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Abstract

We investigate the numerical approximation of the nonlinear Molodensky problem, which

reconstructs the surface of the earth from the gravitational potential and the gravity vector.

The method, based on a smoothed Nash–Hörmander iteration, solves a sequence of exterior

oblique Robin problems and uses a regularization based on a higher-order heat equation to

overcome the loss of derivatives in the surface update. In particular, we obtain a quantitative

a priori estimate for the error after m steps, justify the use of smoothing operators based on

the heat equation, and comment on the accurate evaluation of the Hessian of the gravita-

tional potential on the surface, using a representation in terms of a hypersingular integral. A

boundary element method is used to solve the exterior problem. Numerical results compare

the error between the approximation and the exact solution in a model problem.

Key words: Molodensky problem, single layer potential, second–order derivatives, heat–

kernel smoothing,

1 Introduction

The determination of the shape of the earth and its exterior gravitational field from terrestrial

measurements is a basic problem in physical geodesy [1, 2]. It is usually formulated as an exterior

free boundary problem for the Laplace equation in R3 with boundary conditions corresponding

to the type of observation. In the formulation introduced by Molodensky [3, 4], the gravitational

potential W and field G are prescribed on an unknown boundary diffeomorphic to the 2–sphere

by a map ϕ : S2 → R3. With the advent of satellite technologies to determine the earth’s surface,

high-precision studies combine satellite data with local gravity measurements.

The mathematical analysis of Molodensky’s problem was initiated by Hörmander [5], who

investigated the local existence and uniqueness of solutions based on the implicit function theo-

rem for C∞–functions on the boundary. In this article, we consider the mathematically justified

numerical analysis of the Molodensky problem, using a feasible reformulation of the constructive
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proof of existence.

To solve the free boundary problem, we iteratively construct a sequence (ϕm)m∈N0 of approx-

imate solutions, where ϕm is obtained from the solution to the problem linearized around ϕm−1.

As the main difficulty, the solution operator to the linearization is of order 2. It is unbounded

in the natural Banach spaces of functions, and approximations constructed from Banach fixed–

point iterations will eventually lose regularity. Based on the insights of Nash [6] and Moser [7],

Hörmander defines a smoothened, convergent sequence of approximate solutions for data, which

are close in a Hölder norm to those of a given solution.

Note that the increments ϕm+1−ϕm differ from certain increments considered in the geodesic

literature. In our case, the linearized problem involves the solution of an exterior boundary prob-

lem for the homogeneous Laplace equation, and no “topographic-isostatic” correction is necessary

to correct for unknown masses between ϕm(S2) and ϕ0(S2).

In this work, we show that a variant of this construction is numerically feasible and obtain

an a priori estimate for the error in the m–th step. We test it on a simple example, in which

the algorithm is started with the canonical embedding of the unit sphere in R3 and recovers the

sphere of radius 1.1. The reader will find a precise exposition of our main results below. In par-

ticular, we legitimize the use of smoothing operators based on the solution of higher–order heat

equations in this context. We also numerically explore the accurate evaluation of second–order

derivatives on the boundary.

This article shows that the rigorous numerical solution of the nonlinear Molodensky prob-

lem is computationally feasible. To improve the stability and numerical accuracy of the method

proposed in this paper, further development needs to focus on the domain discretization error,

comparing higher–order approximations of the surface with meshless methods for realistic data.

In particular, to be relevant for the geodesic community, one might model the exact surface by

the ETOPO1 model of the earth and compute the gravity vector from the EGM2008 model. A

more realistic model problem could then try to recover ϕ starting from the GRS80 ellipsoid as

surface ϕ0 and the corresponding Somigliani-Pizetti field as (W0, G0) [8].

For simplicity, most of this article considers the case of a nonrotating earth. The analysis,

however, readily extends to the general case.

1.1 Related work

Local existence for the Molodensky problem with data in a neighborhood of a given solution

consisting of a gravitational potential W0, gravitational field G0 and surface ϕ0, regularity and

uniqueness were first established by Hörmander.

Theorem 1 (Theorem 3.4.1, [5]). Assume that (W0, G0, ϕ0) satisfies the assumptions in Section

2, and let ε > 0.
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a) For all W,G in an H 2+ε neighborhood of W0, G0, the Molodensky problem admits a solution

ϕ close to ϕ0 in H 2+ε.

b) If W,G are in H a for some non-integer a > 2 + ε, then ϕ ∈H a.

c) Any small H 3+ε neighborhood of ϕ0 contains at most one solution of the problem.

See the appendix for our definition of the space H a of Hölder–continuous functions. Based

on ideas of Nash and Moser, Hörmander found an iterative method of solution, which overcomes

the loss of derivatives in each iteration step with an abstract smoothing operator. We consider

the numerical aspects of his approach and discuss an implementation using the boundary element

method (BEM).

The numerical solution of the linearized Molodensky problem using linear boundary elements has

first been analyzed by Klees et al. [9], see also work by Holota [10] or Freeden and coauthors [11].

Their general convergence analysis implies the convergence and stability of our solution, and we

refer to their paper for a discussion of the linearized problem.

To overcome a loss of derivates in simple ordinary differential equations, smoothed iterative solvers

have been investigated by Jerome [12] and Jerome and Fasshauer [13]. The smoothing step would

usually involve the solution of a heat equation, which does not satisfy the non-saturation property

made in previous theoretical analyses (Property 1 (iii) in Section 3). However, smoothing with

the help of the heat equation is used in a variety of contexts such as high-dimensional statistics or

image processing, and numerous optimized implementations are readily available. Our analysis

rigorously legitimizes their application. We are not aware of previous numerical investigations of

smoothed fixed–point iterations for 2– or higher–dimensional problems.

There has been recent interest in the numerical analysis of semilinear elliptic and parabolic equa-

tions on the sphere (see e.g. [14]). Our article focuses mostly on the specific difficulties of the

Molodensky problem.

1.2 Formulation of the problem

In the following, the earth is assumed to be a rigid body of mass M , which rotates with a constant

and known angular velocity ω around the x3 axis through the center of mass 0. The surface is

diffeomorphic to the sphere S2 = {x ∈ R3;x2
1 + x2

2 + x2
3 = 1} under a map ϕ : S2 → R3. The

measured data W and G may then be considered as functions on S2

W : S2 → R, G : S2 → R3.

The Molodensky problem is to find a sufficiently smooth embedding ϕ : S2 → R3 such that

W = w ◦ ϕ , G = ∇w ◦ ϕ = g ◦ ϕ on S2, (1)

where w : ϕ(S2) → R denotes the gravity potential, g = ∇w : ϕ(S2) → R3 the gravity vector.

The static gravitational potential v is harmonic in the exterior of the earth with boundary values

w(x) = v(x) +
ω2

2
(x2

1 + x2
2) on ϕ(S2) . (2)
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The center of mass is fixed to 0 by the radiation condition

v(x) =
M

|x|
+O(|x|−3) for x→∞ . (3)

We also require that the Marussi condition [15],

det g′(x) 6= 0, x ∈ ϕ(S2) , (4)

is fulfilled and set

h = −g′−1
g . (5)

To determine ϕ, we start with a C∞ solution of the Molodensky problem (ϕ0,W0, G0) such that

(4) is satisfied and the corresponding h0 is never tangential to ϕ0(S2). Linearization around

(ϕ0,W0, G0) results in the oblique Robin problem

∆u = 0 outside ϕ0(S2) , (u+ 〈gradu, h0〉) ◦ ϕ = f on S2 , u(x) =
M

|x|
+O(|x|−3) .

Under certain conditions on ϕ and h, which we assume to hold in what follows, the oblique

Robin problem is a regular elliptic boundary value problem, and Fredholm’s alternative holds.

The oblique Robin problem can be shown to have Fredholm index 0, and the homogeneous prob-

lem admits three linearly independent eigensolutions. Existence and uniqueness are therefore

assured provided that f belongs to a subspace of C∞(∂Ω) of codimension 3.

For example, the linearized problem is well–posed when ϕ0(S2) is the unit sphere and W0, G0

are the Newton potential and its gradient. The three–dimensional subspace is then spanned by

the spherical harmonics {Y1,−1, Y1,0, Y1,1} of degree 1. A careful analysis in [5], Theorem 1.5.1

and subsequent examples, shows that the problem remains well–posed as long as ϕ is close to

the identity and h makes a small angle with both the exterior normal vector field and the radial

vector field x
|x| . Numerically, the conditions are satisfies e.g. for any topography with slopes < 41◦,

provided slopes > 10◦ are sufficiently rare. In general, we may then use the restrictions {Aj}3j=1

to ϕ0(S2) of harmonic functions uϕ0
j with uϕ0

j (x) → 0 for |x| → ∞, such that the first degree

harmonics in the multipole expansion at infinity are linearly independent.

