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Abstract We apply adaptive wavelet methods to boundary value problems with ran-
dom coefficients, discretized by wavelets in the spatial domain and tensorized polyno-
mials in the parameter domain. Greedy algorithms control the approximate application
of the fully discretized random operator, and the construction of sparse approxima-
tions to this operator. We suggest a power iteration for estimating errors induced by
sparse approximations of linear operators.

Mathematics Subject Classification (2000) 35R60 · 47B80 · 60H35 · 65C20 ·
65N12 · 65N22 · 65J10 · 65Y20

1 Introduction

Uncertain coefficients in boundary value problems can be modeled as random vari-
ables or random fields. Stochastic Galerkin methods approximate the solution of the
resulting random partial differential equation by a Galerkin projection onto a finite
dimensional space of random fields. This requires the solution of a single coupled
system of deterministic equations for the coefficients of the Galerkin projection with
respect to a predefined set of basis functions on the parameter domain, such as a
polynomial chaos basis, see [1,18,21,28,37–40].
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472 C. J. Gittelson

The primary obstacle in applying these methods is the construction of suitable
spaces in which to compute an approximate solution. Sparse tensor product construc-
tions have been shown to be highly effective in [5,6,31,36]. Given sufficient prior
knowledge on the regularity of the solution, these methods can be tuned to achieve
nearly optimal complexity.

An adaptive approach, requiring less prior information, has been studied in [24,
26,27]; see also e.g. [12] for complementary regularity results, and [7] for a similar
approach for stochastic loading instead of a random operator. These methods use
techniques from the adaptive wavelet algorithms [9,10,22] to select active polynomial
chaos modes. Each of these is a deterministic function, and is approximated e.g. by
adaptive finite elements.

Although these methods perform well in a model problem, the suggested equidistri-
bution of error tolerances among all active polynomial chaos modes is only a heuristic.
The theoretical analysis of these methods currently does not guarantee optimal con-
vergence with respect to the full stochastic and spatial discretization.

In the present work, we apply adaptive wavelet methods simultaneously to the
stochastic and spatial bases, omitting the intermediate semidiscrete approximation
stage. This takes full advantage of the adaptivity in these methods, and in partic-
ular their celebrated optimality properties apply to the fully discretized stochastic
equation.

We provide an overview of adaptive wavelet methods for general bi-infinite dis-
crete positive symmetric linear systems in Sect. 2, including convergence analysis
and optimality properties. The particular algorithm we present is based on [9,20,22],
where refinements are based on approximations of the residual. We suggest a new
updating procedure for the tolerance in the computation of the residual that ensures
a geometric decrease in the tolerance while simultaneously preventing this tolerance
from becoming unnecessarily small.

Section 3 discusses a greedy algorithm for a class of optimization problems that
appear in certain subroutines of our adaptive algorithm. In Sect. 4, this greedy algo-
rithm is used within a generic adaptive application routine for s∗-compressible linear
operators. Apart from the introduction of the greedy method, this routine and its
analysis in Sect. 5 are based primarily on [20]. The concepts of s∗-compressibility
and s∗-computability are reviewed in Sect. 4.1.

This efficient approximate application hinges on a sequence of sparse approxima-
tions to the discrete operator, and uses estimates of their respective errors. Although
convergence rates for such approximations have been shown e.g. in [34], explicit
error bounds do not seem to be available. In Sect. 6, we consider a power method
for approximating these errors in the operator norm. We provide an analysis of an
idealized method, and suggest a practical variant using some ideas from adaptive
wavelet methods. This is different from [17] and references therein, where the small-
est eigenvalue of e.g. a discretized differential operator is computed by an inverse
iteration, in that we do not assume a discrete spectrum, and thus do not approximate
an eigenvector, and in that we compute the maximum of the spectrum rather than the
minimum.

Random operator equations and their discretization by tensorized polynomials on
the parameter domain and a Riesz basis of the underlying Hilbert space are presented in
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Adaptive wavelet methods for elliptice PDE with random operators 473

Sect. 7. Although our discussion is limited to positive symmetric systems for simplicity,
all statements extend to nonsymmetric linear systems, and the adaptive algorithm
applies to these by passing to the normal equations as in [10]. Similarly, the Riesz
basis could be replaced by frames of the domain and codomain of the operator, and
complex Hilbert spaces pose no additional difficulties.

In Sect. 8, we construct a sequence of sparse approximations of the discrete random
operator. This again makes use of a greedy algorithm. Section 8 discusses the abstract
properties of s∗-compressibility and s∗-computability for this operator, which are used
in the analysis of the adaptive application routine.

Finally, in Sect. 10, we present a brief example to illustrate our results. We compare
the expected s∗-compressibility to approximation rates from [12]. The smaller of these
determines the efficiency of adaptive wavelet methods applied to random boundary
value problems.

Throughout the paper, N0 denotes the set of natural numbers including zero and
N := N0\{0}. Furthermore, the notation x � y is an abbreviation for x ≤ Cy with
a generic constant C ; L (X, Y ) denotes the space of bounded linear from X to Y ,
endowed with the operator norm ‖·‖X→Y , and we use the abbreviation L (X) :=
L (X, X).

2 Adaptive wavelet methods

2.1 An adaptive Galerkin solver

We consider a bounded linear operator A ∈ L (�2), which we interpret also as a bi-
infinite matrix. For simplicity, we consider the index sets in the domain and codomain
to be N, although we will later tacitly substitute other countable sets.

We assume that A is positive symmetric and boundedly invertible, and consider the
equation

Au = f (2.1)

for a f ∈ �2. Let ‖·‖A denote the norm on �2 induced by A, which we will refer to as
the energy norm.

We briefly discuss a variant of the adaptive solver from [9,20,22] for (2.1). This
method selects a nested sequence of finite sections of the infinite linear system, and
solves these to appropriate tolerances. In each step, an approximation of the residual
is computed in order to estimate the error and, if necessary, enlarge the set of active
indices. For extensions of this method and alternative approaches, we refer to [9,10,14–
16,32,33] and the survey [35].

We assume that the action of A can be approximated by a routine

ApplyA[v, ε] �→ z , ‖Av − z‖�2 ≤ ε , (2.2)

for finitely supported vectors v. Similarly, we require a routine
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474 C. J. Gittelson

RHSf [ε] �→ g , ‖f − g‖�2 ≤ ε , (2.3)

to approximate the right hand side f of (2.1) to an arbitrary precision ε. These building
blocks are combined in ResidualA,f to compute the residual up to an arbitrary
relative error.

ResidualA,f [ε, v, η0, χ, ω, β] �→ [r, η, ζ ]
ζ ←− χη0
repeat

r ←− RHSf [βζ ] − ApplyA[v, (1− β)ζ ]
η ←− ‖r‖�2

if ζ ≤ ωη or η + ζ ≤ ε then break

ζ ←− ω 1−ω
1+ω

(η + ζ )

Remark 2.1 The loop in ResidualA,f terminates either if the residual is guaranteed
to be smaller than ε, or if the tolerance ζ in the computation of the residual is less
than a constant fraction ω of the approximate residual. If neither criterion is met, since
ζ > ωη, the updated tolerance satisfies

ω(η − ζ ) < ω
1− ω

1+ ω
(η + ζ ) < (1− ω)ζ. (2.4)

This ensures a geometric decrease of ζ while also preventing ζ from becoming unnec-
essarily small. Indeed, since η+ ζ and η− ζ are upper and lower bounds for the true
residual, the updated tolerance ζ satisfies

ζ ≥ ω
1− ω

1+ ω
‖f − Av‖�2 ≥ ω

1− ω

1+ ω
(η − ζ ), (2.5)

which implies ζ ≥ ω(1−ω)

1+2ω−ω2 η.

Let α̂, α̌, λ be available such that ‖A‖ ≤ α̂, ‖A−1‖ ≤ α̌ and ‖f‖�2 ≤ λ. Then
κA := α̂α̌ is an upper bound for the condition number ‖A‖‖A−1‖ of A.

The method SolveA,f uses approximate residuals computed by ResidualA,f to
adaptively select and iteratively solve a finite section of (2.1). For a finite Ξ ⊂ N, a
finitely supported r ∈ �2 and ε > 0, the routine

Refine[Ξ, r, ε] �→ [Ξ̄ , ρ] (2.6)

constructs a set Ξ̄ ⊃ Ξ such that ρ := ‖r− r|Ξ̄‖�2 ≤ ε, and #Ξ̄ is minimal with this
property, up to a constant factor ĉ. This can be realized with ĉ = 1 by sorting r and
appending the indices i to Ξ for which |ri | is largest. Using an approximate sorting
routine, Refine can be realized in linear complexity with respect to # supp r at the
cost of a constant ĉ > 1.
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Adaptive wavelet methods for elliptice PDE with random operators 475

SolveA,f [ε, χ, ϑ, ω, σ, β] �→ [uε, ε̄]
Ξ(0) ←− ∅

ũ(0) ←− 0
δ0 ←− α̌1/2λ

for k = 0, 1, 2, . . . do
if δk ≤ ε then break
[rk , ηk , ζk ] ←− ResidualA,f [εα̌−1/2, ũ(k), α̂1/2δk , χ, ω, β]
δ̄k ←− α̌1/2(ηk + ζk )

if δ̄k ≤ ε then break

[Ξ(k+1), ρk ] ←− Refine[Ξ(k), rk ,

√
η2

k − (ζk + ϑ(ηk + ζk ))2]
ϑ̄k ←−

(√
η2

k − ρ2
k − ζk

)
/(ηk + ζk )

[ũ(k+1), τk+1] ←− GalerkinA,f [Ξ(k+1), ũ(k), σ min(δk , δ̄k )]
δk+1 ←− τk+1 +

√
1− ϑ̄2

k κ−1
A min(δk , δ̄k )

uε ←− ũ(k)

ε̄ ←− min(δk , δ̄k )

The function

GalerkinA,f [Ξ, v, ε] �→ [ũ, τ ] (2.7)

approximates the solution of (2.1) restricted to the finite index set Ξ ⊂ N up to an
error of at most τ ≤ ε in the energy norm, using v as the initial approximation. For
example, a conjugate gradient or conjugate residual method could be used to solve
this linear system.

Remark 2.2 In the call of GalerkinA,f in SolveA,f , the previous approximate
solution is used as an initial approximation. Alternatively, the approximate residual
rk , which is readily available, may be used to compute one step of a linear iteration,
such as a Richardson method, prior to calling GalerkinA,f . Although this may
have quantitative advantages, we refrain from going into details in order to keep the
presentation and analysis simple.

2.2 Convergence analysis

The convergence analysis of SolveA,f is based on [9, Lemma 4.1], which is the
following lemma. We note that the solution of the restricted system (2.1) on a set
Ξ ⊂ N is the Galerkin projection onto �2(Ξ) ⊂ �2.

Lemma 2.3 Let Ξ ⊂ N and v ∈ �2(Ξ) such that, for a ϑ ∈ [0, 1],

‖(f − Av)|Ξ‖�2 ≥ ϑ‖f − Av‖�2 , (2.8)

then the Galerkin projection ū of u onto �2(Ξ) satisfies

‖u− ū‖A ≤
√

1− ϑ2κ−1
A ‖u− v‖ . (2.9)
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476 C. J. Gittelson

We note that, by construction, if ϑ > 0, ω > 0 and ω + ϑ + ωϑ ≤ 1, then for all
k, Ξ(k+1) in SolveA,f is such that

‖(f − Aũ(k))|Ξ(k+1)‖�2 ≥ ϑ̄k‖f − Aũ(k)‖�2 , (2.10)

and ϑ̄k ≥ ϑ . Thus Lemma 2.3 implies an error reduction of at least
√

1− ϑ2κ−1
A per

step of SolveA,f , plus an error of τk in the approximation of the Galerkin projection.

Theorem 2.4 If ε > 0, χ > 0, ϑ > 0, ω > 0, ω + ϑ + ωϑ ≤ 1, 0 < β < 1

and 0 < σ < 1−
√

1− ϑ2κ−1
A , then SolveA,f [ε, χ, ϑ, ω, σ, β] constructs a finitely

supported uε with

‖u− uε‖A ≤ ε̄ ≤ ε. (2.11)

Moreover, for all k ∈ N0 reached by the iteration,

κ
−1/2
A

1− ω

1+ ω
δ̄k ≤ ‖u− ũ(k)‖A ≤ min(δk, δ̄k). (2.12)

We refer to [27, Theorem 3.4] for a proof of Theorem 2.4, see also [22, Theorem
2.7].

