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MULTIVALUED ATTRACTORS AND THEIR APPROXIMATION:

APPLICATIONS TO THE NAVIER-STOKES EQUATIONS

MICHELE COTI ZELATI, FLORENTINA TONE

Abstract. This article is devoted to the study of multivalued semigroups and their as-
ymptotic behavior, with particular attention to iterations of set-valued mappings. After
developing a general abstract framework, we present an application to a time discretiza-
tion of the two-dimensional Navier-Stokes equations. More precisely, we prove that the
fully implicit Euler scheme generates a family of discrete multivalued dynamical systems,
whose global attractors converge to the global attractor of the continuous system as the
time-step parameter approaches zero.

1. Introduction

The variety of questions related to evolution equations arising from fluid mechanics prob-
lems constitutes a challenging and fascinating area of mathematics, which has attracted
the attention of a wide number of researchers for many years. One important aspect,
among others, is the understanding of the behavior of solutions to differential equations
as time goes to infinity. For autonomous systems, this translates into the study of the
properties of a semigroup of operators {S(t)}t≥0, also called a dynamical system, acting
on a phase space X , typically a Banach space or, more generally, a complete metric space
[4, 7, 9, 23]. Notice that the parameter t could be regarded as discrete, if dealing with a
difference equation, or as continuous, in the case of a differential equation.

When global existence and uniqueness of solutions can be proved, dynamical systems
arise as solution operators assigning to a certain initial condition x ∈ X the corresponding
solution x(t) = S(t)x of the evolution problem under consideration. Unfortunately, in
many instances, uniqueness of solutions may be hard to prove, or even out of reach. In
this case, one has to deal with a so-called multivalued semigroup of operators, for which
S(t)x is the set of all possible solutions at time t. Multivalued semigroups have been
investigated by many authors, and are particularly powerful in the study of abstract
differential inclusions, doubly nonlinear equations, gradient flows and stochastic partial
differential equations [2, 3, 5, 14, 17, 18].

From the large time behavior viewpoint, the most relevant object is the so-called global

attractor, namely, the unique compact subset of the phase space which is at the same
time invariant and attracting. As noted in [27], it is of crucial importance to understand
whether the longterm dynamics of a system possessing global attractor can be properly
approximated by discrete attractors of discrete dynamical systems generated, for example,
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by numerical schemes associated to the evolution problem under concern. This issue has
been widely investigated and the interested reader is referred to, e.g., [10, 11, 12, 13, 19,
21, 26].

1.1. The physical model and its approximation. Let Ω ⊂ R
2 be a bounded domain

with smooth boundary ∂Ω. For t ≥ 0 and ν > 0, we consider the two-dimensional
Navier-Stokes equations [20, 22]

(1.1)

{

∂tu− ν∆u + (u · ∇)u+∇p = f,

div u = 0,

where f is an autonomous incompressible forcing term. The system is supplemented with
the nonslip boundary condition

(1.2) u(x, t)|x∈∂Ω = 0,

and the initial condition

(1.3) u(x, 0) = u0(x),

along with its time discretization provided by the fully implicit Euler scheme [24]

(1.4)
un − un−1

k
− ν∆un + (un · ∇)un +∇pn = f, u0 = u0.

Due to its nonlinear nature, uniqueness of solution to such a numerical approximation
can be proved only by restricting the time-step parameter k > 0 to be small enough.
To be more precise, such a restriction depends on the initial datum u0 and does not
therefore allow to define a single-valued discrete semigroup of operators in the classical
sense. Nonetheless, we will be able to show that, in fact, this difficulty can be overcome
by defining a family of multivalued discrete semigroups {Sk, 0 < k ≤ κ1}, where κ1 > 0
is constant and independent of u0.

Taking advantage of previous results contained in [25], we will address the issue of the
existence of a family of discrete global attractors Ak of Sk and we will prove that Ak → A
as k → 0 in a suitable sense, where A is the global attractor of the single-valued dynamical
system generated by (1.1)–(1.3).

1.2. Structure of the paper. In the next section we develop, along the lines of [14],
the abstract machinery of multivalued dynamical systems needed to prove the results
described above. In particular, we will focus on the existence of multivalued global at-
tractors, and prove a convergence theorem for families of discrete attractors depending
on a parameter. Section 3 is dedicated to the applications of the abstract theory to the
Navier-Stokes equations and their approximation. It is shown that the fully implicit Euler
scheme generates a multivalued discrete dynamical system whose asymptotic dynamics is
properly related to the one of the Navier-Stokes equations.
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2. The Abstract Framework

We here develop in an abstract way the main tools needed for the study of multivalued
semigroups and their asymptotic behavior. Some results are more or less already known
thanks to the works [2] and [14]. We also refer to [6] and to the more recent work [8] for a
fairly complete overview on the subject. Except for the approximation results, equivalent
statements of the theorems in this section can be found in [14]. We report here alternative
proofs for completeness and review purposes.

While the above papers mainly dealt with continuous-time semigroup, we are more in-
terested in discrete dynamical systems generated by numerical schemes for which unique-
ness of solutions may not hold. In particular, we will address the question of under what
conditions a discrete multivalued semigroup can approximate the longtime behavior of a
continuous one.

