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Abstract

Quadrature formulas for spheres, the rotation group, and other compact, homogeneous man-
ifolds are important in a number of applications and have been the subject of recent research.
The main purpose of this paper is to study coordinate independent quadrature (or cubature)
formulas associated with certain classes of positive definite and conditionally positive definite
kernels that are invariant under the group action of the homogeneous manifold. In particular,
we show that these formulas are accurate – optimally so in many cases –, and stable under
an increasing number of nodes and in the presence of noise, provided the set X of quadrature
nodes is quasi-uniform. The stability results are new in all cases. In addition, we may use
these quadrature formulas to obtain similar formulas for manifolds diffeomorphic to Sn, oblate
spheroids for instance. The weights are obtained by solving a single linear system. For S2, and
the restricted thin plate spline kernel r2 log r, these weights can be computed for two-thirds of
a million nodes, using a preconditioned iterative technique introduced by us.

1 Introduction

Quadrature formulas for spheres, the rotation group, and other compact, homogeneous manifolds
are important in many applications and have been the subject of recent research [16,17,26,31,32,34].
The main purpose of this paper is to study quadrature (or cubature) formulas associated with
certain classes of positive definite and conditionally positive definite kernels that are invariant
under the group action of the homogeneous manifold, and to show that these formulas are accurate
and stable, provided the set X of quadrature nodes is quasi-uniform. The invariance of the kernels
is a key ingredient in giving simple, easy to construct linear systems that determine the weights.
The weights themselves have size comparable to 1/N , where N is the number nodes in X. For S2,
and the restricted thin plate spline kernel r2 log r, these weights can be computed for very large
values of N using the preconditioned iterative technique described in [11].

The quadrature formulas developed here are for the general setting of a compact, homogeneous,
n-dimensional manifold M that is equipped with a group invariant Riemannian metric gij and its
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associated invariant measure dµ(x) =
√

det(gij(x))dx. From the point of view of current applica-
tions, the two most important of these manifolds are S2 and SO(3). However, other homogeneous
spaces, such as Stiefel and Grassmann manifolds, are arising in applications [1, 7], and we expect
that in the future our results will be applied to them. The type of quadrature formula we will be
concerned with here has the form∫

M
f(x)dµ(x)

.
=
∑
ξ∈X

cξf(ξ) =: Q(f), f ∈ C(M), (1.1)

where the set X ⊂M of centers/nodes is finite. The weights {cξ}ξ∈X are chosen so that quadrature
operator Q integrates exactly a given finite dimensional space of continuous functions, V .

In the case of Sn and SO(3), popular choices for V are spaces of spherical harmonics [16, 26,
31,32], and Wigner D-functions [17]. Work also has been done on compact two-point homogeneous
manifolds [6] and on general compact homogeneous manifolds [34], with V being chosen to be a
set of eigenfunctions of a manifold’s Laplace-Beltrami operator. We will use the term polynomial
quadrature for methods that integrate such spaces exactly; this is because, for spheres and a few
other spaces, V consists of restrictions of harmonic polynomials.

The quadrature methods developed here are kernel methods; they use a space V consisting
of linear combinations of kernels. In [40], Sommariva and Womersley used spaces of rotationally
invariant radial basis functions (RBFs) and spherical basis functions (SBFs) to derive a linear
system of equations for the weights cξ. However, neither accuracy, control over the size of the
weights, nor stability was addressed in [40]. In this paper these and other issues are dealt with
employing recent results developed by us in [11,19,20].

Accuracy is measured in terms of the mesh norm h, which is defined in section 2. All the kernels
we deal with are associated with a Sobolev space Wm

2 , for some m in N. Previous error estimates
for quadrature with positive definite kernels on S2 were given in [26]. For the general case of a
homogeneous manifold, the error we obtained is O(hm), for functions in Wm

2 . However, on Sn or
SO(3), we get even better rates, in fact optimal: if a function is in C2m, then the order is O(h2m).
For example, the thin-plate spline kernel restricted to S2 has m = 2, so, for a function in C4(S2),
the error would be O(h4).

In the course of studying accuracy for Q in various spaces, we obtain new error estimates for
interpolation/reproduction problems on two-point homogeneous manifolds. First, for a general such
manifold, the estimates hold for f ∈ Wm

2 (M), which is the “native space” of the kernel. Second,
for spheres (new when reproduction is required) and real projective spaces, the estimates apply to
f ∈ Wµ

2 , with n/2 < µ ≤ m. Thus the estimates allow an “escape” from the native space, in the
sense that they are for functions not smooth enough to be in that space.

These quadrature formulas are stable both under an increase in the number of points and in the
presence of noise. If the number of points is increased, then the norm of the quadrature operator
remains uniformly bounded, as long as the level of quasi-uniformity is maintained. Thus there is
no oscillatory “Runge phenomenon.” To examine the effect of noise, we assume the measured func-
tion values differ from the actual ones by independent, identically distributed, zero mean random
variables. Under these conditions, the standard deviation of the quadrature formula decreases as
O(N−1/2).

To illustrate how the method works, consider a positive definite SBF kernel φ(x · y), x, y ∈
Sn, and let V = span{φ(x · ξ)}ξ∈X . We want to integrate s ∈ V exactly; that is, we require∑

ξ∈X cξs(ξ) =
∫
Sn s(x)dµ(x). Doing so results in a systems of linear equations for the weights. If

A is the interpolation matrix with entries Aξ,η = φ(ξ · η), ξ, η ∈ X, then the vector of weights c
satisfies (Ac)ξ =

∫
Sn φ(ξ · x)dµ(x). At this point, we encounter an apparent difficulty. We have to

compute every one of the integrals
∫
Sn φ(ξ · x)dµ(x) for every ξ ∈ X.
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The rotational invariance of the SBF allows us to overcome this difficulty. Because of rotational
invariance, all of the integrals are independent of ξ, and thus have the same value J0; the system
then becomes (Ac)ξ = J0. The constant J0 only needs to be computed once for a given kernel.
(For many SBFs/RBFs, values of J0 are known; see [40].) The same is true for group invariant
kernels on M, as we will see in section 2.2 below. The point to be emphasized here is that group
invariance of the kernels allows us to deal with quadrature as an interpolation problem. Without
it, the problem requires computing many integrals and in fact becomes prohibitively expensive,
computationally.

Numerical tests of the quadrature formulas were carried out for M = S2, in connection with
the SBF kernel Φ(x · y) = (1 − x · y) log(1 − x · y), x, y ∈ S2. This kernel is the thin-plate spline
r2 log r restricted to the sphere, and it corresponds to one of the Sobolev spaces mentioned above,
namely, W 2

2 (S2). For these tests, the sets of quasi-uniform nodes were generated via three different,
commonly used methods: icosahedral, Fibonacci (or phyllotaxis), and quasi-minimum energy. The
number of nodes employed varied over a substantial range, from a few thousand to two-thirds of
a million. Weights corresponding to these nodes were computed using a pre-conditioning method
developed in [11]. The tests themselves focused on the accuracy and stability of the method, both
in terms of increasing the number of nodes and adding noise. The tests, which are discussed in
section 5, gave excellent results, in agreement with the theory.

There are situations where the manifold M involved is not a homogeneous space, but quadrature
formulas can still be obtained. If M is diffeomorphic to a homogeneous space, then it is possible
to obtain quadrature weights for M from the ones for the corresponding homogeneous space. In
section 6, we will show how this can be done for Sn. We will then apply this to the specific
case where M is an oblate spheroid (e.g., earth with flattening accounted for), which is of course
diffeomorphic to S2.

The paper is organized this way. Section 2 begins with a brief discussion of positive defi-
nite/conditionally positive definite kernels, notation, and, in section 2.1, interpolation. Section 2.2
contains a derivation and discussion of kernel quadrature formulas, with special emphasis on the
role played by group invariance of the kernel employed in the formula. In section 2.3, the questions
of accuracy and stability mentioned in the introduction are taken up. The results obtained there
are aimed at invariant kernels, such as Sobolev and polyharmonic kernels discussed in sections 3
and 4.

Sobolev kernels on a compact manifold are positive definite reproducing kernels for the Sobolev
space Wm

2 , m > n/2. In section 3, we study these in terms of their invariance, interpolation errors,
and properties of their Lagrange functions and Lebesgue constants. Finally, in section 3.4 we look
at their use in quadrature formulas.

Section 4 is devoted to a very important class of kernels on a compact, two-point homoge-
neous manifold: the polyharmonic kernels. These kernels, which may be either positive definite
or conditionally positive definite, are Green’s functions for operators that are polynomials in the
the Laplace-Beltrami operator. On spheres, they include restricted surface splines, and on SO(3)
similar kernels. All of these are given in terms of simple, explicit formulas. The whole section is a
self-contained discussion of these kernels, culminating in their application to quadrature formulas.

The results from various numerical tests that we conducted are discussed in detail in section 5.
Finally, in section 6 we discuss ways of using quadrature weights for a compact, homogeneous
manifold M to obtain invariant, coordinate independent weights for manifolds diffeomorphic to M.
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2 Interpolation and Quadrature via Kernels

The spaces that we will work with will be homogeneous manifolds, ultimately. However, for inter-
polation we need very little in the way of structure. In fact, we could take our underlying space M
to be a metric space.

