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Abstract 3D acquisition devices acquire object surfaces with growing accuracy by
obtaining 3D point samples of the surface. This sampling depends on the geometry
of the device and of the scanned object and is therefore very irregular. Many
numerical schemes have been proposed for applying PDEs to regularly meshed 3D
data. Nevertheless, for high precision applications it remains necessary to compute
differential operators on raw point clouds prior to any meshing. Indeed differential
operators such as the mean curvature or the principal curvatures provide crucial
information for the orientation and meshing process itself.

This paper reviews a half dozen local schemes which have been proposed to
compute discrete curvature-like shape indicators on raw point clouds. All of them
will be analyzed mathematically in a unified framework by computing their asymp-
totic form when the size of the neighborhood tends to zero. They are given in terms
of the principal curvatures or of higher order intrinsic differential operators which,
in return, characterize the discrete operators. All considered local schemes are of
two kinds: either they perform a polynomial local regression, or they compute di-
rectly local moments. But the polynomial regression of order 1 is demonstrated
to play a special role, because its iterations yield a scale space. This analysis is
completed with numerical experiments comparing the accuracies of these schemes.
We demonstrate that this accuracy is enhanced for all operators by applying pre-
viously the scale space.
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Introduction

The output of laser scanners or any surface acquisition system is a set of points
sampled with variable density on the surface. The scanners often deliver directly a
mesh, i.e., a set of triangles linking point samples. But the basic raw information
is an unorganized point cloud which can be locally sparse or over-cluttered. In this
paper we focus on the mathematical analysis and processing of such raw irregularly
sampled surfaces. Indeed, they contain the most accurate information, before it
is altered or smoothed by any re-sampling and meshing. We shall interpret in
terms of intrinsic differential operators (the curvatures) the most interesting and
simple local surface estimators. Iterative surface regularization processes will also
be analyzed and the scale space method used to compute reliably local differential
features. In one word, the challenge is: how to compute intrinsic operators which
ideally only depend on the underlying surface, not on its sampling? Surprisingly
enough, we shall see that this is possible and that the reliability of such operators
can be enforced and evaluated.

The field of numerical surface analysis has been widely studied over the fifteen
past years, due to the development of computer graphics. Yet, most studies take as
starting surface representation a mesh. Meshes are much easier to handle than raw
point clouds, being already oriented, having usually a uniform or regularly varying
sampling, and having a definite surface topology. On the contrary, raw data point
sets are completely unstructured heaps of points, known only by their Euclidean
coordinates. Nevertheless the construction of a mesh and the constitution of its
topology involve, implicitly or explicitly, the computation of differential operators
on the raw data.

The most popular mesh reconstruction methods from a raw point cloud define a
signed function over R3 representing the distance to the object, and then extract
the 0 level set which approximates the object surface. See (e.g.) [15], [22], [9],
[27], [4], and the well established Poisson method [28], which solves a Poisson
equation to build the indicator function of the solid object. These methods vary
in the approach to compute the distance function, but all extract its zero-level set
by using the marching cubes algorithm [35], [29]. In such meshing processes, the
initial raw points are irremediably lost. This incurs into a loss of resolution and
explains the relevance of processing directly an unstructured raw point cloud.

The reminder of this paper is divided as follows: section 1 reviews surface
operators and surface motions previously defined on meshes and on point clouds,
section 2 gives the necessary definitions and tools for raw surfaces and their under-
lying smooth model. Section 3 analyzes the first kind of local “differential operator”
computable on a raw cloud: these are simply local order 2 moments, which will
be shown to asymptotically compute functions of the surface principal curvatures.
Section 4 analyzes and compares the surface motions given by the projection on
simple regression surfaces: a plane and a degree 2 polynomial surface. Finally, sec-
tion 5 shows comparative numerical experiments comparing the accuracies of the
mesh free methods to compute local pseudo-differential operators, and also show
the improvement brought by applying a scale space strategy based on the iteration
on the cloud of a local linear surface regression.
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1 Computing curvatures on sampled surface: state of the art
1.1 Curvatures computed on meshes

Reviews for curvature estimation on meshed surfaces can be found in [44] or [36].
Curvature tensor estimation methods were pioneered by Taubin [46] who presented
a simple approximation for computing the directional curvature in any tangent di-
rection. The curvature is computed in all incident edge directions and a covariance
matrix of the edge directions weighted by their directional curvatures and the area
of the two incident triangles is built. Eigenvectors and eigenvalues of this covari-
ance matrix yield a simple expression of the principal curvatures and curvature
directions.