2.1. Multivalued Semigroups. Let (X, ‖ · ‖) be a real Banach space, and let T be
either R+ = [0,∞) or N. A one-parameter family of set-valued maps S(t) : 2X → 2X is a
multivalued semigroup (m-semigroup) if it satisfies the following properties:

(S.1) S(0) is the identity on 2X ;
(S.2) S(t+ τ) = S(t)S(τ), for all t, τ ∈ T.

To simplify the notation, if x ∈ X we will write S(t)x in place of S(t){x} and, as
customary, for any set B ∈ 2X , we will assume

S(t)B =
⋃

x∈B

S(t)x.

The m-semigroup is said to be closed if it fulfills the further property:

(S.3) S(t) is a closed map for every t ∈ T, meaning that if xn → x and yn ∈ S(t)xn is
such that yn → y, then y ∈ S(t)x.

Remark 2.1. The notion of continuity of a set-valued map is not as immediate as in the
single-valued case. An m-semigroup is called upper semicontinuous if given x ∈ X and a
neighborhood U(S(t)x) of S(t)x, there exists δ > 0 such that

‖x− y‖ < δ ⇒ S(t)y ⊂ U(S(t)x).

On the other hand, S(t) is defined to be lower semicontinuous if given xn → x and
y ∈ S(t)x, there exists yn ∈ S(t)xn such that yn → y. Finally, S(t) is continuous if it
is at the same time lower and upper semicontinuous. In general, it is not true that a
continuous m-semigroup is closed (as it is in the single-valued case), the problem being
that S(t)x might not be a closed set (if S(t)x is closed for any x ∈ X , the S(t) is said to
have closed values). Nonetheless, if S(t) is upper semicontinuous and has closed values,
then S(t) is closed (see [1]).

The positive orbit of B, starting at t ∈ T, is the set

γt(B) =
⋃

τ≥t

S(τ)B,

where we agree to set γ(B) = γ0(B). A function y : T → X is said to be a trajectory
starting at y0 ∈ X if y(0) = y0 and y(t+ τ) ∈ S(t)y(τ) for every t, τ ∈ T.



4 M. COTI ZELATI, F. TONE

Limit Sets. For any B ∈ 2X , the set

ω(B) =
⋂

t∈T

γt(B)

is called the ω-limit set of B. The following characterization of ω(B) holds true in the
multivalued case, and the proof is identical to the single-valued counterpart.

Lemma 2.2. A point x ∈ X belongs to ω(B) if and only if there are sequences tn → ∞
and xn ∈ S(tn)B such that xn → x as n → ∞.

A nonempty set B ∈ 2X is invariant for S(t) if

S(t)B = B, ∀t ∈ T.

If S(t)B ⊂ B, then B is said to be positively invariant.

Dissipativity. A set B0 ∈ 2X is an absorbing set for the m-semigroup S(t) if for every
bounded set B ∈ 2X there exists tB ∈ T such that

S(t)B ⊂ B0, ∀t ≥ tB.

Given two nonempty sets B, C ∈ 2X , the Hausdorff semidistance between B and C (in X)
is defined as

dist(B, C) = sup
b∈B

inf
c∈C

‖b− c‖.

Notice that, in general, dist(B, C) 6= dist(C,B). A nonempty set C ∈ 2X is attracting if
for every bounded set B we have

lim
t→∞

dist(S(t)B, C) = 0.

The m-semigroup S(t) is called dissipative if it possesses a bounded absorbing set. Some
authors prefer to require compactness (instead of only boundedness) in the notion of
dissipativity, a strategy which has been successful expecially in parabolic problems [16].

The Global Attractor. A nonempty compact set A ∈ 2X is said to be the global

attractor of S(t) if

(A.1) A is invariant;
(A.2) A is an attracting set.

Remark 2.3. The global attractor, if it exists, is necessarily unique. Moreover, it enjoys
the following maximality and minimality properties:

(i) let Ã be a bounded set satisfying (A.1). Then A ⊃ Ã;

(ii) let Ã be a closed set satisfying (A.2). Then A ⊂ Ã.

In order to state the result on the existence of the global attractor, we need a definition.
Given a bounded set B ∈ 2X , the Kuratowski measure of noncompacteness α(B) of B is
defined as

α(B) = inf
{

δ : B has a finite cover by balls of X of diameter less than δ
}

.

We list hereafter some properties of α.

(K.1) α(B) = α(B);
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(K.2) B1 ⊂ B2 implies that α(B1) ≤ α(B2);
(K.3) α(B) = 0 if and only if B is compact;
(K.4) if {Bt}t∈T is a family of nonempty closed sets such that Bt2 ⊂ Bt1 for t2 > t1 and

limt→∞ α(Bt) = 0, then B =
⋂

t∈T Bt is nonempty and compact;
(K.5) if {Bt}t∈T and B are as above, given any tn → ∞ and any xn ∈ Btn , there exist

x ∈ B and a subsequence xnk
→ x.

Theorem 2.4. Suppose that the closed m-semigroup S(t) possesses a bounded absorbing

set B0 ∈ 2X and

(2.1) lim
t→∞

α(S(t)B0) = 0.

Then ω(B0) is the global attractor of S(t).

Proof. First, we prove that ω(B0) is nonempty and compact. Let t0 ∈ T be such that

S(τ)B0 ⊂ B0, ∀τ ≥ t0.