Remark 2.5 Due to (2.12), in each call of GalerkinA,f , an error reduction of at most
a fixed factor σ is required. Since the condition number of A restricted to any Ξ ⊂ N

is at most κA, a fixed number of steps of e.g. a conjugate gradient iteration suffice,
even with no further preconditioning.

2.3 Optimality properties

For v ∈ �2 and N ∈ N0, let PN (v) be a best N -term approximation of v, that is, PN (v)

is an element of �2 that minimizes ‖v− vN‖�2 over vN ∈ �2 with # supp vN ≤ N . For
s ∈ (0,∞), we define

‖v‖A s := sup
N∈N0

(N + 1)s‖v − PN (v)‖�2 (2.13)

and

A s :=
{

v ∈ �2 ; ‖v‖A s <∞
}

. (2.14)

Setting ε = ‖v − PN (v)‖�2 − η with η ≥ 0, it follows that

‖v‖A s = sup
ε>0

ε
(
min

{
N ∈ N0 ; ‖v − PN (v)‖�2 ≤ ε

})s
, (2.15)

which is used as the definition in [20]. If the index set N is replaced by a countable
set Ξ , we will write A s(Ξ) for A s .
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By definition, the space A s contains all v ∈ �2 that can be approximated by finitely
supported vectors with a rate s,

‖v − PN (v)‖�2 ≤ ‖v‖A s (N + 1)−s ∀N ∈ N0. (2.16)

The following theorem states that this method recovers the optimal rate s whenever
u ∈ A s , i.e. the approximate Galerkin projections ũ(k) converge to u at a rate of s
with respect to #Ξ(k), under some conditions on the parameters of SolveA,f .

Theorem 2.6 If the conditions of Theorem 2.4 are fulfilled,

ϑ̂ := ϑ(1+ ω)+ 2ω

1− ω
< κ

−1/2
A , (2.17)

and u ∈ A s for an s > 0, then for all k ∈ N0 reached by SolveA,f ,

‖u− ũ(k)‖�2 ≤ 2s ĉsκAτ−1ρ(1− ρ1/s)−s 1+ ω

1− ω
‖u‖A s (#Ξ(k))−s (2.18)

with ρ = σ +
√

1− ϑ2κ−1
A and τ =

√
1− ϑ̂2κA.

The proof of Theorem 2.6 hinges on the following Lemma. We refer to [27, Theorem
4.2] and [20,22] for details. For a proof of Lemma 2.7, we refer to [27, Lemma 4.1].
See also [22, Lemma 2.1] and [20, Lemma 4.1].

Lemma 2.7 Let Ξ(0) ⊂ N be a finite set and v ∈ �2(Ξ(0)). If 0 < ϑ̂ < κ
−1/2
A and

Ξ(0) ⊂ Ξ(1) ⊂ N with

#Ξ(1) ≤ c min
{

#Ξ ; Ξ(0) ⊂ Ξ, ‖(f − Av)|Ξ‖�2 ≥ ϑ̂‖f − Av‖�2

}
(2.19)

for a c ≥ 1, then

#(Ξ(1)\Ξ(0)) ≤ c min
{

#Ξ̂ ; Ξ̂ ⊂ N, ‖u − û‖A ≤ τ‖u− v‖A

}
(2.20)

for τ =
√

1− ϑ̂2κ
1/2
A , where û denotes the Galerkin projection of u onto �2(Ξ̂).

Theorem 2.6 implies that the algorithm SolveA,f is stable in A s . If the conditions
of the theorem are satisfied, then for all k reached in the iteration,

‖ũ(k)‖A s ≤
(

1+ 21+s ĉsκAρ(1+ ω)

τ(1− ρ1/s)s(1− ω)

)
‖u‖A s , (2.21)

see e.g. [27, Lemma 4.6].
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478 C. J. Gittelson

Remark 2.8 The sparsity of approximate solutions is of secondary importance com-
pared to the computational cost of SolveA,f . Under suitable assumptions, the number
of operations used by a call of SolveA,f is on the order of ε−1/s‖u‖1/s

A s , which is opti-
mal due to (2.15). Besides the conditions of Theorem 2.6, this presumes that a call of
ApplyA[v, ε] has a computational cost on the order of

1+ # supp v + ε−1/s‖v‖1/s
A s , (2.22)

and similarly the cost of RHSf [ε] is O(ε−1/s‖v‖1/s
A s ). Due to the geometric decrease

of the tolerances ζ in ResidualA,f , the total cost of this routine is equivalent to that
of the last iteration, which is O(ζ

−1/s
k ‖u‖1/s

A s ), using Theorem 2.6 and (2.21). This
includes the cost of Refine if this is realized by an approximate sorting routine with
linear complexity. Finally, since only a fixed number of steps of a linear iteration is
required inGalerkinA,f by Remark 2.5, and each step can realistically be performed
in at most the same complexity asApplyA, the computational cost of the k-th iteration
in SolveA,f is O(ζ

−1/s
k ‖u‖1/s

A s ). Equation (2.5) implies that this is equivalent to

O(δ̄
−1/s
k ‖u‖1/s

A s ), and since the error estimates δ̄k decrease geometrically, the total
cost of SolveA,f is dominated by that of the last iteration of the loop, in which the
error is on the order of ε.

3 Greedy algorithms

3.1 A generalized knapsack problem

We consider a discrete optimization problem in which both the objective and the
constraints are given by sums over an arbitrary set M ⊂ N0. For each m ∈ M , we
have two increasing sequences (cm

j ) j∈N0 and (ωm
j ) j∈N0 defining costs and values: for

any integer sequence j = ( jm)m∈M ∈ N
M
0 , the total cost of j is

cj :=
∑

m∈M
cm

jm (3.1)

and the total value of j is

ωj :=
∑

m∈M
ωm

jm . (3.2)

Our goal is to maximize ωj under a constraint on cj, or to minimize cj under a constraint
onωj. We consider j ∈ N

M
0 optimal if ci ≤ cj impliesωi ≤ ωj or, equivalently,ωi > ωj

implies ci > cj.

Remark 3.1 The classical knapsack problem is equivalent to the above optimization
problem in the case that M is finite, and for all m ∈ M , ωm

0 = 0 and ωm
j = ωm

1
for all j ≥ 1. Then without loss of generality, we can set cm

0 := 0 for all m ∈ M ,
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Adaptive wavelet methods for elliptice PDE with random operators 479

and the values cm
j for j ≥ 2 are irrelevant due to the assumption that (cm

j ) j∈N0 is

increasing. Optimal sequences j ∈ N
M
0 will only take the values 0 and 1, and can thus

be interpreted as subsets of M .
We note that greedy methods only construct a sequence of optimal solutions. They

do not maximize ωj under an arbitrary constraint on cj, and thus do not solve an
NP-hard problem.

Remark 3.2 We are particularly interested in minimizing an error under constraints on
the computational cost of an approximation with this error tolerance. Given sequences
(em

j ) j∈N0 and (cm
j ) j∈N0 of errors and corresponding costs, we define a sequence

of values by ωm
j := −em

j . If (em
j ) j∈N0 is decreasing, then (ωm

j ) j∈N0 is increas-
ing. Typically, as j → ∞, we have em

j → 0 and cm
j → ∞. Then, although it is

increasing, (ωm
j ) j∈N0 remains bounded, and it is reasonable to assume that (ωm

j ) j∈N0

increases more slowly than (cm
j ) j∈N0 , in a sense that is made precise below.

3.2 A sequence of optimal solutions

We iteratively construct a sequence (jk)k∈N0 in N
M
0 such that, under some assump-

tions, each jk = ( j k
m)m∈M is optimal. For all m ∈M and all j ∈ N0, let

Δcm
j := cm

j+1 − cm
j and Δωm

j := ωm
j+1 − ωm

j . (3.3)

Furthermore, let qm
j denote the quotient of these two increments,

qm
j :=

Δωm
j

Δcm
j

, j ∈ N0, (3.4)

which can be interpreted as the value to cost ratio of passing from j to j + 1 in the
index m ∈M .

Let j0 := 0 ∈ N
M
0 . For all k ∈ N0, we construct jk+1 from jk as follows. Let

mk = m ∈ N0 maximize qm
jk
m

. Existence of such maxima is ensured by the last

statement in Assumption 3.A. If the maximum is not unique, select mk to be minimal
among all maxima. Then define j k+1

mk
:= j k

mk
+ 1, and set j k+1

m := j k
m for all m �= mk .

For this sequence, we abbreviate ck := cjk and ωk := ωjk .

Assumption 3.A For all m ∈M ,

cm
0 = 0 and Δcm

j > 0 ∀ j ∈ N0, (3.5)

i.e. (cm
j ) j∈N0 is strictly increasing. Also, (ωm

0 )m∈M ∈ �1(M ) and (ωm
j ) j∈N0 is nonde-

creasing for all m ∈M , i.e. Δωm
j ≥ 0 for all j ∈ N0. Furthermore, for each m ∈M ,

the sequence (qm
j ) j∈N0 is nonincreasing, i.e. if i ≥ j , then qm

i ≤ qm
j . Finally, for any

ε > 0, there are only finitely many m ∈M for which qm
0 ≥ ε.
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480 C. J. Gittelson

The assumption that (qm
j ) j∈N0 is nonincreasing is equivalent to

Δωm
i

Δωm
j
≤ Δcm

i

Δcm
j

if i ≥ j (3.6)

if Δωm
j > 0. In this sense, (ωm

j ) j∈N0 increases more slowly than (cm
j ) j∈N0 . Also, this

assumption implies that if Δωm
j = 0, then ωm

i = ωm
j for all i ≥ j .

We define a total order on M × N0 by

(m, j) ≺ (n, i) if

⎧
⎪⎨
⎪⎩

qm
j > qn

i or

qm
j = qn

i and m < n or

qm
j = qn

i and m = n and j < i .

(3.7)

To any sequence j = ( jm)m∈M in N0, we associate the set

{{j}} := {(m, j) ∈M × N0 ; j < jm} . (3.8)

Lemma 3.3 For all k ∈ N0, {{k}} := {{jk}} consists of the first k terms of M ×N0 with
respect to the order ≺.

Proof The assertion is trivial for k = 0. Assume it holds for some k ∈ N0. By
definition,

{{k + 1}} = {{k}} ∪ {(mk, j k
mk

)},

and (mk, j k
mk

) is the ≺-minimal element of the set {(m, j k
m) ; m ∈ M }. For each

m ∈M , Assumption 3.A implies qm
i ≤ qm

jk
m

for all i ≥ j k
m + 1. Therefore, (m, j k

m) ≺
(m, i) for all i ≥ j k

m + 1, and consequently (mk, j k
mk

) is the ≺-minimal element of
(M × N0)\{{k}}.
Theorem 3.4 For all k ∈ N0, the sequence jk maximizes ωj among all finitely sup-
ported sequences j = ( jm)m∈M in N0 with cj ≤ ck . Furthermore, if cj < ck and there
exist k pairs (m, i) ∈M × N0 with Δωm

i > 0, then ωj < ωk .

Proof Let k ∈ N and let j = ( jm)m∈M be a finitely supported sequence in N0 with
cj ≤ ck . By definition,

ωj =
∑

m∈M
ωm

0 +
∑

m∈M

jm−1∑

i=0

qm
i Δcm

i = ωj0 +
∑

(m,i)∈{{j}}
qm

i Δcm
i .

Therefore, the assertion reduces to
∑

(m,i)∈{{j}}\{{k}}
qm

i Δcm
i ≤

∑

(m,i)∈{{k}}\{{j}}
qm

i Δcm
i .

Note that by (3.1) and (3.3),
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∑

(m,i)∈{{j}}\{{k}}
Δcm

i = cj − c′ for c′ :=
∑

(m,i)∈{{j}}∩{{k}}
Δcm

i .

