstruction

Consider the notation in Figure 2. We define a structured mesh to be a mesh where the midpoint
between xb and xd will be xE , a criterion which we may formulate as

xE =
xa + xc

2
=

xb + xd

2
(3.19)

A quadratic function with known values at xa and xc will at the midpoint xE have a tangential
gradient equal to the slope of a linear function with the same known values at xa and xc. As
this is valid for the quadratic polynomials associated with both K+ and K− the jump in the
tangential gradient for these polynomials is zero at the midpoint. The same reasoning is true
for the points xb and xd , and since the midpoint is the same on structured meshes, we conclude
that the jump in the gradient is zero at xE . Thus, for a structured mesh all interior edge terms
disappear in (2.30) as midpoint quadrature exactly evaluates these terms. In this case the fully
quadratic reconstruction is identical to the Morley reconstruction as the gradient at xE is contin-
uous in both cases. Given a structured mesh, any theoretical results based on the fully quadratic
reconstruction is thus applicable to the Morley reconstruction/BPT-element.

3.3.2 Degenerate Patch Configurations

While it is unlikely that quality mesh generation will produce patch configurations where the
fully quadratic reconstruction fails, we have identified two possible configurations of the stan-
dard patch where the fully quadratic reconstruction does fail. We call these degenerate patch
configurations.

It is possible that two elements neighboring K share two nodes as illustrated in Figure 3(a),
and thus only have five degrees of freedom. Obviously this is insufficient for reconstructing a
complete quadratic polynomial.

The other degenerate patch configuration occurs when the set of nodes in the patch includes
four nodes positioned on the same straight line as illustrated in Figure 3(b). Along any straight
line the quadratic polynomial reduces to a one dimensional quadratic polynomial which is fully
described using only three nodal values.

In the next section we will suggest a reconstruction operator that allow extending the patch
in the case of a degenerate configuration of the nodes.

12

http://link.springer.com/article/10.1007%2Fs00211-011-0429-5
https://doi.org/10.1007/s00211-011-0429-5


The final publication is available at: link.springer.com
Numerische Mathematik (2012) 121:6597
DOI 10.1007/s00211-011-0429-5

K

(a)

K

(b)

Figure 3: Degenerate configurations of the standard patch. (a) Standard patch only containing
five nodes. (b) Standard patch where four nodes are positioned along a straight line.

3.4 Least Squares Fully Quadratic Reconstruction
To deal with the degenerated cases we consider a larger patch of elements in a neighborhood
of K and define the reconstruction by exact fitting at the nodes of K and least squares fitting at
the remaining nodes in the patch. Let V(S) be the set of nodes in a set of elements S . Again
we define (Ru)|K = (RKu)|K whereRK : CP1(N (K))→P2(N (K)) is defined as follows

RK :


(RKv)(x) = v(x) , x ∈ V(K)

min
RK

∑
x∈VN

((RKv)(x)− v(x))2 , VN = V(N (K))\V(K) (3.20)

The patch of elements N (K) is in general the four element standard patch and the above
reconstruction is then identical to the fully quadratic reconstruction. However, if a degenerate
patch is detected we extend N (K) one element at a time using elements neighboring N (K)
until the patch is no longer degenerate.

4 A Priori Error Estimates
We equip H4 +DPV with the following energy norm

|||v|||2 =
∑
K∈K

(σi j(v),κi j(v))K +h‖〈Mnn(v)〉‖2
∂K\(EF∪ES)

+h3‖〈T (v)〉‖2
∂K\EF

+h−1‖P0[v,n]‖2
∂K\(EF∪ES)

(4.1)

We note that ||| · ||| is indeed a norm on H4 +DPV since if
∑

K∈K(σi j(v),κi j(v))K = 0 then v
must be a piecewise linear function which due to nodal continuity also is continuous. If also∑

K∈K ‖P0[v,n]‖2
∂K\(EF∪ES)

= 0 then v is globally linear. Finally, for a well posed problem we
either need ΓC 6= /0 or that there exists no single straight line Γline such that ΓS ⊂ Γline. In either
case we get v = 0.