The augmented formulation of the linearized problem now reads as follows: Find u and

constants aj ∈ R such that

∆u = 0 outside ϕ(S2),

u+∇u · h = f −
3∑
j=1

ajAj on ϕ(S2) (6)

u(x) =
c

|x|
+O(|x|−3) when |x| → ∞, c ∈ R,

for suitable f ∈ C∞(ϕ(S2)).
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The iterative solution of the Molodensky problem solves a sequence of linearized problems

with

fm = Ẇm ◦ ϕ−1
m + (Ġm ◦ ϕ−1

m ) · hm (7)

as specified in Section 2 and updates ϕ by an increment proportional to ϕ̇ = (∇g◦ϕ)−1(Ġ−∇u◦ϕ).

As the main difficulty of the Molodensky problem, the update ϕ̇ is in general less regular than ϕ.

1.3 Error estimates

We complement Hörmander’s existence result by giving an a priori estimate for the error between

the solution and the m-th iterative approximation. Here and in the remainder of the article, ε > 0

will be such that the relevant Hölder exponent is not an integer.

A sequence of approximate solutions (Wm, ϕm) will be defined in Section 2, depending on a

given solution (W0, G0, ϕ0) and two parameters θ0 and κ. Under the assumptions of this section

we obtain the following a priori estimate in Hölder norms for data (W,G) in anH2+ε neighborhood

of (W0, G0):

Theorem 2. Let α > 2 + 2ε, 0 < a < α, E = a− α− 1 and τ > 0 sufficiently small. Then there

exist constants θ0, κ0 > 0 and Cτ > 0 such that the approximate solutions (Wm, ϕm) satisfy for

all m ≥ 0 and κ ≥ κ0

‖W −Wm‖a+ε + ‖ϕ− ϕm‖a+ε ≤ Cτ (‖W −W0‖α+ε + ‖G−G0‖α+ε) (θκ0 +m)
E+1+τ

κ (8)

The constants depend only on the data.

Below, we note that the estimate on W −Wm and ϕ− ϕm implies a corresponding estimate

on G−Gm.

The explicit dependence on the parameters θ0 and κ obtained in Theorem 2 allows us to

investigate also a restarted algorithm, which is less susceptible to the spreading of numerical

errors (see Algorithm 2):

(0) Choose an approximate solution (W0, G0, ϕ0) and θ0.

(1) Using (W0, G0, φ0) do k steps of Hörmander’s method leading to (Wk, Gk, ϕk).

(2) Set (W0, G0, φ0) = (Wk, Gk, ϕk), a corresponding new θ0 and go to (1).

We denote the approximate solution after l iterations of (1) by (W (l), G(l), ϕ(l)) and the corre-

sponding θ0 by θ0,l. From the Lipschitz–continuity of the map Γ : (W,ϕ) 7→ G,

‖G−G(l−1)‖α+ε ≤ CK
(
‖W −W (l−1)‖α+2+ε + ‖ϕ− ϕ(l−1)‖α+2+ε

)
on bounded subsets ‖ϕ− ϕ0‖α+2+ε ≤ K, we obtain

‖W −W (l)‖a+ε + ‖ϕ− ϕ(l)‖a+ε ≤ Cτ
(
‖W −W (l−1)‖α+ε + ‖G−G(l−1)‖α+ε

)
(θκ0,l−1 + k)

E+1+τ
κ

≤ Cτ
(
‖W −W (l−1)‖α+ε + ‖G−G(l−1)‖α+ε

)
(θκ0,l−1 + k)

E+1+τ
κ

.
(
‖W −W (l−1)‖α+2+ε + ‖ϕ− ϕ(l−1)‖α+2+ε

)
(θκ0,l−1 + k)

E+1+τ
κ
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for any τ > 0.

Iterating this estimate yields that the sequence of iterates of the restarted algorithm converges,

if we choose a sufficiently rapidly increasing sequence of θ0,l. As the proof will show, θ0,l has to

be chosen as a function of certain higher Hölder norms of W −W (l) and ϕ− ϕ(l). Summing up:

Proposition 1. Under the assumptions of the theorem,

‖W −W (l)‖a+ε + ‖ϕ− ϕ(l)‖a+ε .
(
‖W −W (l−1)‖α+2+ε + ‖ϕ− ϕ(l−1)‖α+2+ε

)
(θκ0,l−1 + k)

E+1+τ
κ .

(9)

In particular, the algorithm with restart converges for appropriate θ0,l depending on W −W0 and

ϕ− ϕ0.

Iterating (9), we can estimate W−W (l) and ϕ−ϕ(l) in terms of the initial error W−W0, ϕ−ϕ0.

The proofs of Theorem 2 and Proposition 1 are contained in the appendix, Section 6.1.

1.4 Numerical considerations

From a computational perspective, we give a proof-of-principle for fully nonlinear numerical

computations with the Molodensky problem. Besides showing the practicality of standard heat

equation smoothing, the implementation involves subproblems of possible interest beyond the

particular problem:

a) The updates of ϕ and h require the highly accurate evaluation on the surface for first and

second derivatives of the gravitational field, expressed as derivatives of the single layer potential

[16, 1, 17]. We show that second order finite elements are necessary. If we combine them with

a partially analytic evaluation of the singular integrals for the gradient and finite differences for

the Hessian, the error becomes negligible.

b) Surface discretization turns out to be the dominant source of error for smooth data. This

shows the need for third or higher–order approximations or meshless methods. See e.g. [18],

Ch. 8, for boundary integral equations on surfaces approximated to degree p. The approximately

spherical geometry suggests meshless eigenfunction expansions, and [19] contains a first study of

in the case of a particular linearized problem.

Parallelization and nontrivial optimization are necessary to deal with the large, dense matrices

of a higher-order boundary element formulation and the large number of data points available

from geodesic measurements. For the linearized Molodensky problem, panel clustering and fast

multipole methods have been discussed in [9], particularly in the case of a non-oblique Robin

problem.
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2 Iterative solution of the nonlinear problem

Our approach to the Molodensky problem is based on the abstract Nash–Hörmander iteration

[5], as adapted to the Molodensky problem. It solves a sequence of linearized problems, whose

solutions are less regular than the data, and recovers regularity with the help of a smoothing op-

erator. To simplify notation, we restrict ourselves to a nonrotating earth, ω = 0. The equivalence

of the formulation to the standard Nash–Moser iteration is discussed in Appendix 6.1. See also

[20] for a detailed derivation.

We fix a C∞ solution of the Molodensky problem (ϕ0,W0, G0) with a gravitational potential

v0 which satisfies the Marussi condition. We assume that the corresponding h0 is not tangential

to ϕ0(S2) and that the homogeneous linearized problem (1.2) has only the trivial solution.

As stated in the introduction, the linearized Molodensky problem involves an oblique Robin

problem in the exterior R3\Ω̄m of ϕm(S2). In each iteration step m, we solve the augmented

problem:

Given Ẇm : S2 → R, Ġm : S2 → R3, hm : ϕm(S2) → R3 and ϕm : S2 → ϕm(S2) ⊂ R3, find

um : R3\Ω̄m → R and constants aj,m ∈ R such that

∆um = 0 in R3\Ω̄m,

um +∇um · hm = fm −
3∑
j=1

aj,mÃj(x) on ϕm(S2) (10)

um(x) =
c

|x|
+O(|x|−3) when |x| → ∞, c ∈ R .

Again fm = Ẇm ◦ ϕ−1
m + (Ġm ◦ ϕ−1

m ) · hm. A feasible choice for Ãj is discussed after (18).

The solution um determines a nonlinear correction to ϕm, ϕ̇m, given by

ϕ̇m = (∇gm ◦ ϕm)−1(Ġm −∇um ◦ ϕm) . (11)

The gravitational potential gm is determined from the approximation to the potential as computed

in the first m steps,

wm = Wm−1 ◦ ϕ−1
m +4mum on ϕm(S2) , (12)

Wm−1 =

{
v0 ◦ ϕ0 +40u0 ◦ ϕ0 +41u1 ◦ ϕ1 + · · ·+4m−1um−1 ◦ ϕm−1, for m ≥ 1

v0 ◦ ϕ0 for m = 0
,

for suitable stepsizes ∆j and initial approximation v0 by solving an exterior Dirichlet problem:

For given wm on ϕm(S2), find vm : R3\Ω̄m → R and constants aj,m ∈ R such that

∆vm = 0 in R3\Ω̄m,

vm|∂Ωm
= wm −

3∑
j=1

aj,mÃj(x)
∣∣
x∈ ϕm(S2)

on ϕm(S2) (13)

vm(x) =
c

|x|
+O(|x|−3) when |x| → ∞ .
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Here Ãj need not be the same as in (10). For the numerical solution using boundary elements,

we can reuse the matrix entries of the discretized Robin problem for this Dirichlet problem.