By Lemma 3.3 and (3.7), q := qmk−1

j k−1
mk−1

satisfies q ≤ qm
i for all (m, i) ∈ {{k}}, and

qm
i ≤ q for all (m, i) ∈ (M × N0)\{{k}}. In particular, q > 0 if there exist k pairs

(m, i) ∈M × N0 with qm
i > 0 since #{{k}} = k. Consequently,

∑

(m,i)∈{{j}}\{{k}}
qm

i Δcm
i ≤ q

∑

(m,i)∈{{j}}\{{k}}
Δcm

i = q(cj − c′)

≤ q(ck − c′) ≤
∑

(m,i)∈{{k}}\{{j}}
qm

i Δcm
i ,

and this inequality is strict if q > 0 and ck > cj.

Similarly, jk also minimizes cj among j with ωj ≥ ωk .

3.3 Numerical construction

We consider numerical methods for constructing the sequence (jk)k∈N0 from Sect. 3.2.
To this end, we assume that, for each m ∈M , the sequences (cm

j ) j∈N0 and (ωm
j ) j∈N0

are stored as linked lists.
Initially, we consider the case that M is finite with #M =: M . To construct

(jk)k∈N0 , we use a list N of the triples (m, j k
m, qm

jk
m
), sorted in ascending order with

respect to ≺. This list may be realized as a linked list or as a tree. The data structure
must provide functions PopMin for removing the minimal element from the list, and
Insert for inserting a new element into the list.

NextOpt[j,N ] �→ [j, m,N ]
m ←− PopMin(N )
jm ←− jm + 1
q ←− (ωm

jm+1 − ωm
jm

)/(cm
jm+1 − cm

jm
)

N ←− Insert(N , (m, jm , q))

Proposition 3.5 Let N0 be initialized as {(m, 0, qm
0 ) ; m ∈M } and j0 := 0 ∈ N

M
0 .

Then the recursive application of

NextOpt[jk,Nk] �→ [jk+1, mk,Nk+1] (3.9)

constructs the sequence (jk)k∈N0 as defined above. Initialization of the data structure
N0 requires O(M) memory and O(M log M) operations. One step of (3.9) requires
O(M) operations if N is realized as a linked list, and O(log M) operations if N
is realized as a tree. The total number of operations required by the first k steps is
O(k M) in the former case and O(k log M) in the latter. In both cases, the total memory
requirement for the first k steps is O(M + k).
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Proof Recursive application of NextOpt as in (3.9) constructs the sequence (jk)k∈N0

by Lemma 3.3 and the definition of ≺. In the k-th step, the element mk is removed
from N and reinserted in a new position. Therefore, the size of N remains constant
at M . The computational cost of (3.9) is dominated by the insert operation on N ,
which has the complexity stated above.

We turn to the case that M is countably infinite. By enumerating the elements of
M , it suffices to consider M = N. We assume in this case that the sequence (qm

0 )m∈M
is nonincreasing.

As above, we use a list N of triples (m, j k
m, qm

jk
m
) to construct the sequence (jk)k∈N0 .

However, N should only store triples for which m is a candidate for the next value
of mk , i.e. all m with j k

m �= 0 and the smallest m with j k
m = 0. As in the finite

case, N can be realized as a linked list or a tree. The data structure should provide
functions PopMin for removing the smallest element with respect to the ordering ≺,
and Insert for inserting a new element.

NextOptInf[j,N , M] �→ [j, m,N , M]
m ←− PopMin(N )
jm ←− jm + 1
q ←− (ωm

jm+1 − ωm
jm

)/(cm
jm+1 − cm

jm
)

N ←− Insert(N , (m, jm , q))
if m = M then

M ←− M + 1

q ←− (ωM
1 − ωM

0 )/cM
1

N ←− Insert(N , (M, 1, q))

Proposition 3.6 Let N0 be initialized as {(1, 0, q1)}, M0 := 1 and j0 := 0 ∈ N
M
0 .

Then the recursion

NextOptInf[jk,Nk, Mk] �→ [jk+1, mk,Nk+1, Mk+1] (3.10)

constructs the sequence (jk)k∈N0 as defined above. For all k ∈ N0, the ordered set
Nk contains exactly Mk elements, and Mk ≤ k. The k-th step of (3.10) requires O(k)

operations if N is realized as a linked list, and O(log k) operations if N is realized
as a tree. The total number of operations required by the first k steps is O(k2) in the
former case and O(k log k) in the latter. In both cases, the total memory requirement
for the first k steps is O(k).

Proof It follows from the definitions that recursive application of NextOptInf as
in (3.10) constructs the sequence (jk)k∈N0 . In the k-th step, the element mk is removed
from N and reinserted in a new position. If mk = M , an additional element is inserted,
and M is incremented. Therefore, the number of elements in N is M , and M ≤ k.
The computational cost of (3.10) is dominated by the insert operation on N , which
has the complexity stated above, see e.g. [13].
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Remark 3.7 As mentioned above, (cm
j ) j∈N0 and (ωm

j ) j∈N0 are assumed to be stored
in a linked list for each m ∈ M . By removing the first element from the Mk-th list
in the k-th step of (3.9) or (3.10), NextOpt and NextOptInf only ever access the
first two elements of one of these lists, which takes O(1) time. The memory locations
of the lists can be stored in a hash table for efficient access.

Remark 3.8 An appropriate way to store (jk)k∈N0 is to collect (mk)k∈N0 in a linked
list. Then jk can be reconstructed by reading the first k elements of this list, which takes
O(k) time independently of the size of the list. Also, the total memory requirement is
O(k̄) if the first k̄ elements are stored.

4 Adaptive application of s∗-compressible operators

4.1 s∗-compressibility and s∗-computability

A routine ApplyA for approximately applying an operator A ∈ L (�2) to a finitely
supported vector constitutes an essential component of the adaptive solver from Sect. 2.
Such a routine can be constructed if A can be approximated by sparse operators, as in
the following definition. Again, we interpret A ∈ L (�2) also as a bi-infinite matrix,
and restrict to the index set N only to simplify notation.

Definition 4.1 An operator A ∈ L (�2) is n-sparse if each column contains at most
n nonzero entries. It is s∗-compressible for an s∗ ∈ (0,∞] if there exists a sequence
(A j ) j∈N in L (�2) such that A j is n j -sparse with (n j ) j∈N ∈ N

N satisfying

cA := sup
j∈N

n j+1

n j
<∞ (4.1)

and for every s ∈ (0, s∗),

dA,s := sup
j∈N

ns
j‖A− A j‖�2→�2 <∞. (4.2)

The operator A is strictly s∗-compressible if, in addition,

sup
s∈(0,s∗)

dA,s <∞. (4.3)

Remark 4.2 Equation (4.2) states that for all s ∈ (0, s∗), the approximation errors
satisfy

eA, j := ‖A− A j‖�2→�2 ≤ dA,sn−s
j , j ∈ N. (4.4)

If s∗ <∞, this is equivalent to the condition that (ns∗
j eA, j ) j∈N grows subalgebraically

in n j , i.e.

ns∗
j eA, j ≤ inf

r>0
dA,s∗−r nr

j , j ∈ N. (4.5)
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Strict s∗-compressibility states that the right hand side of (4.5) is bounded in j , i.e.

dA,s∗ = sup
j∈N

ns∗
j eA, j = sup

j∈N

sup
s∈(0,s∗)

ns
j eA, j = sup

s∈(0,s∗)
dA,s <∞. (4.6)

Of course, s∗-compressibility implies strict s-compressibility for all s ∈ (0, s∗).

Proposition 4.3 Let A ∈ L (�2) be s∗-compressible with an approximating sequence
(A j ) j∈N as in Definition 4.1, and set A0 := 0. There is a map j : [0,∞)→ N0 such
that A j (r) is r-sparse for all r ∈ [0,∞) and for all s ∈ (0, s∗),

eA, j (r) = ‖A− A j (r)‖�2→�2 ≤ max
(
cs

AdA,s, ns
1eA,0

)
r−s (4.7)

for r > 0, where eA,0 := ‖A‖�2→�2 .

Proof Set n0 := 0 and define

j (r) := max
{

j ∈ N0 ; n j ≤ r
}
, r ∈ [0,∞). (4.8)

Then A j (r) is r -sparse, and if j (r) ≥ 1,

eA, j (r) ≤ dA,sn−s
j (r) ≤ dA,scs

An−s
j (r)+1 ≤ dA,scs

Ar−s

by (4.4) and (4.1). If j (r) = 0, then r < n1, and

eA, j (r) = eA,0 ≤ eA,0ns
1r−s .

In particular, Proposition 4.3 implies that Definition 4.1 coincides with the notion
of s∗-compressibility for example in [22,32], i.e. one can assume n j = j in the defin-
ition of s∗-compressibility at the cost of increasing the constants (4.2) and obscuring
the discrete structure of the sparse approximating sequence. We denote the resulting
compressibility constants by

d̃A,s := sup
r∈(0,∞)

rs‖A− A j (r)‖�2→�2 ≤ max
(
cs

AdA,s, ns
1eA,0

)
<∞ (4.9)

for s ∈ (0, s∗), where j (r) is given by (4.8). Also, it follows using Proposition 4.3
that any symmetric s∗-compressible operator A is in the class Bs , as defined in [9],
for all s ∈ [0, s∗).

Although s∗-compressibility is a precise mathematical property, it is only useful
for applications if the sparse approximations to the bi-infinite matrix can be computed
efficiently. This is the context of the following, more restrictive definition.

Definition 4.4 An operator A ∈ L (�2) is s∗-computable for an s∗ ∈ (0,∞] if it is
s∗-compressible with an approximating sequence (A j ) j∈N as in Definition 4.1 such
that A j is n j -sparse and there exists a routine

BuildA[ j, k] �→
[
(li )

n j
i=1, (ai )

n j
i=1

]
(4.10)
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such that the k-th column of A j is equal to
∑n j

i=1 aiεli , where εli is the Kronecker
sequence that is 1 at li and 0 elsewhere, and there is a constant bA such that the
number of arithmetic operations and storage locations used by a call of BuildA[ j, k]
is less than bAn j for any j ∈ N and k ∈ N.

Note that the indices li in (4.10) are not assumed to be distinct, so a single entry of
A j may be given by a sum of values ai . However, the total number of ai computed by
BuildA[ j, k] is at most n j .

4.2 An adaptive approximate multiplication routine

It was shown in [9,10] that s∗-computable operators can be applied efficiently to
finitely supported vectors. A routine with computational advantages was presented in
[20]. We extend this method by using a greedy algorithm to solve the optimization
problem at the heart of the routine.

Let A ∈ L (�2) and for all k ∈ N0, let Ak be nk-sparse with n0 = 0 and

‖A− Ak‖�2→�2 ≤ ēA,k . (4.11)

We consider a partitioning of a vector v ∈ �2 into v[p] := v|Ξp , p = 1, . . . , P , for
disjoint index sets Ξp ⊂ N. This can be approximate in that v[1] + · · · + v[P] only
approximates v in �2. We think of v[1] as containing the largest elements of v, v[2] the
next largest, and so on.

Such a partitioning can be constructed by the approximate sorting algorithm

BucketSort[v, ε] �→
[
(v[p])P

p=1, (Ξp)
P
p=1

]
, (4.12)

which, given a finitely supported v ∈ �2 and a threshold ε > 0, returns index sets

Ξp :=
{
μ ∈ N ; ∣∣vμ

∣∣ ∈ (2−p/2‖v‖�∞ , 2−(p−1)/2‖v‖�∞]
}

(4.13)

and v[p] := v|Ξp , see [2,20,22,29]. The integer P is minimal with

2−P/2‖v‖�∞
√

# supp v ≤ ε. (4.14)

By [22, Rem. 2.3] or [20, Prop. 4.4], the number of operations and storage locations
required by a call of BucketSort[v, ε] is bounded by

# supp v +max(1, �log(‖v‖�∞
√

# supp v/ε)�). (4.15)

For any k = (kp)
�
p=1 ∈ N

�
0, with � ∈ N0 determined as in ApplyA[v, ε], let

ζk :=
�∑

p=1

ēA,kp‖v[p]‖�2(Ξp) and σk :=
�∑

p=1

nkp (# supp v[p]). (4.16)
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ApplyA[v, ε] �→ z

(v[p])P
p=1 ←− BucketSort

[
v,

ε

2ēA,0

]

compute the minimal � ∈ {0, 1, . . . , P} s.t. δ := ēA,0‖v −
�∑

p=1

v[p]‖�2 ≤ ε

2

k = (k p)�p=1 ←− (0)�p=1
while ζk > ε − δ do

k ←− NextOpt[k] with objective −ζk and cost σk

z ←−
�∑

p=1

Ak p v[p]

The algorithm ApplyA[v, ε] has three distinct parts. First, the elements of v are
grouped according to their magnitude. Elements smaller than a certain tolerance are
neglected. This truncation of the vector v produces an error of at most δ ≤ ε/2.