Before turning to our main a priori error estimate we formulate a few lemmas that will be
needed in the proof.
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Lemma 4.1. The following inequality holds

|||v|||2 ≤C
∑
K∈K
|||v|||2K, for all v ∈ H4 +DPV (4.2)

where ||| · |||2K is defined by

|||v|||2K = h−2|v|21,K + |v|22,K +h2|v|23,K +h4|v|24,K (4.3)

Proof. First recall the well known trace inequality

|v|2
∂K ≤C

(
h−1‖v‖2

K +h|v|21,K
)

(4.4)

which is proven by affinely mapping K to a reference element K̂, using the trace inequalty
‖v‖2

∂ K̂
≤C‖v‖2

K̂
‖v‖2

1,K̂ (see [5]), and finally mapping back to K.
Using the triangle inequality on the interior face contributions of (4.1) and then using the

trace inequality Lemma 4.1 is readily established.

In conformance with (4.3) we also define the energy norm for a set of elements S

|||v|||2S =
∑
K∈S
|||v|||2K (4.5)

Furthermore, we will also need to approximate functions using quadratic polynomials on
each patch. Before we introduce and prove the appropriate estimate for this interpolation error,
recall the Bramble-Hilbert lemma given in [5].

Lemma 4.2. (Bramble-Hilbert) Let B be a ball in ω such that ω is star-shaped with respect to
B and such that its radius ρ > (1/2)ρmax. Let Qmu be the Taylor polynomial of degree m of u
averaged over B where u ∈ Hm(ω). Then

|u−Qmu|k,ω ≤Cm,γω
dm−k|u|m,ω k = 0,1, ...,m, (4.6)

where d = diam(ω) and γω is the chunkiness parameter of ω .

Remark. The star-shape criterion on ω means that there should exist a ball B ∈ ω such that
from any point inside B there is a free line of sight to all points on the boundary of ω . Let ρmax
be the supremum of the radius of all such balls in ω . The chunkiness parameter is then defined
by

γω =
diam(ω)

ρmax
(4.7)

We are going to apply the Bramble-Hilbert lemma on each patch, i.e. ω = N (K)∩K.
Further we will need that the chunkiness parameter for all patches is limited and therefore we
introduce the following restriction on the patches: All patches N (K)∩K fulfill the star-shape
criterion and there exists a global constant γ such that

γN (K)∩K ≤ γ for all K ∈ K (4.8)

Note that the shape regularity of the mesh is not sufficient to guarantee (4.8) for standard four
element patches. However, in most cases where the standard patch does not comply to (4.8) we
may add elements to the patch so that it does. Thus, this restriction will typically not introduce
any constraints on the mesh.
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Now we turn to the interpolation error when using quadratic polynomials in the energy
norm (4.5) of a patch N (K)∩K and present the following lemma.

Lemma 4.3. There is a projection operator P2,K : H4(N (K)∩K)→P2(N (K)∩K) such that

|||u−P2,Ku|||N (K)∩K ≤Ch
(
|u|3,N (K)∩K+h |u|4,N (K)∩K

)
(4.9)

for all sufficiently smooth u.

Proof. By the definition of the energy norm of a patch (4.5) and the quasi-uniformity of the
mesh it suffices to show that there exists a patch independent constant C such that∣∣u−P2,Ku

∣∣
k,N (K)∩K ≤Ch3−k |u|3,N (K)∩K for k = 1,2,3 (4.10)

to prove the lemma. As P2,Ku gives zero contribution to fourth order derivatives the term
Ch2 |u|4,N (K)∩K in (4.9) may be directly derived from the definition of the energy norm of a
patch (4.5).

Next we verify that the requirements of Lemma 4.2 are fulfilled. By restrictions on the
patches there exists a ball B in every patch such that N (K)∩K is star-shaped with respect to
B. We let the projection operator P2,Ku be defined by the Taylor polynomial of degree 3 of u
averaged over B, i.e. P2,Ku = Q3u as defined in [5]. This will be a quadratic polynomial.

The constant Cm,ω in Lemma 4.2 only depends on the domain through the chunkiness pa-
rameter γω . As ω = N (K)∩K we have from the restriction on the patches (4.8) that there
exists a global constant γ such that γω ≤ γ for all patches. Using this in the proof of Lemma 4.2
in [5] we have that

Cm,γω
≤Cm,γ (4.11)

where Cm,γ is a patch independent constant and we refer the reader to [5] for details.
We complete the proof by applying Lemma 4.2 together with (4.11) which gives∣∣u−P2,Ku

∣∣
k,N (K)∩K =

∣∣u−Q3u
∣∣
k,N (K)∩K (4.12)

≤C3,γd3−k|u|3,N (K)∩K (4.13)

≤Ch3−k|u|3,N (K)∩K (4.14)

where C is a constant independent of the patch and we used (3.1) and (2.15) in the last inequal-
ity.