Now equation (11) yields the surface update ϕ̇m to ϕm using gm = ∇vm and ∇gm = ∇2vm.

The full iterative method involves smoothing in each step based on the solution operator Sθ
to a higher-order heat equation as discussed in Section 3. It reads as follows:

Algorithm 1. (Nash-Hörmander algorithm)

1. For given measured data W,G, choose W0, G0, h0, ϕ0, θ0 � 1, κ� 1

2. For m = 0, 1, 2, . . . do

(a) Compute

θm = (θκ0 +m)1/κ, 4m = θm+1 − θm (14)

(b) Compute

˙̃
W 0 : = Sθ0Ẇ0 = Sθ0

(W −W0

40

)
˙̃
Wm : =

1

4m

(
Sθm(W−W0)−Sθm−1(W−W0)

)
(15)

(c) Compute

˙̃
G0 : = Sθ0Ġ0 = Sθ0

(G−G0

40

)
˙̃
Gm : =

1

4m

(
Sθm(G−Gm+

m−1∑
j=0

4j
˙̃
Gj)−Sθm−1(G−Gm−1 +

m−2∑
j=0

4j
˙̃
Gj)
)

(16)

(d) Find um by solving the linearized problem (10) with (Ẇm, Ġm) replaced by (
˙̃
Wm,

˙̃
Gm)

(e) Find vm by solving (13) with wm as defined in (12)

(f) Compute gm = ∇vm and ∇gm = ∇2vm

(g) Compute the surface increment ϕ̇m by

ϕ̇m = (∇gm ◦ ϕm)−1(
˙̃
Gm −∇um ◦ ϕm)

and update surface map by ϕm+1 = ϕm +4mϕ̇m

(h) Update direction vector and gravity potential by

hm+1 = ((−(∇gm)−1gm) ◦ ϕm) ◦ (ϕm+1)−1

Gm+1 = gm ◦ ϕm

(i) Stop if ‖gm ◦ ϕm −G‖+ ‖vm ◦ ϕm −W‖ < tol

8



‖ · ‖ might usually be chosen to be e.g. an Ha–norm.

We also consider a variant of the algorithm which is restarted every k steps, using as initial

condition the approximate solution from the k-th step:

Algorithm 2. (Nash-Hörmander algorithm with restart)

1. For given measured data W,G and k ∈ N, choose W0, G0, h0, ϕ0, θ0 � 1, κ� 1

2. Compute Wk, Gk, ϕk in Algorithm 1

3. Stop if ‖Gk −G‖+ ‖Wk −W‖ < tol

4. Else set W0 = Wk, G0 = Gk, h0 = hk, ϕ0 = ϕk, choose κ, θ0, and go to 2

To solve the homogeneous exterior Robin and Dirichlet problems (10) resp. (13), we use a

single layer potential ansatz for um = Vmµm and satisfy the decay condition at ∞ in a weak

sense. Boundary element formulations for the oblique Robin problem (10) with general boundary

data were first analyzed in [9]. They, in particular, showed the relevance of multipole expansions

and panel clustering for the fast solution for experimental geodesic data.

The ansatz transforms (10) into a saddle point problem for the integral operator

S = V +
1

2
cos(](n,h))I +K ′(h), (17)

on ϕm(S2), which is defined in terms of the multilayer potentials

V µ(x) =

∫
Γ

µ(y)

4π|x− y|
dsy , K ′(h)µ(x) = h · ∇

∫
Γ

µ(y)

4π|x− y|
dsy . (18)

In particular for h = n the unit normal vector, K ′(n) is the standard adjoint double layer po-

tential.

Solving the Robin problem for arbitrary Ẇ , Ġ requires an appropriate choice of Ãj . Let

Aj =
xj
|x|3 and N := span {Aj}j=1,...,3. Then um = Vmµm satisfies the decay condition of (10)

whenever µm ∈ L2(ϕm(S2))∩N⊥. Since fm = Ẇm ◦ϕ−1
m +(Ġm ◦ϕ−1

m ) ·hm ∈ L2(ϕm(S2)), but not

necessarily in S(L2(ϕm(S2))∩N⊥), Ãj must be chosen such that span {Ãj}3j=1 +S(L2(ϕm(S2))∩
N⊥) = L2(ϕm(S2)) for (10) to be well defined. Ãj := SAj |ϕm(S2) is a feasible choice and leads

to an equivalent variational formulation of (10):

Find (µm, am) ∈ L2(ϕm(S2))× R3 such that

〈Sµm, φ〉ϕm(S2) + 〈S
3∑
j=1

aj,mAj , φ〉ϕm(S2) = 〈fm, φ〉ϕm(S2) ∀φ ∈ L2(ϕm(S2))

〈µm, Ak〉ϕm(S2) = 0 ∀k ∈ {1, 2, 3} .

(19)

9



Note that any L2–solution of the weak problem is actually C∞. Indeed, S is an elliptic pseudod-

ifferential operator, so that µm ∈ L2 and Sµm = fm −S
∑3

j=1 aj,mAj ∈ C∞ in the distributional

sense implies µm ∈ C∞ [21].

The Dirichlet problem (13) is similarly reformulated: Find (µ̃m, ãm) ∈ H−1/2(ϕm(S2)) × R3

such that

〈V µ̃m, ξ〉ϕm(S2) + 〈V
3∑
j=1

ãj,mAj , ξ〉ϕm(S2) = 〈wm, ξ〉ϕm(S2)∀ξ ∈ H−1/2(ϕm(S2))

〈µ̃m, Ak〉ϕm(S2) = 0 ∀k ∈ {1, 2, 3} .
(20)

On the right hand side,

〈wm, ξ〉ϕm(S2) =〈Wm−1 ◦ ϕ−1
m , ξ〉ϕm(S2) +4m〈um, ξ〉ϕm(S2)

=〈(v0 ◦ ϕ0) ◦ ϕ−1
m , ξ〉ϕm(S2) +

m−1∑
i=0

4i〈(Viµi ◦ ϕi) ◦ ϕ−1
m , ξ〉ϕm(S2)

+4m〈Vmµm, ξ〉ϕm(S2).

As discussed in Section 4, we use standard boundary element methods for the efficient numerical

solution of (19) and (13). Note that the matrix elements of V have already been computed for

the Robin problem.

3 Smoothing operator

The smoothing operators Sθ appearing in the iterative solution of the Molodensky problem com-

pensate for the loss of derivatives in the increments of ϕ. For a theoretical analysis, smoothing

operators Sθ defined from compactly supported functions φ ∈ C∞0 (R) are most convenient. If M

is a submanifold of R3, we define Sthθ : H a(M)→H a(M) as

Sthθ u := φ(
1

θ2
∆M )u .

Here ∆M is the Laplace–Beltrami operator associated to the metric which M inherits from R3,

and φ( 1
θ2 ∆M )u can be computed by expanding u into L2(M)–eigenfunctions of ∆M .

These operators have the following properties (Theorem A.10, [5]):

Properties 1. For all u ∈ C∞(M) we have

(0) ‖Sthθ u− u‖a
θ→∞−→ 0;

(i) ‖Sthθ u‖b ≤ C‖u‖a, b ≤ a;

(ii) ‖Sthθ u‖b ≤ Cθb−a‖u‖a, a ≤ b;

(iii) ‖u− Sthθ u‖b ≤ Cθb−a‖u‖a, b ≤ a;

10



(iv)

∥∥∥∥ d
dθS

th
θ u

∥∥∥∥
b

≤ Cθb−a−1‖u‖a.

The oscillatory nature of the corresponding integral kernels renders a stable implementation

of these operators difficult. In practice, solution operators to heat-like equations are frequently

used as smoothing operators in a variety of contexts such as high-dimensional statistics, image

processing etc. with readily available, optimized implementations. They have been also used

in the numerical explorations of smoothed Newton and similar methods, though without much

justification, see e.g [13, 12].

More generally than the heat equation, we consider smoothing operators associated to φ(x) =

e−|x|
k
, k ∈ N. They correspond to the time–1/θ2k solution of the k–harmonic heat equation

d

dt
v(x, t)−Av(x, t) = 0 in M × (0,∞)

v(x, 0) = u(x) in M

with A := (−1)k+1∆k
M and u ∈ H a. Considering A : H a+2k ⊂ H a → H a as an unbounded

operator on the Hölder spaces (a > 0, a /∈ N) we have the following theorem.

Theorem 3. A generates an analytic semigroup etA on H a, and the operator Sθ := e
1

θ2k
A

satisfies the properties (0), (i), (ii), (iv) (with Sthθ replaced by Sθ) and in addition

(iii′) ‖u− Sθu‖b ≤ Cθb−a‖u‖a, ∀ 0 ≤ a− b < 2k.

A proof of this theorem will be given in the Appendix. In particular, we note that these re-

stricted properties are sufficient to rigorously analyze the convergence of the algorithms presented

in Section 2.