Next, the greedy algorithm from Sect. 3 is used to assign to each segment v[p] of
v a sparse approximation Akp of A. Starting with Akp = 0 for all p = 1, . . . , �, these
approximations are refined iteratively until an estimate for the error resulting from the
approximation of A by Akp for all p = 1, . . . , � is bounded by ζk ≤ ε − δ.

Finally, the multiplications determined by the previous two steps are performed. A
few elementary properties of this method are summarized in the following proposition.

Proposition 4.5 For any finitely supported v ∈ �2 and any ε > 0, if ApplyA[v, ε]
terminates, its output is a finitely supported z ∈ �2 with

# supp z ≤
�∑

p=1

nkp (# supp v[p]) (4.17)

and

‖Av − z‖�2 ≤ δ + ζk ≤ ε, (4.18)

where k = (kp)
�
p=1 is the vector constructed by the greedy algorithm in

ApplyA[v, ε]. Furthermore, the number of arithmetic operations in the final step of
ApplyA[v, ε] is bounded by

�∑

p=1

nkp (# supp v[p]) (4.19)

if the relevant entries of Akp are precomputed.

Proof We show (4.18). Since ‖A‖�2→�2 ≤ ēA,0,

∥∥∥∥∥∥
Av − A

�∑

p=1

v[p]

∥∥∥∥∥∥
≤ ēA,0

∥∥∥∥∥∥
v −

�∑

p=1

v[p]

∥∥∥∥∥∥
= δ ≤ ε

2
.
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By (4.11), if k = (kp)
�
p=1 is the final value of k,

�∑

p=1

‖Av[p] − Akp v[p]‖�2 ≤
�∑

p=1

ēA,kp‖v[p]‖�2(Ξp) = ζk ≤ ε − δ.

Let v ∈ �2 be finitely supported and ε > 0. Note that by (4.13) and (4.14),

∥∥∥∥∥∥
v −

P∑

p=1

v[p]

∥∥∥∥∥∥
≤ 2−P/2‖v‖�∞

√
# supp v ≤ ε

2ēA,0
,

so � is well-defined. It is not immediately clear, however, that the greedy algorithm in
ApplyA[v, ε] terminates. For all k ∈ N0, let

ηk := ēA,k − ēA,k+1

nk+1 − nk
. (4.20)

Assumption 4.A (ēA,k)k∈N0 is nonincreasing and converges to 0; (nk)k∈N0 is strictly
increasing and n0 = 0. Furthermore, the sequence (ηk)k∈N0 is nonincreasing.

Note that Assumption 4.A implies Assumption 3.A. Let M denote the set of p ∈
{0, . . . , P} for which supp v[p] �= ∅. For all p ∈M , the sequences of costs and values
from Sect. 3 are given by

cp
k := nk(# supp v[p]) and ω

p
k := −ēA,k‖v[p]‖�2 . (4.21)

By Assumption 4.A, cp
0 = 0, (cp

k )k∈N0 is strictly increasing and (ω
p
k )k∈N0 is nonde-

creasing for all p ∈M . Also,

q p
k =

Δω
p
k

Δcp
k

= ηk
‖v[p]‖�2(Ξp)

# supp v[p]
(4.22)

is nonincreasing in k for all p ∈M .

Proposition 4.6 For any k generated in ApplyA[v, ε], if j ∈ N
�
0 with σj ≤ σk, then

ζj ≥ ζk. If j ∈ N
�
0 with ζj ≤ ζk, then σj ≥ σk.

Proof The assertion follows from Theorem 3.4 with (4.21) and using Assumption 4.A.
Note that σj ≥ 0 for all j ∈ N

�
0, and if σk > 0, the second statement in Theorem 3.4

applies.

Let (ki )i∈N0 denote the sequence of k generated in ApplyA[v, ε] if the loop is not
terminated. We abbreviate ζi := ζki and σi := σki .

Remark 4.7 In particular, Proposition 4.6 implies convergence of the greedy subrou-
tine in ApplyA[v, ε]. Since nk+1 ≥ nk + 1 for all k ∈ N0 and ki,p = 0 for all i ∈ N0
if # supp v[p] = 0, σi goes to infinity as i →∞. Since ζj can be made arbitrarily small
for suitable j ∈ N

�
0, it follows that ζi → 0.
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5 Analysis of the adaptive application routine

5.1 Convergence analysis

For the analysis of ApplyA, we assume that the values ēA,k are spaced sufficiently
regularly, with at most geometric convergence to 0.

Assumption 5.A r̄A := sup
k∈N0

ēA,k

ēA,k+1
<∞.

In particular, ēA,k > 0 for all k ∈ N0, i.e. if A is sparse, this is not reflected in the
bounds ēA,k . An admissible value is ēA,k = dA,sn−s

k since for all k ∈ N0,

ēA,k

ēA,k+1
=
(

nk+1

nk

)s

≤ cs
A <∞.

Lemma 5.1 For all i ∈ N0, ζi ≤ r̄Aζi+1.

Proof Let i ∈ N0. Note that

ζi − ζi+1 = (ēA,kqi
− ēA,kqi+1)‖v[qi ]‖�2 and ζi+1 ≥ ēA,kqi+1‖v[qi ]‖�2 .

Therefore,

ζi

ζi+1
= 1+ ζi − ζi+1

ζi+1
≤ 1+ ēA,kqi

− ēA,kqi+1

ēA,kqi+1
= ēA,kqi

ēA,kqi+1
≤ r̄A.

The following theorem is adapted from [20, Thm. 4.6]. We emphasize in advance
that knowledge of s and s∗ is not required in ApplyA[v, ε]. The algorithm satisfies
Theorem 5.2 with any s∗ for which A is s∗-compressible, provided that the bounds
ēA,k from (4.11) decay at the rate implied by s∗-compressibility. The constant in (5.2)
may degenerate as s → s∗.

Theorem 5.2 Let v ∈ �2 be finitely supported and ε > 0. A call of ApplyA[v, ε]
produces a finitely supported z ∈ �2 with

‖Av − z‖�2 ≤ δ + ζk ≤ ε. (5.1)

If A is s∗-compressible for an s∗ ∈ (0,∞] and supk∈N
ēA,kns

k <∞ for all s ∈ (0, s∗),
then for any s ∈ (0, s∗),

# supp z ≤ σk � ε−1/s‖v‖1/s
A s (5.2)

with a constant depending only on s, ēA,0, cA, n1, (dA,s̄)s̄∈(s,s∗) and r̄A.

Proof Convergence of ApplyA[v, ε] follows from Proposition 4.6, see Remark 4.7.
Then (5.1) is shown in Proposition 4.5.
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Let k = (kp)
�
p=1 be the final value of k in ApplyA[v, ε], and s ∈ (0, s∗). By

Proposition 4.5, to prove (5.2) it suffices to show that there is a j ∈ N
�
0 with ζj ≤ ζk =: ζ

and σj � ε−1/s‖v‖1/s
A s . Then Proposition 4.6 implies

# supp z ≤ σk ≤ σj � ε−1/s‖v‖1/s
A s .

The construction of such a j is analogous to the proof of [20, Thm. 4.6] with ζ in place
of ε − δ. We provide it here for completeness.

Let τ ∈ (0, 2) be defined by τ−1 = s + 1
2 , and let s < s̄1 < s̄2 < s∗. Then

# supp v[p] ≤ #
{
μ ∈ Ξ ; ∣∣vμ

∣∣ > 2−p/2‖v‖�∞
}

� 2pτ/2‖v‖−τ
�∞‖v‖τA s ,

see e.g. [19]. In particular,

‖v[p]‖�2 ≤ 2−(p−1)/2‖v‖�∞
√

# supp v[p] � 2−psτ/2‖v‖1−τ/2
�∞ ‖v‖τ/2

A s .

Let J ≥ � be the smallest integer with
∑�

p=1 2−(J−p)s̄1τ/2‖v[p]‖�2 ≤ ζ and let

j = ( jp)
�
p=1 ∈ N

�
0 with jp minimal such that ēA, jp ≤ 2−(J−p)s̄1τ/2. Then

ζj =
�∑

p=1

ēA, jp‖v[p]‖�2 ≤
�∑

p=1

2−(J−p)s̄1τ/2‖v[p]‖�2 ≤ ζ.

It remains to be shown that σj � ε−1/s‖v‖1/s
A s .

If jp ≥ 2, since ēA, jp−1ns̄2
jp−1 � 1,

n jp � n jp−1 � ē−1/s̄2
A, jp−1 ≤ 2(J−p)(s̄1/s̄2)τ/2.

This estimate extends to jp ∈ {0, 1} since p ≤ J . Therefore, using s̄1 < s̄2,

σj =
�∑

p=1

n jp (# supp v[p]) �
�∑

p=1

2(J−p)(s̄1/s̄2)τ/22−psτ/2‖v‖−τ
�∞‖v‖τA s

� 2(J−�)(s̄1/s̄2)τ/22−�sτ/2‖v‖−τ
�∞‖v‖τA s ≤ 2Jτ/2‖v‖−τ

�∞‖v‖τA s .

Thus, the assertion reduces to 2Jτ/2‖v‖−τ
�∞‖v‖τA s � ε−1/s‖v‖1/s

A s .
If J = �, by minimality of �,

ε

2
< ēA,0

∥∥∥∥∥∥
v −

�−1∑

p=1

v[p]

∥∥∥∥∥∥
= ēA,0

√√√√
∞∑

p=�

‖v[p]‖2
�2 � ēA,02−�sτ/2‖v‖1−τ/2

�∞ ‖v‖τ/2
A s .

If J > �, then by minimality of J , using s < s̄1,
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ζ <

�∑

p=1

2−(J−1−p)s̄1τ/2‖v[p]‖�2 �
�∑

p=1

2−(J−1−p)s̄1τ/22−psτ/2‖v‖1−τ/2
�∞ ‖v‖τ/2

A s

� 2−(J−1−�)s̄1τ/22−�sτ/2‖v‖1−τ/2
�∞ ‖v‖τ/2

A s ≤ 2−(J−1)sτ/2‖v‖1−τ/2
�∞ ‖v‖τ/2

A s .

Lemma 5.1 implies ε ≤ r̄Aζ . Therefore, in both cases,

ε � 2−Jsτ/2‖v‖1−τ/2
�∞ ‖v‖τ/2

A s ,

or equivalently,

2Jτ/2‖v‖−τ
�∞‖v‖τA s � ε−1/s‖v‖1/s

A s ,

which completes the proof.

It is known that s∗-compressible operators A map A s boundedly into A s for all
s ∈ (0, s∗), see [9, Proposition 3.8]. Theorem 5.2 implies that this carries over to the
approximate multiplication routine ApplyA.

Corollary 5.3 Let A be s∗-compressible for some s∗ ∈ (0,∞], and assume that for
all s ∈ (0, s∗), supk∈N

ēA,kns
k < ∞. Then for any s ∈ (0, s∗) there is a constant C

depending only on s, ēA,0, cA, n1, (dA,s̄)s̄∈(s,s∗) and r̄A such that for all v ∈ A s and
all ε > 0, the output z of ApplyA[v, ε] satisfies

‖z‖A s ≤ C‖v‖A s . (5.3)

Proof Let z be the output of ApplyA[v, ε] for some v ∈ A s and some ε > 0, and
define w := Av. By [9, Proposition 3.8], w ∈ A s , and ‖w‖A s � ‖v‖A s . Since z is
finitely supported, z ∈ A s . Let N := # supp z. Theorem 5.2 implies

‖w − z‖�2 � ‖v‖A s N−s .

For any n ≥ N , Pn(z) = z, and thus (n + 1)s‖z− Pn(z)‖�2 = 0. Let n ≤ N − 1 and
zn ∈ �2 with # supp zn ≤ n. Then

(n + 1)s‖z− zn‖�2 ≤ (n + 1)s‖w − z‖�2 + (n + 1)s‖w − zn‖�2 .

The first term is bounded by

(n + 1)s‖w − z‖�2 � (n + 1)s N−s‖v‖A s � ‖v‖A s .