The set X ⊂M will be assumed finite. Its mesh norm (or fill distance) h := supx∈M dist(x,X)
measures the density of X in M, while the separation radius q := 1

2 infξ,ζ∈X
ξ 6=ζ

dist(ξ, ζ) determines

the spacing of X. The mesh ratio ρ := h/q measures the uniformity of the distribution of X in M.
We say that a continuous kernel κ : M × M → R is (strictly) positive definite on M if, for

every finite subset X ⊂M, the matrix A with entries Aξ,η := κ(ξ, η), ξ, η ∈ X, is positive definite.
Conditionally (strictly) positive definite kernels are defined with respect to a finite dimensional
space Π := span{ψk : M → R}mk=1, where the ψk’s are linearly independent, continuous functions
on M. In addition, given a finite set of centers X ⊂ M, where we let N := #X be the cardinality
of X, we say that Π is unisolvent on X if the only function ψ ∈ Π for which ψ|X = 0 is y ≡ 0.
This means that {ψk|X}mk=1 is a linearly independent set in RN . Given that Π is unisolvent on X,
we say that the kernel κ is conditionally positive definite if for every nonzero set {aξ ∈ R}ξ∈X such
that

∑
ξ aξψk(ξ) = 0, k = 1, . . . ,m, one has∑

ξ,η∈X
aξaηκ(ξ, η) > 0. (2.1)

2.1 Interpolation

Positive definite and conditionally positive definite kernels can be used to interpolate a continuous
function f : M→ R, given the data f |X , by means of a function of the form

s =
∑
ξ∈X

aξκ(·, ξ) +
m∑
k=1

bkψk, where
∑
ξ∈X

aξψk(ξ) = 0, k = 1, . . . ,m. (2.2)

We will denote the space of such functions by VX .
In the case where the kernels are RBFs or SBFs, the space Π is usually taken to be either the

polynomials or spherical harmonics with degree less than some fixed number.
We now turn to the interpolation problem. Let Ψk = ψk|X , k = 1, . . . ,m, and define the N ×m

matrix Ψ = [Ψ1 Ψ2 · · ·Ψm]. In addition, let a = (aξ)ξ∈X and b = (b1 · · · bm)T . The constraint
condition that

∑
ξ aξψk(ξ) = 0 can now be stated as ΨTa = 0. Requiring that s interpolate a

function f ∈ C(M) on X is then f |X = s|X = Aa + Ψb, where Aξ,η = κ(ξ, η). Written in matrix
form, the interpolation equations are(

A Ψ
ΨT 0m×m

)
︸ ︷︷ ︸

A

(
a
b

)
=

(
f |X

0m×1

)
. (2.3)

Using the constraint condition ΨTa = 0 and the positivity condition (2.1), one can easily show
that the matrix A on the left above is invertible. In addition, the interpolation process reproduces
Π; that is, if f ∈ Π, then s = f . Finally, much is known about how well s fits f . In many cases,
the approximation is excellent (cf. [45] and references therein).

In the sequel, we will need the Lagrange function centered at ξ ∈ X, χξ ∈ VX . We define χξ to
be the unique function in VX that satisfies χξ(η) = δξ,η; that is, χξ is 1 when x = ξ and 0 when
x = η ∈ X, η 6= ξ.
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2.2 Quadrature

We will now develop our quadrature formula for a C∞, n-dimensional Riemannian manifold M that
is a homogeneous space for a Lie group G [44]. This just means that G acts transitively on M: for
two points x, y ∈ M there is a γ ∈ G such that y = γx. Equivalently, M is a left coset of G for a
closed subgroup.

S2 is a homogeneous space for SO(3). In fact, the Lie group G is a homogeneous space for itself.
Thus, SO(3) is its own homogeneous space. Homogeneous spaces also include Stiefel manifolds,
Grassmann manifolds an many others. All spheres and projective spaces belong to a special class
known as two-point homogeneous spaces. Such spaces are characterized by the property that if two
pairs of points x, y and x′, y′ satisfy dist(x, y) = dist(x′, y′), then there is a group element γ ∈ G
such that x′ = γx and y′ = γy. While spheres and projective spaces are compact, there are also
non compact spaces: Rn and certain hyperbolic spaces also belong to the class.

Invariance under G plays an important here. We will assume throughout that the kernel κ is
invariant [43, §I.3.4] under G. Moreover, we will take dµ to be the G-invariant measure associated
with the Riemannian metric tensor for M [43, §I.2.3]. Thus, for all x, y ∈M, γ ∈ G, and f ∈ L1(M)
we have

κ(γx, γy) = κ(x, y) and

∫
M
f(x)dµ(x) =

∫
M
f(γx)dµ(x). (2.4)

In particular, all SBF kernels on Sn, which have the form φ(x · y), are invariant, as is the standard
measure on Sn. The following lemma is a consequence of κ and dµ being invariant.

Lemma 2.1. The integral J(y) :=
∫
M κ(x, y)dµ(x) is independent of y.

Proof. Take z ∈M to be fixed. Because of the group action on M, we may find γ ∈ G such that z =
γy. From the invariance of κ under γ, we have κ(x, y) = κ(γx, z). Hence, J(y) =

∫
M κ(γx, z)dµ(x).

However, the integral being invariant under G then yields

J(y) =

∫
M
κ(γx, z)dµ(x) =

∫
M
κ(x, z)dµ(x) = J(z),

which completes the proof.

Since J(y) is independent of y, we may drop y and denote it by J0, which we will do throughout
the sequel. Note that J0 may be 0. In addition, we define these quantities.

Jk :=
∫
M ψk(x)dµ(x), k = 1, . . . ,m;

J := (J1 · · · Jm)T ;
1 := 1|X .

We point out that, for the constant function 1 on M, 1 = 1|X is the column vector in RN with all
entries equal to 1.

The result below gives a formula for the integral of a function s ∈ VX and provides a system of
equations that determine the quadrature weights. It follows the one given in [40], with rotational
invariance replaced by the invariance under G proved in Lemma 2.1.

Proposition 2.2. Let κ and dµ satisfy (2.4) and suppose that c and d are the N × 1 and m × 1
column vectors that uniquely solve the (N +m)× (N +m) system of equations

Ac+ Ψd = J01 and ΨT c = J. (2.5)
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If s ∈ VX , then ∫
M
s(x)dµ(x) = cT s|X =

∑
ξ∈X

cξs(ξ) (2.6)

In addition, if χξ ∈ VX is the Lagrange function centered at ξ, then we also have

cξ =

∫
M
χξ(x)dµ(x) and |cξ| ≤ ‖χξ‖L1(M) (2.7)

Proof. Integrating s(x) from (2.2) results in this chain of equations:∫
M
s(x)dµ(x) =

∑
ξ∈X

aξ

∫
M
κ(x, ξ)dµ(x)︸ ︷︷ ︸

J0

+
m∑
k=1

bk

∫
M
ψk(x)dµ(x)︸ ︷︷ ︸

Jk

(2.8)

= J01
Ta+ JT b

= (J01
T JT )

(
a
b

)
.

Using (2.3), with f |X replaced by s|X , together with the invertibility and self adjointness of A, we
obtain

(J01
T JT )

(
a
b

)
=

{
A−1

(
J01
J

)
︸ ︷︷ ︸ c

d



}T (
s|X

0m×1

)
= cT s|X .

Multiplying

(
c
d

)
by A and writing out the equations for c, d yields the system (2.5). Combining

the two previous equations then yields (2.6). Moreover, from (2.6), with s replaced by χξ and the
values of s|X replaced by those of χξ on the set X, we obtain the formula for cξ in (2.7). Finally,
the bound on the right in (2.7) follows immediately from the integral formula for cξ.

As we mentioned earlier, the quadrature formula for f ∈ C(M) is obtained by replacing f with
its interpolant in VX . To that end, we define the linear functional QVX (f) that will play the role
of our quadrature operator.

Definition 2.3. Let f ∈ C(M) and let sf ∈ VX be the unique interpolant for f , so that sf |X = f |X .
Then, we define the linear functional QVX : C(M)→ R via

QVX (f) :=

∫
M
sf (x)dµ(x) =

∑
ξ∈X

cξf(ξ), (2.9)

where the cξ’s, the weights, are given in Proposition 2.2.

The invariance assumption on the kernel κ produces a system with the same attractive feature
as one for an SBF φ(x · y). The integral J0 depends only on κ and M; it is entirely independent of
X. This is also true of the other Jk’s. As a result the equations (2.5) defining the weight vector
c only depend on X through function evaluations. The integrals J0, J1, . . . , Jm are all known in
advance and are independent of X.

It is important to note that, without the invariance of κ, obtaining the system for c would require
computing integrals of the form

∫
M κ(x, ξ)dµ(x) for each ξ ∈ X. This follows just by looking at

equation (2.8) in the derivation of (2.5). This would make finding c numerically very expensive,
not only because each integral would have to be computed for every ξ ∈ X, but also because the
whole set would have to be recomputed whenever X was changed.
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2.2.1 Weights

In many cases, the weights appearing in the quadrature formula above may be interpreted as coming
from simple interpolation problems. In particular, if κ is strictly positive definite and Π = {0},
then the system (2.5) becomes Ac = J01. This is the set of equations for interpolating the function
f(x) ≡ 1/J0. To obtain the interpolation problem for quadrature with κ being merely conditionally
positive definite with respect to Π, start with ΨT c = J . This equation completely determines the
orthogonal projection of c, c‖ := Pc, onto the range of Ψ: The standard normal equations give

c‖ = Pc = Ψ(ΨTΨ)−1ΨT c = Ψ(ΨTΨ)−1J . Thus, c‖ is known. Next, let c⊥ := P⊥c, which

obviously satisfies Pc⊥ = 0, so ΨT c⊥ = 0, and, consequently, the following system:

Ac⊥ + Ψd = J01−AΨ(ΨTΨ)−1J and ΨT c⊥ = 0. (2.10)

This is the interpolation problem (2.3), with fX = J01−AΨ(ΨTΨ)−1J . The final weights are then

c = c⊥ + Ψ(ΨTΨ)−1J︸ ︷︷ ︸
c‖

. (2.11)

Note that (2.10) may be solved for c⊥, without also having to solve for d as follows. Start by
eliminating d from (2.10). Multiply both sides of (2.10) by P⊥. Since P⊥c⊥ = c⊥ and P⊥Ψ = 0,
we get

P⊥AP⊥c⊥ = J0P
⊥1− P⊥AΨ(ΨTΨ)−1J. (2.12)

Because κ is conditionally positive definite relative to Π, P⊥AP⊥ is positive definite on the or-
thogonal complement of the range of Ψ. Restricted to that space, it is invertible. Carrying out the
inverse gives us c⊥.

Often, the space Π contains the constant function; that is, 1 ∈ Π. When this happens, the term
with J0 drops out of (2.12), which then becomes

P⊥AP⊥c⊥ = −P⊥Ac‖ = −P⊥AΨ(ΨTΨ)−1J.

This equation is homogeneous in A and is therefore independent of J0. This implies that c⊥ can
be determined independently of J0.

There is another consequence of having 1 ∈ Π. First, the column vector 1 is in the range of Ψ,
so P1 = 1. Let 〈c⊥〉 be the average of c⊥. Since Pc⊥ = 0, we have N〈c⊥〉 = 1T c⊥ = (P1)T c⊥ = 0.
Second, since 1 ∈ Π, we also have that the quadrature formula is exact for it, and so Q(1) =
vol(M) = 1T c = N〈c〉. Using c = c⊥ + c‖, along with a little algebra, yields

〈c⊥〉 = 0, 〈c〉 = 〈c‖〉 =
vol(M)

N
, provided 1 ∈ Π. (2.13)

Signs of weights in quadrature formulas are usually nonnegative. This is true for the polyno-
mial quadrature formulas developed for spheres [31] and for two-point homogeneous manifolds [6].
Numerical experiments by Sommariva and Womersley [40] produced negative weights for kernels
formed by restricting Gaussians to S2. On the other hand, their experiments involving the thin-plate
splines (cf. section 4) restricted to S2 resulted in only positive weights.

