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Abstract We present the formulation and the numerical analysis of the Brinkman
problem derived in Allaire (Arch Rational Mech Anal 113(3): 209–259,1990. doi:10.
1007/BF00375065, Arch Rational Mech Anal 113(3): 261–298, 1990. doi:10.1007/
BF00375066) with a lognormal random permeability. Specifically, the permeability is
assumed to be a lognormal random field taking values in the symmetric matrices of size
d ×d, where d denotes the spatial dimension of the physical domain D. We prove that
the solutions admit bounded moments of any finite order with respect to the random
input’s Gaussian measure. We present a Mixed Finite Element discretization in the
physical domain D, which is uniformly stable with respect to the realization of the
lognormal permeability field. Based on the error analysis of this mixed finite element
method (MFEM), we develop a multi-level Monte Carlo (MLMC) discretization of the
stochastic Brinkman problem and prove that the MLMC-MFEM allows the estimation
of the statistical mean field with the same asymptotical accuracy versus work as the
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MFEM for a single instance of the stochastic Brinkman problem. The robustness of the
MFEM implies in particular that the present analysis also covers the Darcy diffusion
limit. Numerical experiments confirm the theoretical results.

Mathematics Subject Classification (2000) 65C05 · 60H35 · 65N30

1 Introduction

Efficient numerical simulation of a viscous, incompressible flow in porous media is
a key problem in the field of geosciences. It arises in an increasing number of appli-
cations related to natural resource management, environmental impact assessment
and the planning and risk assessments of waste disposals. Porous media modelling is
characterized by multiple scales of the permeability of the media of interest, and by
uncertain geometry and material parameters of these media. We refer to [21] for a sur-
vey of porous media flow models. The present paper is devoted to a numerical analysis
of a Multilevel Monte Carlo Method for a stochastic variant of the Brinkman problem.
Major applications of the Brinkman model lie in petroleum engineering, in particular
in the simulation of fractured reservoirs. Other industrial applications include e.g. the
simulation of resin flow in composite molding and modelling of oil filters.

The Brinkman model was justified as an asymptotic limit ε → 0 for media with
deterministic, periodic spatial distributions of inhomogeneities of size and period
O(ε) in [2]. In [3], it was shown that under slightly different asymptotic scaling
hypotheses, either the Stokes problem or the Darcy law is obtained in the limit
ε → 0. The rather delicate dependence of the limit problem on the scaling hypothesis
prompted in [15,17,18] the development and the numerical analysis of robust mixed
FEM for a parametric class of Brinkman models which comprise, in particular, all
three scaling limits obtained in [2,3]. The derivation of the Brinkman model in [2]
required in particular full knowledge of the microscopic grain geometry of the porous
medium in the derivation of the effective permeability tensor in the upscaled Brinkman
model.

In subsurface flow models in computational geosciences, however, pore structure
and geometry are not explicitly known. Accordingly, statistical hypotheses on spatial
correlations of distributions of pore sizes and grain shape are made. Most widely used
is the so-called log-normal distribution, in particular in connection with the (postulated
valid) Darcy limit for permeability.

We therefore analyze in the present paper the Finite Element discretization of a
parametric, stochastic family of Brinkman models in a bounded domain D ⊂ R

d : a
scale parameter 0 ≤ t < ∞ allows a seamless transition between the Darcy and Stokes
flow, whereas the (possibly anisotropic) stochastic pore-scale geometry is assumed as
a family of symmetric random d × d tensors with a log-normal law.

Robustness of the mixed FEM with respect to the scaling parameter t is ensured
by an error analysis in the mesh-dependent norms introduced in [15], whereas the
log-normal randomness in the permeability tensors is accounted for by a Multi-Level
Monte Carlo sampling strategy following [4].
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MLMC for the stochastic Brinkman problem 349

We prove optimal convergence rates of the mixed finite element approximations of
the mean velocity and pressure fields, and establish complexity bounds which show
that, under realistic assumptions on the spectrum of the covariance operator for the
log-normal family of permeability tensors, the multi-level Monte Carlo mixed finite
element discretization allows approximating the mean velocity and pressure fields
with work proportional to, essentially (i.e. up to logarithmic terms), that of a single,
deterministic Brinkman solve on the finest spatial grid. In our analysis, we also exploit
a discretization level dependent truncation order of the log-normal tensor’s Karhunen–
Loève expansions, an idea that has since been taken up in [24]. We mention that the
present multi-level MC approach is a so-called non-intrusive sampling strategy which
is to be contrasted with recent, intrusive efforts, e.g. in [13] where a polynomial chaos
type discretization for the Darcy limit was proposed and analyzed. For a general survey
of theoretical properties of polynomial chaos based discretizations, we refer to [22].

Throughout the paper, we employ standard notation and terminology. The triplet
(Ω,A,P) will denote a probability space on which uncertainty is modelled. By E we
denote the mathematical expectation with respect to the probability measure P. The
symbol D will signify a bounded domain in R

d , d = 2, 3, with a Lipschitz boundary
∂D. For 1 ≤ p ≤ ∞, we denote by L p(D) the space of Lebesgue-measureable, real-
valued functions in D which are p-integrable with respect to the Lebesgue measure.
For k ∈ N0 we denote by Hk(D) the usual Sobolev spaces of functions in L2(D)
whose weak derivatives of order k are square integrable over D.

2 The deterministic Brinkman problem

Let D ⊂ R
d be a bounded Lipschitz polyhedron. The deterministic Brinkman problem

on D with parameters t ≥ 0 and M ∈ L∞(D; S
d) is

{
− t2 Au + Mu + ∇ p = f ,

div u = g,
(2.1)

where Au = div ε(u) for ε(u) = (∇u + ∇u	)/2 and S
d denotes the space of

symmetric d × d matrices, endowed with the spectral norm. We assume that M is
uniformly positive definite on D.

For t > 0, we assume homogeneous essential boundary conditions

u = 0 on ∂D. (2.2)

In the limit t = 0, we consider the natural boundary conditions

u · n = 0 on ∂D. (2.3)

Both cases require the compatibility condition g ∈ L2∗(D). Here and in what follows,
L2∗(D) = L2(D)/R denotes the space of equivalence classes of functions in L2(D)
which are equal up to a constant. We shall identify L2∗(D) in what follows with the
closed subspace of L2(D) of functions with vanishing mean. We impose the same

123



350 C. J. Gittelson et al.

condition p ∈ L2∗(D) in order to ensure uniqueness of the pressure p in (2.1). The
solution space V for the velocity is defined as completion of [C∞

0 (D)]d with respect
to the norm

t2‖ε(v)‖2
0 + ‖v‖2

0. (2.4)

By Korn’s inequality, this norm is equivalent (uniformly with respect to t ≥ 0, with
constants depending only on D) to

‖v‖2
t := t2‖∇v‖2

0 + ‖v‖2
0, (2.5)

which is the norm we use in the following. Consequently,

V = [H1
0 (D)]d (2.6)

if t > 0, and for t = 0, this space is

V = [L2(D)]d . (2.7)

The space for the pressure p is defined through the norm

|||q|||t := sup
v∈V

〈v,∇q〉
‖v‖t

, (2.8)

where 〈·, ·〉 denotes the duality pairing in V × V ∗, as

Q :=
{

q ∈ L2∗(D) ; |||q|||t < ∞
}
. (2.9)

Note that for v ∈ V and q ∈ Q,

〈v,∇q〉 =
{

−(div v, q) for t > 0 ,

(v,∇q) for t = 0 ,
(2.10)

where (·, ·) denotes the inner product in L2(D)d . For t > 0, the Babuška–Brezzi
property

sup
v∈V

(div v, q)

‖v‖t
≥ C‖q‖0 ∀q ∈ L2∗(D) (2.11)

implies that Q = L2∗(D). In the case t = 0, we have |||q|||t = ‖∇q‖0, and thus
Q = H1∗ (D) = H1(D) ∩ L2∗(D).

We define the bilinear forms

a(u, v) := t2(ε(u), ε(v))+ (Mu, v), (2.12)

b(v, q) := 〈v,∇q〉, (2.13)

123



MLMC for the stochastic Brinkman problem 351

and

B(u, p; v, q) := a(u, v)+ b(v, p)+ b(u, q). (2.14)

The weak formulation of (2.1) with the boundary conditions (2.2) or (2.3) is to find
(u, p) ∈ V × Q such that

B(u, p; v, q) = L(v, q) ∀(v, q) ∈ V × Q (2.15)

for the linear functional

L(v, q) := ( f , v)− (g, q). (2.16)

By Korn’s inequality, uniform positive definiteness of M , and (2.8), Brezzi’s coercivity
conditions for saddle point problems are satisfied,

a(v, v) ≥ α‖v‖2
t ∀v ∈ V and sup

v∈V

b(v, q)

‖v‖t
≥ |||q|||t ∀q ∈ Q. (2.17)

Furthermore, the bilinear forms a(·, ·) and b(·, ·) are bounded,

a(w, v) ≤ ca‖w‖t‖v‖t ∀w, v ∈ V , (2.18)

b(v, q) ≤ ‖v‖t |||q|||t ∀(v, q) ∈ V × Q. (2.19)

This implies continuity of the bilinear form B(·; ·) on [V × Q]2, and the stability
condition

sup
(v,q)∈V×Q

B(w, r; v, q)

‖v‖t + |||q|||t ≥ C(‖w‖t + |||r |||t ) ∀(w, r) ∈ V × Q , (2.20)

by which the solution (u, p) ∈ V × Q exists and is unique. Moreover, we have the
bounds

‖u‖t ≤ 1

α
‖ f ‖V ∗ +

(
1 + ca

α

)
‖g‖Q∗ , (2.21)

|||p|||t ≤
(

1 + ca

α

)
‖ f ‖V ∗ + ca

(
1 + ca

α

)
‖g‖Q∗ ; (2.22)

see for example [6] for details. Note that the constants α and ca depend on M but not
on t .

3 The stochastic Brinkman problem

We consider the matrix M in the Brinkman problem (2.1) to be a lognormal random
field. To this end, let G be an S

d -valued Gaussian field on D with bounded paths
and mean field G0. The distribution of G − G0 is a centered Gaussian measure on
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L∞(D; S
d), which we assume to be a Radon measure or, equivalently, to be concen-

trated on a separable subspace of L∞(D; S
d), such as Cb(D; S

d), see e.g. [5]. We
consider M of the form

M = exp(G), (3.1)

where exp(·) denotes the matrix exponential. By construction, M is almost surely in
L∞(D; S

d) and uniformly positive definite.
We will denote the underlying set of elementary events by Ω and the probability

measure by P. The expectation operator E is the integral over Ω with respect to P.