Taking the infimum over zn with # supp zn ≤ n and using ‖w‖A s � ‖v‖A s , we have

(n + 1)s‖z− Pn(z)‖�2 � ‖v‖A s + (n + 1)s inf
zn
‖w − zn‖�2 � ‖v‖A s .

The assertion follows by taking the supremum over n ∈ N0.
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5.2 Complexity analysis

By (4.15), the number of operations and storage locations required by BucketSort
in a call of ApplyA[v, ε] is bounded by

# supp v +max(1, �log(2ēA,0‖v‖�∞
√

# supp v/ε)�)
� 1+ # supp v + log(ε−1‖v‖�∞). (5.4)

The value of � can be determined with at most # supp v operations. We assume that the
values of ‖v[p]‖�2(Ξp) are known from the computation of �. Then by Proposition 3.5,
initialization of the greedy subroutine requiresO(� log �)operations, and each iteration
requires O(1 + log �) operations e.g. if a tree data structure is used for N from
Sect. 3.3. As ‖k‖�1 iterations are performed if k = (kp)

�
p=1 is the final value of k in

ApplyA[v, ε], the total cost of determining � and k is on the order of

# supp v + � log+ �+ (1+ log+ �)

�∑

p=1

kp, (5.5)

where log+ x := log(max(x, 1)). Since � ≤ P , (4.14) implies

� � 1+ log+(# supp v)+ log+(ε−1‖v‖�∞). (5.6)

Finally, the number of arithmetic operations required by the last step of ApplyA[v, ε]
is bounded by

σk =
�∑

p=1

nkp (# supp v[p]), (5.7)

and this value is optimal in the sense of Proposition 4.6. If A is s∗-computable for any
s∗ ∈ (0,∞], then (5.7) includes the assembly costs of Akp .

Theorem 5.4 Let v ∈ �2 be finitely supported and ε > 0. If A is s∗-computable for
an s∗ ∈ (0,∞] and supk∈N

ēA,kns
k < ∞ for all s ∈ (0, s∗), then for any s ∈ (0, s∗),

the number of operations and storage locations required by ApplyA[v, ε] is less than
a multiple of

1+ # supp v + ε−1/s‖v‖1/s
A s

(
1+ log+ log+

(
# supp v + ε−1‖v‖�∞

))
(5.8)

with a constant depending only on s, ēA,0, cA, n1, (dA,s̄)s̄∈(s,s∗), r̄A and bA. The double
logarithmic term in (5.8) is due only to the greedy subroutine and does not apply to
the storage requirements.1

1 As above, log+ x := log(max(x, 1)).

123



492 C. J. Gittelson

Proof We first note that

log(ε−1‖v‖�∞) � ε−1/s‖v‖1/s
�∞ ≤ ε−1/s‖v‖1/s

A s .

Therefore and by (5.4), the cost of BucketSort is less than

1+ # supp v + log(ε−1‖v‖�∞) � 1+ # supp v + ε−1/s‖v‖1/s
A s .

The cost of the last step of ApplyA[v, ε] is σk, which in Theorem 5.2 is bounded by

σk � ε−1/s‖v‖1/s
A s .

The cost of the rest of ApplyA[v, ε] is given in (5.5). By (5.6), for χ > 1,

� log � � �χ � 1+ log(# supp v)χ + log(ε−1‖v‖�∞)χ

� 1+ # supp v + ε−1/s‖v‖1/s
�∞ ≤ 1+ # supp v + ε−1/s‖v‖1/s

A s .

Since

� � 1+ log(# supp v)+ log(ε−1‖v‖�∞) � 1+ log(# supp v + ε−1‖v‖�∞),

we have

log �≤C+log(1+ log(# supp v+ε−1‖v‖�∞)) � 1+log log(# supp v+ε−1‖v‖�∞).

Finally, since k ≤ nk for all k ∈ N0 and kp = 0 if # supp v[p] = 0,

�∑

p=1

kp ≤
�∑

p=1

nkp (# supp v[p]) = σk � ε−1/s‖v‖1/s
A s .

Remark 5.5 The double logarithmic term in (5.8) can be dropped under mild condi-
tions. If nk � kα for an α > 1, then by Hölder’s inequality,

�∑

p=1

kp �
�∑

p=1

n1/α
kp
≤
( �∑

p=1

nkp

)1/α

�
α−1
α .

Furthermore, for a χ > 1, as in the proof of Theorem 5.4,

�
α−1
α log � � (�χ )

α−1
α �

(
1+ # supp v + ε−1/s‖v‖1/s

A s

) α−1
α .

It follows that

log �

�∑

p=1

kp � σ
1/α

k

(
1+# supp v+ε−1/s‖v‖1/s

A s

) α−1
α � 1+# supp v+ε−1/s‖v‖1/s

A s ,
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and (5.8) can be replaced by

1+ # supp v + ε−1/s‖v‖1/s
A s (5.9)

in Theorem 5.4, with a constant that also depends on α. The assumption nk � kα

is generally not restrictive, since by (4.1), nk may grow exponentially for an s∗-
compressible operator.

6 Computation of spectral norms by the power method

6.1 Estimation of errors in sparse approximations of s∗-compressible operators

The routine ApplyA in Sect. 4.2 makes explicit use of bounds ēA,k on the errors
‖A−Ak‖�2→�2 , where Ak is an nk-sparse approximation of an operator A ∈ L (�2),
see (4.11). Such bounds are derived e.g. in [3,34] for a large class of operators in
wavelet bases. However, these estimates only hold up to an unspecified constant.

We suggest a power method for numerically approximating ‖A−Ak‖�2→�2 , which
is equal to the square root of the spectral radius of the bounded positive symmetric
operator (A− Ak)

∗(A− Ak) on �2.

Remark 6.1 If A is s∗-compressible with a sequence (A j ) j∈N of n j -sparse approxi-
mations, then A−Ak is also s∗-compressible with approximations (Ak+ j −Ak) j∈N.
We have

‖(A− Ak)− (Ak+ j − Ak)‖�2→�2 = ‖A− Ak+ j‖�2→�2 = eA,k+ j ≤ dA,sn−s
k+ j .

(6.1)

Furthermore, Ak+ j − Ak is at most (nk+ j + nk)-sparse, which implies dA−Ak ,s ≤
2sdA,s . If the nonzero entries of Ak are also nonzero for Ak+ j , then Ak+ j − Ak is
nk+ j -sparse, or even (nk+ j − nk)-sparse if the values of these entries coincide. In
either case, dA−Ak ,s ≤ dA,s . Similar considerations lead to cA−Ak ≤ 2c2

A/(cA − 1).

6.2 Analysis of an idealized iteration

Let A ∈ L (�2) be a positive symmetric operator. The power method successively
approximates the spectral radius rA of A by Rayleigh quotients

Rn :=
(
An+1v, Anv

)
�2

‖Anv‖2
�2

=
(
A2n+1v, v

)
�2(

A2nv, v
)
�2

, n ∈ N, (6.2)

for some starting value v ∈ �2.

Remark 6.2 The classical analysis of the power method in a finite dimensional setting
makes use of the gap between the two largest eigenvalues. In our infinite dimensional
setting, such a gap need not exist, and thus a different analysis is required.
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Theorem 6.3 For appropriate starting values v ∈ �2 and any ϑ ∈ (0, 1), there is a
constant cv,ϑ > 0 such that

rA ≥ Rn ≥ ϑrA(1− cv,ϑn−1) ∀n ∈ N . (6.3)

In particular, Rn → rA.

Proof We note that Rn ≤ rA for all n ∈ N by definition. Due to the spectral theorem
for bounded symmetric operators, there is a σ -finite measure μ on some domain S
and a unitary map U : L2

μ(S)→ �2 such that

U∗AUϕ = f ϕ ∀ϕ ∈ L2
μ(S) ,

where f ∈ L∞μ (S) with f ≥ 0 and rA = ‖ f ‖L∞μ (S). We assume without loss of
generality that ‖v‖�2 = 1 and define ϕ := U∗v. Then the Rayleigh quotients (6.2) are

Rn =
∫

S f 2n+1|ϕ|2 dμ∫
S f 2n|ϕ|2 dμ

=
∫

S f 2n+1 dμϕ∫
S f 2n dμϕ

for the probability measure dμϕ := |ϕ|2 dμ. By Jensen’s inequality, ‖ f ‖L2n+1
μϕ (S)

≥
‖ f ‖L2n

μϕ
(S), and thus

Rn ≥

(∫
S f 2n dμϕ

) 2n+1
2n

∫
S f 2n dμϕ

=
(∫

S
f 2n dμϕ

) 1
2n = ‖ f ‖L2n

μϕ
(S).

Since ‖ f ‖L p
μϕ (S) → ‖ f ‖L∞μϕ

(S) as p →∞, convergence of Rn to rA follows, provided
that

ess sup
x∈supp ϕ

f (x) = ess sup
x∈S

f (x). (6.4)

We estimate ‖ f ‖L2n
μϕ

(S) from below in order to get a convergence rate. Let ϑ ∈ (0, 1).

Then Markov’s inequality implies

‖ f ‖L2n
μϕ

(S)≥ϑ‖ f ‖L∞μϕ
(S)κ

1/2n, κ := μϕ

({
x ∈ S ; f (x)≥ϑ‖ f ‖L∞μϕ

(S)

})
∈(0, 1].

Furthermore, by the fundamental theorem of calculus,

κ1/2n ≥ 1− (1− κ)
1

2n
κ

1
2n−1 ≥ 1− 1− κ

2κ

1

n
.

The proof of Theorem 6.3 clarifies the conditions on the starting value v: It must
satisfy (6.4) for ϕ = U∗v and f as in the proof, which is analogous to the assumption
that the starting vector in a finite dimensional power method is not orthogonal to the
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eigenspace associated to the largest eigenvalue. We expect round-off errors to make
this condition irrelevant for numerical computations.

6.3 A practical algorithm

The Rayleigh quotients (6.2) cannot be computed exactly since the operator A cannot
by applied exactly. We suggest an approximate adaptive procedure for evaluating Av
similar to the routine ApplyA from Sect. 4.2. To this end, we assume that for all
k ∈ N0, Ak is an nk-sparse approximation of A, with n0 = 0, nk+1 ≥ nk + 1 for all
k ∈ N0 and

‖A− Ak‖�2→�2 ≤ CẽA,k (6.5)

for a constant C . We emphasize that this assumption is weaker than (4.11) since the
constant C need not be known, and our algorithm does not depend on this constant. If
it is known that A is s∗-compressible, then we may set ẽA,k := n−s

k for any s ∈ (0, s∗).
Let v = (vμ)μ∈N be a finitely supported sequence. We consider a sorting routine

Sort[v] �→ (μi )
M
i=1 (6.6)

with M := # supp v and such that (|vμi |)M
i=1 is a decreasing rearrangement of

(|vμ|)μ∈N. To approximate Av, we apply either Ak or a better approximation of A
to the first mk terms of this decreasing rearrangement, i.e. we apply Ak to v restricted
to the set {μi ; mk+1 + 1 ≤ i ≤ mk}. For any nonincreasing sequence m = (mk)

∞
k=1,

the number of multiplications performed in this approximate application of A is at
most

σm :=
∞∑

k=1

nk(mk − mk+1) =
∞∑

k=1

(nk − nk−1)mk, (6.7)

and the error is bounded by

χm :=
∞∑

k=1

ẽA,k

⎛
⎝

mk∑

i=mk+1+1

∣∣vμi

∣∣2
⎞
⎠

1/2

. (6.8)

The routine NextOptInf from Sect. 3.3 extends to objectives of the form χm in a
straightforward manner, and its output m is assured to be nonincreasing.

The routine NApplyA does not ensure a fixed error, contrary to ApplyA. This
would not be possible due to the unknown constant in the estimate (6.5). Instead,
NApplyA limits the computational cost of the approximate multiplication. It can be
thought of as an adaptively constructed matrix representation of A of size N × M .

