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Abstract

We introduce a new set of algorithms to compute Jacobi matrices associated with mea-
sures generated by infinite systems of iterated functions. We demonstrate their relevance in
the study of theoretical problems, such as the continuity of these measures and the logarith-
mic capacity of their support. Since our approach is based on a reversible transformation
between pairs of Jacobi matrices, we also discuss its application to an inverse / approxima-
tion problem. Numerical experiments show that the proposed algorithms are stable and can
reliably compute Jacobi matrices of large order.
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1 Introduction

Let µ be a non-negative probability measure with compact support in R and let Jµ be the
associated Jacobi matrix:

Jµ :=











a0 b1
b1 a1 b2

b2 a2 b3
. . .

. . .
. . .











. (1)

This infinite symmetric tridiagonal matrix encodes the three-terms recurrence relation of the
orthonormal polynomials {pn(µ; s)}n∈N of µ:

spn(µ; s) = bn+1pn+1(µ; s) + anpn(µ; s) + bnpn−1(µ; s), (2)

with b0 = 0 and initialized by p−1(µ; s) = 0, p0(µ; s) = 1.Recall that the integral
∫

pn(µ; s)pm(µ; s)dµ(s)
is equal to one when n = m and is null in all other cases.

According to Gautschi [23], the computation of the Jacobi matrix associated with a given
measure is a fundamental problem of numerical analysis. In fact, when the moment problem is
determined [2] (this is the case under the compactness hypothesis above), the Jacobi matrix Jµ
uniquely identifies the measure µ. Its computation is necessary for the evaluation of orthogonal
sums via Clenshaw’s algorithm [9], but arguably its most important rôle comes in differentiation
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and integration using orthogonal polynomials [14] and in Gaussian quadratures [24, 25, 36], via
the linear algebra technique of Golub and Welsch [29, 30].

Jacobi matrices play a major rôle also in mathematical physics, since they can be seen as
discrete Schrödinger operators acting in l2(Z+), properly when bn = 1 for all n and in an extended
sense in the general case. The investigation of the links between the properties of the sequences
of coefficients an and bn and those of the “spectral” measure µ has involved both students
of orthogonal polynomials and numerical analysis and of mathematical physics and quantum
dynamics, see e.g. [61], [10] and references therein. In the latter setting the Fourier transform
of µ and of its orthogonal polynomials take on the dynamical meaning of probability amplitudes
of the quantum motion [46, 47, 48]. Remark that they can be numerically computed in a very
efficient way directly from the Jacobi matrix [45].

The asymptotic properties of the Fourier transform of a measure have been the focus of
intense investigation also in harmonic analysis [56, 57, 58, 35]: these studies have highlighted
the distinctive properties of singular continuous measures, which appear rarely on the stage of
numerical analysis, but that, to the contrary, are principal in this paper.

In fact, we consider herein measures generated by Systems of Iterated Functions (I.F.S) [34, 3],
that are frequently, although not always, singular with respect to the Lebesgue measure. I.F.S.
are a highly versatile tool, that has been employed for the approximation of natural objects as well
as for image compression [13, 5], for wavelet construction [15] and for numerical integration [7]. In
this forcefully minimal list of applications of I.F.S. an item of theoretical relevance must be added:
Jacobi matrices of I.F.S. measures have been used as abstract models of aperiodic Schrödinger
operators [32, 42, 43, 48], whose fine spectral properties are crucial for the phenomenon of wave
propagation, in a study which lies at the intersection of the three disciplines just mentioned:
numerical analysis, mathematical physics and harmonic analysis.

Computing the Jacobi matrix associated with an I.F.S. measure is therefore a fundamental
task, but a challenging one, the more so because the usual algorithms based on modified moments
[55] are ill conditioned, for reasons explained in [18, 41] (see also [6]). This goal has been
achieved with ad hoc techniques [41, 19, 44, 17] for I.F.S. with finitely many maps. In parallel,
the computation of the Jacobi matrix for refinable functionals [60, 27] (a particular case of
I.F.S.) provided results [38, 39] that can compared to those for I.F.S. Yet, not all of the above
algorithms are capable of producing Jacobi matrices of large orders, a crucial requirement for the
investigation of the theoretical questions mentioned before.

In this paper, we contribute a new set of algorithms to this family, that are numerically stable
to large orders and that are also capable of handling the case of I.F.S. with uncountably many
affine maps. The proposed algorithms are based on the existence of a one-to-one transformation
between the Jacobi matrix of µ and that of an auxiliary measure, σ, that encodes the parameters
of affine, homogeneous I.F.S., that we will define momentarily.

Reversibility of such transformation also enables us to solve an inverse / approximation
problem—that of computing the set of I.F.S. maps generating a given measure µ. Original results
[7] indicate that I.F.S. quadratures, derived from the solution of the inverse problem, might offer
advantages with respect to conventional ones—yet, as was to be expected, numerical stability is
an important issue also in this inverse problem. Despite previous efforts [4, 5, 7, 33, 1, 21] the
first algorithm really achieving large orders in a stable way has been announced in [49]: since it
completes the theory developed herein and it can serve to prove experimentally the stability of
the forward algorithms, it will be briefly discussed in the final section of this paper.

This paper is organized as follows: in the next section we review the formalism of homogeneous
iterated function systems and we generalize it to allow for uncountably many maps. This leads to
the definition of a convolution–like operator on measures, that is studied in Sect. 3, particularly
with respect to its action on orthogonal polynomials and Jacobi matrices. This section is the
core of the paper, since it contains almost all technical lemmas. In Sect. 4 we use these lemmas
to build numerical algorithms for the computation of the I.F.S. convolution and of the Jacobi
matrix associated with an I.F.S., that are experimentally examined with respect to stability and
performance in a number of significant cases. In Sect. 5 these properties and the preceding theory
allow us to derive rigorous results on, as well as numerical estimates of, significant analytical
properties of I.F.S. measures such as their continuity and the capacity of their support. In Sect.
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6 we describe a different technique for computing I.F.S. convolutions and Jacobi matrices, based
on discrete measures and on inverse Gaussian methods. To complete the paper, in Sect. 7 we
discuss the inverse algorithm, that yields the I.F.S. approximations of a target measure. The
conclusions, Sect. 8, briefly sum up the work and discuss further developments.