Lemma 3.1 For all q > 0,

E[exp(q‖G − G0‖L∞(D;Sd ))] < ∞. (3.2)

Proof By Fernique’s theorem [11,5], there is a κ > 0 such that

E[exp(κ‖G − G0‖2
L∞(D;Sd )

)] < ∞.

Consequently, for any q > 0,

E[exp(q‖G − G0‖L∞(D;Sd ))] ≤ exp( q2

4κ )E[exp(κ‖G − G0‖2
L∞(D;Sd )

)] < ∞.

��
Let the random variablesμmin andμmax denote the minimal and maximal eigenval-

ues of M on the domain D. By the above assumptions, μ−1
min and μmax are a.s. finite.

Lemma 3.1 implies the following stronger property.

Proposition 3.1 For any q ∈ (0,∞), μ−1
min, μmax ∈ Lq(Ω).

Proof The assertion follows from Lemma 3.1 since

μmax ≤ exp(‖G0‖L∞(D;Sd ) + ‖G − G0‖L∞(D;Sd )),

and similarly for μ−1
min. ��

Together with the stability bounds (2.21) and (2.22), Proposition 3.1 leads to inte-
grability properties of u and p. We note that ca and α are of the form

ca = max(c̄a, μmax) and α = min(ᾱ, μmin), (3.3)

with c̄a and ᾱ independent of M. In particular, ca and α−1 are also in Lq(Ω) for any
q ∈ (0,∞).

Proposition 3.2 For all q ∈ [1,∞), u ∈ Lq(Ω; V ) and p ∈ Lq(Ω; Q).
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Proof Measurability of u and p follows as in [14, Lemma 3.4] by truncating the
Gaussian measure such that M is uniformly bounded, formulating a sequence of well-
posed saddle point problems on L2(Ω; V ) and L2(Ω; Q), and passing to the limit.
Suitable truncated measures can be constructed by restricting the distribution of G to
a sequence of compact subsets of L∞(D; S

d), as in [5, Theorem 3.4.1].
By (2.21) and Hölder’s inequality,

‖u‖Lq (Ω;V ) ≤ ‖α−1‖Lq (Ω)‖ f ‖V∗ +
(

1 + ‖α−1‖L2q (Ω)‖ca‖L2q (Ω)

)
‖g‖Q∗ ,

and using (2.22),

‖p‖Lq (Ω;Q) ≤
(

1 + ‖α−1‖L2q (Ω)‖ca‖L2q (Ω)

)
‖ f ‖V∗

+‖ca‖L3q (Ω)

(
1 + ‖α−1‖L3q (Ω)‖ca‖L3q (Ω)

)
‖g‖Q∗ .

��
Remark 3.1 Proposition 3.2 extends to stochastic f and g. It follows as above that if
f ∈ Lq̄(Ω; V ∗) and g ∈ Lq̄(Ω; Q∗), then u ∈ Lq(Ω; V ) and p ∈ Lq(Ω; Q) for all
q ∈ [1, q̄). For simplicity, we consider only deterministic f and g in the following.

4 Approximation by finitely many random variables

4.1 Truncated Gaussian field

We approximate M by expanding the Gaussian field G in a series, and truncating this
series after N terms. We consider the Karhunen–Loève expansion of G; however, all
of the following also holds for more general series representations.

Let S
d
F denote S

d endowed with the Frobenius norm instead of the spectral norm.
Since L2(D; S

d
F ) is a separable Hilbert space, the covariance of G can be interpreted

as a symmetric nuclear operator KG on L2(D; S
d
F ) which is given by

KG A = E

[∫
D

trace(A	(G − G0)) dx(G − G0)

]
, A ∈ L2(D; S

d
F ). (4.1)

Let (λn)
∞
n=1 denote the eigenvalues of KG , and let (Φn)

∞
n=1 be corresponding eigen-

vectors, normalized in L2(D; S
d
F ). The Karhunen–Loève expansion of G is

G = G0 +
∞∑

n=1

Yn

√
λnΦn, (4.2)

where

Yn = λ
−1/2
n

∫
D

trace((G − G0)
	Φn) dx (4.3)
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354 C. J. Gittelson et al.

are i.i.d. standard normal random variables. Let Ψ n := √
λnΦn and

GN := G0 +
N∑

n=1

YnΨ n, N ∈ N. (4.4)

More generally, (Ψ n)
∞
n=1 may be any orthonormal basis of the Cameron–Martin

space of G. Since the distribution of G − G0 is a centered Radon Gaussian mea-
sure on L∞(D; S

d),GN converges to G P-a.s. in L∞(D; S
d) by [5, Theorem 3.5.1].

Furthermore, convergence in Lq(Ω; L∞(D; S
d)) for all q ∈ [1,∞) follows from [5,

Corollary 3.5.8]. We make additional assumptions in order to derive a convergence
rate.

We abbreviate ψn := ‖Ψ n‖L∞(D;Sd ), and assume without loss of generality that
ψ := (ψn)

∞
n=1 is nonincreasing. Furthermore, let δn := ψκn ‖DΨ n‖L∞(D;L(Rd ,Sd )) for

a κ ≥ 0, and δ := (δn)
∞
n=1.

Assumption 4.1 The functions Ψ n are in W 1,∞(D; S
d) for all n ∈ N. The sequence

of norms ψ is in 
τ for a τ ∈ (0, 2), and δ is in 
� for a � ∈ [τ,∞].
Remark 4.1 Assumption 4.1 implies in particular that G − G0 ∈ Cb(D; S

d) almost
surely. Since Ψ n ∈ Cb(D; S

d) for all n ∈ N,GN − G0 is continuous for all N , and
continuity of G − G0 follows since GN converges to G a.s. in L∞(D; S

d).

Lemma 4.1 For any q ≥ τ and any N ∈ N,

( ∞∑
n=N+1

ψ
q
n

)1/q

≤ ‖ψ‖
τ (N + 1)−s, s = 1

τ
− 1

q
. (4.5)

Proof Due to the elementary estimate

‖ψ‖τ
τ =
∞∑

i=1

ψτi ≥
n∑

i=1

ψτi ≥
n∑

i=1

ψτn = nψτn ,

we have ψn ≤ n−1/τ‖ψ‖
τ for all n ∈ N. Therefore, using q − τ > 0,

∞∑
n=N+1

ψ
q
n ≤

∞∑
n=N+1

ψτnψ
q−τ
N+1 ≤ ‖ψ‖τ
τ (N +1)−(q−τ)/τ‖ψ‖q−τ


τ = ‖ψ‖q

τ (N + 1)−sq

for all N ∈ N, with s as in (4.5). ��
Theorem 4.1 For any q ∈ [1,∞) and any sufficiently smallϑ > 0, there is a constant
cq,ϑ such that for all N ∈ N,

‖G − GN ‖Lq (Ω;L∞(D;Sd )) ≤ cq,ϑ‖ψ‖1−(1+κ)ϑ

τ ‖δ‖ϑ
� (N + 1)−s (4.6)

with s = 1−(1+κ)ϑ
τ

+ ϑ
�

− 1
2 if � < ∞ and s = 1−(1+κ)ϑ

τ
− 1

2 if � = ∞.
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Proof Let 
 ∈ (Sd)∗ with ‖
‖(Sd )∗ = 1, N ∈ N and

g :=
∞∑

N+1

Yn
(Ψn). (4.7)

Following the proof of [7, Proposition 4], we show below that for any q ∈ [1,∞) and
any sufficiently small ϑ > 0, there is a constant c̃q,ϑ independent of 
 and N such that

‖g‖Lq (Ω;L∞(D)) ≤ c̃q,ϑ‖ψ‖1−(1+κ)ϑ

τ ‖δ‖ϑ
� (N + 1)−s (4.8)

with s as above. This shows the claim since S
d is isomorphic to R

k with k = d(d+1)/2
equipped with the 
q(Rk) norm, and thus there exist k continuous linear functionals

i ∈ (Sd)∗ with ‖
i‖(Sd )∗ = 1 such that

‖A‖Sd ≤ Cq

(
k∑

i=1

|
i (A)|q
)1/q

∀A ∈ S
d .

Consequently,

E[‖G − GN ‖q
L∞(D;Sd )

] ≤ Cq
q E

[
k∑

i=1

‖
i (G − GN )‖q
L∞(D)

]

= Cq
q

k∑
i=1

‖
i (G − GN )‖q
Lq (Ω;L∞(D)),

and (4.6) follows by applying (4.8) independently to each summand.
Using that (Yn)

∞
n=1 are mutually uncorrelated and have unit variance, for any

x, y ∈ D,

E[(g(x)− g(y))2] = E

⎡
⎣
( ∞∑

n=N+1

Yn
(Ψ n(x)− Ψ n(y))

)2
⎤
⎦

=
∞∑

n=N+1

(
(Ψ n(x)− Ψ n(y)))
2 .

Due to ‖
‖(Sd )∗ = 1 and

‖Ψ n(x)− Ψ n(y)‖Sd ≤ min
(
2‖Ψ n‖L∞(D;Sd ), ‖DΨ n‖L∞(D;L(Rd ,Sd ))|x − y|) ,

for any ϑ ∈ [0, 1] and every x, y ∈ D, we have

|
(Ψ n(x)− Ψ n(y))| ≤ 21−ϑ‖Ψ n‖1−ϑ
L∞(D;Sd )

‖DΨ n‖ϑL∞(D;L(Rd ,Sd ))
|x − y|ϑ .
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356 C. J. Gittelson et al.

Consequently,

E[(g(x)− g(y))2]

≤
(

22(1−ϑ)
∞∑

n=N+1

‖Ψ n‖2(1−ϑ)
L∞(D;Sd )

‖DΨ n‖2ϑ
L∞(D;L(Rd ,Sd ))

)
|x − y|2ϑ ,

which is independent of 
 ∈ (Sd)∗. By definition of ψn and δn , the above sum is equal
to

∞∑
n=N+1

ψ2(1−(1+κ)ϑ)
n δ2ϑ

n ≤
( ∞∑

n=N+1

ψ
2(1−(1+κ)ϑ)p
n

)1/p ( ∞∑
n=N+1

δ�

)2ϑ/�

with p = �/(� − 2ϑ), if ϑ > 0 is sufficiently small. Lemma 4.1 implies

( ∞∑
n=N+1

ψ
2(1−(1+κ)ϑ)p
n

)1/p

≤ ‖ψ‖2(1−(1+κ)ϑ)

τ (N + 1)−2s

with s as in the statement of the theorem. This shows the estimate

E[(g(x)− g(y))2] ≤ 22(1−ϑ)‖ψ‖2(1−(1+κ)ϑ)

τ ‖δ‖2ϑ


� (N + 1)−2s |x − y|2ϑ

for almost all x, y ∈ D.
For any q ∈ [1,∞) there is a constant cq such that for all centered Gaussian random

variables X ,

(
E[|X |q ])1/q ≤ cq

(
E[|X |2]

)1/2

since for σ = (E[|X |2])1/2,

E[|X |q ] = 1√
2πσ

∫ ∞

−∞
|x |q exp(−x2

2σ 2 ) dx = σ q

√
2π

∫ ∞

−∞
|y|q exp(−y2

2 ) dy = cq
qσ

q .