By Sobolev’s inequality pointwise values are well defined for functions in H4(K) so the
Lagrange interpolation operator may be used. We extend the standard Lagrange interpolation
operator to also define values on ghost elements outside the domain such that π : C0(K)→
CP1(K∪KG). As the functions we need to interpolate lack support outside the domain the
interpolation values at ghost nodes must be defined. For a ghost node xG associated with
element K ∈ K we define the interpolation value by

(πv)(xG) = (P2,Kv)(xG)+∆Kv (4.15)
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where ∆Kv is given by

∆Kv = (v−P2,Kv)|x=x1 +(v−P2,Kv)|x=x2− (v−P2,Kv)|x=x3 (4.16)

and the numbering of nodes in K is such that x3 is the mirror-symmetric node to xG. Note that
∆Kv = 0 for v ∈ P2(K).

We shall also need the following inverse estimate proved in [8].

Lemma 4.4. For all v ∈ DPV the following estimate hold∑
K∈K

h‖〈Mnn(v)〉‖2
∂K\(ES∪EF )

≤C1
∑
K∈K

(σi j(v),κi j(v))K (4.17)

where C denote a constant independent of the meshsize h and the parameter β .

Finally, we recall the following lemma from [8] which we will also give proof to.

Lemma 4.5. Here we collect three basic results on consistency, continuity, and coercivity:
1. With u the exact solution of the plate equation andRU the reconstructed dG solution defined
by (2.35) we have

a(u−RU,Rv) = 0 for all v ∈ CP1. (4.18)

2. There is a constant C, which is independent of h but in general depends on β , such that

a(v,w)≤C|||v||| |||w||| v,w ∈ H4 +DPV (4.19)

3. For β sufficiently large the coercivity estimate

c|||v|||2 ≤ a(v,v) v ∈ DPV, (4.20)

holds, with a positive constant c independent of h and β .

Proof. 1. This fact is a direct consequence of the fact that the exact solution u satisfies the
variational statement (2.29).
2. Using the Cauchy Schwarz inequality on the definition of the bilinear form (2.30) the in-
equality

a(v,w)≤ |||v|||∗|||w|||∗ (4.21)

immediately follows where |||v|||2∗ is defined by

|||v|||2∗ = |||v|||2 +
∑
K∈K

h−1‖[v,n]‖2
∂K\(EF∪ES)

+h−3‖[v]‖2
∂K\EF

(4.22)

Estimate (4.19) follows by showing that the sum is limited by |||v|||2 which we prove next.
We begin by noting that the following equalities hold

‖w‖2
E = ‖w−P0w‖2

E +‖P0w‖2
E (4.23)

‖w−P0w‖2
E =

h2
E

12
‖w,t‖2

E (4.24)
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for w ∈ P1. As [v,n] is a linear function we may apply these equalities to the first term of the
sum which together with quasi-uniformity yields

h−1‖[v,n]‖2
∂K\(EF∪ES)

≤C
(

h‖[v,nt ]‖2
∂K\(EF∪ES)

+h−1‖P0[v,n]‖2
∂K\(EF∪ES)

)
(4.25)

where the seconds term already exists in the norm. We can decompose v into ṽ+ v̄ where ṽ∈H4

and v̄∈DPV . Due to the jump terms in (4.25) the continuous parts of v give no contribution and
we may thus replace v with v̄. To the first term we then apply the triangle inequality to remove
the jump term and can thereby handle each triangle sharing edge E separately. Applying the
trace inequality (4.4) we get

h‖v̄+,nt‖2
E ≤C

(
‖v̄,nt‖2

K+ +h2|v̄,nt |21,K+

)
≤C‖v,nt‖2

K+ ≤C(σi j(v),κi j(v))K+ (4.26)

where the last inequality comes from that the Lame parameter µ > 0.
For the second term in the sum of (4.22) we begin by subtracting the linear interpolant

π[v] = 0. Using the triangle inequality, the trace inequality and interpolation theory we have

h−3‖v+−πv+‖2
E ≤C

(
h−4‖v−πv‖2

K+ +h−2|v−πv|21,K+

)
(4.27)

≤C|v|22,K+ (4.28)

≤C(σi j(v),κi j(v))K+ (4.29)

and (4.19) is established.
3. We have

a(v,v) =
∑
K∈K

(σi j(v),κi j(v))K

−
∑

E∈E\(ES∪EF )