If t ≥ t0, we have

γt(B0) =
⋃

τ≥t

S(τ)B0 =
⋃

τ∈T

S(τ + t)B0

=
⋃

τ∈T

S(t− t0)S(τ + t0)B0 ⊂
⋃

τ∈T

S(t− t0)B0 = S(t− t0)B0.

Therefore, in light of (K.1), (K.2) and (2.1),

lim
t→∞

α(γt(B0)) = lim
t→∞

α(γt(B0)) = 0.

Since the sets γt(B0) are nested, from (K.4) we conclude that

ω(B0) =
⋂

t∈T

γt(B0)

is nonempty and compact.
To prove ω(B0) is attracting, argue by contradiction, and assume that there exist ε > 0

and sequences tn → ∞ and yn ∈ S(tn)B0 such that

inf
y∈ω(B0)

‖yn − y‖ ≥ ε.

Since yn ∈ S(tn)B0, it follows that yn ∈ γtn(B0). By properties (K.4) and (K.5), there exist
z ∈ ω(B0) and a subsequence ynk

∈ S(tnk
)B0 such that ynk

→ z, which is a contradiction.
It remains to show that ω(B0) is invariant. Let tn → ∞ and yn ∈ S(tn)B0 be any

sequences. We claim that there exists y ∈ ω(B0) such that yn → y up to a subsequence.
Since ω(B0) is attracting, we know that

lim
n→∞

dist(S(tn)B0, ω(B0)) = 0.

As a consequence,
lim
n→∞

inf
z∈ω(B0)

‖yn − z‖ = 0,

from which we deduce the existence of a sequence zn ∈ ω(B0) such that

lim
n→∞

‖yn − zn‖ = 0.
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From the compactness of ω(B0) we readily get y ∈ ω(B0) and a subsequence nk such that
znk

→ y, and, in turn, ynk
→ y.

Let x ∈ ω(B0) and t ∈ T. By Lemma 2.2, there exist sequences tn → ∞ and yn ∈
S(tn)B0 such that yn → x as n → ∞. Since

S(tn)B0 = S(t)S(tn − t)B0,

we obtain that yn ∈ S(t)zn, with zn ∈ S(tn − t)B0. By the above claim, there exists
y ∈ ω(B0) such that zn → y up to a subsequence. The fact that S(t) is closed then yields
the following implication

zn → y, S(t)zn ∋ yn → x ⇒ x ∈ S(t)y,

namely the inclusion ω(B0) ⊂ S(t)ω(B0). Turning to the opposite one, we now know that

S(t)ω(B0) ⊂ S(τ)S(t)ω(B0) = S(t+ τ)ω(B0)

for every t, τ ∈ T. Since ω(B0) is attracting, for every neighborhood U(ω(B0)) of ω(B0),
there exists tU ∈ T such that

S(t+ τ)ω(B0) ⊂ U(ω(B0)), ∀τ ≥ tU .

Thus S(t)ω(B0) ⊂ U(ω(B0)), where U(ω(B0)) is arbitrary, so that

S(t)ω(B0) ⊂ ω(B0) = ω(B0), ∀t ∈ T,

which concludes the proof. �

2.2. Discrete Approximation Of Multivalued Semigroups. We now turn our at-
tention to the approximation of continuous-time m-semigroups by discrete ones, exploring
how certain properties that hold true in the discrete regime are carried over to the con-
tinuous limit.

Remark 2.5. Given a set-valued map S : 2X → 2X , we can define a discrete m-semigroup
by

S(n) = Sn, ∀n ∈ N.

Properties (S.1) and (S.2) are trivially satisfied, and, in this case, we will write that
{S}n∈N (instead of the redundant {Sn}n∈N) is a discrete m-semigroup.

Turning to our approximation problem, let {S(t)}t∈R+ be a closed m-semigroup, κ0 a
positive constant, and consider a family of discrete closed m-semigroups {Sk, 0 < k ≤
κ0}n∈N where, for each fixed k, the map Sk : 2X → 2X satisfies the usual semigroup
properties

S0
k = Id2X , Sn+m

k = Sn
kS

m
k , ∀n,m ∈ N.

Such maps arise in the study of numerical schemes associated to evolutionary equations,
in which either the discretization problem or the differential system (or both) might not
enjoy any uniqueness property of solutions. From the point of view of the longtime
behavior of solutions, it is therefore interesting to understand under what conditions the
asymptotic features of the continuous-time m-semigroup can be properly approximated
by the discrete ones.
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Given two nonempty sets B, C ∈ 2X , we write

B − C = {b− c : b ∈ B, c ∈ C} and ‖B‖ = sup
b∈B

‖b‖.

The following theorem is a generalization to m-semigroups of a result proven in [27].

Theorem 2.6. Let S(t) be a closed m-semigroup, possessing the global attractor A, and

let {Sk, 0 < k ≤ κ0}n∈N be a family of discrete closed m-semigroups, with global attractor

Ak. Assume the following:

(H1) there exists κ1 ∈ (0, κ0] such that the set

(2.2) K =
⋃

k∈(0,κ1]

Ak

is bounded in X;

(H2) there exists t0 ≥ 0 such that for any T ⋆ > t0,

(2.3) lim
k→0

sup
x∈Ak, nk∈[t0,T ⋆]

‖Sn
kx− S(nk)x‖ = 0.