Therefore, as g(x)− g(y) is a centered Gaussian random variable,

E[|g(x)− g(y)|q ] ≤ 2q(1−ϑ)cq
q‖ψ‖q(1−(1+κ)ϑ)


τ ‖δ‖qϑ

� (N + 1)−qs |x − y|qϑ

Let 0 < ν < ϑ ≤ 1. Abbreviating η := 2q(1−ϑ)cq
q‖ψ‖q(1−(1+κ)ϑ)


τ ‖δ‖qϑ

� (N + 1)−qs ,

we have

E[|g|qW ν,q (D)]=E

[∫
D

∫
D

|g(x)− g(y)|q
|x − y|d+qν

dy dx

]
≤η
∫

D

∫
D

|x − y|q(ϑ−ν)−d dy dx,
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MLMC for the stochastic Brinkman problem 357

and the latter integral is finite since D is bounded. Similarly, recalling the definition
(4.7) of g, we have for any x ∈ D,

E[g(x)2] =
∞∑

n=N+1


(Ψn)
2 ≤

∞∑
n=N+1

ψ2
n ≤ ‖ψ‖2


τ (N + 1)−2s̄,

where s̄ := τ−1 − 1/2 > s. Since g(x) is a centered Gaussian random variable,

(E[|g(x)|q ])1/q ≤ cq(E[|g(x)|2])1/2 ≤ cq‖ψ‖
τ (N + 1)−s̄

for any q ∈ [1,∞). Integrating over D, it follows that

E[‖g‖q
Lq (D)] ≤ |D|cq

q‖ψ‖q

τ (N + 1)−qs̄ ≤ Cη.

Finally, we choose q > d/ν, such that W ν,q(D) embeds continuously into Cb(D),
see e.g. [1, Thm. 7.3.4]. Then

E[‖g‖q
L∞(D)] ≤ C(E[‖g‖q

Lq (D)] + E[|g|qW ν,q (D)]) ≤ Cη,

which shows (4.8) for q > d/ν. For smaller q, (4.8) follows by Jensen’s inequality.
��

Remark 4.2 We note that the convergence rate in Theorem 4.1 is independent of q,
and essentially independent of the summability � of δ and the parameter κ in the
definition of δ. For any q ∈ [1,∞) and any 0 < s < s̄ := τ−1 − 1/2,

‖G − GN ‖Lq (Ω;L∞(D;Sd )) ≤ C N−s , N ∈ N. (4.9)

4.2 Truncation error in the log-Gaussian field

We define a sequence of approximations to the log-Gaussian field M by

MN := exp(GN ) = exp

(
G0 +

N∑
n=1

YnΨ n

)
, N ∈ N. (4.10)

By continuity of the matrix exponential, MN converges to M a.s. in L∞(D; S
d). We

show that convergence also holds in Lq(Ω; L∞(D; S
d)), with the same rate as in the

convergence of GN to G.

Lemma 4.2 For all q ∈ [1,∞) there is a constant Bq such that

‖ exp(‖GN − G0‖L∞(D;Sd ))‖Lq (Ω) ≤ Bq ∀N ∈ N, (4.11)

‖ exp(‖G − G0‖L∞(D;Sd ))‖Lq (Ω) ≤ Bq . (4.12)
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Proof The claim is a consequence of Fernique’s theorem, see [5, Theorem 2.8.5] and
[7, Proposition 7]. Since GN − G0 converges to G − G0 in L2(Ω; L∞(D; S

d)), there
is a constant b such that

‖G − G0‖L2(Ω;L∞(D;Sd )) ≤ b, ‖GN − G0‖L2(Ω;L∞(D;Sd )) ≤ b ∀N ∈ N.

By Chebyshev’s inequality, for any β > 0 and any N ∈ N,

P(‖GN − G0‖L∞(D;Sd ) > β) ≤ β−2‖GN − G0‖L2(Ω;L∞(D;Sd )) ≤ β−2b2,

and the same bound holds for G in place of GN . For β >
√

2b, Fernique’s theorem
provides a constant B0 depending only on β and b such that

E[exp(λ‖GN − G0‖2
L∞(D;Sd )

)] ≤ B0 ∀N ∈ N ,

with λ = 1
24β log(β

2

b2 − 1), and thus

E[exp(q‖GN − G0‖L∞(D;Sd ))] ≤ exp( 1
4λq2)B0 := Bq

q ∀N ∈ N .

As above, the same estimate holds for G in place of GN . ��
Proposition 4.1 For any q ∈ [1,∞) and any sufficiently small ϑ > 0, there is a
constant Cq,ϑ such that for all N ∈ N,

‖M − MN ‖Lq (Ω;L∞(D;Sd )) ≤ Cq,ϑ‖ψ‖1−(1+κ)ϑ

τ ‖δ‖ϑ
� (N + 1)−s (4.13)

with s = 1−(1+κ)ϑ
τ

+ ϑ
�

− 1
2 if � < ∞ and s = 1−(1+κ)ϑ

τ
− 1

2 if � = ∞.

Proof For any A, B ∈ S
d , the matrix exponential satisfies

‖ exp(A)− exp(A + B)‖Sd ≤ ‖B‖Sd exp(‖A‖Sd ) exp(‖B‖Sd ).

Setting A := G(x) and B := GN (x)−G(x), x ∈ D, and using the triangle inequality,
we have

‖ exp(G(x))− exp(GN (x))‖Sd

≤ ‖G(x)− GN (x)‖Sd exp(2‖G(x)‖Sd ) exp(‖GN (x)‖Sd ).

For q−1 = q̄−1 + 3r−1, Hölder’s inequality and Lemma 4.2 imply

‖M − MN ‖Lq (Ω;L∞(D;Sd )) ≤ ‖ exp(G)− exp(GN )‖Lq (Ω;L∞(D;Sd ))

≤ ‖G − GN ‖Lq̄ (Ω;L∞(D;Sd )) exp(3‖G0‖L∞(D;Sd ))B
3
r .

Then the claim follows using Theorem 4.1 for q̄ . ��
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4.3 Solvability of the truncated stochastic Brinkman problem

Let (u, p) and (uN , pN ) denote the solutions to the stochastic Brinkman problem with
log-Gaussian random fields M and MN , respectively, and let

a(u, v) := t2(ε(u), ε(v))+ (Mu, v), (4.14)

aN (u, v) := t2(ε(u), ε(v))+ (MN u, v), N ∈ N , (4.15)

denote the bilinear forms from (2.12). Then (u, p) and (uN , pN ) satisfy

B(u, p; v, q) = L(v, q) ∀(v, q) ∈ V × Q (4.16)

BN (uN , pN ; v, q) = L(v, q) ∀(v, q) ∈ V × Q (4.17)

for the bilinear forms B(·; ·) and BN (·; ·) defined by (2.14) with a(·, ·) and aN (·, ·)
from (4.14) and (4.15), and with L(·, ·) as in (2.16).

Lemma 4.3 There are random variables α, ca, αN and ca,N , N ∈ N, such that

a(v, v) ≥ α‖v‖2
t , aN (v, v) ≥ αN ‖v‖2

t , N ∈ N, (4.18)

a(w, v) ≤ ca‖w‖t‖v‖t , aN (w, v) ≤ ca,N ‖w‖t‖v‖t , N ∈ N, (4.19)

for all v,w ∈ V . Furthermore, for any q ∈ [1,∞) there is a constant Aq such that

‖X‖Lq (Ω) ≤ Aq (4.20)

uniformly for X = α−1, X = ca, X = α−1
N and X = ca,N , N ∈ N.

Proof By Korn’s inequality, there exist constants k and K such that

k‖∇v‖2
0 ≤ ‖ε(v)‖2

0 ≤ K‖∇v‖2
0 ∀v ∈ V .

Let the random variables μmin and μmax denote the minimal and maximal eigenval-
ues of M on the domain D, and let μmin,N , μmax,N denote the analogous values of
MN , N ∈ N. Then (4.18) and (4.19) are satisfied for

α = min(k, μmin) ca = max(K , μmax)

αN = min(k, μmin,N ) ca,N = max(K , μmax,N ) ∀N ∈ N.

The estimate (4.20) follows from Lemma 4.2, using uniform boundedness of G0. ��

Using the stability estimates (2.21) and (2.22), the convergence from Theorem 4.1
and Proposition 4.1 carries over to (uN , pN ).
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Theorem 4.2 For any q ∈ [1,∞) and any sufficiently small ϑ > 0, there are
constants Cu

q,ϑ and C p
q,ϑ such that for all N ∈ N,

‖u − uN ‖Lq (Ω;V ) ≤ Cu
q,ϑ (‖ f ‖V∗ + ‖g‖Q∗)‖ψ‖1−(1+κ)ϑ


τ ‖δ‖ϑ
� (N + 1)−s (4.21)

‖p − pN ‖Lq (Ω;Q) ≤ C p
q,ϑ (‖ f ‖V∗ + ‖g‖Q∗)‖ψ‖1−(1+κ)ϑ


τ ‖δ‖ϑ
� (N + 1)−s (4.22)

with s = 1−(1+κ)ϑ
τ

+ ϑ
�

− 1
2 if � < ∞ and s = 1−(1+κ)ϑ

τ
− 1

2 if � = ∞.

Proof Subtracting (4.17) from (4.16) leads to the error equation

B(u − uN , p − pN ; v, q) = BN (uN , pN ; v, q)

−B(uN , pN ; v, q) = ((MN − M)uN , v)

for all (v, q) ∈ V × Q. The last term satisfies

((MN − M)uN , v) ≤ ‖M − MN ‖L∞(D;Sd )‖uN ‖(L2(D))d ‖v‖(L2(D))d

≤ C‖M − MN ‖L∞(D;Sd )‖uN ‖V ‖v‖V .

Furthermore, (2.21) implies

‖uN ‖t ≤ 1

αN
‖ f ‖V ∗ +

(
1 + ca,N

αN

)
‖g‖Q∗ .