Determining for what kernels and with what restrictions on X all of the weights are positive is
an open problem.
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2.3 Accuracy and Stability of QVX

There are two important questions that arise concerning the quadrature method that we have been
discussing. First, how accurate is it? Second, how stable is it?

The accuracy of QVX depends on how well the underlying space of functions, VX in our case,
reproduces functions from the class to be integrated. Specifically, we have the following standard
estimate: ∣∣QVX (f)−

∫
M
f(x)dµ(x)

∣∣ ≤ ‖sf − f‖L1(M) ≤ (vol(M))1/2‖sf − f‖L2(M). (2.14)

This inequality converts estimates of the accuracy of QVX (f) to error bounds for kernel interpola-
tion. These are known in many cases of importance.

Stability is related to how well the quadrature formula performs under the presence of noise.
Lack of stability can amplify the effect that noise in f |X will have on the value of QVX (f). Stability
also relates to performance as the number of data sites increases. Standard one-dimensional equally
spaced quadrature formulas that reproduce polynomials can be quite unstable, due to the well-
known Runge phenomenon.

A measure of stability is the C(M) norm of the quadrature operator. From the definition of
QVX in (2.9) and equation (2.7), we have that

‖QVX‖C(M) =
∑
ξ∈X
|cξ| ≤

∑
ξ∈X
‖χξ‖L1(M). (2.15)

When M is a compact manifold, this bound can be given in terms of the Lebesgue constant,
ΛVX = maxx∈M

∑
ξ∈X |χξ(x)|. The reason is that

‖QVX‖C(M) ≤
∑
ξ∈X
‖χξ‖L1(M) ≤

∑
ξ∈X

∫
M
|χξ(x)|dµ(x) ≤ vol(M)ΛVX . (2.16)

Let us briefly see how noise affects QVX (f). Suppose that at each of the sites ξ we measure f(ξ)+
νξ, where νξ is a zero mean random variable. Further, we suppose that the νξ’s are independent
and identically distributed, with variance σ2

ν . Our quadrature formula gives us QVX (f + ν) rather
than QVX (f). Because the νξ’s have zero mean, we have that the mean E{QVX (f + ν)} = QVX (f).
The variance of QVX (f + ν) is thus

σ2
Q = E{

(
QVX (f + ν)−QVX (f)

)2} = E{QVX (ν)2}. (2.17)

We can both calculate and estimate σQ:

Proposition 2.4. Let νξ be independent, identically distributed, zero mean random variables having
standard deviation σν . Then the standard deviation σQ satisfies

σ2
Q = σ2

ν‖c‖22 ≤ σ2
ν‖c‖1‖c‖∞ ≤ vol(M)σ2

ν ΛVX max
ξ∈X
‖χξ‖L1(M) (2.18)

Proof. We begin by evaluating the term on the right in (2.17). to do this, we need to compute
E{νξνη}. Since the νξ’s are i.i.d., we have E{νξνη} = σ2

νδξ,η. It follows that σ2
Q = E{QVX (ν)2} =

σ2
ν‖c‖22. Moreover, ‖c‖22 ≤ ‖c‖∞‖c‖1. Combining this with (2.7) and the previous equation results

in (2.18).
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3 Sobolev Kernels

There are two classes of kernels that we will discuss here. The first class was introduced in [19, § 3.3],
in the context of a compact n-dimensional Riemannian manifold1 M equipped with a metric g. This
class comprises positive definite reproducing kernels for the Sobolev spaces Wm

2 (M), as defined
in [3,24]. For M a homogeneous space with g being the invariant metric that M inherits from a Lie
group G, we will show below that these kernels are invariant under the action of G.

The second class, which was introduced and studied in [20], comprises polyharmonic kernels on
two-point manifolds – spheres, projective spaces, which include SO(3), along with a few others.
These kernels are conditionally positive definite with respect to finite dimensional subspaces of
eigenfunctions of the Laplace-Beltrami operator and they are invariant under appropriate transfor-
mations. We will discuss these in section 4 below.

The Sobolev space Wm
2 (M), m ∈ N, is defined as follows. Let 〈·, ·〉g,x be the inner product for

a Riemannian metric g defined on TMx, the tangent space at x ∈ M. This inner product can also
be applied to spaces of tensors at x. We denote by ∇k the kth order covariant derivative associated
with the metric g, and let dµ be the measure associated with g. For Wm

2 (M), define the inner
product

〈f, h〉m,M := 〈f, h〉Wm
2 (M) :=

m∑
k=0

∫
M

〈
∇kf,∇kh

〉
g,x

dµ(x), (3.1)

and norm ‖f‖2m,M := 〈f, f〉m,M, where f, h : M → R are assumed smooth enough for their Wm
2

norms to be finite. The advantage of this definition is that it yields Sobolev spaces that are co-
ordinate independent and can also be defined on measurable regions Ω ⊆ M. Using the Sobolev
embedding theorem for manifolds [3, §2.7], one can show that if m > n/2 these spaces are repro-
ducing kernel Hilbert spaces, with κm being the unique, strictly positive definite reproducing kernel
for Wm

2 (M); that is,
f(x) = 〈f(·), κm(x, ·)〉m,M

In the remainder of this section we will discuss invariance, interpolation error estimates, Lagrange
functions, Lebesgue constants, and quadrature formulas derived from κm.

3.1 Invariance of κm

We now turn to a discussion of the invariance of κm under the action of a diffeomorphism that is
also an isometry. We will then apply this to the case of a homogeneous space. Here is what we will
need.

Proposition 3.1. Let M be a compact Riemannian manifold of dimension n with metric g. If Φ :
M→M is a diffeomorphism that is also an isometry, then the kernel κm satisfies κm(Φ(x),Φ(y)) =
κm(x, y) and dµ(Φ(x)) = dµ(x).

Proof. The proof proceeds in two steps. The first is showing this. Let f : M→ R and let fΦ = f ◦Φ
be the pullback of f by Φ. Then,

〈∇kfΦ,∇khΦ
〉
g,x

= 〈∇kf,∇kh
〉
g,Φ(x)

. (3.2)

We will follow a technique used in [25, Proposition 2.4, p. 246] and in [20]. Let (U, φ) be a local chart,
with coordinates uj = φj(x), j = 1, . . . , n for x ∈ U. Since Φ is a diffeomorphism, (Φ(U), φ ◦ Φ−1)

1See [19] for a discussion of the Riemannian geometry involved, including metrics, tensors, covariant derivatives,
etc.
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is also a local chart. Let ψ = φ ◦Φ−1, and use the coordinates vj = ψj(y) for y ∈ Φ(U). The choice
of coordinates has the effect of assigning the same point in Rn to x and y, provided y = Φ(x) –
i.e., uj(x) = vj(y). Thus, relative to these coordinates the map Φ is the identity, and consequently,
the two tangent vectors ( ∂

∂vj
)y ∈ TyM and ( ∂

∂uj
)x ∈ TxM are related via(

∂

∂vj

)
Φ(x)

= dΦx

(
∂

∂uj

)
x

.

So far, we have only used the fact that Φ is a diffeomorphism. The map Φ being in addition an
isometry then implies that〈

∂

∂vj
,
∂

∂vk

〉
Φ(x)

=

〈
dΦx

(
∂

∂uj

)
, dΦx

(
∂

∂uk

)〉
Φ(x)

=

〈
∂

∂uj
,
∂

∂uk

〉
x

.

The expressions on the left and right are the metric tensors at y = Φ(x) and x; the equation implies
that, as functions of v and u, gjk(v) = gjk(u). From this it follows that the expressions for the
Christoffel symbols, covariant derivatives and various expressions formed from them also will be
the same, as functions of local coordinates. In addition, note that the local forms for fΦ and hΦ

at u = u(x) are fΦ ◦ φ−1 and hΦ ◦ φ−1, respectively, and those for f and h at v = v(y) are f ◦ ψ−1

and h ◦ ψ−1. At u = u(x) and v = v(y), y = Φ(x), f ◦ ψ−1(v) = f ◦ Φ ◦ φ−1(v) = fΦ ◦ φ−1(v),
and similarly for h. Again, this is functional equality in local coordinates, so matching partial
derivatives are also equal. Consequently, (3.2) holds.

The equality of the coordinate forms of the metric gjk, which was established above, implies
invariance of the Riemannian measure:

dµ(x) =
√

det(gjk(u))dnu =
√

det(gjk(v))dnv = dµ(Φ(x)). (3.3)

Using this we see that∫
M
〈∇kfΦ,∇khφ

〉
g,x
dµ(x) =

∫
M
〈∇kf,∇kh

〉
g,Φ(x)

dµ(x)

=

∫
M
〈∇kf,∇kh

〉
g,Φ(x)

dµ(Φ(x))

=

∫
M
〈∇kf,∇kh

〉
g,y
dµ(y)

Finally, from this and (3.1), we have invariance of the Sobolev inner product:

〈fΦ, hΦ〉m,M = 〈f, h〉m,M (3.4)

The second step is to show that the kernel is invariant. Since κm is a reproducing kernel, we
have f(x) = 〈f(·), κm(x, ·)〉m,M. By (3.4), we also have f(x) = 〈fΦ(·), κm(x,Φ(·))〉m,M. Replacing
x by Φ(x) then yields

f(Φ(x)) = fΦ(x) = 〈fΦ(·), κm(Φ(x),Φ(·))〉m,M.

Finally, replacing f by fΦ−1
above gives us

f(x) = 〈f(·), κm(Φ(x),Φ(·))〉m,M,

from which it follows that κm(Φ(x),Φ(y)) is also a reproducing kernel for Wm
2 (M). But, reproducing

kernels are unique, so κm(Φ(x),Φ(y)) = κm(x, y). Thus κm is invariant.
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Homogeneous spaces have two properties that allow us to use the proposition just proved. First,
they inherit a Riemannian metric invariant under the action of the Lie group G. Second, the action
of a group element produces an isometric diffeomorphism [25, 43]. These observations then yield
this:

Corollary 3.2. Let M be a homogeneous space for a Lie group G and suppose that M is equipped
with the invariant metric g from G. Then the reproducing kernel κm for Wm

2 (M) is invariant under
the action of γ ∈ G.