Remark 6.4 By construction, σm ≤ N for the final value of m in NApplyA. This
implies that no more than N multiplications are performed in the computation of z in
the final step of NApplyA, and thus # supp z ≤ N .
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NApplyA[v, N ] �→ z

(μi )
M
i=1 ←− Sort[v]

m = (mk )∞k=1 ←− (0)∞k=1
m̂ = (m̂k )∞k=1 ←− (0)∞k=1
while σm̂ ≤ N do

m ←− m̂
m̂ ←− NextOptInf[m] with objective −χm and cost σm

forall the k ∈ N do Ξk ←− {μi ; mk+1 + 1 ≤ i ≤ mk }
z ←−

∞∑

k=1

Akv|Ξk

Remark 6.5 The exact sorting in the first step of NApplyA uses O(M log M)

operations. If nk increases exponentially in k and ẽA,k decreases exponentially
in k, then at most O(N log N ) steps are required in the subsequent greedy algo-
rithm. By Proposition 3.6, these can be realized at a computational cost of
O(N (log N )2). Finally, as noted in Remark 6.4, the actual computation of z uses O(N )

operations.

Starting from an arbitrary finitely supported nonzero v ∈ �2,SpecRadA iteratively
uses NApplyA to approximate multiplications by A in the Rayleigh quotients (6.2).
As a termination criterion, lacking alternatives, we simply compare two consecutive
approximations of the spectral radius of A.

SpecRadA[v, N , ε] �→ ρ

ρ ←−∞
v ←− v/‖v‖�2

repeat
ρ0 ←− ρ

w ←− NApplyA[v, N ]
ρ ←− w · v
v ←− w/‖w‖�2

until |ρ − ρ0| ≤ ερ

Remark 6.6 Since N is held constant throughoutSpecRadA, assuming # supp v ≤ N
for the starting value of v, each step of SpecRadA has a computational cost of
O(N (log N )2) due to Remark 6.5. Consequently, the choice of v is not particularly
important—a poor choice is likely to be compensated by a few steps of the iteration,
and the cost of subsequent steps is not affected. Note that the situation would be
different if ApplyA were used in place of NApplyA.

Remark 6.7 In order to compute the spectral radius of A∗A for an operator A ∈
L (�2) that is not positive, instead of constructing sparse approximations of A∗A, the
algorithm SpecRadA∗A can be used with NApplyA∗A[v, N ] replaced by

NApplyA∗ [NApplyA[v, N ], N ]. (6.9)
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All vectors appearing in the iteration are still ensured to have at most N nonzero
entries, and Remark 6.6 still holds. This can be used in the setting of Sect. 6.1, with
A− Ak in place of A.

7 Random operator equations

7.1 Pathwise definition

Let V be a real separable Hilbert space, and V ∗ its dual space. We consider operator
equations depending on a parameter in Γ := [−1, 1]∞. Given

A : Γ → L (V, V ∗) and f : Γ → V ∗, (7.1)

such that the bilinear form 〈A(y)·, ·〉 is symmetric and positive on V for all y ∈ Γ ,
we wish to determine

u : Γ → V, A(y)u(y) = f (y) ∀y ∈ Γ. (7.2)

Let B(Γ ) denote the Borel σ -algebra on Γ . Defining a probability measure π on
(Γ,B(Γ )), A, f and u become random variables. Although π is arbitrary in this
section, we assume in Sect. 7.2 below that π is a countable product of probability
measures on [−1, 1].

We decompose the operator A into deterministic and random components,

A(y) = D + R(y) ∀y ∈ Γ, (7.3)

with D ∈ L (V, V ∗) boundedly invertible and R(y) ∈ L (V, V ∗) for all y ∈ Γ .
Consequently, we also have the multiplicative decomposition

A(y) = D
(

idV +D−1 R(y)
)
, y ∈ Γ. (7.4)

Under the assumption

‖D−1 R(y)‖V→V ≤ γ < 1 ∀y ∈ Γ, (7.5)

a Neumann series argument ensures existence and uniqueness of the solution u(y) of
(7.2) for all y ∈ Γ , and

‖A(y)‖V→V ∗ ≤ ‖D‖V→V ∗(1+ γ ) ∀y ∈ Γ, (7.6)

‖A(y)−1‖V ∗→V ≤ 1

1− γ
‖D−1‖V ∗→V ∀y ∈ Γ. (7.7)

As in e.g. [5,6,12,36], we consider random components that are linear in y ∈ Γ ,

R(y) =
∞∑

m=1

ym Rm ∀y = (ym)∞m=1 ∈ Γ, (7.8)
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with Rm ∈ L (V, V ∗) for all m. Such operators arise e.g. if A is a differential operator
that depends affinely on a random field and this field is expanded in a series. We
assume that (Rm)m ∈ �1(N;L (V, V ∗)) with

∞∑

m=1

‖D−1 Rm‖V→V ≤ γ < 1, (7.9)

which implies (7.5) since |ym | ≤ 1.

7.2 Discretization

Let the map Γ � y �→ A(y)w(y) be measurable for any measurable w : Γ → V .
Then due to (7.6), the map

L2
π (Γ ; V )→ L2

π

(
Γ ; V ∗

)
, w �→ [y �→ A(y)w(y)], (7.10)

is well-defined and continuous with norm at most (1+ γ )‖D‖V→V ∗ . We assume also
that f ∈ L2

π (Γ ; V ∗).
In order to construct a basis of L2

π (Γ ), we assume that π is a product measure. Let

π =
∞⊗

m=1

πm (7.11)

for probability measures πm on ([−1, 1],B([−1, 1])); see e.g. [4, Section 9] for a gen-
eral construction of infinite products of probability measures. To avoid degeneracies,
we forbid πm from being a convex combination of finitely many Dirac measures.

For all m ∈ N, let (Pm
n )∞n=0 be an orthonormal polynomial basis of L2

πm
([−1, 1]),

with deg Pm
n = n. Such a basis is given by the three term recursion Pm−1 := 0, Pm

0 := 1
and

βm
n Pm

n (ξ) := (ξ − αm
n−1)Pm

n−1(ξ)− βm
n−1 Pm

n−2(ξ), n ∈ N, (7.12)

with

αm
n :=

∫ 1

−1
ξ Pm

n (ξ)2 dπm(ξ) and βm
n :=

cm
n−1

cm
n

, (7.13)

where cm
n is the leading coefficient of Pm

n , βm
0 := 1, and Pm

n is chosen as normalized
in L2

πm
([0, 1]). This basis is unique e.g. if cm

n is chosen to be positive. We note that
αm

n = 0 if πm is symmetric.
We define the set of finitely supported sequences in N0 as

Λ :=
{
μ ∈ N

N

0 ; # supp μ <∞
}

, (7.14)

where the support of μ ∈ N
N

0 is defined as supp μ := {m ∈ N ; μm �= 0}.
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The countably infinite tensor product polynomials

P := (Pμ

)
μ∈Λ

, Pμ :=
∞⊗

m=1

Pm
μm

, μ ∈ Λ, (7.15)

form an orthonormal basis of L2
π (Γ ), see e.g. [25, Theorem 2.8]. Note that each of

these functions depends on only finitely many dimensions,

Pμ(y) =
∞∏

m=1

Pm
μm

(ym) =
∏

m∈supp μ

Pm
μm

(ym), μ ∈ Λ, (7.16)

since Pm
0 = 1 for all m ∈ N.

To the basis P of L2
π (Γ ), we add a Riesz basis Φ = (ϕι)ι∈Ξ of V , and discretize

(7.2) with respect to the product basis P ×Φ = (Pμ ⊗ ϕι)(μ,ι)∈Λ×Ξ as

Au = f (7.17)

with A ∈ L (�2(Λ×Ξ)), f = (
∫
Γ
〈 f (y), ϕι〉 Pμ(y) dπ(y))(μ,ι)∈Λ×Ξ ∈ �2(Λ×Ξ)

and u = (uμ,ι)(μ,ι)∈Λ×Ξ ∈ �2(Λ×Ξ) representing u through

u(y) =
∑

(μ,ι)∈Λ×Ξ

uμ,ι Pμ(y)ϕι (7.18)

with convergence in L2
π (Γ ; V ).

Due to the recursion (7.12),

ym Pμ(y) = βm
μm+1 Pμ+εm (y)+ αm

μm
Pμ(y)+ βm

μm
Pμ−εm (y) (7.19)

for any μ ∈ Λ and m ∈ N, where εm = (δmn)n∈N is the Kronecker sequence and
Pν = 0 if any νm < 0. Consequently, the map

Km : (cμ)μ∈Λ �→
(
βm

μm+1cμ+εm + αm
μm

cμ + βm
μm

cμ−εm

)
μ∈Λ

(7.20)

represents w(y) �→ ymw(y) with respect to the basis P. By [25, Lem. 2.11], Km is
symmetric and ‖Km‖�2(Λ)→�2(Λ) ≤ 1.

Let D, Rm ∈ L (�2(Ξ)) denote the representations of D and Rm , respectively, in
the basis Φ of V , and let I be the identity on �2(Λ). Then

A = I⊗ D+
∞∑

m=1

Km ⊗ Rm (7.21)

with convergence in L (�2(Λ×Ξ)), where the tensor products are meant with respect
to the usual identification of �2(Λ×Ξ) with �2(Λ)⊗ �2(Ξ).
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8 Sparse approximations of discrete random operators

8.1 Definition of approximations

Let (D j ) j∈N0 and (Rm, j ) j∈N0 be approximating sequences of D and Rm , respectively,
such that D j is n0, j -sparse and Rm, j is nm, j -sparse, m ∈ N. We assume nm,0 = 0 and
nm, j is strictly increasing in j for all m ∈ N0. Furthermore, let

‖D− D j‖�2(Ξ)→�2(Ξ) ≤ ē0, j and ‖Rm − Rm, j‖�2(Ξ)→�2(Ξ) ≤ ēm, j (8.1)

for all m ∈ N. Such bounds can be computed numerically as in Sect. 6.
For all finitely supported sequences j := ( jm)m∈N0 in N0, define the operator

Aj := I⊗ D j0 +
∞∑

m=1

Km ⊗ Rm, jm . (8.2)

Let σm := 2 if the distribution πm is symmetric, and σm := 3 otherwise. We set
σ0 := 1 and define n̄m, j := σmnm, j for m ∈ N0. Then for all j ∈ N0, I ⊗ D j is
n̄0, j -sparse and Km ⊗ Rm, j is n̄m, j -sparse, m ∈ N.

Lemma 8.1 For any finitely supported sequence j = ( jm)m∈N0 in N0, Aj is Nj-sparse
for

Nj :=
∞∑

m=0

n̄m, jm , (8.3)

and

‖A− Aj‖�2(Λ×Ξ)→�2(Λ×Ξ) ≤
∞∑

m=0

ēm, jm =: ēA,j. (8.4)

Proof The first part of the assertion follows by construction since I is 1-sparse and Km

is σm-sparse for all m ∈ N. Equation (8.4) is a consequence of ‖Km‖�2(Λ)→�2(Λ) ≤ 1
and (7.21).

We use the greedy algorithm from Sect. 3 to select specific j in (8.2). The cost cj
and objective ωj are given by

cj := Nj =
∞∑

m=0

n̄m, jm and ωj := −ēA,j =
∞∑

m=0

−ēm, jm . (8.5)

We initialize j0 := 0 ∈ N
N0
0 and construct (jk)k∈N0 recursively by

jk+1 := NextOptInf[jk], k ∈ N0, (8.6)

using (8.5). Then
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Ak := Ajk , k ∈ N0, (8.7)

defines a sequence of approximations of A. By Lemma 8.1, Ak is Nk := Njk -sparse
and its distance to A is bounded by ēA,k := ēA,jk .

Under mild assumptions, (8.7) defines the optimal Nk-sparse approximation of A
given the bounds (8.1) and the estimates in Lemma 8.1.

Assumption 8.A For all m ∈ N, nm,0 = 0 and the (nm, j ) j∈N0 is strictly increasing.
The sequence (ēm,0)m∈N is in �1, and (ēm, j ) j∈N0 is nonincreasing. Furthermore, if
i ≥ j , then

−(ēm,i+1 − ēm,i )

n̄m,i+1 − n̄m,i
≤ −(ēm, j+1 − ēm, j )

n̄m, j+1 − n̄m, j
, (8.8)

and n̄−1
m,1(ēm,1 − ēm,0) is nonincreasing in m.

The following corollary follows using Theorem 3.4 since Assumption 8.A implies
Assumption 3.A for (8.5).

Corollary 8.2 For all k ∈ N0, jk minimizes the error bound ēA,j among all finitely
supported sequences j in N0 with sparsity bound Nj ≤ Nk. Furthermore, if ēA,k �= 0,
then jk minimizes Nj among all j with ēA,j ≤ ēA,k .