Then,

(2.4) lim
k→0

dist(Ak,A) = 0.

Proof. Let ε > 0 and k ∈ (0, κ1]. Since K is bounded and A is attracting, there exists
tε > t0 ≥ 0 such that

dist(S(t)K,A) <
ε

2
, ∀t ≥ tε.

Let now xk ∈ Ak, and pick

nk =
⌊tε + 1

k

⌋

.

Thanks to the invariance of Ak under Sk, there exists yk ∈ Ak such that xk ∈ Snk

k yk, and
by (H2),

‖xk − S(nkk)yk‖ ≤ ‖Snk

k yk − S(nkk)yk‖ <
ε

2
, ∀k ≤ κε,

with a proper choice of κε > 0. As a consequence, if y ∈ S(nkk)yk,

dist(Ak,A) = sup
xk∈Ak

inf
x∈A

‖xk − x‖ ≤ sup
xk∈Ak

[

‖xk − y‖+ dist(y,A)
]

≤ sup
xk∈Ak

[

‖xk − S(nkk)yk‖+ dist(S(nkk)yk,A)
]

≤ sup
xk∈Ak

‖xk − S(nkk)yk‖+ dist(S(nkk)K,A) < ε,

and the theorem is proved.
�
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3. Applications to the Navier-Stokes Equations

In this section, we apply the above abstract framework to the fully implicit Euler approx-
imation of the Navier-Stokes equations. It is known that such a scheme does not generate
a single-valued discrete semigroup, since uniqueness of solutions holds under a restriction
on the time-step parameter which depends on the initial datum. To circumvent this diffi-
culty, we will show that such a scheme generates a family of closed discrete m-semigroups
depending on the time-step parameter, whose related attractors converge to the attractor
of the dynamical system generated by the Navier-Stokes equations.

3.1. Function spaces. Let Ω ⊂ R
2 be a bounded domain with smooth boundary ∂Ω.

For p ∈ [1,∞] and k ∈ N, we denote by Lp(Ω) = {Lp(Ω)}2, Hk(Ω) = {Hk(Ω)}2, and
Hk

0(Ω) = {Hk
0 (Ω)}

2 the usual Lebesgue and Sobolev spaces of vector-valued functions on
Ω. Setting

D =
{

u ∈ C∞
0 (Ω,R2) : div u = 0

}

,

we consider the usual Hilbert spaces associated with the Navier-Stokes equations

H = closure of D in L2(Ω),

V = closure of D in H1(Ω),

where we denote by | · |, (·, ·) and ‖ · ‖, ((·, ·)) the norm and the scalar product in H and
in V , respectively. Also, we indicate by V ∗ the dual space of V , endowed with the usual
dual norm ‖ · ‖∗, and by 〈·, ·〉 the duality pairing between V and V ∗. Calling

P : L2(Ω) = H ⊕H⊥ → H

the Leray orthogonal projection, the Stokes operator is defined as

A = −P∆, dom(A) = H2(Ω) ∩ V.

It is well known that the operator A is self-adjoint and strictly positive. Moreover,
dom(A1/2) = V and

‖u‖ = |∇u| = |A1/2u|, ∀u ∈ V.

Setting

B(u, v) = P
[

(u · ∇)v
]

,

system (1.1)–(1.3) can be rewritten as an abstract evolution equation of the form

(3.1)

{

u̇+ νAu+B(u, u) = f,

u(0) = u0,

where f = Pf , since we are assuming incompressible forcing. As proved in [23], problem
(3.1) generates a continuous and dissipative single-valued dynamical system S(t) : H →
H , which possesses the global attractor A, bounded in V .
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3.2. The implicit Euler scheme. A possible time discretization of (3.1) is given by the
fully implicit Euler scheme

(3.2)
un − un−1

k
+ νAun +B(un, un) = f, u0 = u0,

where n ≥ 1 and k > 0 is the time-step. Our goal in this section is to prove that (3.2)
generates a closed discrete m-semigroup {Sk}n∈N. Indeed, as in the stationary Navier-
Stokes problem, a solution to (3.2) is not in general unique. In particular, uniqueness of
solutions may be proved requiring k to be bounded from above by a constant depending
on the initial datum. More specifically, such a bound vanishes as the norm of u0 tends to
infinity, and this makes it impossible to properly define a single-valued semigroup acting
on the whole phase space. Nonetheless, by means of the tools devised in Section 2, we will
still be able to give a description of the longtime behavior of the discretized Navier-Stokes
equations, and discuss its convergence to the time-continuous asymptotic dynamics.

Notation. Throughout the section, C and Q(·) will denote a generic positive constant
and a generic increasing positive function, respectively, whose value may change even
in the same line of a certain equation. Unless otherwise stated, these quantities will be
independent of k, n and of the initial datum u0. In general, they might depend on the
structural quantities of the system (ν, f,Ω).

Fix k > 0. For w ∈ H , we look at the problem

(3.3) u+ kνAu+ kB(u, u) = w + kf,

for which we seek solutions in the following weak sense.

Definition 3.1. A vector u ∈ V is a solution to (3.3) if

(3.4) (u, v) + kν((u, v)) + kb(u, u, v) = (w, v) + k(f, v), ∀v ∈ V,

where b(u, v, w) = 〈B(u, v), w〉 is the usual trilinear form associated to the weak formula-
tion of the Navier-Stokes equations.