3.2 Error estimates for interpolation via κm

Recall that the accuracy of the quadrature formula associated with κm is directly dependent on
error estimates for interpolation via κm. To obtain these, we will first state a theorem that provides
estimates on functions with many zeros, quasi-uniformly distributed over a compact manifold.

Theorem 3.3 ( [20, Corollary A.13] “Zeros Lemma”). Suppose that M is a C∞, compact, n-
dimensional manifold, that 1 ≤ p ≤ ∞, m ∈ N, and also that u ∈ Wm

p (M). Assume that m > n/p
when p > 1, and m ≥ n when p = 1. Then there are constants C0 = C0(M) and C1 = C1(m, k,M)
such that if u|X = 0 and X ⊂M has mesh norm h ≤ C0/m

2, then

‖u‖Wk
p (M) ≤ C1h

m−k‖u‖Wm
p (M). (3.5)

Using this “zeros lemma” we are able obtain an estimate for ‖sf−f‖L2(M), provided f ∈Wm
2 (M)

and sf is the interpolant for f .

Proposition 3.4. Let m > n/2, f ∈ Wm
2 (M), and let sf be the κm-interpolant for f from VX .

Then, with the notation from Theorem 3.3, if h ≤ C0/m
2, we have

‖sf − f‖L2(M) ≤ C1h
m‖f‖Wm

2 (M). (3.6)

Proof. Clearly sf − f ∈Wm
2 and (sf − f)|X = f |X − fX = 0. Applying Theorem 3.3 to sf − f with

k = 0 yields ‖sf − f‖L2(M) ≤ C1h
m‖sf − f‖Wm

2 (M). Since the space Wm
2 (M) is the reproducing

Hilbert space for κm, the interpolant sf minimizes ‖g − f‖Wm
2 (M) among all g ∈ Wm

2 (M). Thus,
taking g = 0 yields ‖sf − f‖Wm

2 (M) ≤ ‖0− f‖Wm
2 (M) = ‖f‖Wm

2 (M), from which the inequality (3.6)
follows immediately.

The bounds in (3.6) hold whether or not M is homogeneous. In one respect, the bounds are not
as strong as we would like. The assumption that f is in the reproducing kernel space Wm

2 precludes
estimates for less smooth f , in W k

2 (M), with k < m. Stronger bounds do hold in important cases,
though. For example, in section 4, we will see that the stronger result for f ∈W k

2 holds for the class
of “polyharmonic” kernels, where M can be a sphere or some other two-point homogeneous space.
We conjecture that, at least for κm, the stronger result holds for general C∞ compact, Riemannian
manifolds.

3.3 Lagrange functions and Lebesgue constants

The Lagrange functions {χξ}ξ∈X associated with κm have remarkable properties. For quasi-uniform
sets of centers, Lebesgue constants are bounded independently of the number of points and the L1

norms of the Lagrange functions are nicely controlled. Specifically, we have the result below, which
holds for a general C∞ metric g.
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Proposition 3.5 ( [19, Theorem 4.6] [18, Proposition 3.6]). Let M be a compact Riemannian
manifold of dimension n, and assume m > n/2. For a quasi-uniform set X ⊂ M, with mesh ratio
h/q ≤ ρ, there exist constants CM and CM,m such that if h ≤ CM/m

2, then the Lebesgue constant
ΛVX = maxx∈M

∑
ξ∈X |χξ(x)| associated with κm satisfies

ΛVX ≤ CM,mρ
n.

In addition, we have this uniform bound on the L1-norm of the Lagrange functions:

max
ξ∈X
‖χξ‖L1(M) ≤ Cρ,m,Mqn.

Proof. In the statement of the theorem used above, we have made explicit the ρ dependence of the
bound on ΛVX found in the proof of [19, Theorem 4.6]. We have also adapted the notation there to
that used here. The bound on ‖χξ‖L1(M) follows from [18, Proposition 3.6], with s = χξ and p = 1.

In that proposition, the coefficients Ap,η = qn/pδξ,η and so ‖Ap,·‖p = qn/p. For p = 1, ‖A1,·‖1 = qd,
and so ‖χξ‖L1(M) ≤ Cρ,mqn.

3.4 Kernel quadrature via κm

The positive definite Sobolev kernel κm is invariant under the action of G, by Corollary 3.2. This
is the bare minimum requirement for a kernel to be able to give rise to a computable quadrature
formula. The other properties of κm established in the previous sections give us the result below
concerning accuracy and stability.

Theorem 3.6. Let X ⊂M be a finite set having mesh norm ρX ≤ ρ. Take A = (κm(ξ, η))|ξ,η∈X and
suppose f ∈Wm

2 (M). Then the vector of weights in QVX is c = J0A
−11, the error for QVX satisfies

|QVX (f) −
∫
M fdµ| ≤ hm‖f‖Wm

2 (M), and the norm of QVX is bounded by ‖QVX‖C(M) ≤ CM,mρ
n.

Finally, the standard deviation defined in Proposition 2.4 satisfies the bound σQ ≤ Cρ,m,Mσνhn/2.

Proof. The formula for the weights is a consequence of two things. First, by Corollary 3.2 the kernel
is invariant and so by Lemma 2.1 the integral

∫
M κm(x, ·)dµ(x) is a constant, namely J0. Second,

since the kernel is positive definite, Proposition 2.2 provides the desired formula for the weights.
The error estimate is a consequence of (2.14) and Proposition 3.6, and the norm estimate follows
from (2.16) and Proposition 3.5. Finally, the bound on σQ is a consequence of Proposition 2.4,
Proposition 3.5, and of the fact that ρnqn = hn.

There are two significant implications of this result. The first is just what was noted in sec-
tion 2.2; namely, the weights are obtained by directly solving a linear system of equations. The
second is that the measures of accuracy and stability hold for any X with mesh ratio less than a
fixed ρ.

There are several drawbacks. In the case of a general homogeneous space M, the formulas for
kernels κm are not yet explicitly known. This may be less of a problem when specific cases come up
in applications. Also, the error estimates, which provide the chief measure of accuracy, hold for f
in the space Wm

2 (M). We would like to “escape” from this native space (reproducing kernel space)
and have estimates for less smooth f . As we shall see in the next section, the situation is much
improved in the case of spheres, projective spaces, and other two-point homogeneous manifolds. In
the case of S2, not only do we have the requisite kernels, but in important cases we can also give
fast algorithms for obtaining the weights (cf. section 5).
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4 Polyharmonic Kernels

For spheres, SO(3), and other two-point homogeneous spaces (cf. [25, pgs. 167 & 177] for a list),
one can use polyharmonic kernels, which are related to Green’s functions for certain differential
operators. These include restrictions of thin-plate splines [20], which are useful because they are
given via explicit formulas. Many of these kernels are conditionally positive definite, rather than
positive definite.

The differential operators are polynomials in the Laplace-Beltrami operator. Since, on a com-
pact Riemannian manifold −∆ is a self adjoint operator with a countable sequence of nonnegative
eigenvalues λj < λj+1 having +∞ as the only accumulation point, we can express a polyhar-
monic kernel in terms of the associated eigenfunctions −∆φj,s = λjφj,s, s = 1, . . . , dj , dj being the
multiplicity of λj . To make this clear, we will need some notation.

Let m ∈ N such that m > n/2 and let πm ∈ Πm(R) be of the form πm(x) =
∑m

ν=0 cνx
ν , where

cm > 0 and let Lm be the 2m-order differential operator given by Lm = πm(−∆). We define J ⊂ N
to be a finite set that includes all j for which the eigenvalue πm(λj) of Lm satisfies πm(λj) ≤ 0. (In
addition to this finite set, J may also include a finite number j’s for which πm(λj) > 0.) We say
that the kernel κ : M×M→ R is polyharmonic if it has the eigenfunction expansion

κ(x, y) :=

∞∑
j=0

κ̃j

( dj∑
s=1

φj,s(x)φj,s(y)

)
, where κ̃j :=

{
πm(λj)

−1, j 6∈ J ,
arbitrary, j ∈ J .

(4.1)

The kernel κ is conditionally positive definite with respect to the space ΠJ = span{φj,s : j ∈
J , 1 ≤ s ≤ dj}. In the sequel, we will need eigenspaces, Laplace-Beltrami operators and so on
for compact two-point homogenous manifolds. Without further comment, we will use results taken
from the excellent summary given in [6]. This paper gives original references for these results.

Polyharmonic kernels are special cases of zonal functions, which are invariant kernels that
depend only on the geodesic distance d(x, y) between the variables x and y; d is normalized so
that the diameter of M is π — i.e., 0 ≤ d(x, y) ≤ π. To see that polyharmonic kernels are zonal

functions, we need the addition theorem on two-point homogeneous manifolds. If P
(α,β)
` denotes

the `th degree Jacobi polynomial, normalized so that P
(α,β)
` (1) = Γ(`+α+1)

Γ(`+1)Γ(α+1) , then this theorem

states that for any orthonormal basis {φj,s}
dj
s=1 of the eigenspace corresponding to λj we have

dj∑
s=1

φj,s(x)φj,s(y) = cεjP
(n−2

2
,β)

εj (cos(ε−1d(x, y))), c` :=
(2`+ n

2 + β)Γ(β + 1)Γ(`+ n
2 + β)

Γ(β + n+2
2 )Γ(`+ β + 1)

,

where the parameters ε and β, and of course λj , depend on the manifold. These are listed in the
table below. In summary, every polyharmonic kernel has the form κ(x, y) = Φ(cos(ε−1d(x, y))),
where

Φ(t) =

∞∑
j=0

κ̃jcεjP
(n−2

2
,β)

εj (t), −1 ≤ t ≤ 1. (4.2)

An important class of polyharmonic kernels on Sn are the surface (thin-plate) splines restricted
to the sphere. The surface splines on Rn are defined in [45, Section 8.3]; their κ̃j ’s are computed
in [4]. Both kernel and κ̃j are given below in terms of the parameter s = m + n/2; they are also
normalized to conventions used here (see also [30]). The first formula is used for odd n and the
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Manifold ε β λj
Sn 1 n−2

2 j(j + n− 1)

RPn 2 n−2
2 2j(2j + n− 1)

CPn 1 0 j(j + n
2 )

Quaternion Pn 1 1 j(j + n+2
2 )

Caley P16 1 3 j(j + 12)

Table 1: Parameters for compact, two-point homogeneous manifolds .

second for even n. These kernels are conditionally positive definite of order m.

Φs(t) =

{
(−1)s+

1
2 (1− t)s, s = m− n

2 ∈ N + 1
2

(−1)s+1(1− t)s log(1− t), s = m− n
2 ∈ N.