8.2 Numerical computation

We consider the complexity of a routine BuildA as in Def. 4.4 for constructing
columns of Ak , interpreted as bi-infinite matrices. To this end, we assume that such
assembly routines are available for D and Rm , m ∈ N. More specifically, the routines

Build0[ j, ι] �→
[
(λi )

n0, j
i=1, (di )

n0, j
i=1

]
,

Buildm[ j, ι] �→
[
(λi )

nm, j
i=1 , (rm

i )
nm, j
i=1

]
, m ∈ N,

construct all nonzero elements of the ι-th column of D j and Rm, j , respectively, using
no more than bmnm, j arithmetic operations and storage locations for a constant bm

independent of j and ι.
Due to the assumptions on Buildm , m ∈ N0:

Lemma 8.3 The number of arithmetic operations and storage locations required by
a call of BuildA[k, (μ, ι)] is bounded uniformly in k by Nk +∑∞

m=0 bmnm, jk,m .

Remark 8.4 It is often necessary to construct jk before calling BuildA[k, ·], for
example to determine Nk and ēA,k . In this case, we can assume jk to be readily
available in BuildA[k, ·]. Otherwise, NextOptInf from Sect. 3 can be used to
compute jk in the first call of BuildA[k, ·]. If this is done directly for an arbitrary
k ∈ N0, it adds O(k log(k)) to the complexity of BuildA[k, ·] even if N is realized
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BuildA[k, (μ, ι)] �→
[
((νi , λi ))

Nk
i=1, (ai )

Nk
i=1

]

[
(λi )

n0, jk,0
i=1 , (di )

n0, jk,0
i=1

]
←− Build0[ jk,0, ι]

for i = 1, . . . , n0, jk,0 do
[
(νi , λi ), ai

]←− [(μ, λi ), di
]

n ←− n0, jk,0

for m ∈ N ; jk,m ≥ 1 do[
(λi )

nm, jk,m
i=1 , (rm

i )
nm, jk,m
i=1

]
←− Buildm [ jk,m , ι]

t ←− 0
for i = 1, . . . , nm, jk,m do

(νn+t+1, λn+t+1)←− (μ+ εm , λi )

an+t+1 ←− βm
μm+1rm

i
if μm ≥ 1 then

(νn+t+2, λn+t+2)←− (μ− εm , λi )

an+t+2 ←− βm
μm rm

i

if σm = 3 then
(νn+t+3, λn+t+3)←− (μ, λi )

an+t+3 ←− αm
μm rm

i

t ←− t + σm

n ←− n + σmnm, jk,m

by a tree data structure, which may dominate e.g. if Nk � k. However, ifBuildA[k, ·]
is called successively for k ∈ N and the values jk , N and M are cached, then the cost
of NextOptInf is negligible even if N is realized by a simple linked list.

8.3 Adaptive application of discrete random operators

In this section, we analyze the structure of the adaptive multiplication routineApplyA
from Sect. 4.2 for a discretized parametric operator A and the approximating sequence
(Ak) from Sect. 8.1.

By Assumption 8.A, (Nk)k∈N is strictly increasing, and N0 = 0 since j0 = 0. By
definition, ( jk,m)k∈N0 is nondecreasing for all m ∈ N0. Therefore, Assumption 8.A
implies that (ēA,k)k∈N0 is nonincreasing. If ēm, j → 0 as j →∞ for all m ∈ N0, since
(ēm,0)m∈N0 ∈ �1, Corollary 8.2 implies that ēA,k → 0 as k →∞. We note that

ηk = ēA,k − ēA,k+1

Nk+1 − Nk
= ēmk , jk,mk

− ēmk , jk,mk+1

n̄mk , jk,mk+1 − n̄mk , jk,mk

, (8.9)

which is nonincreasing in k by construction of (jk)k∈N0 , see Lemma 3.3. Consequently,
Assumption 4.A is satisfied under the sole additional requirement that ēm, j → 0 as
j →∞ for all m ∈ N0.

Also, since

ēA,k

ēA,k+1
= ēA,k

ēA,k + ēmk , jk,mk+1 − ēmk , jk,mk

≤ ēmk , jk,mk

ēmk , jk,mk+1
,
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Assumption 5.A is satisfied if

sup
m∈N0

sup
j∈N0

ēm, j

ēm, j+1
<∞. (8.10)

Assuming the sequences (jk) and (mk) are known, the first two parts of the routine
ApplyA[v, ε] can be used to partition the vector v into (v[p])�p=1 and a negligible
remainder term, and to assign to each of these a kp ∈ N0.

The final step of ApplyA[v, ε] performs the multiplications

z :=
�∑

p=1

Akp v[p]. (8.11)

Using the tensor product structure (7.21), (8.11) can be decomposed into multiplica-
tions with the coefficient operators D j and Rm, j , m ∈ N.

Let v[p],μ denote the μ-th coefficient of v[p], i.e. v[p],μ = (vμι)ι for ι ∈ Ξ such
that (μ, ι) ∈ Ξp. Then assuming πm is symmetric for all m ∈ N, z = (zμ)μ∈Λ with

zμ=
�∑

p=1

⎛
⎝D jk p ,0 v[p],μ+

Mp∑

m=1

βm
μm+1Rm, jk p ,m v[p],μ+εm+βm

μm
Rm, jk p ,m v[p],μ−εm

⎞
⎠ ,

(8.12)

where Mp := max{m ∈ N0; jkp,m �= 0}. This does not, however, represent an efficient
way to construct z. It is not clear which zμ are nonzero, and many multiplications
with Rm, j are repeated. The routine MultiplyA performs the same computation
efficiently, for arbitrary πm , by looping over p and the support of v[p].

MultiplyA[(v[p])�p=1, (kp)
�
p=1] �→ z

z ←− 0
for p = 1, . . . , � do

forall the μ ∈ Λ with v[p],μ �= 0 do
zμ ←− zμ + D jk p ,0 v[p],μ
for m = 1, . . . , Mp do

w ←− Rm, jk p ,m v[p],μ
zμ+εm ←− zμ+εm + βm

μm+1w

if μm ≥ 1 then zμ−εm ←− zμ−εm + βm
μm w

if σm = 3 then zμ ←− zμ + αm
μm w

Remark 8.5 In MultiplyA[(v[p])�p=1, (kp)
�
p=1], each multiplication with Rm, j is

performed only once, and copied to σm components of z. This suggests defining
n̄m, j := nm, j for m ∈ N, without the factor of σm from the original definition.
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9 s∗-compressibility of discrete random operators

9.1 Preliminary estimates

We assume for the moment that D and Rm , m ∈ N, are strictly s-compressible for
some s > 0. By Proposition 4.3, there is a map j0 : [0,∞)→ N0 such that the sparse
approximation D j0(r) is r -sparse and

‖D− D j0(r)‖�2(Ξ)→�2(Ξ) ≤ ē0, j0(r) ≤ d̃0,sr−s, r > 0, (9.1)

with d̃0,s := d̃D,s . 2 Similarly, for all m ∈ N there is a map jm : [0,∞) → N0 such
that the sparse approximation Rm, jm (r) is rσ−1

m -sparse and

‖Rm − Rm, jm (r)‖�2(Ξ)→�2(Ξ) ≤ ēm, jm (r) ≤ d̃m,sr−s, r > 0, (9.2)

with d̃m,s := σ s
md̃Rm ,s .

Lemma 9.1 If (d̃m,s)m ∈ �
1

s+1 (N0), then for all r > 0 there is a finitely supported
sequence j(r) in N0 such that Nj(r) ≤ r and

ēA,j(r) ≤
( ∞∑

m=0

d̃
1

s+1
m,s

)s+1

r−s . (9.3)

Proof Let t > 0 and define rm := d̃
1

s+1
m,s t for all m ∈ N0. Set j := ( jm(rm))m∈N0 .

This sequence is finitely supported since rm < 1 for all but finitely many m ∈ N0. By
Lemma 8.1,

Nj =
∞∑

m=0

n̄m, jm (rm ) ≤
∞∑

m=0

rm =
∞∑

m=0

d̃
1

s+1
m,s t =: r

and

ēA,j =
∞∑

m=0

ēm, jm (rm ) ≤
∞∑

m=0

d̃m,sr−s
m =

∞∑

m=0

d̃
1

s+1
m,s t−s =

( ∞∑

m=0

d̃
1

s+1
m,s

)s+1

r−s .

If (d̃m,s)m is not in �
1

s+1 (N0), a similar property still holds if we replace the infinite
sum by a partial sum. We define the operators

A[M] := I⊗ D+
M∑

m=1

Km ⊗ Rm ∈ L (�2(Λ×Ξ)). (9.4)

2 Proposition 4.3 initially only implies that the first term in (9.1) is bounded by the third. However, if (9.1)
does not hold, we can replace ē0, j0(r) by d̃0,sr−s in (8.1).
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Let

‖D‖�2(Ξ)→�2(Ξ) ≤ ē0,0 and ‖Rm‖�2(Ξ)→�2(Ξ) ≤ ēm,0, m ∈ N. (9.5)

Then by Lemma 8.1,

‖A− A[M]‖�2(Λ×Ξ)→�2(Λ×Ξ) ≤
∞∑

m=M+1

ēm,0. (9.6)

For any s > 0, if either

ēm,0 ≤ sδA,s(m + 1)−s−1 ∀m ∈ N (9.7)

or

( ∞∑

m=1

ē
1

s+1
m,0

)s+1

≤ δA,s, (9.8)

then it follows as in [27, Prop. 4.4] that

∞∑

m=M+1

ēm,0 ≤ δA,s(M + 1)−s ∀M ∈ N0. (9.9)

We define

ēA[M],j :=
M∑

m=0

ēm, jm . (9.10)

Then for all sequences j in N0 with support in {0, 1, . . . , M},

ēA,j = ēA[M],j +
∞∑

m=M+1

ēm,0. (9.11)

The following statement is shown analogously to Lemma 9.1.

Lemma 9.2 For all M ∈ N0 and all r > 0, there is a sequence j(r) in N0 with support
in {0, 1, . . . , M} such that Nj(r) ≤ r and

ēA[M],j(r) ≤
(

M∑

m=0

d̃
1

s+1
m,s

)s+1

r−s . (9.12)

Proposition 9.3 Let (9.7) or (9.8) be satisfied for an sσ > 0 and

(
M∑

m=0

d̃
1

s+1
m,s

)s+1

≤ d̂s Mts , M ∈ N, (9.13)
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with d̂s > 0 and ts ≥ 0. Then for all r ∈ [1,∞) there is a finitely supported sequence
j(r) in N0 such that Nj(r) ≤ r and

ēA,j(r) ≤
(

d̂s + δA,sσ

)
r

−s
1+ts /sσ . (9.14)

Proof Let r ∈ [1,∞) and M := �r s
sσ+ts �. Then for the sequence j(r) from Lemma 9.2,

ēA[M],j(r) ≤ d̂s Mts r−s ≤ d̂sr
−ssσ
sσ+ts . Equation (9.9) implies

∞∑

m=M+1

ēm,0 ≤ δA,sσ (M + 1)−sσ ≤ δA,sσ r
−ssσ
sσ+ts ,

and the assertion follows using (9.11).

9.2 s∗-compressibility

The above estimates combined with Corollary 8.2 show s∗-compressibility of A with
the approximating sequence (Ak)k∈N from Sect. 8.1. Define the constants

c̃m := max

(
n̄m,1, sup

j∈N

n̄m, j+1

n̄m, j

)
<∞, m ∈ N0. (9.15)

Note that cD ≤ c̃0 and cRm ≤ σmc̃m for m ∈ N.