2 Homogeneous Affine Iterated Function Systems

Systems of iterated functions [34, 3, 5] are finite collections of real maps φi : R → R, i = 1, . . . ,M ,
for which there exists a set A, called the attractor of the I.F.S., that solves the equation A =
⋃

i=1,...,M φi(A). Existence and uniqueness of A can be ensured under general circumstances.
In this paper, we adopt a specific choice of the maps φ that has the advantage of leading to a
structured algebraic problem: that of homogeneous, affine transformations:

φi(s) = δ(s− βi) + βj i = 1, . . . ,M, (3)

where δ is a real constant between zero and one, and βi are real constants, that geometrically
correspond to the fixed points of the maps. By associating a positive weight, πi > 0,

∑

i πi = 1,
to each map one can define a measure µ supported on A via a procedure that we generalize in eq.
(5) below. The measure µ is specified by the value of δ and of the pairs (βi, πi), for i = 1, . . . ,M .
This completes the definition of a “classical” homogeneous I.F.S.

Rather than restricting the cardinality of maps, M , to be finite (or countable, as done by
Maulin and Urbansky [51]) we now allow the index set to be a continuum. This can be done in
a variety of ways [52]. Our approach is to follow [16] and to observe that a finite, homogeneous
I.F.S. is fully described by the choice of δ and of the discrete measure

σ =

M
∑

j=1

πjDβj
, (4)

where Dx is a unit mass atomic (Dirac) measure at the point x. We now let any positive
probability measure σ to be the distribution of affine constants: we only assume that the support
of σ is contained in a finite interval, which, without loss of generality, we may take to be [−1, 1].

Definition 1 Let σ be a positive Borel probability measure on R whose support is contained in
[−1, 1], let δ be a real number in [0, 1) and let δ̄ := 1− δ. Let the real number β parameterize the
I.F.S. maps φ(β, ·) as φ(β, s) := δs+ δ̄β. The invariant I.F.S. measure associated with the affine
homogeneous I.F.S. (δ, σ) is the unique probability measure µ that satisfies

∫

f(s) dµ(s) =

∫

dσ(β)

∫

dµ(s) f(φ(β, s)), (5)

for any continuous function f .

Remark 1 If δ = 0, then µ = σ. In fact, in this case φ(β, s) = β for all s.

Consistency of Def. 1, i.e. existence and uniqueness of µ are easily proven to hold:

Proposition 1 For any δ ∈ [0, 1) eq. (5) defines an invertible transformation from the space
M([−1, 1]) of probability measures σ on [−1, 1] to the subset of M([−1, 1]) composed of invariant
measures µ of homogeneous I.F.S. with contraction ratio δ. The support of µ contains the support
of σ and the convex hulls of these two sets coincide.

Proof. This result is already contained in [16], although not entirely, because of a different
parametrization of I.F.S. maps. Let us start from the second statement. Recall that the attractor
A of an I.F.S., which is the support of the invariant measure µ, can also be characterized as the
closure of the set of fixed points of the composition of an arbitrary number of maps φ(β, ·). It
is then apparent that the support of σ is a subset of that of µ, and that the convex hull of the
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support of µ is the interval between the infimum and the supremum of the set of fixed points β,
that is, the convex hull of the support of σ.

Next, since the supports of σ and µ are contained in a finite interval, their moment problem is
determined [2] and their infinite sets of moments uniquely identify the corresponding measures.
The two sets of moments can be put in one-to-one relation: putting f(s) = sj in eq. (5), for any
j, one gets a triangular set of relations by which it is possible to derive all moments of µ from
those of σ, and viceversa.

Remark 2 The proof above does not offer a numerically viable mean of computing the described
correspondence between µ and σ, at least as far as Jacobi matrices are concerned, as noted in the
Introduction.

3 A convolution-like operator and orthogonal polynomials

We now want to define a mapping Φ in the space M([−1, 1]) of probability measures on [−1, 1],
according to which the invariant measure µ of an I.F.S. is the fixed point of such transformation:
µ = Φ(µ). Since Φ turns out to be contractive in a suitable metric, µ can be found as the limit of
the sequence of measures µn := Φnµ0, where µ0 is any initial probability measure. To achieve this
goal, we first describe a convolution-like operator of measures induced by the I.F.S. construction
and derive its basic analytical properties (next subsection). We then describe the scaling relations
of orthogonal polynomials with respect to affine transformations (second subsection). Thanks to
these relations, the action of the operator Φ can be finally transferred on the Jacobi matrices of
measures in M([−1, 1]) (third subsection).

3.1 I.F.S. convolution of measures

We define a convolution like-operator Φδ(·; ·) acting on M2([−1, 1]) as follows.

Definition 2 Let σ, η two measures in M([−1, 1]) and let δ ∈ [0, 1). The measure η̄ ∈ M([−1, 1]),
called the IFS convolution of σ and η, η̄ := Φδ(σ; η), is defined via the equation

∫

f(s) dη̄(s) =

∫

dσ(β)

∫

dη(s) f(φ(β, s)), (6)

holding for any continuous function f .

Remark 3 The symmetric rôle of σ and η in eq. (6) shows that they can be interchanged in the
action of Φδ(·; ·), provided one also exchanges δ and δ̄: Φδ(σ; η) = Φδ̄(η;σ).

Suppose now that one keeps σ fixed in the above construction. Then, η̄ := Φδ(σ; η) is a
function of η alone: this defines the mapping Φδ(σ; ·) in M([−1, 1]). According to well established
theory, see e.g. [16, 52], one can easily prove

Proposition 2 The mapping Φδ(σ; ·) defines a contraction in M([−1, 1]) equipped with the
Hutchinson metric.

Clearly, Φδ(σ; ·) also induces a map between the Jacobi matrices associated with the related
measures. We want now to derive the algebraic relations required to translate this mapping into
a numerically stable procedure.

3.2 Scaling properties of orthogonal polynomials

Fundamental for the algebraic structure of the algorithms that we are about to develop is the
study of the scaling properties of polynomials with respect to the maps φ. We start with the
almost trivial, but fundamental
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Lemma 1 Let un(s) be any polynomial of degree n. Let {pn(η; s)}n∈N and {pn(σ;β)}n∈N be the
families of orthogonal polynomials associated with the measures η and σ in the variables s and
β, respectively. Then, there exists constants Ωn

k,r, with k, r ≥ 0, such that

un(φ(β, s)) =
∑

0≤k+r≤n

Ωn
k,rpk(η; s)pr(σ;β). (7)

Proof. The polynomial un(φ(β, s)) = un(δs+ δ̄β) can be written in the form
∑

j=0,...,n cjs
jβn−j .