Remark 3.2. Recall that the trilinear form b satisfies the following properties:

|b(u, v, w)| ≤ C|u|1/2|Au|1/2‖v‖|w|, ∀u ∈ dom(A), v ∈ V, w ∈ H,(3.5)

|b(u, v, w)| ≤ C|u|1/2‖u‖1/2‖v‖|w|1/2‖w‖1/2, ∀u, v, w ∈ V,(3.6)

b(u, v, v) = 0, ∀u, v ∈ V.(3.7)

It is a classical result that a (possibly not unique) solution to (3.3) exists. Moreover,
any solution u ∈ V satisfies the energy estimate

(3.8) |u|2 + kν‖u‖2 ≤ |w|2 + Ck|f |2,

where C > 0 does not depend on k. For every w ∈ H , define the multivalued map
Sk : 2

H → 2H by

Skw = {u ∈ V : u solves (3.3) with time-step k}.

Notice that, in light of (3.8), the set Skw is bounded in V and therefore relatively compact
in H , thanks to the compactness of the embedding V →֒ H .
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3.3. The discrete m-semigroup. Let us consider the discrete m-semigroup {Sk}n∈N
generated by Sk. It is now clear that, for every n ∈ N,

Sku
n−1 = {un ∈ H : un solves (3.2) with time-step k}.

Also, a vector un ∈ Sn
ku0 if and only if there exists a sequence of elements (u0, u1, . . . , un−1, un)

such that ui ∈ Sku
i−1 for every i = 1, . . . , n and u0 = u0. From (3.8), we infer that any

ui ∈ Sku
i−1 satisfies the energy estimate

|ui|2 + kν‖ui‖2 ≤ |ui−1|2 + Ck|f |2,

and, inductively, any un ∈ Sn
ku

0 fulfills the bound

(3.9) |un|2 + kν
n

∑

i=1

‖ui‖2 ≤ |u0|2 + Ckn|f |2.

We then have the following theorem.

Theorem 3.3. The multivalued map Sk associated to the implicit Euler scheme (3.2)
generates a closed discrete m-semigroup {Sk}n∈N.

Proof. Since properties (S.1)–(S.2) are satisfied by definition, all we need to prove is that
Sn
k is a closed multivalued map for each n ∈ N. As j → ∞, let u0

j → u0 in H and

un
j ∈ Sn

ku
0
j with un

j → un in H . We have to show that un ∈ Sn
ku

0.

Since un
j ∈ Sn

ku
0
j , there exists a sequence (u0

j , u
1
j , . . . , u

n−1
j , un

j ) where ui
j ∈ Sku

i−1
j is a

solution to

(3.10) (ui
j, v) + kν((ui

j, v)) + kb(ui
j, u

i
j, v) = k(f, v) + (ui−1

j , v), ∀v ∈ V.

Also, the fact that u0
j → u0 in H implies the existence of a positive number M such that

sup
j

|u0
j |

2 ≤ M.

In view of (3.9), we obtain the bound

|ui
j|
2 + kν

i
∑

ℓ=1

‖uℓ
j‖

2 ≤ Cki|f |2 +M.

Thus, for every i = 1, . . . , n, we have the following convergences (up to not relabeled
subsequences) as j → ∞:

ui
j → ui, strongly in H and weakly in V.

Now, passing to the limit in (3.10), we readily get that

(ui, v) + kν((ui, v)) + kb(ui, ui, v) = k(f, v) + (ui−1, v), ∀v ∈ V.

As a consequence, ui ∈ Sku
i−1 for each i = 1, . . . , n. But then, un ∈ Sku

n−1 ⊂ Sn
ku

0, so
Sn
k is a closed map for every n ∈ N. �

From the energy estimate (3.9) and the fact that a closed map has necessarily closed
values, we have the following straightforward consequence.

Corollary 3.4. The discrete m-semigroup {Sk}n∈N has compact values, namely, the set

Sn
ku0 is compact in H for every u0 ∈ H.
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3.4. Earlier Contributions. To continue our study, we first collect some results ob-
tained in [25]. The first two concern initial data u0 ∈ H . There exists κ0 > 0, independent
of u0, n, k, such that the following hold:

(D.1) For every k > 0,

|Sn
ku0|

2 ≤ (1 + k)−n|u0|
2 + C|f |2, ∀n ≥ 0.

(D.2) Let k ∈ (0, κ0]. There exists a constant R0 > 0 with the following property: for
every R ≥ 0, there exists t0 = t0(R) ≥ 0 such that

|Sn
ku0| ≤ R0, ∀nk ≥ t0,

whenever |u0| ≤ R. Both R0 and t0 can be explicitly computed and do not depend
on n and k. In other words, the set

B0 = {v ∈ H : |v| ≤ R0}

is a bounded absorbing set for {Sk}n∈N.

We now turn our attention to initial data u0 ∈ V and recall the main result derived in
[25], tailored to our case.

Theorem 3.5. Suppose ‖u0‖ ≤ R, and let the time-step k be such that

(3.11) k ≤ κ⋆(R) = min
{

κ0,
1

Q(R)
, C

}

.