2(〈Mnn(v)〉, [v,n])E −βh−1‖Pl1[v,n]‖2
E\(ES∪EF )

(4.30)

Note that

(〈Mnn(v)〉, [v,n])E = (〈Mnn(v)〉,P0[v,n])E (4.31)

since 〈Mnn(v)〉 is a constant and [v,n] is a linear function on E. Using this observation, the
Cauchy Schwarz inequality followed by the standard inequality 2ab < εa2 + ε−1b2, for any
positive ε , and finally the inverse inequality (4.17) we obtain

−
∑

E∈E\(ES∪EF )

2(〈Mnn(v)〉, [v,n])E ≥∑
K∈K
−εC(σi j(v),κi j(v))K− ε

−1h−1‖P0[v,n]‖2
∂K\(ES∪EF )

(4.32)

Given c, with 0 < c < 1, we choose εC = (1− c)/3 and take β ≥ c + ε−1 we obtain the
coercivity estimate (4.20).

We are now ready to formulate our main a priori error estimate.
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Theorem 4.6. Assume that the reconstruction operatorR is linear and satisfies the identity

RKπv = v, ∀v ∈ P2(N (K)∩K), for all K ∈ K (4.33)

where π is the extended Lagrange interpolation operator. Also assume that u∈H4(Ω) and that
the patch restriction (4.8) is fulfilled. Then the following a priori error estimate holds

|||u−RU ||| ≤Ch(|u|3 +h|u|4) (4.34)

where C is a constant independent of h.

Before presenting the proof of Theorem 4.6 we remark on how the reconstruction operators
presented in Section 3 relate to the identity (4.33) in the theorem.

Remark. By construction the fully quadratic reconstruction and the least squares fully quadratic
reconstruction satisfy the identity (4.33). As noted in Section 3.3.1 this implies that on struc-
tured meshes the Morley reconstruction also satisfies the identity.

On unstructured meshes however, the Morley reconstruction does not satisfy the identity.
By the definition of the Morley basis functions the normal gradient at each edge midpoint must
be exactly reconstructed if the reconstructed quadratic polynomial shall satisfy (4.33). As we
in the proposed Morley reconstruction use a pair of linear elements to reconstruct the normal
gradient on each edge midpoint, we do not have to consider the complete patch but rather
only pairs of elements. To reconstruct the normal gradient of a quadratic polynomial at the
edge midpoint in general five degrees of freedom are needed. As we in the proposed Morley
Reconstruction only use four degrees of freedom, an element pair, to reconstruct the normal
gradient we generally cannot exactly reconstruct quadratic polynomials.

While this remark does not prove that the Morley reconstruction does not converge on
unstructured meshes it may give some understanding of the numerical results.

Proof. of Theorem 4.6 We first note, using the triangle inequality, that

|||u−RU ||| ≤ |||u−Rπu|||+ |||Rπu−RU ||| (4.35)

where π is the extended Lagrange interpolation operator. Using coercivity (4.20), consistency
(4.18), and the continuity properties in Lemma 4.5 we can estimate the second term as follows

c|||Rπu−RU |||2 ≤ a(Rπu−RU,Rπu−RU) (4.36)
= a(Rπu−u+u−RU,Rπu−RU) (4.37)
= a(Rπu−u,Rπu−RU) (4.38)
≤C|||Rπu−u||| |||Rπu−RU ||| (4.39)

and thus we arrive at
|||Rπu−RU ||| ≤C|||u−Rπu||| (4.40)

Note that the above derivation follows the proof of Céa’s lemma but uses the reconstructions
of the analytical and finite element solutions, Rπu and RU , instead of the pure analytical and
finite element solutions, u and U . Combining (4.35) and (4.40) we obtain

|||u−RU |||2 ≤C|||u−Rπu|||2 ≤C
∑
K∈K
|||u−RKπu|||2K (4.41)
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where we used Lemma 4.1 in the last inequality. Adding and subtracting P2,Ku and RKπP2,Ku
and then using the triangle inequality we obtain

|||u−RKπu|||K ≤ |||u−P2,Ku|||K
+ |||P2,Ku−RKπP2,Ku|||K
+ |||RKπ(P2,Ku−u)|||K (4.42)

= I + II + III (4.43)

We now continue with estimates of Terms I to III.