Expanding the monomials sj and βn−j in orthogonal polynomials of η and σ respectively proves
eq. (7).

In this paper, we shall use Lemma 1 specifically for un(s) = pn(η̄; s), the n-th orthogonal
polynomial of the measure η̄ = Φδ(σ; η) in eq. (6). Ωn, with n = 0, 1, . . ., will designate uniquely
the related coefficients and will be called the scaling matrices. For simplicity of notation, we shall
not indicate explicitly the η̄, η, σ dependence of the matrix Ωn. Also, we shall let the indices k
and r run freely, while assuming that Ωn

k,r = 0 unless k, r ≥ 0 and 0 ≤ k + r ≤ n, so that
effectively Ωn is a triangular matrix. The notation qn will indicate a polynomial of degree n of
which no further specification is necessary.

Lemma 2 For any n ∈ N, the scaling matrix Ωn satisfies the normalization condition
∑

k,r

(Ωn
k,r)

2 = 1. (8)

Proof. Since
∫

dη̄(s)pn(η̄; s)
2 = 1, eq. (6) implies that

1 =

∫∫

dσ(β)dη(s)pn(η̄;φ(β, s))
2 =

=

∫∫

dσ(β)dη(s)
∑

k,r,k′ ,r′

Ωn
k,rΩ

n
k′,r′pk(η; s)pr(σ;β)pk′ (η; s)pr′(σ;β).

Performing the integrations with the aid of orthogonality leads to eq. (8).

Lemma 3 For any n ∈ N, the scaling matrix extremal entries Ωn
n,0 and Ωn

0,n are given by

Ωn
n,0 =

hn(η̄)

hn(η)
δn, and Ωn

0,n =
hn(η̄)

hn(σ)
δ̄n, (9)

where hn(·) denote the coefficients of the highest power in the orthonormal polynomial of degree
n: pn(·; s) = hn(·)s

n + qn−1(s).

Proof. Clearly, because of eq. (7), and because p0(σ;β) = 1, on the one hand

pn(η̄; δs+ δ̄β) = Ωn
n,0pn(η; s) + qn−1(s) = Ωn

n,0hn(η)s
n + q′n−1(s),

where qn−1(s) and q′n−1(s) are polynomials of degree n−1 in the variable s and the β dependence
has been implied. On the other hand,

pn(η̄; δs+ δ̄β) = hn(η̄)δ
nsn + q′′n−1(s),

with q′′n−1(s) another polynomials of degree n− 1. This proves the first eq. (9). Because of the
symmetrical rôle of σ and η, this also proves the second.

Lemma 4

φ(β, s)pn(η̄;φ(β, s)) =
∑

k,r

Ωn
k,r[δPk(η; s)pr(σ;β) + δ̄Pr(σ;β)pk(η; s)], (10)

where we have put Pk(·; s) := bk+1(·)pk+1(·; s) + ak(·)pk(·; s) + bk(·)pk−1(·; s) and · can be either
η or σ.

5



Proof. Because of eq. (7)

φ(β, s)pn(η̄;φ(β, s)) = (δs+ δ̄β)
∑

k,r

Ωn
k,rpk(η; s)pr(σ;β)

and the products spk(η; s) and βpr(σ;β) can be dealt with using the recurrence relation for
orthogonal polynomials, eq (2).

3.3 Relations between Jacobi and scaling matrices

We can now show that the scaling properties embodied in the matrices Ωn imply algebraic
relations between the Jacobi matrices Jη, Jη̄ and Jσ. In other words, we are capable of translating
on these latter the action of the convolution operator: Jη̄ = Φδ(Jσ; Jη), where, with a slight abuse
of notation, we also denote by Φδ(·; ·) the induced operator in the space of pairs of Jacobi matrices.

Lemma 5 For any n ∈ N and δ ∈ [0, 1), the Jacobi matrix entry an(η̄) can be written as a linear
combination of the Jacobi matrix entries {aj(η), bj(η)}

n
j=0 and {aj(σ), bj(σ)}

n
j=0, with coefficients

derived from the scaling matrix Ωn:

an(η̄) =
∑

k,r

Ωn
k,r

(

δ[ak(η)Ω
n
k,r + 2bk(η)Ω

n
k−1,r ] + δ̄[ar(σ)Ω

n
k,r + 2br(σ)Ω

n
k,r−1]

)

. (11)

The coefficients of the highest index terms an(η) and an(σ) at r.h.s. are δ(Ωn
n,0)

2 and δ̄(Ωn
0,n)

2,
respectively.

Proof. We use eq. (2) and orthogonality to write

an(η̄) =

∫

dη̄(s)sp2n(η̄; s) (12)

and we then expand according to the relation (6) and to eqs. (7), (10):

an(η̄) =

∫

dσ(β)

∫

dη(s)φ(β, s)[pn(η̄;φ(β, s))]
2 = (13)

=

∫∫

dσ(β)dη(s)
∑

k,r,k′ ,r′

Ωn
k,rΩ

n
k′,r′pk′(η; s)pr′(σ;β)[δPk(η; s)pr(σ;β) + δ̄Pr(σ;β)pk(η; s)].

Integrations can be computed explicitly using orthogonality of the polynomials: after some ma-
nipulations, one gets the linear relation eq. (11). Notice that the highest index with non-zero
coefficient for both k and r is n. Direct inspection shows that the coefficient of an(η) at r.h.s. is
δ(Ωn

n,0)
2 and that of an(σ) is δ̄(Ω

n
0,n)

2.

Lemma 6 For any n ∈ N, all the entries of the matrix Ω̃n+1 := bn+1(η̄)Ω
n+1 can be computed

linearly in terms of the entries of Ωn and Ωn−1, with coefficients determined by the Jacobi matrix
entries {aj(η)}

n
j=0, {aj(η̄)}

n
j=0, {aj(σ)}

n
j=0, {bj(η̄)}

n
j=0, {bj(η)}

n+1
j=1 , and {bj(σ)}

n+1
j=1 . In fact, the

following relation holds:

Ω̃n+1
j,l := bn+1(η̄)Ω

n+1
j,l = δ

[

aj(η)Ω
n
j,l + bj+1(η)Ω

n
j+1,l + bj(η)Ω

n
j−1,l

]

+

+ δ̄
[

al(σ)Ω
n
j,l + bl+1(σ)Ω

n
j,l+1 + bl(σ)Ω

n
j,l−1

]

− an(η̄)Ω
n
j,l − bn(η̄)Ω

n−1
j,l . (14)