4 Numerical methods

The main effort to numerically solve the Molodensky problem consists in the accurate solution

of the saddle point problems (19) and (20) for the multilayer potentials S and V on the surfaces

ϕm(S2).

For the solution, we choose a quasi–uniform triangulation T mh of ϕm(S2) by plane triangles

of diameter ∼ h and solve the saddle point problems for piecewise polynomial elements on the

resulting discretized surface.

In the case of (19), the discretized formulation for the subspace

Sph,m = {space of discontinuous piecewise polynomials of degree p on T mh } = span{bj}Nj=1

of L2(T mh ) reads as follows: Find (µm,h, am,h) ∈ Sph,m × R3 such that

〈Sµm,h, φh〉T mh +

3∑
j=1

aj,m,h〈SAj , φh〉T mh = 〈fm, φh〉T mh ∀φh ∈ Sph,m

〈µm,h, Ak〉T mh = 0 ∀k ∈ {1, 2, 3}

(21)
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Expanding µm,h and φm,h in the basis bj ,

µm,h =
N∑
j=1

µj,mbj , φm,h =
N∑
j=1

φj,mbj ,

we obtain a matrix equation of the form:[
S S̃
Λ 0

][
~µh
~ah

]
=

[
~f
~0

]

where (Skj) = 〈Sbj , bk〉, (S̃kj) = 〈SAj , bk〉, (Λkj) = 〈bj , Ak〉, (fk) = 〈fm, bk〉 and ~µ ∈ RN ,~a ∈ R3.

For the Dirichlet problem (13) we consider Sph,m as a subspace of H−1/2(T mh ), leading to the

problem: Find (µ̃m,h, ãm,h) ∈ Sph,m × R3 such that

〈V µ̃m,h, ξh〉T mh +

3∑
j=1

ãj,m,h〈V Aj , ξh〉T mh = 〈wm, ξh〉T mh ∀ξh ∈ T mh

〈µ̃m,h, Ak〉T mh = 0 ∀k ∈ {1, 2, 3} .

(22)

In matricial form: [
V Ṽ

Λ 0

][
~̃µh
~̃ah

]
=

[
~wm
~0

]
.

The suggested numerical solution of the linearized Molodensky and Dirichlet problems is sta-

bly convergent with quasi–optimal convergence estimates. They are derived in [9, 20] by verifying

an inf–sup condition for the boundary element spaces.

Our theoretical analysis legitimizes using the solution of heat-like equations on ϕm(S2) as

smoothing operator Sθ in the algorithm. We use the implementation presented in [22], which

computes an FEM-solution of the heat equation for the geometric Laplace–Beltrami operator by

spectral methods. SθF is defined as the solution at time θ−2 with initial condition F .

4.1 Details

The initial sphere S2 is triangulated by starting with an icosahedral mesh and subsequent refine-

ments [23]. Assigning to each node a vector in R3 corresponds to a continuous, piecewise linear

representation of ϕm. As we need to evaluate second derivatives of the gravitational potential, the

polynomial degree on each triangle is p = 2, and hm is represented by a discontinuous piecewise

constant function interpolating the hm from equation (10) in the midpoints of each triangle. Fur-

thermore, Gm is the linear interpolation of g|ϕm(S2), obtained from equation (13), in the nodes.

The local basis functions bj are monomials for both the linearized Molodensky problem and for

the auxiliary Dirichlet problem. We use analytic expressions to compute 〈V bj , bk〉 and K(h)bk
([24]) and perform an hp-composite Gauss quadrature with geometrically graded meshes [25, 17]

to determine 〈K ′(h)bj , bk〉 = 〈bj ,K(h)bk〉. 〈V Aj , bk〉 and 〈K ′(h)Aj , bk〉 are treated analogously.

12



The update of ϕ requires the delicate computation of the Hessian for the gravitational poten-

tial, ∇gm, on ϕm(S2). Our numerical experiments suggest to derive the component of g in some

direction e using the adjoint of the double layer potential, e ·gm = e·ν
2 µm,h+K ′(e)µm,h, and to use

finite differences to compute ∇gm. More precisely, for the tangential components we use a central

finite difference scheme, U ′(x) ≈ U(x+δ)−U(x−δ)
2δ , in the exterior domain and extrapolate to the

boundary. If x′ is the point closest to x on the discretized boundary, we choose δ smaller than the

distance of x′ to the nearest vertex of the triangulation. For the normal component we combine the

central finite difference scheme with a Crank-Nicolson method, U ′(x) ≈ 4U(x+δ)−3U(x)−U(x+2δ)
2δ ,

which is forward oriented. The error in both schemes is of order δ2.

Alternative approaches are discussed in detail in Section 5.1.

5 Numerical experiments

The numerical experiments were carried out on a cluster with 5 nodes à 8 cores with 2.93Ghz and

48GB memory, where each core uses two Intel Nehalem X5570 processors. With parallelization

and optimization we need 20 minutes for each iterations in the case of icosahedron refinements

corresponding to 320 triangles (N = 2), whereas we need 3 hours for refinements corresponding

to 1280 triangles (N = 3). A further global refinement would lead to 5120 triangles and 16 times

larger dense matrices. For realistic models of the gravity field used in geodesy, the data is often

given at grid points spaced less than 10 degrees apart, corresponding e.g. in [9] to triangulations

with between 2048 and 131072 triangles. This shows the need to develop local adaptive refine-

ments and matrix compression. Local refinements can be introduced into the restarted Algorithm

2 every k steps.

5.1 Computation of second derivatives

The accurate determination of second derivatives of the gravitational potential on the surface

is crucial for our approach and is of interest also in other contexts. The first derivatives of the

single layer potential on the boundary have been analyzed in [16]. They can be evaluated by a

composite hp Gauss quadrature with geometrical grading towards the singularity [25, 17]. Higher

derivatives have been analyzed by Schulz, Schwab and Wendland, e.g. in [26, 27], who compute

the second normal derivative from the less singular tangential derivatives in a similar way. For

the current problem, a simpler approach gives sufficient accuracy.

We investigate a general Dirichlet problem

−∆u = 0 in Rd \ Ω (23a)

u = f on Γ := ∂Ω (23b)

with an appropriate decay condition. Using a single layer potential ansatz, the problem is equiv-

alent to the integral equation V µ = f , where

u(x) = V µ(x) =

∫
Γ
k(x, y)µ(y) dsy , k(x, y) =

{
− 1

2π log ‖x− y‖, d = 2
1

4π
1

‖x−y‖ , d = 3.
(24)
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As in Section 4, we solve the discretized Galerkin equations on the discretized boundary Γh,

〈V µh, ξ〉Γh = 〈g, ξ〉Γh ∀ ξ ∈ Sph,Γ , (25)

in the subspace Sph,Γ ⊂ H−1/2(Γh) of piecewise polynomials of degree p. To approximate the

Hessian of u, we have to evaluate the Hadamard finite-part integral

∇∇V µh(x) = p.f.

∫
Γh

∇x∇xk(x, y)µh(y) dsy (x ∈ Γh) . (26)

The hypersingular kernel ∇x∇xk(x, y) is the main challenge in evaluating the potential. We

analytically compute the gradient w = ∇V µh using the adjoint double layer potential. The

second derivative ∇w is approximated by second–order accurate finite differences (FD):

∂w(x)

∂n
=

4w(x+ δ · n)− 3w(x)− w(x+ 2δ · n)

2δ
+O(δ2)

∂w(x)

∂t
=
w(x+ δ · t)− w(x− δ · t)

2δ
+O(δ2)

In the computations, the step size δ is set to 10−4 for the normal component and to 10−5 for

the tangential component when approximating second derivatives. For the presented numerical

experiments the FD-approximation error is of magnitude 10−7 if no Galerkin-BEM approximation

error were to occur. However, for very small step sizes the finite differences become numerically

instable and the BEM-error is dominating. If H = (Hij) denotes the exact and Hh = (Hh,ij) the

approximated Hessian, we measure the error in a point x as
(∑

i,j(Hh,ij(x)−Hij(x))2
)1/2

. The

BEM-approximation error is measured in the energy norm ‖µ− µh‖2V := 〈V (µ− µh), µ− µh〉Γh .

Example 1. Let Ω =
[
−1

2 ,
1
2

]2
be the domain and u = ln ‖x‖ the exact solution. Then the

exact Hessian is H(x) = 1
x2

(
1− 2x2

1 −2x1x2

−2x1x2 1− 2x2
2

)
. Figure 1 shows the pointwise error of the

Hessian approximation in the point x = (1
2 ,

1
3) for h–versions of BEM with polynomial degree

p = 0, 1, 2, 3, as well as for a p–version with h = 0.2. Figure 2 displays the corresponding BEM-

error ‖µ− µh‖V between µh and an extrapolated density µ. All versions show their characteristic

rate of convergence, i.e. 1.5, 2.5, 3.5, 4.5 for the h-versions and exponential for the p-version

until the error is about 10−8 at which point the quadrature errors for the outer integration in

the semi-analytic evaluation of (25) dominate the BEM-error with analytic computation of the

involved integrals.