Term III. Employing Lemma 4.3 we have

I = |||u−P2,Ku|||K ≤ |||u−P2,Ku|||N (K)∩K ≤C(h|u|3,N (K)∩K+h2|u|4,N (K)∩K) (4.44)

Term IIIIII. Using the assumption (4.33) on the reconstruction operator we conclude that

II = |||P2,Ku−RKπP2,Ku|||K = 0 (4.45)

Term IIIIIIIII. Using the following two estimates

|||RKv|||K ≤C|||v|||N (K) for all v ∈ CP1(N (K)) (4.46)

|||π(v−P2,Kv)|||N (K) ≤C|||(v−P2,Kv)|||N (K)∩K for all v ∈ H4(N (K)∩K) (4.47)

which we prove below, we may estimate Term III as follows

III = |||RKπ(u−P2,Ku)|||K (4.48)
≤C|||π(u−P2,Ku)|||N (K) (4.49)

≤C|||u−P2,Ku|||N (K)∩K (4.50)

≤C(h|u|3,N (K)∩K+h2|u|4,N (K)∩K) (4.51)

where we used Lemma 4.3 in the last inequality.
Proof of Estimate (4.46). Let F : N̂ (K)→N (K) be a bijective continuous piecewise affine
mapping from a reference patch N̂ (K) to the patchN (K). We note that, due to shape regularity,
we only need to consider a finite number of reference patches corresponding to the different
topological arrangements of the triangles in the patch. The mapping F takes the form

Fx̂ = AK̂ x̂+bK̂, x ∈ K̂ (4.52)

As F maps a triangle of fixed size from a reference patch onto K we have that |detAK̂| =
Ch2

K , ‖AK̂‖ ≤ hK/(2ρK̂)≤ChK and by shape regularity ‖A−1
K̂
‖ ≤ hK̂/(2ρK)≤Ch−1

K . Next we

define a mapping F : CP1(N̂ (K))→CP1(N (K)) by

v = F v̂ = v̂◦F−1 (4.53)
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Together with (2.15) we have the estimates

|v|m,K ≤C|detAK̂|1/2‖A−1
K̂
‖m|v̂|m,K̂ ≤Ch1−m|v̂|m,K̂ (4.54)

|v̂|m,K̂ ≤C|detAK̂|−1/2‖AK̂‖m|v|m,K ≤Chm−1|v|m,K (4.55)

Using (4.54) and (4.55) we conclude that there are constants c and C such that

|||v|||2K ≤ c|||v̂|||2
K̂

(4.56)

|||v̂|||2
N̂ (K)

≤C|||v|||2N (K) (4.57)

where
|||v̂|||2

K̂
= h−2

(
|v̂|2

1,K̂
+ |v̂|2

2,K̂
+ |v̂|2

3,K̂

)
(4.58)

Returning to the proof of (4.46) we first show that the inequality holds on the reference
neighborhood

|||R̂Kv|||K̂ ≤C|||v̂|||N̂ (K)
∀v ∈ CP1(N̂ (K)) (4.59)

We note that |||v̂|||N̂ (K)
= 0 if and only if v̂ is constant on N̂ (K) but then v =F v̂ is also constant

on N (K) and thus RKv = v is also constant. Therefore we conclude that |||R̂Kv|||K̂ = 0 if
|||v̂|||N̂ (K)

= 0 and inequality (4.59) thus follows from finite dimensionality. Combining (4.56),
(4.57) and (4.59) we get

|||RKv|||K ≤C|||R̂Kv|||K̂ ≤C|||v̂|||N̂ (K)
≤C|||v|||N (K) (4.60)

which concludes the proof of estimate (4.46).
Proof of Estimate (4.47). Let w = v−P2,Kv. By contruction of the extended Lagrange inter-
polant (4.15, 4.16) and mirror symmetry of ghost elements we have

|||πw|||2N (K) ≤C|||πw|||2N (K)∩K (4.61)

Adding and subtracting w, using the triangle inequality and interpolation error estimates we get

|||πw|||2N (K)∩K =
∑

K⊂N (K)∩K
h−2|πw|21,K (4.62)

≤C
∑

K⊂N (K)∩K
h−2|w−πw|21,K +h−2|w|21,K (4.63)

≤C
∑

K⊂N (K)∩K
h−2|w|21,K + |w|22,K (4.64)