Applying (2.21) and (2.22) to the error equations gives us

‖u − uN ‖t ≤ C
1

α

[
1

αN
‖ f ‖V ∗ +

(
1 + ca,N

αN

)
‖g‖Q∗

]
‖M − MN ‖L∞(D;Sd ),

|||p − pN |||t ≤ C
(

1+ ca

α

) [ 1

αN
‖ f ‖V ∗ +

(
1 + ca,N

αN

)
‖g‖Q∗

]
‖M − MN ‖L∞(D;Sd ).

Then the claim follows by applying Hölder’s inequality, using Proposition 4.1 to
estimate ‖M − MN ‖L∞(D;Sd ) and Lemma 4.3 to estimate the remaining terms. ��

Corollary 4.1 For any q ∈ [1,∞)and any 0 < s < s̄ = τ−1 − 1/2,

‖u−uN ‖Lq (Ω;V )+‖p− pN ‖Lq (Ω;Q)≤C N−s(‖ f ‖V∗ +‖g‖Q∗), N ∈ N. (4.23)

5 Mixed finite element methods

We consider a mixed finite element approximation to the deterministic truncated
Brinkman problem (4.17). The analysis presented in [15] is augmented to cover the
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case of a nondiagonal permeability matrix MN . Let Th be a quasiuniform and shape-
regular partition of D into simplices. The diameter of an element T ∈ Th is denoted
by hT , and the global mesh width h is defined as h = maxT ∈Th hT .

We choose the finite element spaces Vh × Qh ⊂ V × Q for the mixed finite element
discretization of (4.17) as

Vh =
{
v ∈ V ∩ [C(D)]d ; v|T ∈ [Pk(T )]d ∀T ∈ Th

}
, (5.1)

Qh =
{

q ∈ L2∗(D) ∩ C(D) ; q|T ∈ Pk(T ) ∀T ∈ Th

}
, (5.2)

in which Pk(T ) are polynomials of degree k. Since the equal order polynomial spaces
are not stable for the problem, we employ a mesh-dependent stabilization procedure.

The stabilized finite element formulation of (4.17) reads: Find (uN ,h, pN ,h) ∈
Vh × Qh such that

BN ,h(uN ,h, pN ,h; v, q) = Lh(v, q) ∀(v, q) ∈ Vh × Qh . (5.3)

The mesh-dependent bilinear form is defined with the stability parameter γ > 0 as

BN ,h(u, p; v, q) := BN (u, p; v, q)

−γ
∑

T ∈Th

h2
T

t2 + h2
T

(t2 MN
−1 Au − u − MN

−1∇ p), t2 MN
−1 Av−v − MN

−1∇q)K ,

(5.4)

and the corresponding load functional is

LN ,h(v, q) := L(v, q)+ γ
∑

T ∈Th

h2
T

t2+h2
T

(MN
−1 f , t2 MN

−1 Av−v − MN
−1∇q)K .

(5.5)

Assuming

− t2 Au + MN u + ∇ p = f ∈ [L2(D)]d , (5.6)

we have a consistent method, that is

BN ,h(uN − uN ,h, pN − pN ,h; v, q) = 0 ∀(v, q) ∈ Vh × Qh . (5.7)
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5.1 Stability

To show the stability of the method, we follow [15] and define the following mesh-
dependent norm for the pressure,

|||q|||2t,h :=
∑

T ∈Th

h2
T

t2 + h2
T

‖∇q‖2
0,T . (5.8)

We first recall the following inverse estimate:

h2
T ‖Av‖2

0,T ≤ CI ‖∇v‖2
0,T ∀v ∈ Vh . (5.9)

Let μmin,N and k be defined as in Lemma 4.3. Then we have

Theorem 5.1 Choose γ := min{μmin,N
4 ,

kμ2
min,N

4CI
}. Then for each N there exists a

constant βN such that

sup
(v,q)∈Vh×Qh

BN ,h(w, r; v, q)

‖v‖t + |||q|||t,h ≥ βN (‖w‖t + |||r |||t,h) ∀(w, r) ∈ Vh × Qh . (5.10)

Proof Let (w, r) ∈ Vh × Qh be arbitrary. Then we have

BN ,h(w, r;w,−r) = t2(ε(w), ε(w))+ (MNw,w)

−γ
∑

T ∈Th

h2
T

h2
T + t2

(
‖t2 MN

−1 Aw−w‖2
0,T −‖MN

−1∇q‖2
0,T

)
.

Estimating the negative terms from above and using the inequality (5.9), we get

BN ,h(w, r;w,−r) ≥ kt2‖∇w‖2
0 + μmin,N ‖w‖2

0 + γμ−2
max,N |||q|||2t,h

− 2γ
∑

T ∈Th

h2
T

h2
T + t2

(
μ−2

min,N ‖t2 Aw‖2
0,T + ‖w‖2

0,T

)

≥ (k − 2γCIμ
−2
min,N )‖∇w‖2

0 + (μmin,N − 2γ )‖w‖2
0

+ γμ−2
max,N |||q|||2t,h

≥ k

2
‖∇w‖2

0 + μmin,N

2
‖w‖2

0 + γμ−2
max,N |||q|||2t,h .

Thus the theorem holds with

βN = min

{
k

2
,
μmin,N

2
,
μmin,N

4μ2
max,N

,
kμ2

min,N

4CIμ
2
max,N

}
.

��

123



MLMC for the stochastic Brinkman problem 363

Remark 5.1 Note that for first order elements Aw = 0 for every w ∈ Vh . Thus it
suffices to choose γ := μmin,N

4 and βN will not depend on the constant CI of the
inequality (5.9). The smallest eigenvalue can be easily estimated from the stochastic
coefficients of the Karhunen–Loève expansion (4.4) for each sample.

Remark 5.2 It is also possible to choose the stabilization parameter elementwise
with γT := min{ 1

4μmin,N ,T ,
k

4CI
μmin,N ,T

2}. Then elementwise estimation gives the
sharper lower bound

βN = min
T ∈Th

{
k

2
,
μmin,N

2
,
μmin,N ,T

4μmax,N ,T
2 ,

kμmin,N ,T
2

4CIμmax,N ,T
2

}
. (5.11)

Next, we use the result for the mesh-dependent norm to show that the stability holds
also in the continuous pressure norm. With a small modification of the arguments
presented in [12], one has

Lemma 5.1 There exists constants C1 and C2 independent of the mesh width h, and
the parameters t and MN such that

sup
w∈Vh

b(w, q)

‖w‖t
≥ C1|||q|||t − C2|||q|||t,h . (5.12)

Now we are ready to prove the stability in the continuous norm.

Theorem 5.2 Suppose the stability of Theorem 5.1 holds. Then for each N there exists
a constant β̂N such that

sup
(v,q)∈Vh×Qh

BN ,h(w, r; v, q)

‖v‖t + |||q|||t,h ≥ β̂N (‖w‖t + |||r |||t ) ∀(w, r) ∈ Vh × Qh . (5.13)

Furthermore, the constant β̂N has a polynomial dependence on the constant βN and
the constants αN and ca,N .

Proof Let w ∈ Vh be a function for which the supremum is attained in Lemma 5.1,
and assume that w is scaled such that ‖w‖t = |||q|||t,h . Employing the techniques of
the proof in [12, Lemma 3.2] it can be shown that for every (v, q) ∈ Vh × Qh we have

BN ,h(v, q;−w, 0) ≥ −C3‖v‖2
t + (C4|||q|||t − C5|||q|||t,h)|||q|||t,h, (5.14)

in which the constants C3,C4, and C5 are polynomial functions of the constants αN

and ca,N . Now, choosing 0 < δ = βN
2(C3+C5)

yields

BN ,h(v, q; v − δw,−q) ≥ (βN − δC3)‖v‖2
t + δC4|||q|||t |||q|||t,h + (βN − δC5)|||q|||2t,h

≥ βN

2
‖v‖2

t + βN C4

2(C3 + C5)
|||q|||t |||q|||t,h .

��
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5.2 A priori estimates

We approximate the error of the velocity field in the ‖ · ‖t -norm and the error of
the pressure field in both the continuous norm ||| · |||t and in the computable mesh-
dependent norm ||| · |||t,h . The following quasi-optimal error bound holds. Note that a
term estimating the residual is included, as is typical for stabilized methods.

Theorem 5.3 Let the stabilization parameter γ be chosen as in Theorem 5.1. Then the
finite element solution (uN ,h, pN ,h) of (4.17) is P-measurable. Moreover, for every
N ∈ N and a constant C independent of ω, the mesh width h and of the parameters
t and MN , with the random variables X = α, X = ca, X = α−1

N and X = ca,N

satisfying (4.20),

‖uN − uN ,h‖t + |||pN − pN ,h |||t,h
≤ C

βN
(2 + ca,N + 1 + αN

α2
N

) inf
(v,q)∈

Vh×Qh

{
|||pN − q|||t + |||pN − q|||t,h + ‖uN − v‖t

+
⎛
⎝∑

T ∈Th

t2

h2
T

‖uN − v‖2
0,T + h2

T

h2
T + t2

‖t2 Av − MNv − ∇q + f ‖2
0,T

⎞
⎠

1
2 }
.

(5.15)

Proof Using the triangle inequality we have for arbitrary (v, q) ∈ Vh × Qh

‖uN − uN ,h‖t + |||pN − pN ,h |||t,h
≤ ‖uN − v‖t + |||pN − q|||t,h + ‖v − uN ,h‖t + |||q − pN ,h |||t,h .

Using Theorem 5.1 we have functions (w, r) ∈ Vh × Qh with

‖w‖t + |||r |||t,h ≤ C,

such that there holds

βN ‖v − uN ,h‖t + |||q − pN ,h |||t,h ≤ BN ,h(uN ,h − v, pN ,h − q;w, r)
= BN ,h(uN − v, pN − q;w, r)
= BN (uN − v, pN − q;w, r)− S,

in which by the assumption (5.6)

S = γ
∑

T ∈Th

h2
T

h2
T + t2

(−t2 MN
−1 Av + v + MN

−1∇q − MN
−1 f ,

t2 MN
−1 Aw − w − MN

−1∇r)K . (5.16)
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Estimating the first term yields

BN (uN − v, pN − q;w, r)
≤ ca,N ‖uN − v‖t‖w‖t − b(w, pN − q)+ (uN − v,∇r)

≤ ca,N ‖uN − v‖t‖w‖t + |||pN − q|||t‖w‖t

+
⎛
⎝∑

T ∈Th

h2
T

h2
T + t2

‖uN − v‖2
0,T

⎞
⎠

1/2⎛
⎝∑

T ∈Th

h2
T

h2
T + t2

‖∇r‖2
0,T

⎞
⎠

1/2

≤
⎛
⎜⎝(1 + ca,N )‖uN − v‖t + |||pN − q|||t + t

⎛
⎝∑

T ∈Th

h−2
T ‖uN − v‖2

0,T

⎞
⎠

1/2
⎞
⎟⎠

× (‖w‖t + |||r |||t,h).