κ̃j = Cs,n
Γ(j−s)

Γ(j+s+n) , where, for even n, j > s.

 (4.3)

where the factor Cs,n is given by

Cs,n := 2s+nπ
n
2 Γ(s+ 1)Γ(s+

n

2
)

{
sin(πs)
π s = m+ n

2 ∈ N + 1
2

1, s ∈ N.

For the group SO(3) (= RP3), the following family of polyharmonic kernels, which are similar to
those above, was discussed in [21]:

κ(x, y) =

(
sin

(
ω(y−1x)

2

))2m−3

, m ≥ 2. (4.4)

Here ω(z) is the rotational angle of z ∈ SO(3). Adjusting the normalization given in [21, Lemma
2] to that used here, the polynomial π(x) associated with κ is π(x) =

∏m−1
ν=0 (x + 1 − 4ν2). We

remark that derivation of the kernels given in [21] used the theory of group representations along
with a generalized addition formula that holds for any compact homogeneous manifold (see [12]).

Remark 4.1. For two-point homogeneous manifolds, the Sobolev kernels κm are in fact polyhar-
monic. The reason is that κm is the Green’s function for the linear operator Lm =

∑m
k=0∇k

∗∇k.
However, by [20, Lemmas 4.2 & 4.3], Lm = πm(−∆), where πm(x) = xm +

∑m−1
ν=0 cνx

ν , so it
has to have the form (4.1). Also, it is easy to show that πm(λj) > 0 for j = 0, 1, . . ., and that
κm,j = πm(λj)

−1 ∼ λ−mj for j large.

There are two reproducing kernel Hilbert spaces associated with a polyharmonic kernel κ. We
will take κ̃j > 0 for j ∈ J . These spaces are often called “native spaces,” and are denoted by Nκ
and Nκ,J . Consider the inner products

〈f, g〉κ =

∞∑
j=0

dj∑
s=1

f̂j,sĝj,s
κ̃j

and 〈f, g〉κ,J =
∑
j 6∈J

dj∑
s=1

f̂j,sĝj,s
κ̃j

.

The first of these is the inner product of the reproducing kernel Hilbert space for κ itself, its native
space Nκ, and the second is the semi-inner product for the Hilbert space modulo ΠJ , Nκ,J . It is
important to note that norms for Wm

2 and Nκ are equivalent,

‖f‖κ ≈ ‖f‖Wm
2 (M). (4.5)

This follows easily from κ̃j ∼ c−1
m λ−mj ∼ c−1

m κ̃m,j , for j large.
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4.1 Interpolation with polyharmonic kernels

If we choose κ̃j > 0 for j ∈ J , the kernel will be positive definite, and so we can interpolate any
f ∈ C(M). The form of the interpolant will be

IXf =
∑
ξ∈X

aξκ(x, ξ). (4.6)

with the coefficients being obtained by inverting f |X = Aa, where A = [κ(ξ, η)]ξ,η∈X and the
components of a are the aξ’s.

Let’s look at error estimates, given that f ∈ Wm
2 (M). Before we start, we begin with the

observation that (4.5) and the usual minimization properties of ‖ · ‖κ imply that

‖IXf − f‖Wm
2 (M) ≤ C1‖IXf − f‖κ ≤ C‖f‖κ ≤ C2‖f‖Wm

2 (M).

This inequality was the key to proving Proposition 3.4, where the reproducing kernel Hilbert space
was itself Wm

2 (M). Hence, repeating the proof of that proposition, with the inequality changed
appropriately, we obtain the estimate

‖IXf − f‖L2(M) ≤ Chm‖f‖Wm
2 (M), f ∈Wm

2 (M), (4.7)

which holds for a polyharmonic kernel (4.1), provided the conditions on X in Proposition 3.4 are
satisfied. There are no restrictions on the two-point homogeneous manifold M.

There are, however, restrictions on the smoothness of f – namely, f must be at least as smooth
as κ. Put another way, f has to be in the native space Nκ.

In the case of Sn or RPn, it is possible to remove this restriction and “escape” from the native
space of κ. We will first deal with Sn. From (4.2), we see that polyharmonic kernels on Sn
are spherical basis functions (SBFs), provided coefficients with j ∈ J are taken to be positive.
Moreover, κ̃j ∼ λ−mj for j large. We may then apply [33, Theorem 5.5], with φ, τ, β, µ→ Φ,m, µ, 0,

to obtain the estimate below. (Note that for an integer k, the space Hk(Sn) in [33] is W k
2 (Sn) here.)

This result applies to functions not smooth enough enough to be in Wm
2 .

Proposition 4.2 (Case of Sn). Let κ be a polyhamonic kernel of the form (4.2), with deg(π(x)) =
m, and with κ̃j, j ∈ J , chosen to be positive. Assume that the conditions on X ⊂ Sn in Proposi-
tion 3.4 are satisfied. If µ is an integer satisfying m ≥ µ > n/2 and if f ∈Wµ

2 (Sn), then, provided
h is sufficiently small,

‖IXf − f‖L2(Sn) ≤ Chµ‖f‖Wµ
2 (Sn). (4.8)

The n-dimensional, real projective space, RPn, is the sphere Sn with antipodal points identified.
Thus each x ∈ RPn corresponds to {x,−x} on Sn. We will use this correspondence to lift the entire
problem to Sn, which is an idea used in [15,21] in connection with approximation on SO(3). As we
mentioned earlier, the distance d(x, y) = dRPn(x, y) has been normalized so that the diameter of
RPn is π, rather than the π/2 one would expect from its being regarded as a hemisphere of Sn. In
fact, the two distances are proportional to each other. The natural geodesic distance on projective
space is simply the angle between two lines passing through {x,−x} and {y,−y}, with x, y ∈ Sn,
which is just θ = arccos(|x · y|), 0 ≤ θ ≤ π/2. The distance dRPn , in which the diameter of M is π,
satisfies dRPn(x, y) = 2 arccos(|x · y|). If we use this in (4.2), then t = |x · y| and κ(x, y) = Φ(|x · y|).
One can take this farther. In the case of RPn, the series representation for Φ is

Φ(t) =

∞∑
j=0

κ̃jc2jP
(n−2

2
,n−2

2
)

2j (t).
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Since the Jacobi polynomials P
(n−2

2
,n−2

2
)

n (t) are even or odd, depending on whether n is even or
odd, and since the series for Φ contains only polynomials with n even, it follows that Φ(−t) = Φ(t).
As a consequence we have that κ(x, y) = Φ(x · y). Thus, if we regard the variables x and y to be
points on Sn, the kernel κ is even in both variables, and is nonnegative definite on Sn.

Our aim now is to lift κ to a polyharmonic kernel κ∗ on Sn, with a view toward lifting the
whole interpolation problem to Sn. To begin, note that the eignvalues for −∆Sn have the form
λ∗j = j(j + n − 1) and so those the RPn may be written as λj = λ∗2j . Next, let π(x) ∈ Πm be the

polynomial associated with the kernel κ in (4.1) and let κ̃∗j = π(λ∗j )
−1, except where π(λ∗j ) ≤ 0.

For these we only require that the corresponding κ̃∗j > 0. Define the function

Φ∗(t) =

∞∑
j=0

κ̃∗jcjP
(n−2

2
,n−2

2
)

j (t),

which is associated with the polyharmonic kernel κ∗(x, y) = Φ∗(x · y) on Sn. In constructing Φ∗ we
have simply added an odd function to Φ. Thus,

Φ(t) =
1

2

(
Φ∗(t) + Φ∗(−t)

)
.

Start with the centers X on RPn. Each center in X corresponds to {ξ,−ξ} on Sn, so we may
lift X to X∗ = {±ξ ∈ Sn : {ξ,−ξ} ∈ X}. Following the proof in [15, Theorem 1], we may show
that qX′ = 1

2qX and hX′ = 1
2hX , where dRPn is used for q and h in X. In addition, we may, and

will, identify each f ∈ C(RPn) with an even function in C(Sn). Now, interpolate an even f on Sn
at the centers in X∗. This gives us

IX∗f(x) =
∑
ζ∈X∗

a∗ζκ
∗(x, ζ) (4.9)

Note that κ∗(−x, ζ) = Φ∗((−x) · ζ) = Φ∗(x · (−ζ)) = κ∗(x,−ζ). Since both ζ and −ζ are in X∗.
it follows that IX∗f(−x) =

∑
ζ∈X∗ a

∗
−ζκ

∗(x, ζ). Moreover, IX∗f(−ξ) = f(−ξ) = f(ξ) = IX∗f(ξ).
Since interpolation is unique, and the two linear combinations of kernels agree on X∗, they are
equal, and so we have IX∗f(−x) = IX∗f(x) and a∗−ζ = a∗ζ . Because IX∗f is even, we have,

from (4.9), that IX∗f(x) =
∑

ζ∈X∗ a
∗
ζ

1
2

(
κ∗(x, ζ) + κ∗(x,−ζ)). Since κ∗(x, ζ) = Φ∗(x · ζ), we have

κ∗(x, ζ) + κ∗(x,−ζ) = 2κ(x, ζ). Consequently,

IX∗f(x) =
∑
ζ∈X∗

a∗ζκ(x, ζ) =
∑
ζ∈X

aζκ(x, ζ),

where aζ = a∗ζ + a∗−ζ = 2a∗ζ . The sum on the right above is the interpolant to f on RPn, IXf(x).
Thus, IX∗f(x) = IXf(x).

Corollary 4.3 (Case of RPn). Let κ be a polyhamonic kernel of the form (4.2), with deg(π(x)) =
m, and with κ̃j, j ∈ J , chosen to be positive. Assume that the conditions on X ⊂ RPn in
Proposition 3.4 are satisfied. If µ is an integer satisfying m ≥ µ > n/2 and if f ∈Wµ

2 (RPn), then,
provided h is sufficiently small,

‖IXf − f‖L2(RPn) ≤ Chµ‖f‖Wµ
2 (RPn). (4.10)

Proof. The metric dsRPn we are using for RPn is twice the metric inherited from the sphere; that
is, dsRPn = 2dsSn . From the point of view of integration, it is easy to see that dµRPn = 2n/2dµSn .
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Thus various integrals and norms are merely changed by d-dependent constant multiples – e.g.,
‖IXf − f‖L2(RPn) = 21−d/2‖I∗Xf − f‖L2(Sn). By Proposition 4.2,

‖I∗Xf − f‖L2(Sn) ≤ C1h
µ
X∗‖IX∗f − f‖Wµ

2 (Sn) ≤ C2h
µ
X‖IXf − f‖Wµ

2 (RPn).