≤C|||w|||2N (K)∩K (4.65)

and thus estimate (4.47) follows.
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We have thereby completed the estimates of Terms I to III in (4.43). Using these in (4.41)
we thus have

|||u−RU |||2 ≤C
∑
K∈K

(I + II + III)2 (4.66)

≤C
∑
K∈K

(
h|u|3,N (K)∩K+h2|u|4,N (K)∩K

)2
(4.67)

≤C
∑
K∈K

h2|u|23,N (K)∩K+h4|u|24,N (K)∩K (4.68)

By shape regularity we have that the number of overlaps in the sum will be finite and thereby
there exists a constant C such that

|||u−RU |||2 ≤C
(
h2|u|23 +h4|u|24

)
≤C

(
h|u|3 +h2|u|4

)2
(4.69)

which completes the proof.

We now turn to an estimate of the L2 norm of the error. This is derived using a duality
argument (Nitsche’s trick). We assume that for all ψ ∈ H4 +DPV there is a φ ∈ H4 such that

a(v,φ) = (v,ψ), for all v ∈ H4 +DPV (4.70)

and that the following stability estimate holds

‖φ‖4 ≤C‖ψ‖ (4.71)

On smooth domains and convex bounded polygonal domains where the inner angle at each
corner is less than 126.3◦ this assumption is true, see [4].

Theorem 4.7. If the stability estimate (4.71) holds, then U satisfies

‖u−RU‖ ≤Ch2 (|u|3 +h|u|4) (4.72)

for sufficiently regular u. The constant C is independent of h but may in general depend on β .

Proof. Setting v = ψ = u−RU , in the dual problem (4.70) and using consistency (4.18) to
subtract the reconstructionRπφ of πφ we obtain

‖u−RU‖2 = a(u−RU,φ) (4.73)
= a(u−RU,φ −Rπφ) (4.74)
≤C|||u−RU ||| |||φ −Rπφ ||| (4.75)

where we used continuity (4.19) in the last step. Next using Theorem 4.6 and results (4.41) in
its proof we have

‖u−RU‖2 ≤Ch2(|u|3 +h |u|4)(|φ |3 +h |φ |4) (4.76)

which together with the stability estimate (4.71) concludes the proof.
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In Theorem 4.6 and Theorem 4.7 we have given a priori error estimates for the reconstructed
solutionRU in energy norm and in L2 norm. We now turn to showing an a priori error estimate
for the continuous piecewise linear solution U in L2 norm.

Theorem 4.8. If the stability estimate (4.71) holds, then U satisfies

‖u−U‖ ≤Ch2 (|u|2 + |u|3 +h |u|4) (4.77)

for sufficiently regular u. The constant C is independent of h but may in general depend on β .

Proof. Using triangle inequality we have

‖u−U‖ ≤ ‖u−RU‖+‖RU−U‖ (4.78)

where the first term is evaluated by Theorem 4.7. For the second term we use a standard
interpolation estimate

‖RU−U‖= ‖RU−πRU‖ ≤Ch2|RU |2 ≤Ch2 (|u−RU |2 + |u|2) (4.79)

where we in the last inequality use the triangle inequality on the seminorm.
As the Lamé parameter µ > 0 there exists a constant C such that

|u−RU |22 =
∑
K∈K
|u−RU |22,K ≤C|||u−RU |||2 (4.80)

which is limited by Theorem 4.6. This gives the error estimate

‖u−U‖ ≤Ch2 (|u|2 + |u|3 +h|u|4) (4.81)

which concludes the proof.

5 Numerical results
Numerical results will be presented for the following proposed methods: Morley reconstruc-
tion, fully quadratic reconstruction, and least squared fully quadratic reconstruction. Also, for
comparison we will present results for: the Basic Plate Triangle, the nonconforming Morley
triangle, a quadratic continuous/discontinuous Galerkin method featuring C0 continuity, and a
quadratic discontinuous Galerkin method continuous at the mesh nodes.

Note that for the reconstruction methods, the pointwise error is defined as e = u−RU
unless otherwise stated. For other methods the pointwise error is as usual defined as e = u−U .

5.1 Model Problems
To study the convergence properties of the proposed methods we use two model problems
where analytical solutions are known.
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(a) Structured mesh. (b) Unstructured mesh.

Figure 4: Two example triangulations of the unit square with comparable mesh size h. The left
triangulation (a) is a structured mesh and the right triangulation (b) is an unstructured mesh.