Turning to the stabilizing term, we have using the inverse inequality (5.9)

S ≤
⎛
⎝∑

T ∈Th

1

μ2
min,N

h2
T

h2
T + t2

‖ − t2 Av + MNv + ∇q − f ‖2
0,T

⎞
⎠

1
2

×
⎛
⎝∑

T ∈Th

h2
T

h2
T + t2

‖t2 MN
−1 Aw − w − MN

−1∇r‖2
0,T

⎞
⎠

1
2

≤ C
1 + μmin,N

μ2
min,N

⎛
⎝∑

T ∈Th

h2
T

h2
T + t2

‖t2 Av − MNv − ∇q + f ‖2
0,T

⎞
⎠

1
2

× (‖w‖t + |||r |||t,h).

��
With exactly the same arguments as above, and using Lemma 5.2, we can derive a
quasioptimal a priori result in the continuous pressure norm with a stability constant
β̂N instead of βN .

Theorem 5.4 Let the assumption of Theorem 5.3 hold. Then we have

‖uN − uN ,h‖t + |||pN − pN ,h |||t
≤ C

β̂N
(2 + ca,N + 1 + αN

α2
N

) inf
(v,q)∈

Vh×Qh

{
|||pN − q|||t + ‖uN − v‖t

+
⎛
⎝∑

T ∈Th

t2

h2
T

‖uN − v‖2
0,T + h2

T

h2
T + t2

‖t2 Av − MNv − ∇q + f ‖2
0,T

⎞
⎠

1
2 }
.

(5.17)
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5.3 A priori estimate for a regular solution

Even though in practice the solution to the equations is seldom smooth, it is often
beneficial to write the error estimate assuming a smooth solution and thus exposing
the convergence rates. Assuming uN ∈ [Hk+1(D)]d and pN ∈ Hk+1(D)we have the
following convergence result for a polynomial approximation of degree k.

Theorem 5.5 There is a constant C independent of the mesh width h and of the para-
meters t and MN , such that in the continuous pressure norm with random variables
X = α, X = ca, X = α−1

N and X = ca,N as in (4.20) independent of h and 0 ≤ t ≤ 1,

‖uN − uN ,h‖t + |||pN − pN ,h |||t
≤ C R(αN , ca,N )

[
(t + h)hk‖uN ‖k+1 + (t + h)−1hk+1‖pN ‖k+1

]
, (5.18)

in which R(·, ·) is a rational function of the two arguments. The same result holds also
for the mesh-dependent pressure norm.

Remark 5.3 In the limit t = 0 the method constitutes a stabilized mixed finite element
approximation of the Darcy equation. Also the norms (2.5) and (5.8) reduce to those
used in the dual mixed formulation of the Darcy problem. However, the method is
not optimal since we only get order k convergence in the aforementioned norms,
as opposed to the k + 1 convergence provided by the H(div)-conforming elements,
cf. [17,19].

6 The multi-level Monte Carlo method

6.1 Single level Monte Carlo

We have shown in Proposition 3.2 and in Sect. 4 that the solutions U := (u, p) and
UN := (uN , pN ) of the stochastic Brinkman problem with lognormal permeability
M from (3.1) and MN from (4.10), respectively, admit bounded moments of any finite
order q. Choosing q = 2m for m ∈ N, this implies that the second moments of the
m-point correlation functions of the random fields U and UN are bounded and can
be estimated by Monte Carlo (MC) sampling of the mixed FE approximations of the
random solutions.

We give an a priori error analysis of the resulting MC-MFEM. For the sake of
brevity, we develop the results only for m = 1 but hasten to add that all results which
follow admit generalizations to moments of order m > 1; we refer to [4] for statements
and proofs in the case of Darcy equations with random permeability.

Let us first address the Single Level MC method. Here, for a given, fixed truncation
order N in (4.10), and for a given pair Vh × Qh of FE spaces, we draw M ≥ 1
independent, identically distributed realizations M̂ i (x) := MN (x, ωi ), i = 1, . . . ,M ,
using the N -term truncated Karhunen–Loève expansion (4.10). Note that the work to
do so grows as O(M N ) as N ,M → ∞. For each M̂ i , we solve the FE equations (5.3).
We assume for now that the FE solutions Û i

N ,h := (ûi
N ,h, p̂i

N ,h) are computed exactly,

123



MLMC for the stochastic Brinkman problem 367

although in general an approximate solution (obtained, for example, by a multilevel
method) will suffice. We denote by W (h) the computational work for the numerical
solution of the linear system (5.3).

In the Single Level MC MFEM, we estimate the mathematical expectation E[U ] by
the ensemble average of the M MFEM sample solutions, i.e. by

EM [UN ,h] := 1

M

M∑
i=1

Û i
N ,h . (6.1)

The total work for the computation of this estimate is O(M N W (h)). For the conver-
gence analysis of this MC-FE approximation, we assume as usual (see e.g. [4]) the FE
solutions Û i

N ,h corresponding to the M coefficient draws M̂ i in (6.1) to be M i.i.d.
copies of the random FE solutions UN ,h = (uN ,h, pN ,h) defined in (5.3). To estimate
the MC-MFEM error, we measure the FE error in mean-square in probability, i.e.

‖E[U ] − EM [UN ,h]‖L2(Ω,V×Q)

=
(

E

[
‖E[u] − 1

M

M∑
i=1

ûi
N ,h‖2

t + |||E[p] − 1

M

M∑
i=1

p̂i
N ,h |||2t

])1/2

. (6.2)

Combining the a priori error bound of Theorem 5.5 with Lemma 4.3 and a standard
argument as in Lemma 4.1 of [4], we obtain the following convergence property.

Theorem 6.1 For any q > 1, 0 < s < τ−1 − 1/2 and 0 ≤ t < ∞, if the solution to
the truncated problem (4.17) satisfies

uN ∈ Lq(Ω; Hk+1(D)d) and pN ∈ Lq(Ω; Hk+1∗ (D)) (6.3)

for all N , then there is a constant C independent of N , h,M and t such that

‖E[U ] − EM [UN ,h]‖L2(Ω,V×Q) ≤ C

((
N−s(‖ f ‖V ∗ + ‖g‖Q∗)

+(t + h)hk‖uN ‖Lq (Ω;Hk+1(D)d ) + (t + h)−1hk+1‖pN ‖Lq (Ω;Hk+1(D))

)2
+M−1(‖ f ‖V ∗ + ‖g‖Q∗)2

)1/2

, (6.4)

where k is the order of the mixed finite element discretization. The total work for the
computation of EM [UN ,h] is O(M(Nh−d + W (h))).

Proof Since E[EM [UN ,h]] = E[UN ,h], we can expand the error as

‖E[U ] − EM [UN ,h]‖2
L2(Ω,V×Q)

= ‖E[U ] − E[UN ,h]‖2
V×Q + ‖E[UN ,h] − EM [UN ,h]‖2

L2(Ω,V×Q).
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By the a priori error bound of Theorem 5.5, the truncation error estimate Corollary 4.1
and the bound Lemma 4.3, the first term satisfies

‖E[U ] − E[UN ,h]‖V×Q ≤ ‖U − UN ,h‖L1(Ω;V×Q)

≤ N−s(‖ f ‖V∗ + ‖g‖Q∗)+ (t + h)hk‖uN ‖Lq (Ω;Hk+1(D)d )

+ (t + h)−1hk+1‖pN ‖Lq (Ω;Hk+1(D)).

For the second term, using that the samples Û i
N ,h are independent and have expectation

E[UN ,h], we have

‖E[UN ,h] − EM [UN ,h]‖2
L2(Ω,V×Q) = E

[
‖E[UN ,h] − 1

M

M∑
i=1

Û i
N ,h‖2

V×Q

]

= E

[
‖ 1

M

M∑
i=1

E[UN ,h] − Û i
N ,h‖2

V×Q

]

= 1

M
E[‖UN ,h − E[UN ,h]‖2

V×Q],

and using Lemma 4.3, due to the stability of the mixed finite element discretization,

E[‖UN ,h − E[UN ,h]‖2
V×Q] ≤ E[‖UN ,h‖2

V×Q] ≤ C(‖ f ‖V ∗ + ‖g‖Q∗)2.

The computational cost is O(Nh−d) for the summation of the Karhunen–Loève series,
and W (h) for the solution of the resulting linear system; both operations are performed
M times, resulting in a total cost of O(M(Nh−d + W (h))). ��

We remark that due to the potentially low regularity of the Gaussian field M(x, ω),
in general the regularity of the solution U is rather low, and we can realistically expect
only 0 < k ≤ 1 in (6.3) resp. in (6.4) for U in place of UN . Due to the truncation of
the Gaussian field, the regularity of UN is higher, although Sobolev norms of uN and
pN may not be bounded uniformly in N .

6.2 Multi-level Monte Carlo

A substantial efficiency increase compared to SLMC-MFEM can be obtained by the
Multi-Level Monte Carlo Mixed Finite Element Method (MLMC-MFEM), which is
based on a hierarchic family of FE discretizations.

Let {Tl}L
l=0 denote a sequence of regular, simplicial meshes with mesh widths hl :=

max{diam T : T ∈Tl}. For example, Tl could be obtained by l-fold regular subdivision
of an initial regular simplicial triangulation T0 of D, in which case hl = 2−l h0. To
ease notation, we denote the corresponding FE spaces Vhl × Qhl by Vl × Ql in the
following.
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We also introduce a sequence (Nl)
L
l=0 of truncations of the series expansion (4.4).

The FE solution of the Brinkman problem (5.3) on the mesh Tl with lognormal per-
meability MNl is denoted by Ul := (ul , pl), with ul := uNl ,hl and pl := pNl ,hl . With
the convention U−1 := 0, we may write

UL =
L∑

l=0

Ul − Ul−1. (6.5)

By linearity of the mathematical expectation, it follows that

E[UL ] =
L∑

l=0

E[Ul − Ul−1]. (6.6)

We replace each expectation in this telescoping sum by an MC estimate, with a level-
dependent number Ml of samples. This yields the MLMC-MFE estimator

E L [U ] :=
L∑

l=0

EMl [Ul − Ul−1]. (6.7)

We note that, since U−1 = 0, E L [U ] is an unbiased estimator for E[UL ],

E[E L [U ]] =
L∑

l=0

E[EMl [Ul − Ul−1]] =
L∑

l=0

E[Ul − Ul−1] = E[UL ]. (6.8)

Consequently, E[E[UL ] − E L [U ]] = 0, and since E[U ] − E[UL ] is a deterministic
quantity,

‖E[U ] − E L [U ]‖2
L2(Ω;V×Q) = ‖E[U ] − E[UL ]‖2

V×Q

+‖E[UL ] − E L [U ]‖2
L2(Ω;V×Q). (6.9)

By definition and due to Theorem 6.1, the computational cost of E L [U ] is

W L ∼
L∑

l=0

Ml(Nl h
−d
l + W (hl)). (6.10)

The a priori error bound for the MLMC estimator is as follows.