Other curvature tensor estimation methods include [44] where the tensor is
estimated by building a linear system binding the tensor coefficients. This linear
system expresses the constraints that multiplying the tensor by an edge direction
should give the difference of the edge’s endpoints normals. The same method is
applied to find the curvature derivatives. Normals are also used in [48] to give a
piecewise linear curvature estimation (see also [49]).

To avoid the computation of derivatives with irregular samples, a new kind of
integral curvature estimation method has been proposed in [52], [43] and [42]. The
intersection of the surface with either a sphere or a ball centered at a vertex is
analyzed: the covariance matrix of this domain is computed and eigenvalues are
expressed in terms of principal curvatures. By increasing the neighborhood radius,
the curvature estimate can be made multiscale. A very interesting feature of these
methods is that they do not rely on high order derivatives and are therefore more
stable.

Surface motions have also been studied as part of a mesh fairing process. A key
method was introduced by Taubin in [47] who considered a discrete Laplacian for
a mesh V with vertices v, %—‘; = AL(V), L being a discretization of the Laplacian
L(v;) = m > j € N(vi)(vj — vi) where N(v;) is the set of vertices linked
by an edge to v; (1-ring neighborhood). This formulation is widely used. For
example, [16] uses a similar “umbrella” operator. [20] also computes the discrete
Laplacian for all mesh vertices its eigenvectors and eigenvalues. By removing the
smallest eigenvalues, a fair mesh (i.e. a denoised mesh) is obtained.

A well known formulation of the Laplace Beltrami operator is the famous
cotangent formula [38],

1
Av; = 3 Z (cotanaij + cotanfBij)
JENV;

where v; is a vertex of the mesh, Ni(v;) its one ring neighborhood, «;; and fB;;
are the angle opposite to edge v;v; in the two triangles adjacent to v;v;. This
has been used to compute the surface intrinsic equation. Another definition of the
curvatures for triangulated surfaces, based on the theory of normal cycles, can be
found in [14].
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1.2 Curvature estimation and surface motions defined on point clouds

We now examine the rare approaches dealing directly with point clouds. [50] intro-
duced a scale space decomposition method for point clouds. The method builds an
adjacency graph from the input points (in order to compute easily the geodesics
on the surface). The geodesics are used to compute a density normalization kernel
that regularizes the density. The scale space operator is the operator that moves
each point to the barycenter of all points weighted by the regularization kernel
and the distance to the center point. Then the scale space method is used to select
“scale-space extrema”. At each scale the point motion is considered. Introducing
a scalar function on the displacement norm, the authors claim a recovery of the
characteristic scales of the surface (the introduced function is extremal at the
characteristic scales).

Estimating curvatures often necessitates the computation of surface deriva-
tives. Yet derivating a potentially noisy surface can generate unstable estimates.
Instead, it was noticed that local integral quantities contain all the information of
the differential operators. This idea was used for example in [37], with a method
to compute curvatures and normals based on defining Voronoi covariance matri-
ces. More practically, a serious effort was made for defining integral invariants for
surfaces.

Our study will consider the simplest local integral invariants. The most famous
principal integral invariants were defined as follows: call D the interior of a surface
M, then the area A, of the intersection of D with a sphere of radius r is an
invariant. The second invariant is the volume V; of the intersection of a ball of
radius r» with D. Both invariants were proved to be related to the mean curvature
([24], [11]) so that:

V, = 2?71-7"3 — %r‘l + O(rs)

A, = omr? — wHr3.

Such invariants were used in [19] for surface registration, or for feature detection
([13], [12]). Nevertheless a serious numerical drawback of such integral invariants
expansions is that the dominant term never contains the actual surface informa-
tion. The dominant first term is actually completely independent of the surface
locus. This makes the method impractical because the term of interest (here the
mean curvature H) is obtained as the difference of two lower order terms. Yet,
since V,- and A, are not exact but approximate volumes and areas, H cannot ac-
tually be obtained accurately from such formulas. The methods we will analyze in
this paper actually solve the problem by designing the local operator in such a way
that the differential operator of interest is the dominant term in the asymptotic
expansion.