Theorem 9.4 Let s∗δ , s∗σ ∈ (0,∞] and assume

c̃ := sup
m∈N0

c̃m <∞. (9.16)

1. If (d̃m,s)m ∈ �
1

s+1 (N0) for all s ∈ (0, s∗δ ), then A is s∗-compressible for s∗ = s∗δ .
2. If (9.7) or (9.8) holds for all s ∈ (0, s∗σ ) and (9.13) holds for all s ∈ (0, s∗δ ) with

ts ≤ t̂ <∞, then A is s∗-compressible for

s∗ = s∗δ
1+ t̂/s∗σ

. (9.17)

In both cases, (Ak)k∈N is a valid approximating sequence with cA ≤ c̃,

dA,s ≤ ‖(d̃m,s)m‖
�

1
s+1 (N0)

, s ∈ (0, s∗) (9.18)

in the first case and

dA,s ≤ inf
st̂

s∗
δ
−s

<sσ <s∗σ

(
d̂s(1+t̂/sσ ) + δA,sσ

)
, s ∈ (0, s∗) (9.19)

in the second case.
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Proof Condition (9.16) ensures (4.1) for (Ak)k∈N since for k ∈ N and j := jk,mk , if
j ≥ 1,

Nk+1

Nk
= Nk + n̄mk , j+1 − n̄mk , j

Nk
= n + n̄mk , j+1

n + n̄mk , j
≤ n̄mk , j+1

n̄mk , j
≤ c̃mk ,

where n = Nk − n̄mk , j ≥ 0, and if j = 0,

Nk+1

Nk
= Nk + n̄mk ,1

Nk
≤ n̄mk ,1 ≤ c̃mk .

Let s ∈ (0, s∗). In case 9.4, Corollary 8.2 and Lemma 9.1 with r = Nk imply

ēA,k ≤ ēA,j(Nk ) ≤
( ∞∑

m=0

d̃
1

s+1
m,s

)s+1

N−s
k .

In case 9.4, select sδ ∈ (0, s∗δ ) and sσ ∈ (0, s∗σ ) such that

s = sδ

1+ t̂/sσ

.

This is possible since the right hand side is increasing in sδ and sσ . By monotonicity,
(9.13) holds with ts = t̂ . Then Corollary 8.2 and Proposition 9.3 with r = Nk imply

ēA,k ≤ ēA,j(Nk ) ≤
(

d̂sδ + δA,sσ

)
N−s

k .

Equation (9.19) follows since sδ = s(1+ t̂/sσ ).

9.3 s∗-computability

Under the assumption that the sequence (jk)k∈N0 is available, s∗-computability of A
follows from Theorem 9.4 as a corollary.

Corollary 9.5 In the setting of Theorem 9.4, if

sup
m∈N0

bm <∞ (9.20)

for bm from Sect. 8.2 and the sequences jk are given as in Remark 3.8, then A is
s∗-computable and BuildA is a valid assembly routine.

Proof s∗-compressibility follows from Theorem 9.4. By Lemma 8.3, (9.20) and
Remark 3.8, the number of arithmetic operations and storage locations required by a
call of BuildA[k, ·] is O(Nk).
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If jk are not readily available, Proposition 3.6 implies that recursive application of
NextOptInf can construct jk in O(k log(k)) time. Thus A is still s∗-computable if
k log(k) � Nk . As discussed in Remark 8.4, the cost of computing jk from jk−1 using
NextOptInf is only O(log(k)). Therefore, if NextOptInf is used to construct
jk in the first call of BuildA[k, ·], then BuildA[k, ·] requires O(Nk) operations
provided that jk−1 is known, for example from a previous call of BuildA[k − 1, ·].

10 An illustrative example

10.1 An elliptic boundary value problem

As a model problem, we consider the isotropic diffusion equation on a bounded Lip-
schitz domain G ⊂ R

d with homogeneous Dirichlet boundary conditions. For any
uniformly positive a ∈ L∞(G) and any f ∈ L2(G), we have

−∇ · (a(x)∇u(x)) = f (x) , x ∈ G,

u(x) = 0 , x ∈ ∂G.
(10.1)

We view f as deterministic, but model the coefficient a as a series

a(y, x) := ā(x)+
∞∑

m=1

ymam(x), (10.2)

with ym ∈ [−1, 1] for all m ∈ N. Hence a depends on a parameter y = (ym)∞m=1 in
Γ = [−1, 1]∞.

We define the parametric operator

A(y) : H1
0 (G)→ H−1(G) , w �→ −∇ · (a(y)∇w) , (10.3)

for y ∈ Γ . Due to the linear dependence of A on a,

A(y) = D + R(y), R(y) :=
∞∑

m=1

ym Rm ∀y ∈ Γ (10.4)

with convergence in L (H1
0 (G), H−1(G)), as assumed in (7.3) and (7.8), for

D : H1
0 (G)→ H−1(G) , w �→ −∇ · (ā∇w) ,

Rm : H1
0 (G)→ H−1(G) , w �→ −∇ · (am∇w) , m ∈ N.

To ensure bounded invertibility of D, we assume there is a constant δ > 0 such that

ess inf
x∈G

ā(x) ≥ δ−1. (10.5)
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Since ‖Rm‖H1
0 (G)→H−1(G) ≤ ‖am‖L∞(G), (7.9) follows from

δ

∞∑

m=1

‖am‖L∞(G) ≤ γ < 1. (10.6)

This condition can be loosened by defining 〈D·, ·〉 as the inner product of H1
0 (G), in

which case the factor δ in (10.6) vanishes, and‖am‖L∞(G) is replaced by‖am/ā‖L∞(G).
We refer to e.g. [25,23,31] for further extensions that still ensure (7.5).

10.2 Optimal finite element discretization

Approximation results for the solution u of (10.1) have been shown in [12] for the
case that ym are uniformly distributed. In this setting, the orthogonal polynomials
Pm

n from Sect. 7.2 are Legendre polynomials, normalized with respect to the uniform
probability measure on [−1, 1].

Let (Vj )
∞
j=0 be a nested sequence of finite element spaces in H1

0 (G) with geomet-
rically increasing dimensions M j := dim Vj , satisfying

inf
w j∈Vj

‖w − w j‖H1
0 (G) ≤ C M−t

j |w|Z ∀w ∈ Z , (10.7)

where Z is a subspace Z ⊂ H1
0 (G) with seminorm |·|Z and norm (‖·‖2

H1
0 (G)

+|·|2Z )1/2,

such as a higher order Sobolev space. We consider approximations to u in which, for
some finite set Ξ ⊂ Λ, each coefficient uμ for μ ∈ Ξ is approximated in some finite
element space Vμ := Vj (μ), and the remaining uμ are set to zero.

If u ∈ �p(Λ; H1
0 (G)) for some p ∈ (0, 2), then Stechkin’s lemma [11, Lem. 5.5]

implies that if ΞN contains the first N − 1 indices μ in a decreasing rearrangement of
‖uμ‖H1

0 (G), the truncation error satisfies

⎛
⎝ ∑

μ∈Λ\ΞN

‖uμ‖2
H1

0 (G)

⎞
⎠

1/2

≤ ‖u‖�p(Λ;H1
0 (G))N−s, s = 1

p
− 1

2
. (10.8)

Following [12], we select spaces Vμ, μ ∈ ΞN , to match this rate. To this end, suppose
u ∈ �q(Λ; Z) for a q ∈ [p,∞]. Using a Lagrange multiplier to minimize the total
dimension Ndof := ∑μ∈ΞN

Mμ, with Mμ = dim Vμ, under the condition that the

total error is equivalent to N−s , leads to a choice of Mμ proportional to |uμ|
2

2t+1
Z .

This approximation has a convergence rate of t with respect to Ndof if t ≤ 1
q − 1

2 ,
which coincides with the rate for a single finite element approximation, see (10.7). If
t ≥ 1

q − 1
2 , the resulting approximation rate is

s
t

t + 1
p − 1

q

. (10.9)
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This is generally less than the semidiscrete approximation rate s, with equality if
q = p; this last case is considered in [12, Theorem 5.5].

The above summability assumptions are proven in [12] for the case that |v|Z =
‖Δv‖L2(G). Then u ∈ �p(Λ; H1

0 (G)) if (am) ∈ �p(N; L∞(G)), and u ∈ �q(Λ; Z)

holds under the condition (am) ∈ �q(N;W 1,∞(G)). In this setting, t has a maximal
value of 1/d.

Remark 10.1 A similar analysis can be performed if, instead of choosing Mμ by a
continuous optimization problem, the finite element spaces are selected to equidis-
tribute the error among all coefficients uμ, as in the heuristic from [27,24].3 Due to
(10.7), this is achieved for Mt

μ ∼ |uμ|Z . The resulting convergence rate with respect
to Ndof is

2s

2s + 1
t (10.10)

if t ≤ 1/q, and coincides with (10.9) if t ≥ 1/q. Thus the convergence rate reached
by the above optimization procedure is attained only if tq ≥ 1.

10.3 Application of the adaptive stochastic Galerkin method

In Sect. 7.2, D and Rm are discretized by a Riesz basis of H1
0 (G), such as a wavelet

basis, leading to operators D and Rm on �2, which can be interpreted as bi-infinite
matrices. Although these matrices are generally not sparse, they can be approximated
by sparse matrices, and these approximations are pivotal in the efficient adaptive
application of the discrete random operator A. We refer to [30] and references therein
for constructions of wavelet bases.

It is shown in [34] that for wavelets of order n, i.e. if the dual wavelets have n
vanishing moments, D and Rm can be s∗δ -compressible with s∗δ = (n − 1)/d. This is
the highest rate of compressibility that adaptive wavelet methods can take advantage
of since the order of the wavelets limits the solution of a generic discrete deterministic
problem to the space A s for s < s∗δ , see [19,8]. For higher compressibility, the sparsity
of the exact solution becomes the limiting factor in the convergence of adaptive wavelet
algorithms.

We consider the example G := (0, 1) and

am(x) := Cm−k sin(mπx), m ∈ N, (10.11)

with C sufficiently small such that (10.6) holds. Since trigonometric functions often
appear in Karhunen–Loève expansions of random fields, see e.g. [5] and refer-
ences therin, this academic example is quite representative. We note that (am) ∈
�p(N; L∞(G)) and (am) ∈ �q(N;W 1,∞(G)) for any p > 1/k and q > 1/(k − 1).
Thus u ∈ �p(Λ; H1

0 (G)) and u ∈ �q(Λ; H2(G)) for the same ranges of p and q

3 This heuristic is actually used to distribute tolerances for a subproblem in [27,24]; it is not clear whether
the resulting error in the approximation of u is distributed evenly among all active coefficients.
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by [12]. The resulting approximation rates from Sect. 10.2 are 1 for k ≥ 5/2 and
1
2 (k − 1

2 ) ≤ 1 for k ≤ 5/2.
As mentioned above, it is realistic to assume that the operators D and Rm , m ∈

N, are s∗δ -compressible with s∗δ ≥ 1. In order to derive s∗-compressibility of the
discrete stochastic operator A, Theorem 9.4 requires a degree of summability of the
compressibility constants of these operators. Entries in the matrix representations of
these operators are zero for basis functions with disjoint supports, and they generally
also become insignificant if the supports overlap, but the wavelets have sufficiently
different length scales. In this example, the latter effect only sets in once the smaller
length scale is below 1/m. Consequently, we are left with O(m) significant entries in
columns of Rm corresponding to coarse-scale basis functions.

For any r > 0, let em,r denote the error in an r -sparse approximation of Rm . Then
the sparsity required to achieve an error of em,r ∼ m−ke1,ρ in the approximation of
Rm is r ∼ ρm. This implies

d̃m,s ∼ sup
r>0

rsem,r ∼ sup
ρ>0

ρsmsm−ke1,ρ = m−(k−s)d̃1,s . (10.12)

In this setting, the condition (d̃m,s)m ∈ �
1

s+1 (N0) of Theorem 9.4 is equivalent to
k− s > s+1, i.e. s < (k−1)/2. Hence we can realistically expect s∗-compressibility
of A for s∗ = (k − 1)/2, provided s∗δ ≥ s∗.

For k ≤ 3, the compression rate s∗ is less than or equal to the approximation rate,
and thus s∗-compressibility is the limiting factor in the complexity of adaptive wavelet
methods for our model problem. For k ≥ 3, the limited spatial regularity shown in [12]
becomes the main obstacle, and the compression rate is larger than the approximation
rate given here.

Despite the slightly suboptimal complexity of adaptive wavelet methods due to the
compression rate s∗ being smaller than the approximation rate, the direct application of
these methods to the fully discrete problem improves on the heuristic used in [27,24].
For example, if k = 3, then A is s∗-compressible for s∗ = 1, and u ∈ A s(Λ×Ξ) for all
s < 1. However, if u is approximated by finite elements with the same approximation
error in each active coefficient, then the optimal approximation rate is only 5/6, see
Remark 10.1. A similar property holds for any k ≥ (3+√5)/2 since the approximation
rate with equidistributed errors is essentially 1− 1

2k for k ≥ 2.
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