Theorem 6.2 If Ml ≥ C Ml−1 for l = 1, . . . , L then for any q > 2 and 0 < s <
τ−1 − 1/2, if the solution to the truncated problem (4.17) satisfies

uN ∈ Lq(Ω; Hk+1(D)d) and pN ∈ Lq(Ω; Hk+1∗ (D)) (6.11)
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for all N , there is a constant C independent of (Nl)
L
l=0, (hl)

L
l=0 and (Ml)

L
l=0 such that

‖E[UL ] − E L [U ]‖L2(Ω;V×Q)

≤ C

(
1

M0

(‖ f ‖V∗ +‖g‖Q∗
)2 +

L∑
l=1

1

Ml

(
N−s

l (‖ f ‖V ∗ +‖g‖Q∗)

+(t+hl)h
k
l ‖uNl ‖Lq (Ω;Hk+1(D)d )+(t+hl)

−1hk+1
l ‖pNl ‖Lq (Ω;Hk+1∗ (D))

)2)1/2

(6.12)

and

‖E[U ] − E[UL ]‖V×Q

≤ C
(
N−s

L (‖ f ‖V∗ + ‖g‖Q∗)+ (t + hL)h
k
L‖uNL ‖Lq (Ω;Hk+1(D)d )

+(t + hL)
−1hk+1

L ‖pNL ‖Lq (Ω;Hk+1∗ (D))

)
, (6.13)

where k is the order of the mixed finite element discretization.

Proof Using independence of the samples in the MC estimators on all levels, we have

‖E[UL ] − E L [U ]‖2
L2(Ω;V×Q)

= E

⎡
⎢⎣
∥∥∥∥∥∥E[UL ] −

L∑
l=0

1

Ml

Ml∑
i=1

Û i
l − Û i

l−1

∥∥∥∥∥∥
2

V×Q

⎤
⎥⎦

= E

⎡
⎢⎣
∥∥∥∥∥∥

L∑
l=0

1

Ml

Ml∑
i=1

(
E[Ul − Ul−1] − (Û i

l − Û i
l−1)

)∥∥∥∥∥∥
2

V×Q

⎤
⎥⎦

=
L∑

l=0

1

Ml
E[‖Ul − Ul−1 − E[Ul − Ul−1]‖2

V×Q].

Since U−1 = 0, the first term in this sum satisfies

E[‖U0 − E[U0]‖2
V×Q] ≤ E[‖U0‖2

V×Q] ≤ C(‖ f ‖V ∗ + ‖g‖Q∗)2 =: CΞ2

for any q > 2 due to Lemma 4.3 and the estimates in Proposition 3.2. For the other
terms in the sum, we estimate

E[‖Ul − Ul−1 − E[Ul − Ul−1]‖2
V×Q] ≤ E[‖Ul − Ul−1‖2

V×Q]
≤ E[(‖UNl − Ul‖V×Q + ‖UNl − UNl−1‖V×Q + ‖UNl−1 − Ul−1‖V×Q)

2]
≤ (‖UNl − Ul‖L2(Ω;V×Q) + ‖UNl − UNl−1‖L2(Ω;V×Q)

+‖UNl−1 − Ul−1‖L2(Ω;V×Q)

)2
.
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Due to Lemma 4.3 and Theorem 5.5, using Hölder’s inequality, we have

‖UNl − Ul‖L2(Ω;V×Q)

≤ C
(
(t + hl)h

k
l ‖uNl ‖Lq (Ω;Hk+1(D)d ) + (t + hl)

−1hk+1
l ‖pNl ‖Lq (Ω;Hk+1∗ (D))

)
for any q > 2. Furthermore, Corollary 4.1 implies

‖UNl − UNl−1‖L2(Ω;V×Q) ≤ ‖U − UNl ‖L2(Ω;V×Q) + ‖U − UNl−1‖L2(Ω;V×Q)

≤ C(N−s
l + N−s

l−1)(‖ f ‖V ∗ + ‖g‖Q∗)

for any 0 < s < s̄ = τ−1 − 1/2. We abbreviate

Θl := N−s
l (‖ f ‖V ∗ + ‖g‖Q∗)

+(t + hl)h
k
l ‖uNl ‖Lq (Ω;Hk+1(D)d ) + (t + hl)

−1hk+1
l ‖pNl ‖Lq (Ω;Hk+1∗ (D))

for l = 0, 1, . . . , L . Combining the above estimates, we arrive at

‖E[UL ] − E L [U ]‖L2(Ω;V×Q) ≤ C

(
Ξ2

M0
+

L∑
l=1

1

Ml
(Θl +Θl−1)

2

)1/2

.

By the triangle inequality, the right hand side is less than

(
Ξ2

M0
+

L∑
l=1

Θ2
l

Ml

)1/2

+
(

L−1∑
l=0

Θ2
l

Ml+1

)1/2

.

Since Ml ≥ C Ml−1 by assumption, and noting that we may replace Θ0 by Ξ in the
above estimate, it follows that the latter term is bounded by the former. Therefore,

‖E[UL ] − E L [U ]‖L2(Ω;V×Q) ≤ C

(
Ξ2

M0
+

L∑
l=1

Θ2
l

Ml

)1/2

.

Similarly, we estimate

‖E[U ] − E[UL ]‖V×Q ≤ ‖U − UNL ‖L1(Ω;V×Q) + ‖UNL − UL‖L1(Ω;V×Q) ≤ CΘL .

��
Remark 6.1 We choose Nl and hl such that their contributions to the error bounds
in Theorem 6.2 are of the same order. If the norms ‖uN ‖Lq (Ω;Hk+1(D)d ) and
‖pN ‖Lq (Ω;Hk+1∗ (D)) are bounded independently of N , this is the case for N−s ∼ hk .
More generally, we assume that there are constants C and r ≥ 0 such that

‖uN ‖Lq (Ω;Hk+1(D)d ) ≤ C Nr and ‖pN ‖Lq (Ω;Hk+1∗ (D)) ≤ C Nr . (6.14)
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Then the truncation error and spatial discretization error are equilibrated for Nl ∼
h−k/(s+r)

l .
This choice of Nl disregards the additional power of hl in (6.12) and (6.13). If the

two estimates in (6.14) hold with ru and rp, respectively, then the truncation error and
spatial discretization error are equilibrated for Nl ∼ h−ν

l with ν = min( k
s+ru

, k+1
s+rp

) if

t > 0 and ν = min( k+1
s+ru

, k
s+rp

) if t = 0. Thus we may set r := k
ν

− s, which satisfies
0 ≤ r ≤ max(ru, rp).

Remark 6.2 Let hl = 2−l h0, which holds if the meshes Tl are constructed as regular
refinements of T0. As in Remark 6.1, we set

Nl := �2kl/(s+r)N0� ∼ h−k/(s+r)
l , l = 0, 1, . . . , L . (6.15)

This results in a convergence of 2−skl/(s+r) of the truncation of the random field
combined with the mixed finite element approximation. For a parameter M̄ , we select
the number of samples as

Ml := �22sk(L−l)/(s+r)M̄ L�, l = 0, 1, . . . , L . (6.16)

Then the error bound (6.12) in Theorem 6.2 is

‖E[UL ] − E L [U ]‖2
L2(Ω;V×Q)

≤ C

(
1

M̄ L
2−2skL/(s+r) + (N−s

0 + hk
0 Nr

0 )
2

M̄ L

L∑
l=1

2−2sk(L−l)/(s+r)2−2skl/(s+r)
)

= C M̄−1(L−1 + (N−s
0 + hk

0 Nr
0 )

2)2−2skL/(s+r). (6.17)

Adding the error contribution (6.13), we see that

‖E[U ] − E L [U ]‖L2(Ω;V×Q)

≤ C
(
M̄−1L−1 + (1 + M̄−1)(N−s

0 + hk
0 Nr

0 )
2)1/22−skL/(s+r). (6.18)

Thus the total error is on the order of hk
L Nr

L , N−s
L and M−1/2

0 .

Remark 6.3 We assume that the computational cost of the numerical solution of a sam-
ple of (5.3) is W (h) ∼ h−σd , i.e. the linear solver may be suboptimal. Then by (6.10),
the computational cost of MLMC-MFEM with the parameters from Remark 6.2 is

W L ∼22skL/(s+r)L M̄

(
N0h−d

0

L∑
l=0

2l(d−(2s−1)k/(s+r))+h−σd
0

L∑
l=0

2l(σd−2sk/(s+r))
)
.

(6.19)

123



MLMC for the stochastic Brinkman problem 373

Thus the total work can be decomposed as W L = W L
KL + W L

FE with W L
KL, which

represents the cost of the summation of the Karhunen–Loève series, equivalent to

W L
KL ∼ M̄ N0h−d

0

⎧⎪⎨
⎪⎩

22skL/(s+r)L if d < (2s − 1)k/(s + r),

2(d+k/(s+r))L L2 if d = (2s − 1)k/(s + r),

2(d+k/(s+r))L L if d > (2s − 1)k/(s + r),

(6.20)

and W L
FE, which represents the cost of the finite element solution of samples of (5.3),

is

W L
FE ∼ M̄h−σd

0

⎧⎪⎨
⎪⎩

22skL/(s+r)L if σd < 2sk/(s + r),

2σd L L2 if σd = 2sk/(s + r),

2σd L L if σd > 2sk/(s + r).

(6.21)

If σd ≥ 2sk/(s + r),W L
FE is equivalent to the computational cost of a single deter-

ministic problem, up to a factor of L . For σd < 2sk/(s + r),W L
FE is equivalent to the

cost of Monte Carlo sampling alone, with no spatial discretization. Similarly, W L
KL is

equal to the cost of computing a single realization of the random field, using NL terms
of the series, or Monte Carlo for a scalar problem, whichever is more expensive, up
to a constant and a factor of L . We note that, if d ≥ k max(2s − 1, 2s/σ)/(s + r),
then the total computational cost W L = W L

KL + W L
FE of MLMC-MFEM is equivalent

to that of one realization of the random field with NL terms plus the finite element
solution of a single deterministic Brinkman problem, up to a logarithmic factor. In
any case, the cost W L of MLMC-MFEM compares favorably to that of MC-MFEM,
which by Theorem 6.1 is on the order of

2(d+k(2s+1)/(s+r))L + 2(σd+2sk/(s+r))L as L → ∞ (6.22)

since h = hL = 2−L h0 entails N = �2kL/(s+r)N0� and M = �22skL/(s+r)M0� in
order to equilibrate the error contributions in (6.4).