5.1.1 Problem 1: Simply Supported Plate under Sinusoidal Load

Consider a simply supported unit square plate, Ω = [0,1]2, with D = 1 and ν = 0. Find the
deflection u given the sinusoidal load

f = 25π
4 sin(πx)sin(2πy) (5.1)

This problem has the analytical solution u = sin(πx)sin(2πy).

5.1.2 Problem 2: Mixed Boundary Conditions with Uniform Load

Consider a unit square plate, Ω = [0,1]2, with two opposite sides simply supported, one side
clamped, and the last side free. Given E = 106, t = 0.01, ν = 0.3 and a uniform load f = 1,
find the deflection u of the plate. An analytical solution in the form of a series expansion is
given in Example 46 in [16].

5.2 Mesh
The triangulations we consider include both structured and unstructured meshes. The structured
meshes conform to the criteria discussed in Section 3.3.1. Example triangulations of the unit
square for both structured and unstructured meshes are illustrated in Figure 4.

5.3 Numerical Examples
To illustrate interesting features of the proposed methods we here give a few numerical solu-
tions.
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Figure 5: Example dG solution to Problem 1 using fully quadratic reconstruction on a coarse
unstructured mesh.

5.3.1 Nodal Continuity and Continuity of Normal Gradient

A reconstructed solution to Problem 1 on a coarse mesh is presented in Figure 5. Note that
continuity of the nodes is strongly enforced and the continuity of the normal gradients on edge
midpoints is weakly enforced through the dG method’s (2.30) inherent penalization of jumps
in the normal gradient.

5.3.2 Solution on Mesh including Degenerate Patch

To illustrate the need of the least squared fully quadratic reconstruction we use a mesh which
include a degenerate patch, see Figure 6(a). This mesh was modified to include this patch as it
is unlikely that degenerate patches appear when using quality mesh generation. The collapsed
solution is shown in Figure 7(a). By extending the patch as in Figure 6(b) the least squares
fully quadratic reconstruction gives an accurate solution, see Figure 7(b).

5.4 Convergence
We consider convergence in both the energy norm (4.1) and in the L2 norm. As the noncon-
forming Morley plate can be viewed as a special case of the quadratic discontinuous Galerkin
method continuous at the nodes where β → ∞ in (2.30), the energy norm is applicable also to
this element.

5.4.1 Comparison of Morley Reconstruction and Basic Plate Triangle

As shown in Section 3.2.1 the major difference between the Morley reconstruction and the
Basic Plate Triangle [12] lies in the calculation of the load vector. A comparison of the two
methods using Problem 1 on a structured mesh is shown in Figure 8 and clearly indicate a
better convergence rate when using the load calculation of the reconstructed Morley method.
The difference in enforcement of clamped boundary conditions does not produce any noticible

24

http://link.springer.com/article/10.1007%2Fs00211-011-0429-5
https://doi.org/10.1007/s00211-011-0429-5


The final publication is available at: link.springer.com
Numerische Mathematik (2012) 121:6597
DOI 10.1007/s00211-011-0429-5

K

(a) Degenerate four triangle patch.

K

(b) Extended patch.

Figure 6: Example mesh that includes a degenerate patch indicated in (a) and an extension of
that patch indicated in (b).

difference in numerical results. While keeping the difference in convergence rate in mind, we
will from here on let the results for the Morley reconstruction method also represent the beviour
of the Basic Plate Triangle.

5.4.2 Convergence on Structured and Unstructured Meshes

As noted in Section 3.3.1 the Morley reconstruction and the fully quadratic reconstruction
coincide on structured meshes, and should thereby produce identical results. This is seen in the
convergence plots for structured meshes, Figures 9 and 10, where their paths overlap.

On unstructured meshes the Morley reconstruction/Basic Plate Triangle does not converge
to the analytical solution. This is seen in Figures 11-14. As noted in Remark 4 the Morley
reconstruction does not fulfill the assumption of Theorem 4.6 on unstructured meshes, and thus
the a priori error estimates are not valid. On the other hand, the fully quadratic reconstruction
does show optimal convergence on unstructured meshes, as predicted by the a priori estimates.
In the figures slopes close to 1 for the error in energy norm and slopes close to 2 for the error
in L2 norm indicate optimal convergence. With the noted exception of the Morley reconstruc-
tion/Basic Plate Triangle on unstructured meshes, Figures 9-14 indicate optimal convergence
for all the compared methods.