The entries bn+1(σ), bn+1(η), only affect the computation of the extremal values

Ω̃n+1
n+1,0 := bn+1(η̄)Ω

n+1
n+1,0 = δΩn

0,nbn+1(η), (15)

Ω̃n+1
0,n+1 := bn+1(η̄)Ω

n+1
0,n+1 = δ̄Ωn

0,nbn+1(σ). (16)
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Proof. We start from the relation

bn+1(η̄)pn+1(η̄; s) = (s− an(η̄))pn(η̄; s)− bn(η̄)pn−1(η̄; s), (17)

and map s in φ(β, s) = δs+ δ̄β. Define Qn+1(s) := bn+1(η̄)pn+1(η̄;φ(β, s)):

Qn+1(s) = (φ(β, s) − an(η̄))pn(η̄;φ(β, s))− bn(η̄)pn−1(η̄;φ(β, s)). (18)

Use now eqs. (7) and (10) to express the terms at r.h.s. via the matrices Ωn, and Ωn−1. Then,
we multiply both sides of eq. (18) by pj(η; s)pl(σ;β) and integrate w.r.t. dσ(β)dη(s), to get
eq. (14). The r.h.s. of this equation is a linear combinations of the matrix elements of Ωn and
Ωn−1. The coefficients are given by the matrix entries of Jη, Jη̄ and Jσ. Direct inspection, using
the triangular nature of the Ωn’s, reveals that the terms of highest index appearing at r.h.s. are
an(η), bn+1(η) and an(σ), bn+1(σ), and it also reveals that the last part of the thesis and eqs.
(15), (16) hold.

Lemma 7 For any n ∈ N, the Jacobi matrix entries bn+1(η̄), bn+1(η) and bn+1(σ) are related
to the scaling matrix Ω̃n+1 via

b2n+1(η̄) = δ2b2n+1(η)(Ω
n
n,0)

2 + δ̄2b2n+1(σ)(Ω
n
0,n)

2 +

′
∑

k,r

(Ω̃n+1
k,r )2, (19)

where the primed summation runs over all pairs of indices (k, r) that are different from (n+1, 0)
and (0, n+ 1).

Proof. Because of eq. (8),

b2n+1(η̄) =
∑

k,r

(Ω̃n+1
k,r )2 = (Ω̃n+1

0,n+1)
2 + (Ω̃n+1

n+1,0)
2 +

′
∑

k,r

(Ω̃n+1
k,r )2. (20)

We can now use the explicit formulae (15) and (16).

4 Algorithms for the construction of the I.F.S. Jacobi Ma-

trix

Having derived the necessary technical lemmas in the previous section, we are now in a position
to chain them into two algorithms for the construction of the Jacobi matrix Jµ of an affine,
homogeneous I.F.S. described by the contraction ratio δ and by the affine constants distribution
σ. We first develop a fixed–point, forward algorithm similar to that already exploited in [44],
based on a technique for computing the I.F.S. convolution of two Jacobi matrices. Next, the
solution of the fixed point equation can be obtained by a bootstrap technique like that of ref.
[41]. This yields the closure algorithm. We will denote by J (n̄) the finite truncation of any Jacobi
matrix J to size n̄.

4.1 I.F.S. convolution of Jacobi matrices

Theorem 1 The Jacobi matrix Jη̄ of the I.F.S. convolution measure η̄ := Φδ(σ; η) can be com-

puted recursively from the Jacobi matrices Jσ and Jη. Computation of a finite truncation J
(n̄)
η̄

of size n̄ of Jη̄ only requires knowledge of the truncated matrices J
(n̄)
σ and J

(n̄)
η .

Proof. The algorithm is structured in the following sequence of steps

Algorithm 1.
Computing the Jacobi matrix of an I.F.S. convolution.

Input: the (truncated) Jacobi matrices J
(n̄)
σ and J

(n̄)
η , the contraction factor δ, the trun-

cation size n̄.
Output: the (truncated) Jacobi matrix of η̄ := Φδ(σ; η).

7



0: Initialization: n = 0. One has Ω0
0,0 = 1, since p0(η̄; s) = p0(η; s) = p0(σ;β) = 1 and

b0(η̄) = b0(η) = b0(σ) = 0.

1: Induction hypothesis: {Ωj, j = 0, . . . , n}, {aj(η̄), j = 0, . . . , n− 1} and {bj(η̄), j = 0, . . . , n}
are known.

2: Computation of an(η̄): eq. (11) in Lemma 5.

3: Computation of the matrix Ω̃n+1: Lemma 6.

4: Computation of bn+1(η̄): eq. (19) in Lemma 7

5: Computation of Ωn+1: divide Ω̃n+1 by bn+1(η̄).

6: Augment n to n+ 1 and loop back to step 1 if n+ 1 is less than the desired truncation n̄,
otherwise stop.

Notice that bn+1(η̄) in steps [4] and [5] is never zero, if δ > 0, or if the cardinality of the support
of either σ or η is larger than n+ 1.

4.2 Fixed–point Forward Algorithm

The previous algorithm can serve a double purpose: on the one hand, to investigate the convolution–
like measure η̄ as a function of the factors σ and η. On the other hand, to obtain the Jacobi
matrix of the invariant (δ, σ)–IFS measure in an iterative fashion, as in the following:

Algorithm 1-Fix. Computing the (δ, σ)–IFS Jacobi matrix.

Input: the (truncated) Jacobi matrix J
(n̄)
σ of the distribution of affine constants σ, the

contraction factor δ, the truncation size n̄ and a convergence threshold.

Output: the (truncated) Jacobi matrix J
(n̄)
µ of the I.F.S. measure µ.

0: Initialization: Let µ0 be a positive probability measure in M([−1, 1]) and let J
(n̄)
0 be its

(truncated) Jacobi matrix.

1: For m = 1 until convergence

Use algorithm 1 to compute J
(n̄)
m , the truncated Jacobi matrix of µm := Φδ(σ;µm−1).

Remark 4 Convergence of the previous algorithm is assured by the contractive nature of the
transformation Φδ(σ; ·), Prop. 2. Numerical convergence, on the other hand, can be gauged e.g.

according to the Frobenius norm of the difference J
(n̄)
m − J

(n̄)
m−1. Observe that, because of theorem

1, this difference is exact (except for numerical errors) at any finite truncation n̄, that is to say,
enlarging n̄ does not change the values of the already computed smaller truncations of the Jacobi
matrix.