In terms of mathematical analysis, the analysis which goes closest to the present
one is due to Pottman et al. in [43] and [52]. These authors analyzed the asymp-
totic behavior of several integral invariants, particularly the moments of inertia
of various local intrinsic neighborhoods. Yet, once again, the quantity to estimate
is not contained in their dominant terms, thus making the obtained asymptotic
formulas numerically impractical. For example Theorem 2 of [43] shows that the
principal moments of inertia of the neighborhood defined as the intersection of D
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with a ball of radius r have the Taylor expansion

1 _2r s 0w 6 7
=25 T 3k 4 k

, 151" 48(3 1+ k2)r” +0(r")

2_2m 5 W 6 7

M; = =" 48(3k2+k1)r +O(r")

s _1om s 9r I

M; = 480T 512(k2+k1)r +O(r")

where k1 and k2 are the principal curvatures of the surface at the considered
position. The authors then bypass the difficulty of not having the estimates in the
dominant term by taking the difference M7 — M} = Z (k1 — k2)r® + O(r"). Yet
this only yields the square of the principal curvature difference.

A more practical result was proved in [43] in theorem 6 : the barycenter of the
surface patch (intersection of a ball of radius r with the surface M) is proved to
have coordinates (0,0, £2£%272) 4 O(r®). In this expression the signs are not lost
and the curvature is indeed the dominant term of the expansion. For the sake of
completeness the proof of this result will be recalled in Lemma 2.

In [45], the proposed framework for curvature estimation at a particular point
is based on a set of curves representing the local neighborhood of the point under
consideration.

For each pair (p;, p;j) of neighbors of p, the set of triplets (pi, p, p;) is built.
Each of those triplets can be used to define a parametric space curve p(t) by
quadratic polynomial interpolation with p(0) = p;, p(1) = p; and p(¢t) = p where
t= #ﬁi—pl' This allows for the approximation of maximum and minimum
curvature values as the minimum and maximum normal curvature values for all
possible point triplets. This method can be used either on meshes or point clouds.

In [25], the authors proposed a statistical estimation of the curvature of point
sampled surfaces based on M-estimators'. The position difference vector Ap and
normal difference vector An are used to define a linear system yielding a first
estimate of the curvature tensor. Then residuals are computed and used to weigh
the samples and the objective function is minimized by iterative reweighing of
point samples. This yields the final curvature tensor estimate.

Finally in [6], an algorithm to compute the Laplacian of a function defined on
point clouds in R? was proposed along with convergence proofs. Yet the model
is not tested on real surfaces. Neighborhood covariances being used already for
normal estimation, the idea to express fundamental forms as covariances matrices
was introduced. The next section reviews the covariance techniques considered in
the literature.

1.3 Curvature estimation using covariance techniques

There are few covariance approaches and they have seldom been analyzed math-
ematically yet, (with the notable exception of [43] and [52] which will be detailed
in this section). Nevertheless, covariance methods can be an elegant alternative to

L M-estimation: robust fitting of a model by minimization of an objective function of the
residuals with an Iterative Reweighed Least Squares (IRLS) scheme
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surface regression. Three papers [7], [33] and [40] use covariance matrices for the
curvature estimation.

The first one [7] considers the neighbors (p;) of a point p. The second funda-
mental form analog is then defined as the covariance matrix of the vectors pp;
projected onto the tangent plane of the surface at p. An analog of the Gauss map is
also introduced: it is the covariance matrix of the neighbors unit normals projected
onto the surface tangent plane at point p. The eigenvectors are said to give the
principal directions. In fact these two covariance matrices are inspired from [33].
Indeed, [33] first proposed to compute the covariance matrix of the normals at the
neighbors of p, and to extract the principal eigenvalues which correspond to the
principal curvatures of the surface at p. The last covariance method, introduced
in [40] is not claimed to be explicitly linked to surface curvatures or fundamental
forms, yet it is used to account for the surface geometric variations. Consider the
covariance matrix of vectors p; where is the barycenter of the neighborhood of
p. The surface variation is defined as the ratio of the least eigenvector over the
sum of all eigenvectors of this covariance matrix. This quantity has the nice prop-
erty that it is bounded between 0 (flat case) and 1/3 (isotropic case). All of these
methods will be detailed and analyzed in section 3.

1.4 Moving Least Squares Surfaces

MLS (Moving least square) surfaces were introduced in [30] as follows. Given a data
set of points {pi}: (possibly acquired by a 3D scanning device) and belonging to
a smooth surface M, the goal is to replace the points p defining M by a reduced
set R = {r;} defining a so called MLS M’ surface which approximates M. The
surface M is assumed to be a C* 2-manifold. The authors fix a bounding error &
such that d(M, M’) < g, where d is the Hausdorff distance.