We have previously mentioned that the nonconforming Morley triangle can be seen as a
special case of the quadratic nodal continuous discontinuous Galerkin method. This is natural
as the β penalty parameter in the dG method enforces continuity of the normal derivatives
over each edge midpoint, which is the very definition of the Morley basis functions. As shown
in Figures 9-14, the convergence results for the respective method are close to identical for
β = 100 as used in these calculations.
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(a) Collapsed solution due to degenerate patch.

(b) Accurate solution using extended patch.

Figure 7: Numerical solution for a simply supported plate under uniform load using LSFQ-
reconstruction including the degenerate patch is shown in (a) and including the extended patch
is shown in (b).
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Figure 8: The error in the numerical solution of Problem 1 versus the mesh size h on structured
meshes. Slopes for the Basic Plate Triangle and the Reconstructed Morley are 1.28 and 1.99
respectively. The error e = u−U is measured in L2 norm.
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Figure 9: The error in the numerical solution of Problem 1 versus the mesh size h. Structured
meshes are used and the error e is measured in energy norm. Note that the reconstructed Morley
and fully quadratic reconstruction produce identical results.
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Figure 10: The error in the numerical solution of Problem 1 versus the mesh size h. Structured
meshes are used and the error e is measured in L2 norm. Note that the reconstructed Morley
and fully quadratic reconstruction produce identical results.
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Figure 11: The error in the numerical solution of Problem 1 versus the mesh size h. Unstruc-
tured meshes are used and the error e is measured in energy norm.
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Figure 12: The error in the numerical solution of Problem 1 versus the mesh size h. Unstruc-
tured meshes are used and the error e is measured in L2 norm.
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Figure 13: The error in the numerical solution of Problem 2 versus the mesh size h. Unstruc-
tured meshes are used and the error e is measured in energy norm.
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Figure 14: The error in the numerical solution of Problem 2 versus the mesh size h. Unstruc-
tured meshes are used and the error e is measured in L2 norm.

5.4.3 Number of Degrees of Freedom

To give some indication of the performance of these elements in regards to how many degrees
of freedom are needed to represent the solution we give Figure 15. While it is seen in Figures
9-14 that the quadratic cG/dG method has the best performance among the tested methods with
respect to mesh discretization, Figure 15 indicates that the fully quadratic reconstruction has the
most compact representation performance wise. This is natural as we have smooth solutions.
Even though the quadratic nodal continuous dG method produce results close to identical to
those of the Morley triangle with regards to mesh discretization it does feature two degrees of
freedom on each edge midpoint compared to one for the Morley triangle, explaining that more
degrees of freedom are needed for par performance.

5.4.4 Size of penalty parameter β

In Figure 16 we present some numerical results for various β . As might be suspected the
fully quadratic reconstruction exhibits locking effects when β is to large. This is natural as
neighbouring elements share much of the information through the patch construction. A more
surprising result is that the quadratic cG/dG method does not seem to exhibit such locking ef-
fects for large β . This indicates that the finite element space of continuous piecewise quadratic
polynomials with continuous normal gradients on edge midpoints is large enough to accurately
approximate the solution. If we on the other hand change the projection operator in the penalty
term from the projection onto constants P0 to the projection onto linear functions P1 the cG/dG
method exhibits locking effects for large β .

A mesh independent lower bound for β can be calculated if a suitable choice of h in (2.30)
on each edge is made, see [9]. However, for the numerical results in this paper we have used a
global mesh size parameter for h. As the meshes used in the numerical results in this paper are
quasi-uniform this should be sufficient.

30

http://link.springer.com/article/10.1007%2Fs00211-011-0429-5
https://doi.org/10.1007/s00211-011-0429-5


The final publication is available at: link.springer.com
Numerische Mathematik (2012) 121:6597
DOI 10.1007/s00211-011-0429-5

3 4 5 6 7 8 9 10 11

−5

−4

−3

−2

log(dofs)

lo
g
|||

e||
|

 

 

Reconstructed Morley (BPT)
Fully Quadratic Reconstruction
Quadratic cGdG
Quadratic Nodal Cont. dG
Morley

Figure 15: The error in the numerical solution of Problem 2 versus the number of degrees of
freedom needed. Unstructured meshes are used and the error e is measured in energy norm.
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Figure 16: The error in the numerical solution of Problem 1 versus the mesh size using various
β . Solid lines indicate β = 102, dashed lines indicate β = 104, and dash-dot lines indicate
β = 106. Unstructured meshes are used and the error e is measured in energy norm.
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