4.3 Closure Algorithm

We now show that the Jacobi matrix of the invariant measure µ of a (δ, σ)–IFS can be obtained
directly and in a finite number of steps—that is, the sequence of operations of Algorithm 1-Fix
can be exactly closed. In fact, we can set µ = η = η̄ throughout the formulae of section 3. The
only notable difference occurs in the following lemma:

Lemma 8 For any n, the Jacobi matrix entries bn+1(µ) and bn+1(σ) are related to the scaling
matrix Ω̃n+1 via

(1 − δ2(n+1))b2n+1(µ) = b2n+1(σ)δ̄
2(Ωn

0,n)
2 +

′
∑

k,r

(Ω̃n+1
k,r )2, (21)

where the primed summation runs over pairs of indices (k, r) not equal to (n+1, 0) and (0, n+1).
Therefore, the Jacobi matrix entry bn+1(µ) can be always computed from the other quantities in
the above equation, while bn+1(σ) is only defined from the other terms when the difference between
the l.h.s. and the second term at r.h.s. is positive.
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Proof. This is a consequence of Lemma 7 and can be proven similarly.

Remark 5 Observe the breaking of the symmetry in the rôle of the measures µ and σ in the
previous lemma. This is of paramount importance for the inverse problem discussed in Sect. 7.

Theorem 2 The Jacobi matrix Jµ of a homogeneous I.F.S. with contraction ratio δ and affine
constants distribution σ can be computed recursively from the Jacobi matrix Jσ. Computation of

a finite truncation J
(n̄)
µ only requires knowledge of J

(n̄)
σ .

Proof. The algorithm is effected in the following sequence of steps

Algorithm 2. Computing the (δ, σ)–IFS Jacobi matrix.

Input: the (truncated) Jacobi matrix J
(n̄)
σ , the contraction factor δ, the truncation size n̄.

Output: the (truncated) Jacobi matrix J
(n̄)
µ of the I.F.S. measure µ

0: Initialization: n = 0. One has Ω0
0,0 = 1, since p0(µ; s) = p0(σ;β) = 1 and b0(µ) = b0(σ) = 0.

1: Induction hypothesis: {Ωj, j = 0, . . . , n}, {aj(µ), j = 0, . . . , n−1} and {bj(µ), j = 0, . . . , n}
are known.

2: Computation of an(µ): Lemma 5. Observe that setting η = η̄ = µ in eq. (11) the term
an(µ) appears at r.h.s. with a coefficient δ(Ωn

n,0)
2 that is strictly less than one.

3: Computation of the matrix Ω̃n+1: Lemma 6.

4: Computation of bn+1(µ): Lemma 8

5: Computation of Ωn+1: divide Ω̃n+1 by bn+1(µ).

6: Augment n to n + 1 and loop back to step 1 if n is less than the desired truncation n̄,
otherwise stop.

Notice again that bn+1(µ) in steps [4] and [5] is never zero, if δ > 0, or if the cardinality of the
support of σ is larger than n+ 1.

Remark 6 The algorithm can be carried out in O(n̄3) operations. In addition, it can also be
re-structured in order to compute in place of the bn(µ) the squares b2n(µ), that enter the recursion
relation of monic orthogonal polynomials (i.e. those normalized as having unit coefficient in the
highest power). This avoids the square root in step 4 and therefore leads to an algorithm that
can be carried out exactly in rational arithmetics, when δ and Jσ are such, or symbolically, for
instance to obtain the recursion coefficients as functions of the contraction ratio δ.

Remark 7 The storage requirement of the algorithm is O(n̄2).

Remark 8 In the classical I.F.S. case with M maps, when σ is a finite sum of M atomic
measures, eq. (4), the algorithm above can be used without any modification. In this case the
Jacobi matrix Jσ is finite and one can set bj(σ) = 0 for j ≥ M . This entails, via eq. (14), that
Ωn

r,k = 0 for all k > M . The algorithm then runs in O(Mn̄2) operations and requires a storage
of size O(Mn̄), exactly as the Stieltjes algorithm in [41]. Indeed, the difference between the latter
and the present algorithm is two–fold. Firstly, notice that in [41] the polynomial pn(φ(βj , s)),
for any j = 1, . . . ,M , is developed on the basis {pk(µ; s)}

n
k=0, resulting in M coefficient vectors.

Here, we exploit the algebraic properties of these coefficients in order to write them on the basis
of the orthogonal polynomials of σ. Secondly, the input data of the algorithms are different: in
[41] these are the parameters of a finite set of maps—here, they are the common contraction
coefficient δ and the Jacobi matrix of the measure σ.
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4.4 Numerical examples

Let us start by examining the fixed–point, forward algorithm 1-Fix, choosing µ0 as the uniform,
normalized Lebesgue measure on [−1, 1]. This choice is dictated by the simplicity of its Jacobi
matrix, but other choices would work equally well. Indeed, one might even start from a suitable
Jacobi matrix whose associated measure is not even known. On the other hand, three kind of
possible choices for σ are:

• σpp: a point measure with a finite number of atoms,

• σsc: a singular continuous measure,

• σac: an absolutely continuous measure.

We investigate these different choices because of their rôle in mathematical physics, as described
in the introduction and because of the open problems on their continuity properties, discussed
in Sect. 5.

Example 1 Let the atomic measure σpp = 1
2 (D−1 + D1) be made of two atoms at positions

−1 and 1, with equal weights. Fixing δ = 3
10 therefore implies that µ = limm→∞ µm is the

invariant measure of a two-maps homogeneous I.F.S. with δ = 3
10 , equal weights π1 = π2 = 1

2
and β1 = −β2 = 1. The convex hull of the support of this fractal measure is also [−1, 1].

Example 2 As to the second choice, σsc can be taken as precisely the two-maps I.F.S. measure
of example 1. The generated measure µ (with a value of the contraction ratio δ independent of
that of Ex. 1) is now the invariant measure of an I.F.S. with uncountably many maps, whose
fixed points are located on a Cantor set. For the case of Fig. 1 we have chosen δ = 1/4.

Example 3 Thirdly, σac can be taken as the uniform Lebesgue measure on [−1, 1]. The generated
measure µ (with δ = 1/4) is now an absolutely continuous measure supported on [−1, 1], whose
analytical properties have been studied in [50], where a graph of its density is also displayed.