The inequality (4.10) then follows immediately from this and the remarks above.

4.2 Error estimates for interpolation reproducing ΠJ

The interpolation operator associated with κ that reproduces ΠJ = span{φj,s : j ∈ J , 1 ≤ s ≤ dj}
is

IX,J f =
∑
ξ∈X

aξ,J κ(x, ξ) + pJ , pJ ∈ ΠJ , and
∑
ξ∈X

aξ,J φj,s(ξ) = 0, j ∈ J .

We wish to estimate the L2-norm of IX,J f−f . To do that, we will need to obtain various equations
relating IX,J f , IXf , and pJ . (Since the choice of κ̃j , j ∈ J , obviously has no effect on IX,J , we
can and will assume that κ̃j > 0, j ∈ J .) Let PJ be the L2 orthogonal projection onto ΠJ . Note
that the interpolant IX,J f =

∑
ξ∈X aξ,J κ(x, ξ) + pJ consists of two terms. It is easy to show that

the first term belongs to (ΠJ )⊥ and, of course, pJ ∈ ΠJ . Consequently,

PJ (IX,J f − f) = pJ − PJ f. (4.11)

Next, because both interpolate f , the difference
∑

ξ∈X(aξ − aξ,J )κ(x, ξ) interpolates pJ . This
implies that

IXf − IX,J f = IXpJ − pJ ,

From this, we have

‖IX,J f − f‖L2(M) ≤ ‖IXf − f‖L2(M) + ‖pJ − IXpJ ‖L2(M) (4.12)

Since pJ − IXpJ |X = 0 , the second term on the right can be estimated via Theorem 3.3, provided
h is sufficiently small. Making the estimate yields this bound:

‖pJ − IXpJ ‖L2(M) ≤ Chm‖pJ − IXpJ ‖Wm
2 (M).

In addition, by (4.5), the norm induced by κ is equivalent to the Wm
2 (M) norm, and thus we have

that ‖pJ −IXpJ ‖Wm
2 (M) ≤ C‖pJ −IXpJ ‖κ ≤ C‖pJ ‖κ, where the rightmost inequality follows from

the minimization properties of IXpJ in the norm ‖ · ‖κ. From the definition of the κ norm, where
we have assumed κ̃j = 1, j ∈ J , it is easy to see that ‖pJ ‖κ = ‖pJ ‖L2(M). Combining the various
inequalities then yields

‖pJ − IXpJ ‖L2(M) ≤ Chm‖pJ ‖L2(M).

Using this on the right in (4.12) gives us

‖IX,J f − f‖L2(M) ≤ ‖IXf − f‖L2(M) + Chm‖pJ ‖L2(M). (4.13)

Furthermore, employing (4.11) in conjunction with this inequality, we see that

‖IX,J f − f‖L2(M) ≤ ‖IXf − f‖L2(M) + Chm
(
‖IX,J f − f‖L2(M) + ‖PJ f‖L2(M)

)
Choosing h so small that Chm < 1

2 and then manipulating the expression above, we obtain this
result.
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Lemma 4.4. Let f ∈ L2(M). For all h sufficiently small, we have

‖IX,J f − f‖L2(M) < 2‖IXf − f‖L2(M) + Chm‖PJ f‖L2(M). (4.14)

We now arrive at the error estimates we seek.

Theorem 4.5. Let M be a two-point homogeneous manifold and let κ be a polyhamonic kernel of
the form (4.2), with deg(π(x)) = m. Assume that the conditions on X ⊂M in Proposition 3.4 are
satisfied. If µ is an integer satisfying m ≥ µ > n/2, then, provided h is sufficiently small,

‖IX,J f − f‖L2(M) ≤

{
Chm‖f‖Wm

2 (M), all M, and f ∈Wm
2 (M),

Chµ‖f‖Wµ
2 (M), M = Sn,RPn, and f ∈Wµ

2 (M).
(4.15)

Proof. In (4.14), we have ‖PJ f‖L2(M) ≤ ‖f‖L2(M) ≤ ‖f‖Wµ
2 (M); in addition, the various bounds on

‖IXf − f‖L2(M) follow from (4.7), (4.8), and (4.10). Combining these yields (4.15).

4.2.1 Optimal convergence rates for interpolation via surface splines

For spheres, the interpolants constructed from the restricted thin-plate splines defined in (4.3)
converge at double the rates discussed above – namely, O(h2m) rather than O(hm) –, provided f
is smooth enough. This also applies in SO(3) for the kernels given in (4.4). The spaces ΠJ being
reproduced here are, for Sn, the spherical harmonics of degree m − 1 or less; and for SO(3), the
Wigner D-functions for representations of the rotation group, again having order m−1 or less. The
precise result is stated below.

Proposition 4.6 ( [20, Corollaries 5.9 & 5.10]). Suppose m > n/2 and let IX,J denote the inter-
polation operator corresponding to the restricted surface spline defined in (4.3) for s = m − n/2.
Then, there is a constant C depending on ρ,m and n such that, for a sufficiently dense set X ⊂ Sn,
and for f ∈ C2m(Sn), the following holds:

‖IX,J f − f‖∞ ≤ Ch2m‖f‖C2m(Sn),

Similarly, for the kernels in (4.4), if f ∈ C2m(SO(3)), then ‖IX,J f − f‖∞ ≤ Ch2m‖f‖C2m(SO(3)).

4.3 Lagrange functions and Lebesgue constants

If χξ(x) is the Lagrange function associated with a kernel κ and a space ΠJ , then, by (2.7), the
weights in the quadrature formula have the form cξ =

∫
M χξ(x)dµ(x), ξ ∈ X. Our aim is to use

properties of χξ to obtain bounds on these weights. Before we do this, we will need the following
decay estimates for χξ.

Proposition 4.7 ( [20, Theorem 5.5]). Suppose that M is an n-dimensional compact, two-point
homogeneous manifold and that κ is a polyharmonic kernel, with deg(π(x)) = m, where m > n/2.
There exist positive constants h0, ν and C, depending only on m, M and the operator Lm = π(−∆)
so that if the set of centers X is quasi-uniform with mesh ratio ρ and has mesh norm h ≤ h0, then
the Lagrange functions for interpolation by κ with auxiliary space ΠJ satisfy

|χξ(x)| ≤ Cρm−n/2 max
(

exp
(
−ν
h
d(x, ξ)

)
, h2m

)
. (4.16)
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There are two results that we want to obtain. First, we want to estimate the size of each weight
in terms of the mesh norm h ; and second, we want to estimate

∑
ξ∈X |cξ|.

We only need to estimate ‖χξ‖L1(M), since |cξ| ≤ ‖χξ‖L1(M). Our approach is to divide the

manifold into a ball B = Bξ,Rh , having radius Rh and center ξ, and its complement B{. The radius
Rh is the “break-even” distance in (4.16); it is obtained by solving exp

(
− ν
hRh

)
= h2m for Rh. The

result is Rh = 2m
ν h| log(h)|. By (4.16), we obtain∫

B{
0

∣∣χξ(x)
∣∣dµ(x) ≤ Cρm−n/2µ(M)h2m.

Next, again by (4.16), we have that∫
B
|χξ(x)|dµ(x) ≤ C ′ρm−n/2

∫ Rh

0
e−rν/hrn−1dr < C ′ρm−n/2

∫ ∞
0

e−rν/hrn−1dr︸ ︷︷ ︸
(n−1)!(h/ν)n

Consequently, |cξ| ≤ ‖χξ‖L1(M) ≤ Cρm−n/2(h/ν)n(1 + h2m−nνn). Because 2m > n, for h small
enough, it follows that

|cξ| ≤ ‖χξ‖L1(M) ≤ C ′ρm−n/2hn, (4.17)

where C ′ = C ′(M, κ,J ).
The next result concerns the boundedness of the Lebesgue constant, which played a significant

role in section 2.3 in the analysis of the stability of the quadrature operator.

Proposition 4.8 ( [20, Theorem 5.6]). Let the notation be the same as that in Proposition 4.7. If
h ≤ h0, then the Lebesgue constant, ΛX,J ,κ = maxx∈M

∑
ξ∈X |χξ(x)|, associated with X, J , and κ,

satisfies the bound ΛX,J ,κ ≤ C, where C depends only on m, ρ, and M.

4.4 Quadrature via polyharmonic kernels

In this section, we will employ the various properties of polyharmonic kernels, which are of course
invariant, to obtain results concerning accuracy and stability of the associated quadrature formulas.

Theorem 4.9. Suppose that M is an n-dimensional compact, two-point homogeneous manifold
and that κ is a polyharmonic kernel, with deg(π(x)) = m, where m > n/2. Let X ⊂ M be
a finite set having mesh ratio ρX ≤ ρ, ΠJ = span{φj,s : j ∈ J , 1 ≤ s ≤ dj}, and QVX be
the corresponding quadrature operator given in Definition 2.3 . The norm of QVX is bounded,
‖QVX‖C(M) ≤ µ(M)ΛX,J ,κ ≤ Cm,ρ,M, and the error satisfies the estimates

∣∣QVX (f)−
∫
M
fdµ

∣∣ ≤ { Chm‖f‖Wm
2 (M), all M, and f ∈Wm

2 (M),

Chµ‖f‖Wµ
2 (M), M = Sn,RPn, and f ∈Wµ

2 (M), n/2 < µ ≤ m.
(4.18)

Finally, the standard deviation σQ from Proposition 2.4 satisfies σQ ≤ Cσνh
n/2, where C =

C(ρ,m,M,J ).

Proof. The norm estimate follows from (2.16) and Proposition 4.8. The error estimate is a conse-
quence of (2.14) and Theorem 4.5. Finally, the bound on σQ is a consequence of Proposition 2.4,
Proposition 4.8, and the bound on ‖χξ‖ in (4.17).
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At present, the most important compact two-point homogeneous manifolds are spheres and pro-
jective spaces (especially S2 and SO(3)). As we discussed in section 4.2.1, the restricted thin-plate
splines (4.3) on Sn and similar kernels (4.4) on SO(3) give interpolants with optimal convergence
for smooth target functions. This also is reflected in the accuracy of the corresponding quadrature
formulas:

Corollary 4.10. Let X, ρX , ρ, m, ΠJ be as in Theorem 4.9. Take M = Sn or SO(3) and Q to
be the quadrature operator corresponding to the restricted surface spline defined in (4.3) or to that
for the polyharmonic kernel in (4.4). If X is a sufficiently dense in M, then there is a constant
C = C(m,n, ρ) such that for a sufficiently dense set X ⊂ Sn and for all f ∈ C2m(Sn),∣∣Q(f)−

∫
M
fdµ

∣∣ ≤ Ch2m‖f‖C2m(Sn), where C = C(m,n, ρ),

in addition to the bounds on ‖Q‖ and σQ from Theorem 4.9 holding.