Then the estimate

(3.12) ‖Sn
ku0‖ ≤ Q(R)

holds true for every n ≥ 1.

Remark 3.6. Since the issue of non-uniqueness of solutions to (3.3) is the main motivation
for this work, let us briefly discuss one way to recover uniqueness of solution to (3.2), in the
sense of (3.4) with u = un and w = un−1. Let un

1 and un
2 be two solutions corresponding

to the same initial data u0 ∈ V , let R ≥ 0 be such that ‖u0‖ ≤ R, and set un = un
1 − un

2 .
If k ≤ κ⋆(R), from (3.4) and (3.7) we learn that

|un|2 + kν‖un‖2 = −kb(un, un
2 , u

n).

Now, using (3.6) and Theorem 3.5, for any n ≥ 1 we obtain

|un|2 + kν‖un‖2 ≤ Ck|un|‖un‖‖un
2‖ ≤ Q(R)k|un|‖un‖

≤
1

2
|un|2 +Q(R)2k2‖un‖2.

Therefore, if we require

k ≤ min
{

κ⋆(R),
ν

2Q(R)2

}

,

we can conclude that

|un|2 + kν‖un‖2 ≤ 0.
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This estimate clearly yields uniqueness of solutions. However, two main drawbacks arise.
Firstly, we necessarily need u0 ∈ V , which rules out the possibility of defining a single-
valued semigroup on the natural phase spaceH of weak solutions. Secondly, the restriction
on k depends on ‖u0‖, and thus uniqueness of solutions depends, in the end, on the single
trajectory chosen and not uniformly with respect to the initial datum. This is why we
decided to tackle this problem exploiting the machinery of multivalued semigroups.

3.5. The discrete global attractors. The higher order estimate in (3.12) is not enough
to conclude the existence of the global attractor for the discrete m-semigroup Sk, since it
requires the initial data u0 to be in the more regular space V . Moreover, (3.11) shows a
dependence of κ⋆ on the initial data, which turns out to be unsatisfactory in the approx-
imation process devised in Theorem 2.6. We now show how to overcome this difficulty.
First of all, thanks to the existence of a bounded absorbing set, it is natural to consider
only initial data u0 ∈ B0.

Lemma 3.7. Let k ∈ (0, κ0], and consider a sequence (u0, u1, . . .), where u0 = u0 ∈ B0

and ui ∈ Si
ku

0. Then, there exists ℓk ∈ N such that

(3.13) ‖uℓk‖ ≤ R⋆,

where R⋆ > 0 does not depend on n, k and u0.

Proof. Let

nk =
⌊1

k

⌋

+ 1.

Estimate (3.9) immediately implies

kν

nk
∑

i=1

‖ui‖2 ≤ R2
0 + Cknk|f |

2.

Arguing by contradiction, we infer that there exists ℓk ∈ {1, . . . , nk} such that

knkν‖u
ℓk‖2 ≤ R2

0 + Cknk|f |
2.

Hence,

‖uℓk‖2 ≤
R2

0

knkν
+ C|f |2.

Since knk ≥ 1, the proof ends by setting

R2
⋆ =

R2
0

ν
+ C|f |2.

�

Having in mind condition (3.11), we now fix κ1 = κ⋆(R⋆) ≤ κ0. Combining together
(3.12) and the above Lemma 3.7 we obtain the following.

Corollary 3.8. Let k ∈ (0, κ1], and consider a sequence (u0, u1, . . .), where u0 = u0 ∈ B0

and ui ∈ Si
ku

0. Then, there exists ℓk ∈ N such that

(3.14) ‖uℓk+n‖ ≤ R1, ∀n ≥ 1.
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As a consequence, for every k ∈ (0, κ1], there exists nk ∈ N such that

(3.15) ‖Snk+n
k u0‖ ≤ R1, ∀n ≥ 1.

Proof. The constant R1 = Q(R⋆) is given by (3.12), and it is clearly independent of n, k
and u0. In the first estimate in the statement of the corollary, ℓk might depend on the
particular sequence (u0, u1, . . .) which originates from u0 = u0. As in the proof of Lemma
3.7, the choice

nk =
⌊1

k

⌋

+ 1,

together with (3.12) and the fact that ℓk ≤ nk, takes away this dependence and allows to
obtain the uniform estimate (3.15). �

Notice that (3.15) can be rewritten in the equivalent way

‖Sn
ku0‖ ≤ R1, ∀n ≥ nk + 1,

and from the definition of nk, we have that, in particular,

(3.16) ‖Sn
ku0‖ ≤ R1, ∀nk ≥ 1 + 2κ1.

We summarize the above observations in the next theorem, which, in fact, improves the
results in [25].

Theorem 3.9. Let κ1 > 0 as above and k ∈ (0, κ1]. There exists a constant R1 > 0 with

the following property: for every R ≥ 0, there exists t1 = t1(R) ≥ 0 such that

(3.17) ‖Sn
ku0‖ ≤ R1, ∀nk ≥ t1,

whenever |u0| ≤ R. Both R1 and t1 can be explicitly computed and do not depend on n
and k. Hence, the set

(3.18) B1 = {v ∈ V : ‖v‖ ≤ R1}

is a V -bounded absorbing set for {Sk}n∈N.

Proof. Fix k ∈ (0, κ1] and let |u0| ≤ R. From (D.2), there exists t0 = t0(R) such that

Sn
ku0 ∈ B0, ∀nk ≥ t0.