We exhibit the numerical convergence properties of algorithm 1-Fix, when applied to Examples
1 to 3. In Fig. 1 we plot, in log-linear scale, the Frobenius norms of the differences between
the Jacobi matrices of µm and µm−1, versus the iteration number m, computed at a fixed finite
truncation. After an initial transient, that lasts longer for the point measure than in the other
cases, we observe the exponential convergence typical of fixed point techniques. Obviously, the
Jacobi matrix of the three measure just considered can be also computed via the closure algorithm
2, with an obvious saving of computer time. In certain investigations, though, the recursive
algorithm may be needed, when one wants to study the properties of the Jacobi matrices of a
sequence of measures converging to the limit measure µ.

Let us now consider Algorithm 2. In the case when the measure σ is composed of a finite
number of atoms, both storage and cpu time can be greatly reduced, as noted above. This
fact permits far-reaching numerical experimentations. We first consider the uniform Lebesgue
measure on [−1, 1], that can be generated by choosing δ = 1/2 in example 1 while leaving σ
unchanged. Being the Jacobi matrix explicitly known, we have tested the error propagation,
finding errors less that 6 · 10−16 for n as large as 250, 000, being the machine epsilon of the order
of 2.22 10−16.

Next, we consider the refinable functionals introduced in Ref. [38]. As a matter of facts, their
invariant measures are supported on a different interval than [−1, 1], but our algorithms work
equally well without change.

Example 4 In I.F.S. language, the first numerical example discussed in Sect. 4 of Ref. [38]
consists of four maps, with contraction factor δ = 1/2 and with fixed points βj = j, for j =
0, . . . , 3 and weights 1/8, 3/8, 3/8, 1/8, respectively.

We have computed the Jacobi matrix of Example 4 with algorithm 2 up to n = 250, 000
without encountering any numerical instability. Because of symmetry, one can theoretically
assess that an = 3/2, a value that is not automatically reproduced by the algorithm so that
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Figure 1: Frobenius distance between the truncated Jacobi matrices of µm and µm−1, versus m,
for n̄ = 4096. The three measures σ described in Examples 1 to 3 are considered. The highest
curve is for the atomic σpp (Ex. 1, crosses), while the two lowest sets of data are for σsc (Ex. 2,
pluses) and σac (Ex. 3, asteriscs).
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Figure 2: Absolute differences ǫn = |an − 3/2| (lower data points, pluses) and ǫn = |bn − 3/4|
(higher data points, crosses) versus n for the refinable functional defined in Example 4. The
fitting power-laws ǫn ∼ nγ have exponent γ = .85 and γ = −2, respectively

it can be used to gauge numerical error propagation. In figure 2 we observe a mild, slower
than linear error growth for the diagonal coefficients, that is orders of magnitude lower than
the difference between bn and the asymptotic limit b∞ = 3/4, also reported in the figure. The
observed power-law decay of such difference, with exponent γ = −2, is therefore to be deemed
reliable and suggestive of the absolute continuity of the orthogonality measure µ, according to
the theory presented in Sect. 5.

To provide a more stringent verification, we have also computed, in the same case as above,
the difference between the results of Algorithm 2 and those of the Stieltjes technique of Ref. [41],
this latter run in quadruple precision (machine epsilon of the order of 10−34). The slower than
linear growth of the absolute differences in the diagonal and the outdiagonal components of the
Jacobi matrix, reported in Fig. 3, suggests the numerical stability of both techniques.

Finally, we have run the same test on the second example proposed by Laurie [38], who
observed a linear growth of the error in his technique, discovering a comparable behavior, on the
larger range here displayed: Ex. 5 and Fig. 4. Using the theory of the next section, absolute
continuity of the associated measure can also be conjectured from the computed Jµ.
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Figure 3: Absolute differences ǫn = |an− ãn| (crosses) and ǫn = |bn− b̃| (pluses) versus n between
the an, bn provided by algorithm 2 and the ãn, b̃n from the algorithm of Ref. [41] when applied
to the same case of Ex. 4, Fig. 2.
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Figure 4: Absolute differences ǫn = |an− ãn| (crosses) and ǫn = |bn− b̃| (pluses) versus n between
the an, bn provided by algorithm 2 and the ãn, b̃n from the algorithm of Ref. [41] when applied
to Ex. 5.

Example 5 In example 4, use the modified weights 1/8, 3/8, 3/8, 1/8.

We propose numerical experiments on the case of infinite Jacobi matrices Jσ later on, in Sect.
7. We now pause for a theoretical digression of some interest.

5 Analytical properties of the invariant measure

The theory developed in the previous section can be also employed for an ambitious goal: to
study numerically the analytical properties of the invariant measure µ of a (δ, σ)–IFS. To give an
idea of what we believe can be achieved along this line, in this section we briefly discuss two types
of results, one for measures whose support is a full interval, the other for measured supported on
Cantor sets.

The continuity properties of the measure µ follow in a complicated way from those of σ and
from the contraction ratio δ. For instance, even in the realm of conventional, finite cardinality
I.F.S., cases of point measures σ leading to either singular continuous, or absolutely continuous
measures µ are well known. Reference [50] is an attempt to attack this problem in full generality:
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Figure 5: Differences |bn − 1
2 | (decreasing curves) and partial sums Sn (increasing curves) versus

n for the three measures described in the text. Inside each group the curves arrange themselves
for large n from bottom to top, starting from Ex. 1 with δ = δ1, followed by δ = δ2 and finally
δ = δ3.

typically, we find that µ is “more continuous” than σ. We have proven that when σ is absolutely
continuous with a bounded density, so is µ, for any δ. This covers most cases commonly encoun-
tered in numerical analysis, but not the general situation that we discuss in this paper. Various
techniques have been proposed in [50] to verify numerically the continuity type of a measure µ.
We now present a different one.

Recall that the Nevai class of measures N(a∞, b∞) contains the orthogonality measures asso-
ciated with Jacobi matrices for which an → a∞ and bn → b∞, as n → ∞. From the speed of this
convergence one can infer the continuity properties of µ (see e.g. [61],[10]). For instance, when

∑

n

|an − a∞|+ |bn − b∞| < ∞ (22)

the measure µ is absolutely continuous w.r.t. the Lebesgue measure on the interval [a∞ −
2b∞, a∞ + 2b∞].

The numerical stability and the performance featured by Algorithm 2 permit to compute
Jacobi matrices of large orders and therefore to hint to the existence of a∞ and b∞ and to the
validity of eq. (22). We now apply this technique to the Erdős problem of infinite Bernoulli
convolutions. For details of this problem see the review paper [53] and references therein.