Example 2. Let Ω = [−1, 1]3 be the domain and g corresponding to the exact solution u(x) = 1
‖x‖

with Hessian H(x) = 3
‖x‖5

 x2
1 x1x2 x1x3

x1x2 x2
2 x2x3

x1x3 x2x3 x2
3

 − 1
‖x‖3 I. Figure 3 displays the BEM-error

‖µ− µh‖V for three h-versions (p = 0, 1, 2). Figure 4 shows the error in x = (1, 1
3 ,

1
3). Again, at

least for p ≥ 2 we observe good convergence of the Hessian approximation.
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Figure 1: Error of the Hessian approximation for a point on Γh
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Figure 2: BEM-Error ‖µ− µh‖V in the energy norm for the 2d case

Similar qualitative results hold for the case of a sphere. However, in this case the error for

the domain approximation quickly dominates the numerical error of differentiation [20].

To control the error of the domain approximation, it is well known [28] that the finite elements

to approximate the surface should be one order higher than the finite elements to approximate

the solution of the integral equation with the single layer potential. As the accurate computation

of the Hessian requires at least quadratic elements, third order elements should be used for ϕ.

The corresponding software development will require further research.
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Figure 3: BEM-Error ‖µ− µh‖V in the energy norm for the 3d case on the cube
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Figure 4: Error of the Hessian approximation 3d case, h-versions for a point on Γ

5.2 Molodensky problem

In this section we perform a first study of the numerical solution of the fully nonlinear Molodensky

problem. To assess the accuracy and convergence properties of the proposed algorithm, we study

it in a simple, but algorithmically nontrivial model problem with an explicit exact solution.

The data W,G are those of a spherical earth of radius 1.1 with the Newton gravitational

potential: For x ∈ S2, the surface is described by ϕ(x) = 1.1x, the gravitational potential is

W (x) = 1
1.1 , and G(x) = − x

1.12 . We choose the unit sphere S2, ϕ0(x) = x, as initial approxima-

tion. Therefore, W0(x) = 1, G0(x) = −x and h0 = x
2 (x ∈ S2).

Since our model problem is rotationally invariant and the algorithm preserves this symmetry,

we expect a sequence of computed surfaces which are slightly perturbed spheres converging to a

sphere of radius 1.1. The perturbation should be due to discretization and rounding errors. The
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mean L2 error in ϕ is thus equivalent to

‖ϕm − ϕ‖L2 �
1

# nodes

[# nodes∑
i=1

dist(ϕm(xi), ϕ(S2))2]1/2 .

We have performed several numerical experiments with different parameters θ0, κ. Firstly, if

the amount of data smoothing is too small, the algorithm is unstable as expected (and observed) in

the case without smoothing operator. Secondly, if the amount of data smoothing is too large, then

essential information on the right hand side in the linearized Molodensky problem is lost in the

first steps, and in combination with the numerical errors convergence is lost. Also if the amount

of smoothing does not decay sufficiently fast, the right hand side in the linearized Molodensky

problem is close to machine precision, leading to numerical artefacts. Figure 5 presents some

reasonable choices of parameters θ0, κ.

Figure 5 shows that the propagation of the discretization error cannot be eliminated. However,

increasing the amount of smoothing per iteration for a fixed mesh delays the point at which the

propagated discretization error becomes dominating. Decreasing the mesh size, leads to a more

even error reduction per iteration step. However, the error reduction per iteration step also

decreases. The point at which discretisation errors become dominant seems difficult to predict.

Figure 6 shows the average pointwise error

|uN (x)− u(x)|av =
1

M

(
M∑
i=1

|uN (xexti )− u(xexti )|2
)1/2

computed in a set of M = 10242 exterior points for the linearized Molodensky problem with

smoother (θ0 = 2.6, κ = 6) for the first three Nash-Hörmander iteration steps. Here u(x) is

obtained by extrapolation. All three curves show similar convergence rates for DOF → ∞, see

Table 1.

Figure 7 displays the L2 error in ϕ versus the number of restarts for the restarted algorithm.

The restart is done after each iteration step. We observe the same structural behaviour as

for the other two experiments. Therefore, from the third restart of the algorithm onwards the

discretization error propagation becomes dominating. However, refining the mesh, from N = 2

to N = 3, slightly reduces the error after the second and third restart, before increasing after the

third restart.

Figure 8 displays the L2 error in the gravity vector,

‖Gm −G‖L2 �
1

# nodes

[# nodes∑
i=1

(Gm(xi)−G(xi))
2]1/2 ,

in the algorithm with restart. The errors slowly decreases for the first five iteration steps, but

from this step onwards the method provides uncontrollable surface updates (peaks and undesirable

deformations occur) afterwards.

To sum up, we observe convergence of the algorithm in ϕ until numerical errors due to

discretization and domain approximation accumulate. A higher-order discretization of the surface

seems to be necessary to obtain stable convergence and an improved approximation of G after
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Iter DOF |uN (x)− u(x)|av EOC

0 120 0.10170

480 0.03850 0.70

1920 0.01022 0.96

7680 0.00271 0.96

1 120 0.56875

480 0.03582 1.99

1920 0.01034 0.90

7680 0.00299 0.90

2 120 0.28961

480 0.09885 0.77

1920 0.02660 0.95

7680 0.00716 0.95

Table 1: Pointwise errors and experimental orders of convergence for the linearized Molodensky

problem

19



a larger number of steps. For the restarted algorithm, a better understanding of the optimal

smoothing parameters must be achieved.

Figure 9 displays the sequence of obtained surfaces. The marked point is always the north

pole of the sphere, i.e. x = y = 0 and only z varies. Interestingly, for each experiment the surface

update is almost constant over the mesh points, leading to a sequence of almost spheres.
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Figure 9: Icosahedron refinements for θ0 = 2.6, κ = 6
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6 Appendix

We are going to use the following definition of the Hölder–spaces, but will rarely use them for

integer exponent a:

Definition 1 (Definition A.3 [5]). Let k ∈ N0, k < a ≤ k + 1 and B ⊆ Rn compact, convex such

that B̊ 6= ∅.
Define

H a(B) := {u ∈ Ck(B) :‖u‖0 = sup
x∈B
|u(x)| <∞ and

|u|a :=
∑
|α|=k

sup
x 6=y∈B

|∂αu(x)− ∂αu(y)|
|x− y|a−k

<∞}.

We also set H 0(B) := C(B). Then H a := H a(B) with the norm ‖ · ‖a := ‖ · ‖0 + | · |a is a

Banach space.

For a compact manifold, one defines H a by covering it with a finite number of neighborhoods

homeomorphic to subsets of Rn.

Basic interpolation estimates will be used frequently:

‖v‖σa+(1−σ)b ≤ C‖v‖σa‖v‖1−σb (σ ∈ (0, 1), v ∈H max{a,b}) . (27)

Similarly, if (a, b) ∈ R2
+ belongs to the convex hull of (a1, b1), . . . , (aJ , bJ) ∈ R2

+, then

‖v‖a‖w‖b ≤ C
J∑
j=1

‖v‖aj‖w‖bj ( v ∈H max{aj}, w ∈H max{bj}) . (28)

6.1 Proof of Theorem 2

For ease of presentation, we set u = (u(1), u(2)) := (W,ϕ) : S2 → R × R3, f := (G,W ) : S2 →
R3×R. The map from (W,ϕ) to the corresponding G is denoted by Γ. The Molodensky problem

assumes the form Φ(u) := (Γ(u), u(1)) = f .

In this notation, the Nash–Hörmander iteration reads as

um+1 = um + ∆mu̇m, u̇m = Ψ(vm)gm, vm = Sθmum ,

Ψ being the inverse operator to the linearization of Φ around vm. To show that the Algorithm 1

is a reformulation of the one in [5], we show that the equations (15) and (16) are equivalent to

usual definition

∆0g0 = Sθ0f, gm = ∆−1
m ((Sθm − Sθm−1)(f − Em−1)−∆m−1Sθmem−1) (m > 0) . (29)

Here, the errors em = e′m + e′′m are defined as the sum of a smoothing error

e′m = (Φ′(um)− Φ′(vm))u̇m (30)
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and a linearization error

e′′m = ∆−1
m (Φ(um + ∆mu̇m)− Φ(um)−∆mΦ′(um)u̇m) . (31)

The total error is Em = e0 + · · ·+ em−1 (e0 = E0 = 0).