In view of (3.16), setting t1 = t1(R) = t0(R) + 1 + 2κ1, we obtain

Sn
ku0 ∈ B1, ∀nk ≥ t1,

concluding the proof. �

Remark 3.10. The result contained in the above Theorem 3.9 improves the one in [25]
in two directions. On one hand, we only require the initial data to be in H . This shows
a regularization property analogous to the one enjoyed by the solution to the Navier-
Stokes equations. On the other hand, we obtain a uniform restriction on the time-step k,
independent of the initial data.

Thanks to the above results, the discrete m-semigroup {Sk}n∈N satisfies the assumptions
of Theorem 2.4.

Proposition 3.11. For every k ∈ (0, κ1], there exists the global attractor Ak of the m-

semigroup {Sk}n∈N.
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Remark 3.12. The global attractor Ak being the smallest closed attracting set of the
phase space, from (3.17) we obtain the inclusion

Ak ⊂ B1.

The fact that R1 does not depend on k then yields

(3.19)
⋃

k∈(0,κ1]

Ak ⊂ B1.

Hence, the attractors Ak enjoy a uniform regularity property.

3.6. The attractor approximation. In this paragraph, we prove that the longterm
behavior of the semigroup S(t) generated by the Navier-Stokes equations (3.1) is approx-
imated, in the sense of Theorem 2.6, by that of the discrete m-semigroup related to the
fully implicit Euler scheme (3.2). The main result of this section reads as follows.

Theorem 3.13. The family of attractors {Ak}k∈(0,κ1] converges, as k → 0, to A, namely,

(3.20) lim
k→0

dist(Ak,A) = 0,

where dist denotes the Hausdorff semidistance in H.

Our goal is to apply Theorem 2.6 to obtain the convergence of the discrete attractorsAk

to the continuous time attractor A of the semigroup S(t). By virtue of (3.19), assumption
(H1) is automatically satisfied. The remaining of the section is devoted to the verification
of the uniform convergence required by (H2). Since (H2) involves an estimate in terms of
initial data belonging to Ak, till the end of the section we will assume

u0 ∈ B1.

Define κ2 = min{κ1, κ⋆(R1)}, where κ⋆ is given by (3.11). Notice that since B1 is absorb-
ing, in view of Theorem 3.5 we have the following uniform estimate

(3.21) sup
k∈(0,κ2]

sup
n≥0

‖Sn
ku0‖ ≤ C.

which, in turn, implies

(3.22)
m
∑

n=i

‖un − un−1‖2 ≤ Ck(m− i+ 1) + C, ∀i = 1, . . . , m,

where un ∈ Sku
n−1 for every n = i, . . . , m. Indeed, multiplying (3.2) by 2kAun, we obtain

‖un‖2 − ‖un−1‖2 + ‖un − un−1‖2 + 2νk|Aun|2

+ 2kb(un, un, Aun) = 2k(f, Aun).

Estimating the trilinear form using (3.5) and the bound (3.21), we infer that

2kb(un, un, Aun) ≤ 2Ck|un|1/2‖un‖|Aun|3/2 ≤
νk

2
|Aun|2 + Ck.

Also,

2k(f, Aun) ≤ 2k|f ||Aun| ≤
νk

2
|Aun|2 + Ck.
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Thus,

‖un‖2 − ‖un−1‖2 + ‖un − un−1‖2 + νk|Aun|2 ≤ Ck.

Now, summing over n = i, . . . , m and neglecting the positive term |Aun|2, we get

‖um‖2 − ‖ui−1‖2 +
m
∑

n=i

‖un − un−1‖2 ≤ Ck(m− i+ 1).

Hence, a further application of (3.21) entails (3.22).
For any k > 0, we define the piecewise constant and the piecewise linear functions

uk(t) = un, t ∈ [(n− 1)k, nk)

and

ũk(t) = un +
t− nk

k
(un − un−1), t ∈ [(n− 1)k, nk).

Notice that ũk(nk) = un. Also, it is easily seen that ũk solves

(3.23) ˙̃uk + νAũk + B(ũk, ũk) = f +Ψk,

where

Ψk(t) = νA(ũk(t)− uk(t)) +B(ũk(t), ũk(t))− B(uk(t), uk(t)).

Lemma 3.14. For any T ⋆ > 0, Ψk ∈ L2(0, T ⋆;V ∗) and

(3.24) ‖Ψk‖
2
L2(0,T ⋆;V ∗) ≤ kQ(T ⋆).

Proof. Let v ∈ V be such that ‖v‖ ≤ 1, and let t ∈ [(n − 1)k, nk) be fixed. In light of
(3.6), we have

|〈B(ũk, ũk)−B(uk, uk), v〉| = |b(ũk, ũk − uk, v) + b(ũk − uk, uk, v)|

≤ C(‖ũk‖+ ‖uk‖)‖ũk − uk‖.

Since the uniform bound (3.21) implies

‖uk(t)‖ = ‖un‖ ≤ C

and

‖ũk(t)‖ ≤ ‖un‖+
∣

∣

∣

t− nk

k

∣

∣

∣
(‖un‖+ ‖un−1‖) ≤ C,

we infer that

|〈B(ũk, ũk)− B(uk, uk), v〉| ≤ C‖ũk − uk‖ ≤ C‖un − un−1‖.