Example 6 Let σ = 1
2 (D0 +D1) (a minor variation of example 1) and select three values of δ,

δ1 = 2−1/2 ∼ 0.7071067811865, δ2 = 3/4 = .75 and δ3 = 1/p1 ∼ 0.7548776662467, p1 being a
Pisot number.

It is rigorously known that the generated measure µ is absolutely continuous in the first case
and singular continuous in the third. It is also absolutely continuous for Lebesgue almost all
values of δ between one half and one, but it is only conjectured that rational values in this
interval, such as δ2, belong to this case. Notice that δ2 is very close to δ3. Also notice that
b∞ = 1/2 is exactly known in the three cases.

In figure 5 we plot both |bn − 1
2 | and the partial sums Sn :=

∑

j |bj − 1/2| versus n in doubly
logarithmic scale for the three cases listed. Convergence of Sn is observed in the first two cases,
as can be inferred by the exponent of the power-law decay of |bn − 1

2 |. In the third case, this
decay (which is also evident) is too slow to imply the absolute continuity of µ. Therefore, our
technique gives results that are consistent with rigorous facts and, which is more important, with
the conjectured absolute continuity for the case δ = δ2.

The measures just discussed are supported on the full interval [0, 1]. Suppose now that Sµ is
a Cantor set. The measure µ is then singular continuous and does not belong to a Nevai class.
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Our theory permits to derive estimates for the capacity of Sµ, in the sense of potential theory
[59]. Precisely, we have

Proposition 3 Suppose that the distribution of fixed points σ and the invariant measure µ are
regular, in the sense of potential theory. Let then Cσ and Cµ be the capacities of the supports of
σ and of µ, respectively. Then,

Cσ ≤ Cµ ≤ Cσ + log(δ̄−1) ≤ Cσ + δ. (23)

Proof. Consider the coefficient hn(µ) of s
n in pn(µ; s): from eq. (2) it follows that

hn(µ) = 1/

n
∏

j=1

bj(µ). (24)

If µ is any regular probability measure, the asymptotic relation hn(µ) ∼ enCµ holds [59]. Then,
hn(µ)
hn(σ)

behaves asymptotically as en∆, where ∆ = Cµ −Cσ. Since the support of σ is enclosed in

that of µ this difference is always positive. Since |Ωn
k,r | ≤ 1 for all k, r, using Lemma 2, we get

hn(µ) ≤ hn(σ)δ̄
−n,

and the result follows.

Remark 9 It is possible to prove the regularity of I.F.S. singular continuous measures µ in large
generality, see [59].

Observe finally that computing large order Jacobi matrices can lead to a numerical estimate
of the capacity of the support of µ, via the quantity 1

n log(hn(µ)) = − 1
n

∑n
j=1 log(bj(µ)) that

converges to Cµ. Convergence is typically slow, but it can be accelerated by suitable extrapolation
techniques [8].

6 A spectral data technique

The numerical determination of the Jacobi matrix of η̄ in Sect. 2, eq. (6) can also be effected
without recurring to the algebraic theory developed in Sect. 3 and leading to algorithms 1 and
2. In fact, the problem can be cast into a forward/inverse Gaussian quadrature determination.
Nonetheless, this approach only provides us with an analogue of the recursive algorithm 1-Fix
and not of the faster algorithm 2. The key observation is the following:

Lemma 9 The formula
∫

dη̄(s)f(s) =

n
∑

j=1

n
∑

k=1

w
(n)
j (η)w

(n)
k (σ)f(δx

(n)
j (η) + δ̄x

(n)
k (σ)), (25)

where x
(n)
j (·) and w

(n)
j (·) are Gaussian points and weights, respectively, is exact for f ∈ P2n−1.

Therefore, it can be used to compute J
(n)
η̄ exactly.

Proof. Let f in eq. (6) be a polynomial of degree at most 2n − 1 in the variable s. Then,
f(φ(β, s)) = f(δs + δ̄β) can be exactly integrated with respect to the measure η by n-points
Gaussian summation in the variable s. This Gaussian formula can be easily obtained by the

spectral problem of J
(n)
η . Also, f(φ(β, s)) is a polynomial of degree 2n − 1 in the variable β,

and the same is its integral w.r.t. dη(s). This latter polynomial can be exactly integrated with

respect to the measure σ by an n-points Gaussian summation obtained from J
(n)
σ .

The above Lemma can also serve as an alternative proof of Thm. 1. Next, observe that the
r.h.s. of eq. (25) is the integral of f with respect to the sum of n2 atomic measures. Stable
algorithms for computing the Jacobi matrix of a finite sum of atomic measures, due among others
to De Boor and Golub [11], Gragg and Harrod [31], Fischer [20], Reichel [54] and Laurie [37] are
well known and can be put to use, to give the following:
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Algorithm 3. Computing the I.F.S. convolution.

Input: the (truncated) Jacobi matrices J
(n̄)
σ and J

(n̄)
η , the contraction factor δ, the trun-

cation size n̄.
Output: the (truncated) Jacobi matrix of η̄ := Φδ(σ; η).

1: Compute Gaussian points and weights for σ from J
(n̄)
σ .

2: Compute Gaussian points and weights for η from J
(n̄)
η .

3: Using Lemma 9 compute J
(n̄)
η̄ using one of the algorithms just quoted.

It is immediate to obtain an iterative version, 3-Fix, along the same lines of Alg. 1-Fix:
from step [3] loop back to step [2] replacing η by η̄. This fixed–point algorithm then provides us
with the Jacobi matrix of µ. As a matter of facts, algorithm 3-Fix works fine as far as absolutely
continuous measures σ (like that in Example 3) are involved. Instead, when µ (not σ) is supported
on a Cantor set (like e.g. in Example 1), we have observed that it achieves convergence only
for Jacobi matrices of the size of about a thousand. This is due to the fact that the n2 points
in Lemma 9 crowd around a fractal and the relative precision in their distance diminishes. As
explained in detail by Laurie [37] (see also [31, 40]) this fact impairs the reconstruction of the
Jacobi matrix from the Gaussian points and weights. One can therefore appreciate by comparison
the computational advantage brought about by the algebraic theory of Sect. 3.

7 I.F.S. Quadratures and the Inverse Problem

The algorithm 2 presented above can be reversed, in order to compute Jσ from Jµ. This is the
basis of the solution of an inverse problem, that can be used in an approximation problem: that
of finding I.F.S. quadratures [7, 49].

Definition 3 Given a target measure µ, whose support is enclosed in a finite interval, an I.F.S.

quadrature for µ is a sequence of I.F.S. measures µ(n) that satisfies J
(n)

µ(n) = J
(n)
µ , for any n ∈ N.