Because of applications in physical sciences and engineering, S2 is undoubtedly the most im-
portant of the manifolds treated here. In the next section, we give some numerical examples for S2

and the m = 2 surface spline Φ(t) = (1− t) log(1− t) (i.e. the thin plate spline r2 log(r2) restricted
to S2) that validate the above theory.

5 Numerical results for S2

We begin with a brief overview of how the quadrature weights can be computed in an efficient
manner for the m = 2 surface spline Φ(t) = (1−t) log(1−t) using the local Lagrange preconditioner
developed in [11]. This is followed by a description of the nodes used in the numerical experiments
and some properties of the resulting surface spline quadrature weights and their stability. Finally,
we give some results validating the error estimates from the previous section.

5.1 Computing the quadrature weights

The m = 2 restricted surface spline kernel is conditionally positive definite of order 1 and the
finite dimensional subspace Π associated with it consists of all spherical harmonics of degree ≤ 1,
i.e. Π := span{Y0,0, Y1,0, Y1,1, Y1,2}, where Y`,k is the degree ` and order k spherical harmonic and
0 ≤ k ≤ 2` + 1. Given a set X = {xj}Nj=1 of distinct nodes on S2, the quadrature weights c for
this kernel can be computed by first solving (2.10) for c⊥ and then computing c via (2.11). In
these equations, Ai,j = (1 − xi · xj) log(1 − xi · xj), i, j = 1, . . . , N , and Ψ is the N -by-4 matrix
with columns Ψi,1 = Y0,0(xi) and Ψi,k+2 = Y1,k(xi), for i = 1, · · · , N , k = 0, 1, 2. Additionally,

J =
[
4π 0 0 0

]T
and J0 = 2π(4 log(2)− 1).

Since Ψ only has 4 columns, computing Ψ(ΨTΨ)−1J in (2.10) can be done rapidly using,
for example, QR decomposition. Thus, the bulk of the computational effort in computing the
quadrature weights is in solving for c⊥ in (2.10). Since the matrix A is dense, direct methods cannot
be realistically applied for large N , and one must then resort to iterative methods. However, for
iterative methods to be useful, one must apply an effective preconditioner to the system. In [11],
we developed a powerful preconditioner for (2.10) based on local Lagrange functions and combined
it with the generalized minimum residual (GMRES) iterative method [36]. The basic idea of the
preconditioner is, for every node xj ∈ X, to compute the surface spline interpolation weights for a
small subset of nodes about xj consisting its p = M(logN)2 nearest neighbors, where M is suitably
chosen constant. The data for each interpolant is taken to be cardinal about xj . This is similar to
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the preconditioner used in [8] for interpolation on a 2-D plane, however, in that study the number
of nodes in the local interpolants did not grow with N and it was observed that the preconditioner
broke down as N increased. As demonstrated in [11], by allowing the nodes to grow very slowly with
N the preconditioner remained effective and the total number of iterations required by GMRES to
reach a desired tolerance did not increase with N . We refer the reader to [11] for complete details
on the construction of the preconditioner.

In the numerical results that follow, we used the preconditioned GMRES technique from [11]
with p = 2d(logN)2e and a relative tolerance of 10−12 to solve for c⊥ in (2.10). We then used this
in (2.11) to find c. Table 2 lists the number of GMRES iterations required to compute c⊥ for three
different quasi-uniform node families, which are described in the next section. We see from the
table that the number of iterations remains fairly for constant as N grows for all three families of
nodes.

Icosahedral Fibonacci Min. Energy
N Iterations N Iterations N Iterations

2562 8 2501 9 2500 9
10242 7 10001 8 10000 8
23042 7 22501 11 22500 7
40962 7 40001 8 40000 8
92162 6 62501 10 62500 7

163842 7 90001 10 90000 7
256002 6 160001 8 160000 7
655362 6 250001 10 250000 7

Table 2: Number of GMRES iterations required to compute c⊥ in (2.10) using the preconditioned
iterative method developed [11] for determining the m = 2 surface spline. The quadrature weights
are then computed from (2.11). In all cases, the relative tolerance of the GMRES method was set
to 10−12.

We conclude by noting that as part of the iterative method, matrix-vector products involving
A must be computed. Since A is dense, this requires O(N2) operations per matrix-vector product.
In the computations performed for this study, these products were computed directly, making the
overall cost of the weight computation O(N2). In a follow up study we will explore the use of fast,
approximate matrix-vector products using the algorithm described in [28]. By using this algorithm,
it may be possible to reduce the total cost of computing the weights (or a surface spline interpolant)
to O(N logN).

5.2 Nodes, weights, and stability

We consider three quasi-uniform families of nodes for the numerical experiments. The first is the
icosahedral nodes, which are obtained from successive refinement of the 20 spherical triangular faces
formed from the icosahedron. The second are the Fibonacci (or phyllotaxis) nodes, which mimic
certain plant behavior in nature (see, for example, [14] and the references therein). The third are
the quasi-minimum energy nodes, which are obtained by arranging the nodes so that their Riesz
energy is near minimal [23]. In the examples below, a power of 3 was used in the Riesz energy and
the nodes were generated using the technique described in [5]. The mesh norm for all three of these
families satisfies h ∼ 1√

N
, where N is the total number of nodes. The mesh ratio ρ stays roughly

constant for the Fibonacci and quasi-minimum energy nodes as N increases. For the icosahedral
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(c) Quasi-minimum energy nodes and weights, N = 22500

Figure 1: Visualization of the different families of nodes used in the numerical experiments and the
corresponding quadrature weights for the m = 2 spherical spline. The nodes are plotted on S2 using
an orthographic projection about the north pole. Each node has been given a color corresponding
to the value of the quadrature weight for that node.

points ρ grows slowly with N since the spacing of the nodes decreases faster towards the vertices of
the triangles of the base icosahedron than at the centers [37]. However, in the numerical examples
that follow, this increase seems to be of little concern. All three of these families of nodes are quite
popular in applications; see, for example [13,29,35,41] for the icosahedral nodes, [27,39,42] for the
Fibonacci nodes, and [9, 10, 38, 48] for the quasi-minimum energy nodes. Quadrature over these
nodes also plays an important role in applications, for example, for computing the mass of a certain
quantity, the energy for a certain process, or the spectral decomposition of some data.

It should be noted that previous studies have been devoted to developing quadrature formulas
and error estimates for icosahedral [2, Ch. 5] and Fibonacci [22] nodes. However, these results rely
on the specific construction of the node sets and cannot be applied to more general quasi-uniformly
distributed nodes such as the quasi-minimum energy nodes.
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Figures 1 (a)–(c) show examples of the different families of nodes and provide a visualization
of the values of the corresponding quadrature weights for the m = 2 surface spline. The geometric
pattern of the icosahedral nodes in part (a) of this figure are clearly reflected in the values of the
corresponding quadrature weights. This is also true of the Fibonacci nodes in part (b), which have
a slight clustering near their seed value (in this case the north pole), but then are quasi-uniformly
distributed. There are no clear patterns for the minimum energy nodes in part (c) of Figure 1, as
these are not distributed in a discernible pattern. Looking at the color bars in each of the plots
we see that the range of values of the weights is similar between the different node families and
comparable to 1/N , and are also positive.
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Figure 2: Estimate of the standard deviation σQ in (2.17) for the different families of nodes. The
estimate is based on sample sets of 500 N -point quadratures of different independent, identically,
distributed, zero mean (quasi) random data with a standard deviation of 1. This confirms the
stability estimate in the last part of Theorem 4.9.

To estimate σQ in (2.17), and hence the stability of the quadrature weights in the presence of
noise, we performed the following experiments. For each family of nodes, a value of N was selected
and then a sample set was generated consisting of 500 values of the N -point quadrature of different
independent, identically, distributed, zero mean (quasi) random data. The standard deviation of
the sample sets was then computed to estimate σQ. The results are plotted in Figure 2 as a function
of N for each of the three families of nodes. Comparing the results to the dashed line on the plot,
we see that the estimated σQ decreases like O(N−1/2), or like O(h) since h ∼ N−1/2 for these
families of nodes. This is in perfect agreement with the rate predicted by the last part of Theorem
4.9 for the surface splines.

5.3 Convergence results

Two target functions of different smoothness were used to test the error estimates of Theorem 4.9
and Corollary 4.10. The target functions were chosen so that the Funk-Hecke formula (see, for
example, [2, §2.5]) could be used to determine their exact integral over S2. Letting x, xc ∈ S2 and
g be a zonal kernel, i.e. g(x, xci) = g(x · xc), such that g ∈ L1[−1, 1], the Funk-Hecke formula gives
the following result: ∫

S2
g(x · xc)Y`,k(x)dµ(x) =

4πa`
2`+ 1

Y`,k(xc), (5.1)
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(a) f1 (b) f2

Figure 3: Target integrands used to test the error estimates. (a) f1(x) from (5.6) and (b) f2(x)
from (5.7).

where Y`,k is any degree `, order k spherical harmonic, and a` is the `th coefficient in the Legendre
expansion of g(t).

The following two kernels were used in constructing the target functions:

g1(t) = −(2− 2t)1/4, (5.2)

g2(t) =
1− ε2

(1 + ε2 − 2εt)
3
2

(0 < ε < 1), (5.3)

which are known as the potential spline kernel of order 1/4 and the Poisson kernel, respectively.
The Legendre expansion coefficients for these kernels are given as follows (see [4]):

g1 : a` =
(−1)`+1

√
2(Γ

(
5
4

)
)2(2`+ 1)

Γ
(

5
4 − `

)
Γ
(

9
4 + `

) , (5.4)

g2 : a` = (2`+ 1)ε`. (5.5)

The smoothness of these kernels is of course determined by the decay rate of the Legendre coeffi-
cients a`. For g1, we have a` ∼ `−3/2, which means g1 belongs to every Sobolev space Wµ

2 (S2) with
µ < 5

2 . While for g2 the Legendre coefficients decay exponentially fast, which means g2 ∈ C∞(S2),
analytic in fact.