Remark 6.4 The derivation in Remark 6.3 of the total computational cost provides
insight on the distribution of the work load among the discretization levels l = 0, . . . , L
since the terms 2l(d−(2s−1)k/(s+r)) and 2l(σd−2sk/(s+r)) in (6.19) represent the com-
putations performed on level l. Clearly, the latter term is the same for all levels if
σd = 2sk/(s + r). For σd > 2sk/(s + r), the computational cost of finite element
solves is dominated by the finest discretization level, and the work per level increases
exponentially in l. If σd < 2sk/(s + r), more work is done on coarse discretization
levels, and the work per level decreases exponentially in l. Similar considerations
apply to the first term, which is the same on all levels if d = (2s − 1)k/(s + r). We
note that if σ > 2s/(2s − 1), it is possible for the first term to decrease in l but for
the second to increase in l, i.e. for the total work required by computing realizations
of the random field to be dominated by the coarsest discretization while the total cost
of finite element solves is maximal on the finest mesh.
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Remark 6.5 The error bound from Theorem 6.2 induces confidence bounds for
MLMC-MFEM. By Chebyshev’s inequality,

P

(
‖E[UL ] − E L [U ]‖V×Q ≥ η

)
≤ 1

η2 ‖E[UL ] − E L [U ]‖2
L2(Ω;V×Q) ∀ η > 0.

(6.23)

Equivalently,

P

(
‖E[UL ]−E L [U ]‖V×Q ≤ 1√

ε
‖E[UL ]−E L [U ]‖L2(Ω;V×Q)

)
≥ 1−ε ∀ε > 0.

(6.24)

Comparing with (6.17), we see that the M̄ should be chosen on the order of ε−2,
independently of the number of discretization levels, to ensure a failure probability of
at most ε. Then the number of samples on the finest level ML = M̄ L scales as ε−2L .

Remark 6.6 The assumption of uniform boundedness or algebraic increase of the
norms ‖uN ‖Lq (Ω;Hk+1(D)d ) and ‖pN ‖Lq (Ω;Hk+1∗ (D)) in Remark 6.1 is realistic. For

example, if t > 0, g = 0 and f ∈ L2(D)d , then uN and pN solve the Stokes problem

{
− t2ΔuN + ∇ pN = f − MN uN ,

div uN = 0,
(6.25)

with homogeneous boundary conditions uN = 0 on ∂D. We note that due to
Lemma 4.2 and Lemma 4.3, for any q ∈ [1,∞),

‖MN uN ‖Lq (Ω;L2(D)d ) ≤ C‖ f ‖V∗ ≤ C‖ f ‖L2(D)d (6.26)

with a constant independent of N . If D is a convex polygon in R
2, then the regularity

result [16, Theorem 2] implies

t2‖uN ‖Lq (Ω;H2(D)2) + ‖pN ‖Lq (Ω;H1∗ (D)) ≤ C‖ f ‖L2(D)2 . (6.27)

Thus ru = 0 for k = 1 in Remark 6.1, and we may set r = 0 provided that rp ≤ s,
making use of the additional factor of hl in (6.12) and (6.13). Similar regularity results
for polyhedral domains in three dimensions are given in [9].

Remark 6.7 For the case t = 0, it is also realistic to expect algebraic growth in (6.14).
For example, for f = 0, uN = −MN

−1∇ pN , and therefore pN is the solution of
− div(MN

−1∇ pN ) = g on D and (MN
−1∇ pN ) · n = 0 on ∂D. We assume for

simplicity that each Ψ n is a scalar function multiplied by the identity matrix. Then we
have

−ΔpN = MN g + MN ∇ MN
−1 · ∇ pN . (6.28)
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By similar arguments as in the proof of Theorem 4.1, it can be shown that

∥∥∥∥∥
N∑

n=1

Yn∇Ψ n

∥∥∥∥∥
Lq (Ω;L∞(D)d )

≤ C

( N∑
n=1

|Ψ n|2(1−ϑ)
W 1,∞(D)‖Ψ n‖2ϑ

W 2,∞(D)

)1/2

(6.29)

for any q ∈ [1,∞) and ϑ ∈ (0, 1). If D is a convex domain, using (2.22) and
Lemma 4.3, it follows that

‖pN ‖Lq (Ω;H2∗ (D)) ≤ C

[
1 +

( N∑
n=1

|Ψ n|2(1−ϑ)
W 1,∞(D)‖Ψ n‖2ϑ

W 2,∞(D)

)1/2]
‖g‖L2(D).

(6.30)

In many examples, such as the model problem from Section 7 below, the right hand
side of (6.30) is either uniformly bounded in N or grows algebraically in N .

7 Numerical computations

In the following we verify the performance of the MLMC-MFEM method with numer-
ical examples in R

2. The physical domain D is chosen as D = [−1, 1] × [−1, 1]. We
load the problem with boundary conditions only, thus g = 0 and f = 0. By choosing
Dirichlet boundary data

uD = ∇(rβ sin(βϕ)) (7.1)

in polar coordinates (r, ϕ), we have uD ∈ [Hβ(D)]d and for the boundary trace it holds
u D|∂D ∈ [Hβ−1/2(∂D)]d . The boundary conditions are enforced using Nitsche’s
method, cf. [15]. Thus the parameter-dependent norm ‖v‖t,h for the velocity is given
by the expression

‖v‖2
t,h := ‖v‖2

t + t2
∑

E∈∂Eh

1

hE
‖[[v]]‖2

0,E , (7.2)

in which ∂Eh denotes the collection of edges residing on the boundary ∂D. In all of the
numerical examples we choose β = 3.1 to ensure sufficient regularity of the boundary
data.

In the following we assume for simplicity the stochastic permeability matrix M to
be isotropic, lognormal, i.e.

M(x, ω) = exp(m(x, ω))I, (7.3)

in which m is an R-valued Gaussian field on D and m(x, ω) ∈ L∞(D,R). For
practical applications, such as oil reservoir simulation, the permeability is usually of
this diagonal form, and thus the test case is also of practical importance.
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7.1 Karhunen–Loève eigenpairs

To compute the eigenpairs of the truncated Karhunen–Loève expansion (4.4) numer-
ically, one could employ e.g. finite element methods [23]. For simplicity, we only
consider analytically known eigenexpansions for the Karhunen–Loève series. We use
the following result in one space dimension as a basis.

Proposition 7.1 Let D = (−1, 1),E(x) = x,C(x, x ′) = min{x,x ′}+1
2 ∈ H1,1(D ×

D). Then the eigenpairs of the Karhunen–Loève expansion are

λ̃m = 8

π2(2m − 1)2
, ϕ̃m(x) = sin

(
x + 1√

2λm

)
.

In two dimensions, we choose the eigenexpansion as the tensor product of the
expansion in one dimension. Thus the truncated Karhunen–Loève expansion with N
terms can be written as

MN (x, ω) = exp

(
N∑

m=1

Ym(ω)
√
λmϕm(x)

)
I . (7.4)

Here, the eigenpairs are chosen as λm(i, j) = λ̃i λ̃ j and ϕm(i, j)(x) = ϕ̃i (x1)ϕ̃ j (x2)

ordered by the magnitude of the resulting eigenvalues {λm}m≥1.

7.2 Numerical experiments

We consider three distinct test cases, each with several values of the viscosity para-
meter t . Due to the possibly low regularity of sample paths of Gaussian random fields
MN (x, ω) which, in turn, implies low regularity of the unknowns u and p, in all tests
we employ first-order elements, i.e. k = 1. We introduce the scaling parameter Θ for
the eigenvalues, that is we modify the eigenvalues by

λm → λΘm . (7.5)

This gives an algebraic decay rate of Θ for the square roots of the eigenvalues, and
accordingly choosing τ = 1/Θ + ε the sequence of norms Ψ in Assumption 4.1
belongs to 
τ for every ε > 0. Thus in Corollary 4.1 we have s � Θ − 1/2. Using
the optimistic estimate r = 0 we choose the number of terms in the Karhunen–Loève
expansion on level l according to (6.15) as

Nl = N02l/(Θ−1/2). (7.6)

Similarly, the number of samples on level l is chosen according to (6.16) as

Ml = M̄ L22(L−l). (7.7)

123



MLMC for the stochastic Brinkman problem 377

Fig. 1 Convergence in the mesh dependent norm for several values of t with Θ = 2.5

In all of the computations we use M̄ = 4 and N0 = 1. As is evident from (7.6), the
decay rate of the coefficients in the Karhunen–Loève expansion has a strong effect
on the feasibility of the method, since evaluating a massively long series on the finer
mesh levels increases the computational cost very quickly. We use an initial mesh with
only five nodes for all of the computations, with the nodes located at the vertices and
in the middle of the domain. The stabilization parameter γ is chosen elementwise as
proposed in Remark 5.2. Using the solution on level L + 1 as the reference solution,
we plot in Figs. 1, 4, and 7 the relative error

‖E[U ] − El [U ]‖L2(Ω;V×Q)

‖E[U ]‖L2(Ω;V×Q)
(7.8)

for several values of the viscosity parameter t . In the above error expression we use for
the velocity the mesh-dependent norm (7.2) and similarly for the pressure the mesh-
dependent norm (5.8). A 12-point Gauss quadrature described in detail in [10] accurate
for polynomials up to order six is used for numerical integration over triangles, and
10 Gauss integration points are used for evaluating the line integrals. We employ the
Matlab backslash operator as the linear solver in all of the computations, thus we have
at most σ = 2 in Remark 6.3.

The computations were performed in double precision on a x86-64 Linux platform
on the HP CP4000 BL Vuori cluster at Finland’s CSC1 comprising of 272 nodes with
twelve 2.6 GHz AMD Opteron cores and 16 or 32 GB of memory. The main program
was compiled with the GCC compiler version 4.4.3 and OpenMPI 1.4.3 was used for
the MPI parallelization.

1 CSC - IT Center for Science, www.csc.fi.
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Fig. 2 Sublevel CPU time for different levels of the MLMC method with Θ = 2.5

7.2.1 Series with a fast decay rate

In the first example we choose Θ = 2.5. Thus the number of terms which should be
retained in the Karhunen–Loève expansion to ensure a consistency error which is of the
same order as the Finite Element discretization error grows as Nl ∼ 2l/2. This level-
dependent truncation of the Karhunen–Loève expansion allows us to test a greater
number of levels. We choose L = 10 as the reference solution with approximately
1.6 million degrees of freedom on the highest level, and test with values of t ranging
from 10−5 to 10.