Remark 10 Def. (3) implies that µ(n) integrates exactly polynomials up to degree 2n − 1 and
therefore the sequence {µ(n)} is weakly convergent to µ. Clearly, the linear combination, with
Gaussian weights, of the atomic measures sitting at the Gaussian points of order n is an I.F.S.
quadrature, degenerate in the sense that Gaussian points are the fixed points of a finite set of
maps with contraction rate δ = 0.

Def. (3) formalizes a truncated inverse problem, in the family of fractal inverse problems
[4, 5, 7, 33, 21]. If we now restrict ourselves to (δ, σ)–I.F.S. of the kind (3), the following
approximation result guarantees that solutions do exist:

Theorem 3 ([33]) Let µ be a measure with an infinite number of points of increase. Then, for
all n > 0 there exists δn(µ) > 0 such that for all δ ∈ [0, δn(µ)) there exists an homogeneous affine
I.F.S. with n maps that satisfies Def. (3).

This theorem and Def. 3 also imply that any finite symmetric tridiagonal matrix with positive
out–diagonals bn is the truncation of the Jacobi matrix of a (δ, σ)–I.F.S. with non-vanishing δ.
We shall now apply this theorem while developing the inverse of algorithm 2, in a form that is
also suitable for the numerical determination of the maximal value δn(µ).

Theorem 4 ([49]) The truncated Jacobi matrix Jn
σ of the distribution of fixed points σ of a

(δ, σ)–I.F.S. with contraction ratio δ that provides an I.F.S. quadrature of a measure µ can be
computed recursively from the truncated Jacobi matrix Jn

µ , provided δ ≤ δn(µ). Whether the last
condition holds can be verified recursively.

Proof. The algorithm is effected in the following sequence of steps
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Algorithm 4. Solving the inverse I.F.S. problem.

Input: the (truncated) Jacobi matrix J
(n̄)
µ of the target measure µ, the contraction ratio

δ, the maximum size n̄.
Output: the (truncated) Jacobi matrix of σ, the largest allowed truncation size n̂ .

0: Initialization: n = 0. One has Ω0
0,0 = 1, since p0(µ; s) = p0(σ;β) = 1, and b0(µ) = b0(σ) =

0.

1: Induction hypothesis: {Ωj, j = 0, . . . , n}, {aj(σ), j = 0, . . . , n−1}, and {bj(σ), j = 0, . . . , n}
are known.

2: Computation of an(σ): Lemma 5. Observe that an(σ) has a non-zero coefficient in eq.
(11), due to Lemma 3.

3: Computation of the matrix Ω̃n+1: Lemma 6.

4: Computation of b2n+1(σ): Lemma 8, eq. (21).

4: Stopping alternative: either b2n+1(σ) > 0, therefore continue, or else δ > δn+1(µ), n̂ = n
and stop.

6: Computation of Ωn+1: divide Ω̃n+1 by bn+1(µ).

7: If n < n̄ augment n to n+ 1 and loop back to 1, else n̂ = n̄ and stop.

Remark 11 When termination occurs at a certain value of n = n̂ < n̄ at step 4, then δ is larger
than δn+1(µ), but smaller than δn(µ). Therefore, using Algorithm 4 iteratively at different values
of δ, one can determine the sequence of values δn, at varying n. In principle, the algorithm never
stops only if the target measure µ is exactly generated by an affine IFS with contraction ratio δ
and a measure σ with an infinite number of points of increase.

To establish the numerical stability of both the forward algorithm 2 and the reverse algorithm
4 we have chosen a target Jacobi matrix of particular significance, the Fibonacci tridiagonal
matrix, whose orthogonality measure is singular continuous. This measure is not the invariant
measure of a δ-homogeneous I.F.S. and yet, as seen above, any finite truncation of its Jacobi
matrix coincides with the truncation of the Jacobi matrix of a (δ, σ)–I.F.S.

Example 7 Let an = 0 for all n, and let bn take either the value A = 2/5 or the value B = 1/2.
These values are arranged in the aperiodic Fibonacci sequence ABABBA . . ., generated by the
substitution rules A → AB, B → A on the seed A. It has the property that two A’s never follow
each other, but are separated by at most two B’s.

Using algorithm 4 we have computed the sequence δn(µ) at increasing values of n up to n̄,

as well as the Jacobi matrix J
(n̄)
σ for a feasible value of δ, close to the maximum allowed value

δn̄(µ). We have then applied Algorithm 2 to recompute the original Fibonacci Jacobi matrix.
While the null diagonal entries are recovered exactly because of the nature of the algorithms,
Figure 6 plots the absolute errors εn in the reconstruction of the sequence of bn. The observed
behavior, confirmed by other experiments, is the most convincing experimental verification of
the numerical stability of the direct and inverse algorithms 2 and 4 presented in this paper.

8 Conclusions

We have presented a new family of algorithms for the direct/inverse computation of the Jacobi
matrix of the invariant measure of a homogeneous affine I.F.S.. Experimental results suggest
that these algorithms are stable to large orders when programmed in floating point arithmetics.

On the one hand, this remarkable stability calls for a detailed error analysis, that should
unveil the reasons why the algebraic treatment of Sect. 3 is more stable than any other existing
technique (to the author knowledge) and in particular than the Gaussian technique of Sect. 6.
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Figure 6: Example 7. Absolute errors εn versus n, for the reconstruction of the out-diagonal
Fibonacci Jacobi matrix coefficients bn, at δ = 1.119837 10−6, the maximum allowed value for δ
at n̄ = 3500 being computed as approximately δ3500(µ) = 1.124611 10−6.

We conjecture that this is due to the fact that in our approach we exclusively deal with Jacobi
matrices, but a more thorough investigation, that we plan to develop in further publications, is
in order.

On the other hand, the versatile tools that have been introduced in this paper can now be
applied to a variety of problems, both from the theoretical and from the applied side. In the first
respect, we would like to investigate to what extent we can infer the fine structure properties
of the generated measure µ from those of σ and whether more can be said from the potential
theoretical point of view, e.g. on the asymptotic properties of the sequence of Jacobi matrix
entries and on the Fourier transform of µ and of its orthogonal polynomials. In the second
respect, we would like to evaluate the full potential of the approximation/inverse problem of
Sect. 7 on significant problems, until now beyond the reach of conventional algorithms.

Acknowledgements It is a pleasure to have this opportunity to thank Dirk Laurie for providing
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