In our case, Φ′(u)u̇ = (Γ′(u)u̇, u̇(1)), so that with Ġm = Γ′(Wm, ϕm)(Ẇm, ϕ̇m)

e′m = Φ′(Wm, ϕm)(Ẇm, ϕ̇m)− Φ′(W̃m, ϕ̃m)(Ẇm, ϕ̇m)

= (Γ′(Wm, ϕm)(Ẇm, ϕ̇m), Ẇm)− (Γ′(W̃m, ϕ̃m)(Ẇm, ϕ̇m), Ẇm)

= (Ġm − g(1)
m , 0) .

Similarly, for the linearization error we have

∆me
′′
m = Φ(Wm + ∆mẆm, ϕm + ∆mϕ̇m)− Φ(Wm, ϕm)−∆mΦ′(Wm, ϕm)(Ẇm, ϕ̇m) ,

with second component Wm + ∆mẆm −Wm −∆mẆm = 0. The first component, by definition,

is Gm+1 −Gm −∆mĠm.

As a consequence, the second components of the errors em and Em vanish. Equation (29)

yields

∆0g
(2)
0 = Sθ0(W −W0) , ∆mg

(2)
m = Sθm(W −W0)− Sθm−1(W −W0) (m > 0). (32)

Concerning the first component of gm, we use ∆0g
(1)
0 = Sθ0(G−G0) and our above computation:

∆1g
(1)
1 = (Sθ1 − Sθ0)(G−G0)−∆0Sθ1(Ġ0 − g(1)

0 )− Sθ1(G1 −G0 −∆0Ġ0)

= Sθ1(G−G1 + ∆0g
(1)
0 )− Sθ0(G−G0) .

Similarly we obtain a recursion formula for m > 1:

∆mg
(1)
m = Sθm

G−Gm +

m−1∑
j=0

∆jg
(1)
j

− Sθm−1

G−Gm−1 +

m−2∑
j=0

∆jg
(1)
j

 . (33)

Equations (32) and (33) show the equivalence of Algorithm 1 to the formulation in [5].

of Theorem 2. By the above reduction, it is sufficient to analyze Hörmander’s iterative method

and derive an a priori estimate for the error after m steps. Our proof relies on certain estimates

in Hörmander’s qualitative analysis. Recall that the smoothing operator is generated by (−1)k∆k.

The proof is given in several steps. We are going to rely on a number of auxiliary results.

Given a sufficently large, fixed aΦ, we recall the following continuity estimates for Φ′′ and the

inverse of the linearization Ψ from ([5], equations (2.1.5/6)):

1.) For all ε > 0, 0 ≤ a ≤ aΦ and u, v, w ∈ C∞ with ‖u‖2+ε < C we have:

‖Φ′′(u; v, w)‖a+2ε . ‖v‖a+2+3ε‖w‖0 + ‖v‖0‖w‖a+2+3ε + ‖v‖0‖w‖0‖u‖a+3+2ε (34)
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2.) For all ε > 0, 0 ≤ a ≤ aΦ and v, g ∈ C∞ with ‖v‖2+ε < C

‖Ψ(v)g‖a+ε . ‖g‖a+ε + ‖g‖ε‖v‖a+2+ε (35)

The first lemma translates a bound for the first m increments u̇j into properties of Um =∑m
j=04j u̇j .

Lemma 1. Let ε > 0, α + ε /∈ N, −ε ≤ α− ≤ α ≤ α+. Assume that 2k > α + ε− a and that for

some δ > 0, m ≥ 0

‖u̇j‖a+ε ≤ δθa−α−1
j ∀0 ≤ j ≤ m ∀a ∈ [α−, α+] . (36)

Then Um =
∑m

j=04j u̇j ∈H α+ε satisfies

‖Um‖a ≤ C1δ ∀a ≤ α+ ε , (37)

‖Um − Sθm+1Um‖a ≤ C2δθ
a−α−ε
m+1 ∀ 0 ≤ a ≤ α+ + ε , (38)

‖Sθm+1Um‖a ≤ C3δθ
(a−α−ε)+

m+1 ∀ 0 ≤ a ≤ a0 (39)

for fixed a0.

We refer to [5, Lemma 2.2.1]) for the proof.

The lemma implies that under the given assumptions all iterates um will remain in a neigh-

borhood of u0. We may therefore localize and appeal to estimates valid near u0 and justify the

linearization of the problem. A quantitative formulation of the localization is as follows:

Corollary 1. Let ε̃ > 0, µ ≤ α+ ε, and a, δ as above. Define

Vs := {u ∈ C∞ : ‖u− u0‖µ ≤ s} ,

Ṽs := {u ∈ C∞ : ‖u‖µ ≤ s} .

Then there exist C,C ′ > 0 (which depend only on C1 and the constants in Theorem 3(i), (iii’))

such that for all θ ≥ C
(

ε̃
‖u0‖a

) 1
a−µ

and all δ < C ′ε̃:

a) Sθu0 ∈ Vε̃/2
b) If a = µ ≤ α+ ε, then Uk, SθUk ∈ Ṽε̃/2, uk+1 = u0 + Uk ∈ Vε̃ and Sθk+1

uk+1 ∈ Vε̃.

We note some related estimates for the smoothed iterates vm = Sθmum, which in particular

hold for b = α+ ε:

Corollary 2. Under the above assumptions there holds:

‖uj − vj‖c ≤ C(‖u0‖bθc−bj + δθc−α−εj ) ∀ c ≤ α+ ε, 0 ≤ b− c < 2k (40)

‖vj‖c ≤ C(‖u0‖bθc−bj + δθ
(c−α−ε)+

j ) ∀ c ≤ c0, b ≤ c (41)

Proof. Indeed, using Property (iii’) of Sθ and Lemma 1,

‖uj − vj‖c ≤ ‖u0 − Sθju0‖c + ‖Uj−1 − SθjUj−1‖c (42)

≤ C‖u0‖bθc−bj + Cδθc−α−εj .

Similarly, ‖vj‖c ≤ ‖Sθju0‖c + ‖SθjUj−1‖c ≤ Cθc−bj ‖u0‖b + Cδθ
(c−α−ε)+

j
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The a priori estimate of Theorem 2 will be shown by induction in m.

As hypothesis we assume (36), that ‖f‖α+ε is small and that the assumptions of Lemma 1 are

verified for a suitable δ. We are going to deduce the corresponding assertions with m replaced by

m+ 1.

Together with the induction hypothesis, Lemma 1 and the above corollaries provide bounds

of the Hölder norms of uj , vj and uj − vj for 0 ≤ j ≤ m. To estimate u̇m+1 in terms of these

data, note that by definition of u̇m+1 and gm+1,

‖u̇m+1‖a+ε ≤ C(‖gm+1‖a+ε + ‖gm+1‖εθ(2+a−α)+

m+1 )

gm+1 = S̃m(f − Em)− 4m

4m+1
Sθm+1em

where Em =
∑m−1

j=0 4jej and S̃m =
Sθm+1

−Sθm
θm+1−θm . Writing S̃m as an average of d

dθSθ, S̃mf can be

bounded using Property (iv) of the smoothing operator,

‖S̃mf‖b ≤ Cθb−c−1
m ‖f‖c ,

for any b, c. Properties (ii) and (iv) of the smoothing operator give similar estimates for the other

terms:

‖Sθm+1em‖b ≤ Cθ(b−c′)+
m ‖em‖c′ (43)

‖S̃mEm‖b ≤ θb−c
′′−1

m

m−1∑
j=0

4j‖ej‖c′′ . (44)

Hence

‖gm+1‖a+ε . θa+ε−c−1
m ‖f‖c + θa+ε−c′′−1

m

m−1∑
j=0

4j‖ej‖c′′ + θ(a+ε−c′)+
m ‖em‖c′ , (45)

θ
(2+a−α)+

m+1 ‖gm+1‖ε . θε−C−1+(2+a−α)+
m ‖f‖C + θε−C

′′−1+(2+a−α)+
m

m−1∑
j=0

4j‖ej‖C′′

+ θ(ε−C′)++(2+a−α)+
m ‖em‖C′ , (46)

giving a bound on u̇m+1. If we choose c = α+ ε, C = α− a+ ε+ (2 + a−α)+ ≤ α+ ε, the terms

involving f are dominated by θEm+1‖f‖α+ε

To estimate ej , we will consider the smoothing error e′j and the linearization error e′′j separately.

At the end of this section we use (34) and (35) to bound e′j resp. e′′j in terms of the Hölder norms of

uj , vj and uj−vj for 0 ≤ j ≤ m, which are controlled by the induction hypothesis. A computation

eventually results in

‖u̇m+1‖a+ε ≤ CθEm+1

(
A‖f‖α+ε + δσ(1 + δ + δ2)

)
24



for small σ ∈ (0, 1) whenever θ0 = θ0(σ, u0, α, Sθ) is sufficiently large. A only depends on the

constants in (35) and Property (iv) of the smoothing operator. Both θ0 and A are, in principle,

explicit. We choose σ = 1
2C

1
1+δ+δ2 .