Clearly,

|〈A(ũk − uk), v〉| ≤ ‖ũk − uk‖ ≤ C‖un − un−1‖.

Hence, for t ∈ [(n− 1)k, nk), we can conclude that

‖Ψk(t)‖∗ ≤ C‖un − un−1‖.
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Thus, setting N⋆ = ⌊T ⋆/k⌋, by the above bound and (3.22) we finally get

‖Ψk‖
2
L2(0,T ⋆;V ∗) =

∫ T ⋆

0

‖Ψk(t)‖
2
∗dt ≤

N⋆+1
∑

n=1

∫ nk

(n−1)k

‖Ψk(t)‖
2
∗dt

≤ Ck

N⋆+1
∑

n=1

‖un − un−1‖2 ≤ kQ(T ⋆).

Thus, the lemma is proved. �

We are now ready to verify (a slightly stronger version of) assumption (H2) for our
discrete m-semigroup, which will conclude the proof of Theorem 3.13.

Lemma 3.15. For any T ⋆ > 0,

(3.25) lim
k→0

sup
u0∈B1, nk∈[0,T ⋆]

|Sn
ku0 − S(nk)u0| = 0.

Proof. Let u = u(t) = S(t)u0 be the solution to (3.1). As shown in [23], S(t) satisfies the
uniform energy estimate

(3.26) sup
t≥0

sup
u0∈B1

‖S(t)u0‖ ≤ C.

For ũk defined as above and k ∈ (0, κ2], consider the difference vk = u − ũk, which is a
solution to

v̇k + νAvk +B(vk, u) +B(ũk, vk) = −Ψk.

Testing the above equation by vk, one obtains

1

2

d

dt
|vk|

2 + ν‖vk‖
2 + b(vk, u, vk) = −〈Ψk, vk〉.

By (3.6) and (3.26), the trilinear form can be estimated as

|b(vk, u, vk)| ≤ C|vk|‖vk‖‖u‖ ≤
ν

4
‖vk‖

2 + C|vk|
2,

and from the obvious bound

−〈Ψk, vk〉 ≤
ν

4
‖vk‖

2 + C‖Ψk‖
2
∗,

we derive the differential inequality

d

dt
|vk|

2 ≤ C|vk|
2 + C‖Ψk‖

2
∗.

Since vk(0) = 0, an application of the Gronwall inequality together with Lemma 3.14
gives

|vk(t)|
2 ≤ CeCt

∫ t

0

‖Ψk(s)‖
2
∗ds ≤ CeCT ⋆

‖Ψk‖
2
L2(0,T ⋆;V ∗) ≤ kQ(T ⋆).

As a consequence,

|u(t)− ũk(t)|
2 ≤ kQ(T ⋆).
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But then

lim
k→0

sup
u0∈B1, nk∈[0,T ⋆]

|Sn
ku0 − S(nk)u0|

= lim
k→0

sup
u0∈B1, nk∈[0,T ⋆]

sup
un∈Sn

k
u0

|un − u(nk)|

= lim
k→0

sup
u0∈B1, nk∈[0,T ⋆]

sup
un∈Sn

k
u0

|ũk(nk)− u(nk)| = 0,

and the proof is over. �
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18 M. COTI ZELATI, F. TONE

[21] A.M. Stuart and A.R. Humphries, Dynamical systems and numerical analysis, Cambridge University
Press, Cambridge, 1996.

[22] R. Temam, Navier-Stokes equations and nonlinear functional analysis, CBMS-NSF Regional confer-
ence Series in Applied Mathematics, SIAM, Philadelphia, 1983.

[23] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Springer-Verlag, New
York, 1997.

[24] R. Temam, Navier-Stokes equations, AMS Chelsea Publishing, Providence, 2001.
[25] F. Tone, D. Wirosoetisno, On the long-time stability of the implicit Euler scheme for the two-

dimensional Navier-Stokes equations, SIAM J. Numer. Anal. 44 (2006), 29–40.
[26] F. Tone, X. Wang, Approximation of the stationary statistical properties of the dynamical system

generated by the two-dimensional Rayleigh-Benard convection problem, Anal. Appl. 9 (2011), 421–
446.

[27] X. Wang, Approximation of stationary statistical properties of dissipative dynamical systems: time

discretization, Math. Comp. 79 (2010), 259–280.

Indiana University - Department of Mathematics

Rawles Hall, Bloomington, IN 47405, USA

E-mail address : micotize@indiana.edu (M. Coti Zelati)

University of West Florida - Department of Mathematics and Statistics

Pensacola, FL 32514, USA

E-mail address : ftone@uwf.edu (F. Tone)


	1. Introduction
	1.1. The physical model and its approximation
	1.2. Structure of the paper

	2. The Abstract Framework
	2.1. Multivalued Semigroups
	Limit Sets
	Dissipativity
	The Global Attractor
	2.2. Discrete Approximation Of Multivalued Semigroups

	3. Applications to the Navier-Stokes Equations
	3.1. Function spaces
	3.2. The implicit Euler scheme
	Notation
	3.3. The discrete m-semigroup
	3.4. Earlier Contributions
	3.5. The discrete global attractors
	3.6. The attractor approximation

	References