Using the above results, we define the following two target integrands:

f1(x) =
41∑
k=1

sign(Y20,k(xc))Y20,k(x)g1(x · xc), (5.6)

f2(x) =

41∑
k=1

sign(Y20,k(xc))Y20,k(x)g2(x · xc), (5.7)

where xc = (cos(−2.0281) sin(0.76102), sin(−2.0281) cos(0.76102), sin(0.76102)) and ε = 2/3 for g2;
see Figure 3 (a) and (b) for plots of these respective functions. Integrating these functions over S2
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and applying the Funk-Hecke formula (5.1) gives∫
S2
f1(x)dµ(x) = 0.014830900415995, (5.8)∫

S2
f2(x)dµ(x) = 0.032409262543520. (5.9)

Both f1 and f2 inherit their smoothness directly from g1 and g2, respectively. Thus, f1 belongs to
every Sobolev space Wµ

2 (S2) with µ < 5
2 and f2 ∈ C∞(S2).

Tables 3 and 4 display the relative errors in the N -point quadrature of f1 and f2, respectively, for
the different family of nodes, while Figures 4(a) and (b) display these respective results graphically
on a log− log scale. Focusing first on the results for f1 in Figure 4(a) and comparing the results to
the included dashed line, it is clear that for all three families the error is decreasing approximately
like O(N−1.25). Since h ∼ N−1/2 for these families of nodes, this observed rate of decrease in the
error is approximately O(h2.5), which is precisely the rate predicted by the estimates in Theorem
4.9 for functions with f1’s smoothness. Doing a similar comparison of the results for f2 in Figure
4(b), we see that the errors associated with the icosahedral nodes very clearly decrease like O(N−2).
The results for the other two nodes are not as clear, but for larger values of N the errors do appear
to be decreasing approximately like O(N−2). Again, because of the relationship between h and N
for these nodes, the errors for f2 are thus decreasing approximately like O(h4). This is the expected
rate from Corollary 4.10 since f2 is infinitely smooth and we have used the m = 2 surface spline.

Icosahedral Fibonacci Min. Energy
N Rel. Error N Rel. Error N Rel. Error

2562 1.926× 10−1 2501 5.112× 10−3 2500 3.048× 10−2

10242 3.533× 10−2 10001 5.549× 10−3 10000 6.848× 10−2

23042 1.286× 10−2 22501 1.770× 10−3 22500 2.480× 10−2

40962 6.268× 10−3 40001 1.040× 10−3 40000 1.217× 10−2

92162 2.273× 10−3 62501 6.460× 10−4 62500 6.989× 10−3

163842 1.107× 10−3 90001 4.068× 10−4 90000 4.393× 10−3

256002 6.330× 10−4 160001 1.844× 10−4 160000 2.083× 10−3

655362 1.957× 10−4 250001 1.085× 10−4 250000 1.228× 10−3

Table 3: Relative error in the N -point quadrature of the “rough” target function f1 in (5.6) for the
different families of nodes.

We conclude by noting that the nodes and quadrature weights used in the numerical experiments
above are available for download from [47].

6 Quadrature on Manifolds Diffeomorphic to Homogeneous Spaces

Numerical integration of functions defined on smooth surfaces that are diffeomorphic to S2 arise
in a number of applications. For example, the shape of the earth, as well as the other planets, is
a “flattened sphere” – i.e., an oblate spheroid, which is diffeomorphic to a sphere. To numerically
compute integrals over the earth’s surface then requires quadrature formulas over oblate spheroids.
In addition, the need for numerical integration over various surfaces also arises in boundary element
formulations of continuum problems in R3 [2, Ch. 6]. In this section, we discuss quadrature in a
more general context. We will show how to use quadrature weights for a homogeneous manifold
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Icosahedral Fibonacci Min. Energy
N Rel. Error N Rel. Error N Rel. Error

2562 3.358× 10−2 2501 1.045× 10−4 2500 6.951× 10−2

10242 1.888× 10−3 10001 4.690× 10−5 10000 5.932× 10−4

23042 3.642× 10−4 22501 3.189× 10−6 22500 1.077× 10−4

40962 1.143× 10−4 40001 7.437× 10−6 40000 2.730× 10−5

92162 2.245× 10−5 62501 1.805× 10−6 62500 8.276× 10−6

163842 7.098× 10−6 90001 9.204× 10−7 90000 6.944× 10−6

256002 2.897× 10−6 160001 3.009× 10−7 160000 1.250× 10−6

655362 4.433× 10−7 250001 1.411× 10−7 250000 5.414× 10−7

Table 4: Relative error in the N -point quadrature of the “smooth” target function f2 in (5.7) for
the different families of nodes.

M to obtain an invariant, coordinate independent quadrature formula for a smooth Riemannian
manifold L diffeomorphic to M. Of course, the case in which L is an oblate spheroid and M = S2

is of special interest.
Recall that a C∞ manifold L is diffeomorphic to M if there is a C∞ bijection F : M→ L. Let

gij be the Riemannian metric for M. Suppose that L has the metric hij . Consider a local chart
(U, φ : U → Rn) near p0 ∈ M. Using this chart we have coordinates x = (x1, . . . , xn) = φ(p) and a
parametrization p = φ−1(x).

We can use (U, φ) to produce a local chart (V, ψ : V → Rn) near q0 = F (p0) ∈ L. Simply let
V = F (U) ⊂ L and ψ = φ ◦F−1. The coordinates for V are thus x = ψ(q), and so the two metrics
gij and hij can be expressed in terms of the same set of coordinates. In these coordinates, the
volume elements are given by

dµM(x) =
√

det(gij(x)) dx1 · · · dxn and dµL(x) =
√

det(hij(x) dx1 · · · dxn.

It follows that

dµL(x) =

√
det(hij(x))

det(gij(x))︸ ︷︷ ︸
w(x)

dµM(x). (6.1)

Suppose that we now make a change of coordinates, from x = φ(p) to new coordinates y = ϕ(p),
or x = x(y). Let x′(y) be the Jacobian matrix for the transformation, and let J(y) = det(x′(y)).
In y coordinates, the metrics are g̃(y) = (x′(y))T g(x(y))x′(y) and h̃(y) = (x′(y))Th(x(y))x′(y).
Consequently, we have that

det(g̃ij(y)) = J(y)2 det(gij(x(y))) and det(h̃ij(y)) = J(y)2 det(hij(x(y))),

and, furthermore, that

w(x(y)) =

√
det(hij(x(y)))

det(gij(x(y)))
=

√
det(h′ij(y))

det(g′ij(y))
= w̃(y).

This means that w ◦ φ(p) = w̃ ◦ ψ(p) =: W (p) is thus a scalar invariant that is independent of the
choice of coordinates. In terms of integrals, we have∫

L
f(q)dµL(q) =

∫
M
f ◦ F (p)W (p)dµM(p). (6.2)
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(a) Rough target, f1. (b) Smooth target, f2.

Figure 4: Relative errors in the N -point quadratures of (a) f1 and (b) f2 for the three different
families of nodes. The mesh-norm for all three families of nodes satisfies h ∼ N−1/2, so that the
dashed lines in the figures indicate convergence like (a) O(h2.5) and (b) O(h4). These are the
predicted convergence rates from Theorem 4.9 and Corollary 4.10, respectively.

An invariant, coordinate independent quadrature formula for L can be obtained from the one
for M. We have the following result.

Proposition 6.1. Let X denote the set of centers on L and let X ′ = F−1(X) be the corresponding
set on M. Suppose that we have a quadrature formula for M with weights {Cξ′}ξ′∈X′. Then we
have the following quadrature formula for L,

QL(f) :=
∑
ξ∈X

f(ξ)cξ, where cξ := W (F−1(ξ))CF−1(ξ). (6.3)

Proof. Applying the quadrature formula for the homogeneous manifold M to the integral on the
right-hand side of (6.2) yields

QM
(
f ◦ F (p)W (p)

)
=
∑
ξ′∈X′

f ◦ F (ξ′)W (ξ′)Cξ′ .

Since ξ′ = F−1(ξ), we have f◦F (ξ′) = f(ξ) andW (ξ′) = W (F−1(ξ)). Taking cξ = W (F−1(ξ))CF−1(ξ)

we obtain (6.3).

Oblate spheroid Consider the oblate spheroid L, x2 + y2 + z2/a2 = 1, where 0 < a < 1, and
the 2-sphere S2(= M), X2 + Y 2 + Z2 = 1. The diffeormorphism between the two manifolds is
F (X,Y, Z) := (X,Y, aZ); that is, (x, y, z) = (X,Y, aZ). Our aim is to find the scale factor W .
Since the end result will be coordinate independent, we choose to work in spherical coordinates
(θ, φ), where θ is the longitude and φ is the latitude on S2. (The north pole is (0, 0, 1).) Obviously,
for L we have x = sin θ cosφ, y = sin θ sinφ, z = a cos θ. The metric for the sphere is dS2 =
dθ2 + sin2(θ)dφ2. The metric for L is the Euclidean metric dx2 + dy2 + dz2 on R3 restricted to L.
Making a straightforward calculation, one can show that the metric for L is

ds2 = (cos2 θ + a2 sin2 θ)dθ2 + sin2 θdφ2 =
(
a2 + (1− a2) cos2 θ

)
dθ2 + sin2 θdφ2.
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Consequently, the volume element for L is

dµL =
√
a2 + (1− a2) cos2 θ sin θ dθdφ =

√
a2 + (1− a2) cos2 θ︸ ︷︷ ︸

w(θ,φ)

dµS2

To put this in invariant form on S2, we use Z = cos θ to obtain W (X,Y, Z) =
√
a2 + (1− a2)Z2 .

Pulling this back to L, we have W ◦ F−1(x, y, z) =
√
a2 + (a−2 − 1)z2 . The weights for QL are

thus
cξ =

√
a2 + (a−2 − 1)ξ2

z C(ξx,ξy ,ξz/a).

As we mentioned above, the earth is approximately an oblate spheroid. The parameter a is the
ratio of the polar radius to the equatorial radius. The flattening of the earth is f = 1− a, and has
the approximate value f ≈ 1/300 (cf. Earth Fact Sheet [46]). From this, we get that a ≈ 299/300,
and so W ◦F−1(x, y, z) ≈

√
0.993 + 0.007z2. This factor varies between 0.9967 and 1, about 0.3%.

Even so, it could affect the accuracy of the quadrature formula for functions with large values near
the equator. As an aside, Jupiter has f ≈ 1/15 (cf. Jupiter Fact Sheet (ellipticity) [46]), and for it
the change in W ◦ F−1 would be a hefty 7%.
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