Then for all f in the ball {u : ‖u‖α+ε ≤ δ
2AC } we have

‖u̇m+1‖a+ε ≤ δθEm+1. (47)

On the other hand, in the first step the solution to the linearized problem u̇0 = 4−1
0 Ψ(Sθ0u0)Sθ0f

is easily estimated using (35) and the smoothing properties

40‖u̇0‖a+ε ≤ C ′(‖Sθ0f‖a+ε + ‖Sθ0f‖ε‖Sθ0u0‖a+2+ε)

≤ C ′′θ0(1 + θ−a0 ‖u0‖2+ε+a)‖f‖α+εθ
E
0 .

We now denote by C the maximum of C ′′4−1
0 θ0(1 + θ−a0 ‖u0‖2+ε+a) and the previous constant

2AC and choose δ = C‖f‖α+ε. Since ‖f‖α+ε was sufficiently small by hypothesis, so is δ, and

(47) is fulfilled. By induction, we deduce

‖u̇m+1‖a+ε ≤ C‖f‖α+εθ
E
m+1 ∀ k ≥ 0. (48)

If u denotes the exact solution, we obtain

‖u− um‖a+ε ≤
∞∑

j=m+1

4j‖u̇j‖a+ε ≤ C‖f‖α+ε

∞∑
j=m+1

4jθ
E
j

≤ CτC‖f‖α+εθ
E+1+τ
m

for any τ > 0 small such that E+ 1 + τ < 0. As u was the exact solution, this yields the assertion

of Theorem 2.

Note that

Φ(um+1)− Φ(u) = Φ(um+1)− Φ(u0)− f = (Sθmf − f) +4mem + (Em − SθmEm) .

We have shown that the right hand side converges to 0 in Ha+ε, so that also Φ(um) converges to

Φ(u).

To complete the proof, it remains to estimate em and to translate the result into a bound on

u̇m+1. For the j–th smoothing error

e′j = (Φ′(uj)− Φ′(vj))u̇j =

∫ 1

0
Φ′′(vj + t(uj − vj);uj − vj , u̇j) dt ,

equation (34) implies

‖e′j‖2ε+a . ‖uj − vj‖2+3ε+a‖u̇j‖0 + ‖uj − vj‖0‖u̇j‖2+3ε+a

+ 2‖uj − vj‖0‖u̇j‖0(‖uj‖3+2ε+a + ‖vj‖3+2ε+a) .
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Using Lemma 1, ‖uj‖b ≤ ‖u0‖b + Cδ, and the estimates for vj and uj − vj from (40), (41), we

obtain

‖e′j‖2ε+a . (‖u0‖bθ2+3ε+a−b
j + δθ2+2ε+a−α

j )δθ−α−1
j + (‖u0‖c1θ

−c1
j + δθ−α−εj )δθ1+2ε+a−α

j (49)

+ (‖u0‖c2θ
−c2
j + δθ−α−εj )δθ−α−1

j (‖u0‖3+2ε+a + δ + δθ
(a−α−ε)+

j ) .

Similarly, as the remainder of the first Taylor approximation, e′′j is also controlled by Φ′′, and

analogous estimates result in

‖e′′j ‖2ε+a . 4j{‖u̇j‖2+3ε+a‖u̇j‖0 + ‖u̇j‖20(‖uj‖3+2ε+a + ‖u̇j‖3+2ε+a)} (50)

. 4j{δθ1+3ε+a−α
j δθ−α−1

j + (δθ−α−1
j )2(‖u0‖3+2ε+a + δ + δθ

(3+ε+a−α)+

j }.

To estimate gm+1 in (45) and (46), it remains bound sums
∑m−1

j=0 4j

{
‖e′j‖b + ‖e′′j ‖b

}
. We

consider a generic term of the form
∑m−1

j=0 4jθ
−d
j F (δ, u0) for suitable F obtained from (49)

resp.
∑m−1

j=0 42
jθ
−d
j F (δ, u0) from (50). Concerning the former, if d > 1, we have for any small

τ > 0

m−1∑
j=0

4jθ
−d
j ≤ θ

−d+1+τ
0

m−1∑
j=0

4jθ
−1−τ
j ≤ Cτθ−d+1+τ

0 ,

with Cτ independent of θ0 ≥ θmin
0 > 0 and κ > κmin > 0. Here we have used that

4jθ
−1−τ
j . κ−1θ1−κ−1−τ

j = κ−1(θκ0 + j)−1− τ
κ .

For d < 1,

m−1∑
j=0

4jθ
−d
j ≤ θ

−d+1+τ
k

m−1∑
j=0

4jθ
−1−τ
j ≤ Cτθ−d+1+τ

m .

Finally, for d = 1

m−1∑
j=0

4jθ
−1
j ≤ Cτθ

τ
m.

As for the term coming from (50)

m−1∑
j=0

42
jθ
−d
j ≤ Cτκ

−1θ2−d−κ+τ
0 .

Estimating the sums in (45) resp. (46) thus increases the exponent on θm resp. θ0 in the estimates

of e′m by at most 1 + τ . From the estimates of e′′m, one obtains θ0 raised to a power which is

arbitrarily negative for large κ.
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As a result

θa+ε−c′′−1
m

m−1∑
j=0

4j‖e′j‖c′′ . δ‖u0‖bθa+ε−c′′−1
m θ3+ε+c′′−b+τ

m/0 + δ2θa+ε−c′′−1
m θ2+c′′−2α+τ

m/0

+ δ‖u0‖c1θa+ε−c′′−1
m θ2−c1+c′′−α+τ

m/0 + δ2θa+ε−c′′−1
m θ2−ε+c′′−2α+τ

m/0

+ δ‖u0‖c2‖u0‖3+c′′θ
a+ε−c′′−1
m θ−c2−α+τ

m/0

+ δ2‖u0‖3+c′′θ
a+ε−c′′−1
m θ−ε−2α+τ

m/0 + δ2‖u0‖c2θa+ε−c′′−1
m θ−c2−α+τ

m/0

+ δ3θa+ε−c′′−1
m θ−ε−2α+τ

m/0 + δ2‖u0‖c2θa+ε−c′′−1
m θ

−c2−α+(c′′−α−3ε)++τ
m/0

+ δ3θa+ε−c′′−1
m θ

−ε−2α+(c′′−α−3ε)++τ
m/0 . (51)

Here θm/0 is θm or θ0, depending on whether its exponent is greater or smaller τ . Choosing

e.g. c′′ = α+ 2ε, b = 3 + ε+ c′′ + 2τ , c1 = 2 + c′′ − α+ 2τ and c2 = 0, the exponents of θm/0 are

negative and the exponent of θm is strictly smaller than E = a− α− 1. Similarly, we obtain

θa+ε−c′′−1
m

m−1∑
j=0

4j‖e′′j ‖c′′ . δ2θa+ε−c′′−1
m θε+c

′′−2α+2−κ+τ
0 + δ2(‖u0‖3+c′′ + δ)θa+ε−c′′−1

m θ−2α−κ+τ
0

+ δ3θa+ε−c′′−1
m θ−2α−κ+τ

0 , (52)

where the exponents of the θ0 and θm have the same properties as in (51).

It remains to estimate the term θ
(a+ε−c′)+
m ‖em‖c′ in (45). We choose c′ = a + ε and, in (49), set

c1 = c2 equal to the above c′′ obtain

θ(a+ε−c′)+
m ‖em‖c′ . (‖u0‖bθ2+2ε+a−b

m + δθ2+ε+a−α
m )δθ−α−1

m + (‖u0‖c′′θ−c
′′

m + δθ−α−εm )δθ1+ε+a−α
m

+ (‖u0‖c′′θ−c
′′

m + δθ−α−εm )δθ−α−1
m (‖u0‖3+ε+a + δ + δθ(a−α)+

m )

+ δ24mθ
2ε+a−2α
m + δ24mθ

−2α−2
m (‖u0‖3+ε+a + δ) + δ34mθ

−2α−2+(3+a−α)+
m .

The exponent of θm is again strictly smaller than E.

The analysis of (46) is analogous. This completes the proof of Theorem 2.

6.2 Proof of Theorem 3

We consider the operator A as an unbounded operator on the Hölder space H a with domain

D(A) = H a+2 (if a /∈ N0). Using the nonpositivity of A and [29, Theorem 9.3], we see that

A − λ is invertible for λ ∈ Sθ = {λ ∈ C \ {0} : |argλ| < θ}, θ ∈ (π/2, π), and that (A − λ)−1 is

a pseudodifferential operator, depending on the parameter λ, whose symbol decays as C
|λ| . The

mapping properties [30, Proposition 8.6] of such operators in Hölder spaces, which are analogous

to those for Sobolev spaces, therefore imply

‖(A− λ)−1u‖a ≤
C

|λ|
‖u‖a, ∀ λ ∈ Sθ,0. (53)

Equation (53) allows to define the analytic semigroup generated by A,

etAu :=
1

2πi

∫
γr,η

etλ(A− λ)−1u dλ, t > 0, (54)
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where r > 0, η ∈]π/2, π[, and γr,η is the curve {λ ∈ C : |argλ| = η, |λ| ≥ r} ∪ {λ ∈ C : |argλ| ≤
η, |λ| = r}, oriented counterclockwise. etAu does not depend on the choice of r and η. We recall

some basic properties of analytic semigroups (Proposition 2.1.1, [31]):

Proposition 2. (i) ‖etAu‖a ≤ C0‖u‖a, ∀t ≥ 0.