Referring to Fig. 1, the convergence rates predicted by Theorem 6.2 for all values
of t akin to the deterministic Brinkman problem [15] are attained. Furthermore, we
observe that the error drops by one to two orders of magnitude as we pass numerically
to the Stokes regime, where the stochastic effects of the Darcy term are suppressed by
the dominating viscous Stokes term, cf. (2.1).

In Fig. 2 we plot the CPU time used on each sublevel for the MLMC-MFEM
method with a total of L levels. In addition, the lines in the figures represent growth
relative to 22l and 2l/2, corresponding to the rates predicted in Remark 6.4 for the
computation of the MFEM problem and the Karhunen–Loève series, respectively. Up
to mesh level nine the computation time appears to be dominated by the computation
of the Karhunen–Loève series and by the matrix assembly. However, starting from
level ten there is already some evidence of the linear solver taking a more dominant
part of the computational work.

In Fig. 3 we compare the CPU time of the method with the theoretical bound in
Remark 6.3, as well as with the total wallclock time spent on all of the nodes used in
the computation. Both observed quantities are consistent with the theoretical bound.
Comparing to Remark 6.3, it is evident that the work estimate is dominated by the
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Fig. 3 Total CPU and wallclock time for different levels of the MLMC method with Θ = 2.5

term W L
KL. On the lowest levels the discrepancy is due to the relatively high amount

of time spent on initialization routines, etc. Moreover, the ratio between the elapsed
time and the CPU time remains approximately constant as the number of levels is
increased. Thus the in-node parallelization performs equally well regardless of the
number of levels.

7.2.2 Unscaled series

Now we consider the original series resulting from the tensor product of the one
dimensional series with no scaling. This gives a rapid rate of growth for the number
of terms in the Karhunen–Loève expansion, namely Nl ∼ 22l . The corresponding
reference line is plotted in Fig. 5. Thus we limit the computations to using level L = 8
as the reference solution, which results in approximately 100,000 degrees of freedom
and a series with 65,536 terms on the last level.

As is evident from Fig. 4 the convergence properties of the MLMC are as predicted.
One also witnesses the same improvement in the relative error upon passing into the
Stokes regime. Figure 5 suggests that now the computational cost per sublevel grows
as 22l in accordance with Remark 6.4. This is due to the increasing cost of evaluating
the Karhunen–Loève series on all of the integration points, which can be clearly seen
by comparing the values to those in Fig. 2 with the same system matrix size. Also for
this case the total CPU time used seems to be in good agreement with the theoretical
bound of Remark 6.3, as seen in Fig. 6.

7.2.3 Moderately scaled series

To further test and verify the performance of the method regardless of the convergence
rate of the Karhunen–Loève expansion, we test with an intermediate choice ofΘ = 1.5
for the scaling of the eigenvalues. Here, we use the solution on level L = 9 as the
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Fig. 4 Convergence in the mesh dependent norm for several values of t with no scaling of the eigenvalues

Fig. 5 Sublevel CPU time for different levels of the MLMC method with no scaling

reference solution. Figure 7 shows consistent convergence properties for the error in
the mesh dependent norm compared to the previous two cases.

As for the CPU time per sublevel, the work load stemming from evaluating the
Karhunen–Loève expansion is clearly reduced compared to the non-scaled Karhunen–
Loève expansion. Again in Fig. 8 the lines represent growth relative to 22l and 2l

corresponding to the work load of the MFEM solution and computing the Karhunen–
Loève series, respectively. Evidently the growth rate is considerably faster than that of
the Karhunen–Loève expansion with Θ = 2.5. As can be seen from Fig. 9, the total
CPU time once again obeys the theoretical bounds given in Remark 6.3.
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Fig. 6 Total CPU and wallclock time for different levels of the MLMC method with no scaling

Fig. 7 Convergence in the mesh dependent norm for several values of t with Θ = 1.5

7.2.4 Robustness at the limit t = 0

We proceed to verify the performance of the MLMC Finite Element method at the
limit t = 0. We perform the test with eight levels of discretization with the above three
values of eigenvalue scaling, namely Θ = 1.0,Θ = 1.5, and Θ = 2.5. As is evident
from Fig. 10, the error bound of Theorem 6.2 holds also for the limiting case t = 0
demonstrating the robustness of the method.

7.2.5 Comparison to the single level Monte Carlo method

Finally, we compare the calculation times for the MLMC and SLMC methods. Due to
the vast number of samples required for the SLMC method on the finest mesh levels,
we base the SLMC estimate on the actual computation time for a single sample on a
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Fig. 8 Sublevel CPU time for different levels of the MLMC method Θ = 1.5

Fig. 9 Total CPU and wallclock time for different levels of the MLMC method Θ = 1.5

given mesh level and multiply this with the number of samples for SLMC stemming
from Theorem 6.1. Thus, a comparison with Equation (6.16) gives the estimate

tSLMC ≈ tMLMC,L

M̄ L
22L , (7.9)

in which tMLMC,L is the total CPU time spent on level L . Since the tasks performed in
the SLMC and MLMC are identical on a given mesh level, the estimate reflects well
the actual CPU times. The results for the two highest mesh levels for each scaling
parameter value Θ used are gathered in Table 1. Evidently, the number of levels used
in the MLMC method has the greatest effect on the speedup attained. Nevertheless,
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Fig. 10 Convergence in the mesh dependent norm for t = 0

Table 1 Comparison of the MLMC and SLMC methods

Θ and L Total MLMC One sample on L Estimated SLMC Speedup
CPU hours CPU hours CPU hours factor

Θ = 2.5, L = 10 101.5 0.892 935,500 9,220

Θ = 2.5, L = 9 1.68 0.128 33,490 2,008

Θ = 1.5, L = 9 14.62 0.181 47,530 3,250

Θ = 1.5, L = 8 1.839 0.017 1,083 589.1

Θ = 1.0, L = 8 62.08 1.704 111,700 1,799

Θ = 1.0, L = 7 2.940 0.084 1.388 472.1

the speedup is also pronounced in the case of slowly converging Karhunen–Loève
expansions since evaluating the Karhunen–Loève series on highly refined meshes is
relatively expensive. It should be noted that for highly refined meshes SLMC simula-
tions are out of practical reach even for this simple test case.

7.3 Implementation and load balancing

Monte Carlo methods are so-called embarrassingly parallel methods, i.e. during the
sampling phase they achieve near optimal speedups. However, parallelizing the MLMC
Finite Element method adds new technical complications. Firstly, the stiffness matrices
for the problem on different mesh levels differ vastly in size, as does the number of
individual problems solved per level. Accordingly, one would prefer lots of nodes
with very little memory and only one core for the low-level problems, whereas for the
highest levels one should have as much memory as possible. Thus, for each level the
optimal division of hardware resources is different, and allocating nodes with different
amounts of memory and CPU power might lead to hard-to-resolve resource starvation
problems on the cluster.
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Our approach is to collect the small problems into larger batches. Specifically, we
assemble several (tens to tens of thousands) problems on one node into a large matrix of
approximately equal size for every level. Thus, on each level the linear system to solve
is of the same order of complexity, which allows us to make use of multithreaded direct
solvers inside the multicore node and take better advantage of the memory available
on the individual node. Furthermore, we assemble the deterministic parts only once.
There is also a considerable reduction in the internode traffic since one can sum up the
results in the node and broadcast only one result vector per batch to the master MPI
process, instead of communicating for each sample separately.

Another numerical complication is the numerical evaluation of a slowly converging
Karhunen–Loève series. We need to evaluate the basis functions with random coef-
ficients on a fine mesh at each integration point. Precomputing the basis functions
consumes extreme amounts of memory and could not be practically implemented
since the memory requirements are easily in tens or hundreds of gigabytes.

From Figs. 3, 6, and 9 one can clearly see the considerable performance gain from
the internode parallelization. The Finite Element method is implemented by using a
MATLAB-based Finite Element solver compiled into a standalone C library using the
MATLAB Compiler.2 The main C program is a master-slave type MPI implemen-
tation.3 In addition, the numerical evaluation of the Karhunen–Loève expansion is
parallelized using OpenMP in a mex-file written in C from inside the MATLAB com-
piled library. The normally distributed random numbers were generated using Matlab’s
intrinsic functions. The underlying algorithm for generating the random numbers is
the well-known Mersenne Twister implemented by MathWorks in MATLAB R2010a
based on the algorithm introduced in [20], and all of the subtasks divided to the nodes
are seeded individually.

8 Concluding remarks

We presented a convergence analysis for a multi-level Monte Carlo, mixed Finite
Element Method from [15] for the stochastic Brinkman problem. Owing to the log-
Gaussian permeability tensor, statistical sampling of this tensor will, with positive
probability, generate realizations which come arbitrary close to both the Stokes as
well as to the Darcy limit. In the presently analyzed multi-level Monte Carlo method,
the Brinkman problem is therefore discretized by a recently proposed, robust mixed
Finite Element method from [15] which remains stable in the full regime, from Stokes
to Darcy flow; other mixed FEMs with such robustness properties are available in [17];
in particular, the presently analyzed mixed FEM remains stable in the Darcy limit, and
therefore allows also to cover these models. However, in the Darcy limit the presently
proposed mixed FEM has suboptimal convergence rates in terms of the mesh width. An
analogous analysis holds for the multi-level Monte Carlo H(div) conforming mixed
FEM analyzed recently in [17] with optimal rates (in a mesh-dependent norm) in the
Darcy limit t = 0. For the multi-level Monte Carlo FEM, the lognormal Gaussian

2 Matlab R2010a, compiler version 4.11, gcc version 4.4.3.
3 OpenMPI version 1.4.3.
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permeability tensor was represented as an (infinite) Karhunen–Loève series with stan-
dard normal random coefficients. The present multi-level Monte Carlo convergence
and complexity analysis indicated, in particular, the necessity of a level-dependent
truncation of the Karhunen–Loève series, with the number of terms retained at dis-
cretization level 
 chosen so as to balance the Karhunen–Loève truncation error with
the discretization error at this level of discretization. The theoretical convergence
analysis in the present papers states that the resulting multi-level Monte Carlo mixed
FEM allows to compute approximations of the mean fields for pressure heads and
flux vectors with accuracy versus work equal to that of a single, multilevel solution of
the deterministic Brinkman model, uniformly over the entire range of models, from
Stokes to Darcy flow. The numerical experiments support the assertions.
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