(ii) etAesA = e(t+s)A, ∀ t, s ≥ 0.

(iii) lim
t→0+

‖etAu− u‖a = 0, ∀ u ∈ D(A).

(iv) There are constants Cl, such that

‖tlAletAu‖a ≤ Cl‖u‖a, 0 < t ≤ 1. (55)

(v) t 7→ etA is a real-analytic function from (0,∞) to the Banach space of bounded linear

operators on Ha (with norm given by the operator norm) and

dl

dtl
etA = AletA, t > 0. (56)

Concerning Theorem 3, we first consider Property (0). Using Proposition 2(iii) and setting

Sθ = etA and t = θ−2k we have

lim
θ→∞

Sθu = u, ∀u ∈H 2+a (57)

and thus, Property (0) holds.

Using Proposition 2(i) and the fact that Sθ = etA is a continuous operator on H b we have

‖etAu‖b . ‖u‖b . ‖u‖a, ∀ b ≤ a

and thus also Property (i).

In order to prove Property (ii), note that it suffices to show the assertion for 0 < t ≤ 1, or

equivalently θ ≥ 1. We use that (A− 1)−1 : H a → H a+2k is continuous, ‖(A− 1)−1u‖H a+2k .
‖u‖H a . We then have

‖v‖a+2k . ‖(A− 1)v‖a . ‖Av‖a + ‖v‖a.

We first set l = 1 and v = tetAu and deduce

‖tetAu‖a+2k . ‖(A− 1)tetAu‖a . ‖tAetAu‖a + ‖tetAu‖a (58)

and by using Proposition 2(i) and Proposition 2(iv) we have

‖tetAu‖a ≤ ‖etAu‖a . ‖u‖a, 0 < t ≤ 1,

and finally by (58) we obtain

‖tetAu‖a+2k . ‖u‖a.

By iterating this argument l-times using

‖tletAu‖a+2kl = ll‖ t
l
et/lA ·... ·

t

l
et/lAu‖a+2kl
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we have

‖tletAu‖a+2kl . ‖u‖a .

Setting b = a+ 2kl, t = θ−2k, Property (ii) holds for this specific b.

For an arbitrary b, b̃ := a + 2kl ≥ b, write b = σa + (1 − σ)b̃. The interpolation estimate (27)

gives

‖etAu‖b ≤ ‖etAu‖λa‖etAu‖1−λb̃
. t−l(1−λ)‖u‖λa ‖u‖1−λa ,

and we deduce

‖etAu‖b . t−(1−λ)l‖u‖a = t−(b−a)/2k‖u‖a.

Setting now Sθ := etA with t = θ−2k we have proved

‖Sθu‖b . θb−a‖u‖a

and thus, Property (ii) holds.

For Property (iv) we first use t = θ−2k and observe

d

dθ
etAu =

dt

dθ

d

dt
etAu = −2kt1/2k(tAetAu) = −2k

θ
tAetAu.

The same proof as for Property (ii) yields, setting Sθ = etA:∥∥ d
dθ
Sθu

∥∥
b

=
2k

θ
‖tAetAu‖b .

2k

θ
θb−a‖u‖a = 2kθb−a−1‖u‖a .

Finally, given the continuity of Sθ on H a, it suffices to show Property (iii′) for b 6= a. Note

that 1−A : H a+2k →H a is an isomorphism. With 1− etλ = −λ
∫ t

0 e
λs ds, we have for u ∈ C∞,

v = (1−A)
a−b
2k u and t ∈ (0, 1]

u− etAu =
1

2πi

∫
γr,η

(1− etλ)(A− λ)−1(1−A)−
a−b
2k v dλ

= − 1

2πi

∫
γr,η

λ

∫ t

0
eλs ds (A− λ)−1(1− λ)−

a−b
2k v dλ .

The double integral is absolutely convergent for a−b
2k ∈ (0, 1). After interchanging the order of

integration and using the triangle inequality as well as ‖(A− λ)−1v‖b . ‖v‖b
λ , the right hand side

is smaller than a constant times∫ t

0

∫
γr,η

es Re λ|1− λ|−
a−b
2k ‖v‖b |dλ| ds .

If r < 1, we may bound |1−λ|−1 ≤ Cr(1 + |λ|)−1 for all λ ∈ γr,η. It therefore remains to estimate∫ t

0

∫
γr,η

es Re λ(1 + |λ|)−
a−b
2k ‖v‖b |dλ| ds .

We split the integral
∫
γr,η

= Ir + I+ + I− into integrals over γr = {λ = reiσ ∈ C : |σ| ≤ η},
γ+ = {λ = ρeiη ∈ C : ρ ≥ r} resp. γ− = {λ = ρe−iη ∈ C : ρ ≥ r} and consider the three terms

separately. The first integral,

Ir =

∫ t

0

∫ η

−η
es cos(σ) dσ ds (1 + r)−

a−b
2k ‖v‖b ,
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is bounded by t(2η)e(1 + r)−
a−b
2k ‖v‖b and hence of order t. For the second and third integrals,

I± =

∫ t

0

∫ ∞
r

e−sρ| cos(η)|(1 + ρ)−
a−b
2k ‖v‖b dρ ds

the change of variables ρ 7→ ρ
s| cos(η)| leads to

I± =

∫ t

0

∫ ∞
sr| cos(η)|

e−ρ
(

s| cos(η)|
s| cos(η)|+ ρ

)a−b
2k

‖v‖b
1

s| cos(η)|
dρ ds ,

or

I± ≤
∫ t

0
(s| cos(η)|)

a−b
2k
−1

∫ ∞
0

e−ρρ−
a−b
2k ‖v‖b dρ ds . t

a−b
2k ‖v‖b .

Using t = 1
θ2k and ‖v‖b = ‖(1−A)

a−b
2k u‖b . ‖u‖a, (iii’) follows.
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[16] A. Schlömerkemper. About solutions of Poisson’s equation with transition condition in non-

smooth domains. Z. Anal. Anwend., 27(3):253–281, 2008.

[17] C. Schwab. Variable order composite quadrature of singular and nearly singular integrals.

Computing, 53(2):173–194, 1994.

[18] S. A. Sauter and C. Schwab. Boundary Element Methods, volume 39 of Springer Series in

Computational Mathematics. Springer Verlag, Berlin, 2011.

[19] Tran T. Stephan, E.P. and A. Costea. A boundary integral equation on the sphere for

high-precision geodesy. Computer Methods in Mechanics: Lectures of the CMM 2009, pages

99–110, 2010.

[20] A. Costea. Mathematical modelling and numerical simulations in physical geodesy. Disser-

tation, Leibniz University Hannover, 2012.

[21] R. Seeley. Topics in pseudo-differential operators. In C.I.M.E. Conference on pseudodiffer-

ential operators, Stresa 1968, pages 167–305. Cremonese, Rome, 1969.

[22] S. Seo, M. K. Chung, and H. K. Vorperian. Heat kernel smoothing using Laplace-Beltrami

eigenfunctions. In Proceedings of the 13th international conference on Medical image com-

puting and computer-assisted intervention: Part III, MICCAI’10, pages 505–512, Berlin,

Heidelberg, 2010. Springer-Verlag.

31



[23] M. Maischak. Technical manual of the program system maiprogs, 2001.

[24] M. Maischak. Analytical evaluation of potentials and computation of galerkin integrals on

triangles and parallelograms. Technical report, ifam50, 2001.

[25] S. Erichsen and S. A. Sauter. Efficient automatic quadrature in 3-d Galerkin BEM. Comput.

Methods Appl. Mech. Engrg., 157(3-4):215–224, 1998. Seventh Conference on Numerical

Methods and Computational Mechanics in Science and Engineering (NMCM 96) (Miskolc).

[26] C. Schwab and W. Wendland. On the extraction technique in boundary integral equations.

Math. Comp., 68(225):91–122, 1999.

[27] H. Schulz, C. Schwab, and W. L. Wendland. The computation of potentials near and on

the boundary by an extraction technique for boundary element methods. Comput. Methods

Appl. Mech. Engrg., 157(3-4):225–238, 1998. Seventh Conference on Numerical Methods and

Computational Mechanics in Science and Engineering (NMCM 96) (Miskolc).
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