The projection of a point on the MLS surface is defined as follows: given a
point p, find a local reference domain (plane) for p. The local regression plane H
is obtained by minimizing a local weighted sum of square distances of the points
pi to the plane. The weights attached to p; are defined as functions of the distance
of p; to the projection of p on plane H, rather than their distance to p.

Assume @ is the projection of p onto H, then H is found by locally minimizing
with respect to n and D the quadratic cost

N

> (<n,pi > -D)*0(|lpi - Q)

i=1

where 6 is a smooth, monotone decreasing positive function. We can set Q = p+tn
for some t € R, which leads to the minimization of

N

> (<n,pi —p —tn>)*9(|[pi — p — tnl)).
i=1

The local reference domain is then given by an orthonormal coordinate system on
H with origin @. The reference domain for p is used to compute a local bivariate
polynomial approximation to the surface in a neighborhood of p. Let @Q; be the
projection of p; onto H, and f; =< n,p; — Q; >. In this local coordinate system,
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let (xs,yi) be the coordinates of Q; on H. The coefficients of the polynomial are
computed by minimizing the least square error Zﬁil(g(mi, vi) — f1)?0(|pi — Q)
The projection of p onto M is defined by the polynomial value at the origin, i.e.
Q+9(0,0)n =p+ (t+ ¢(0,0))n. Thus, given a point p and its neighborhood, its
projection onto the MLS surface can be computed. The approximation power of
MLS surfaces was evaluated in [31] and the first applications were introduced in
[2], [5] and [32].

MLS surfaces are not only theoretically powerful; they also provide fine imple-
mentations for rendering, up-sampling or down-sampling point sets [3],[40]. Finer
variants of MLS were subsequently proposed for a better preservation of sharp
edges in surfaces defined by point clouds [39], [34], [18], [21] and [1].

The same framework was used to build a scale space for point clouds in [41].
The surface is evolved through a diffusion process %_1; — A Ap = 0, where p
is a point of the surface, A a diffusion parameter and Ap = Hn is the Laplace
Beltrami Operator (H is the curvature and n the normal at point p, this is the
decomposition process). By remembering the set of displacements D;(p) of each
point p we have a reconstruction operator. The choice of the Laplacian discretiza-
tion is very important: a first possibility is to use the standard mesh Laplacian
techniques [47] adapted for point clouds using the k-nearest neighbors instead of
the one ring neighborhood. Another possibility is to use the weighted least squares
projection [23], [26]: the surface is iteratively projected onto the plane defined by
the weighted barycenter o and the normal estimated using the weighted neighbor-
hood covariance matrix. The weights are a Gaussian function of the distance to
p, and the size of the Gaussian kernel is a parameter that controls the amount of
smoothing. This projection process is in fact an order 1 projection motion (MLS1)
that will be analyzed in the following sections.

To make the projection more efficient, [41] proposed to sub-sample the point
cloud. This yields a scale space decomposition where at each level the surface is
smoothed and sub-sampled. The scale space decomposition is then applied to the
multi-scale freeform deformation and to the morphing problem, with satisfactory
results.

The moving least squares (MLS) were used to estimate curvatures. For exam-
ple, in [51], the authors use the MLS framework to build a closed form solution
for curvature estimation. Indeed, surfaces implied by point clouds can be seen as
the zero level set of an implicit function f whose gradient and Hessian Matrix are
built. Finally, using formulas for the Gaussian and the mean curvature depending
on the Hessian and gradient of f, those curvatures can be computed.

In [10], the problem of estimating differential quantities on point clouds is re-
cast to that of fitting the local representation of the manifold by a jet. A jet is
simply a truncated Taylor expansion. A n jet is a Taylor expansion truncated at
order n. A jet of order n contains differential information up to the n-th order. In
particular it is stated that a polynomial fitting of degree n estimates any k'™ order
differential quantity to accuracy O(h™~**1). This implies that the coefficient of
the first fundamental form and unit vector normal are estimated with O(h™) pre-
cision and the coefficients of the second fundamental form and shape operator
are approximated with accuracy O(h™ '), and so are the principal directions. In
order to characterize curvature properties, the method resorts to the Weingarten
map A of the surface, also called the shape operator, that is the tangent map of
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the Gauss map. Recall that the first and second fundamental forms I, I7 and A
satisfy II(t,t) = I(A(t),t) for any vector t of the tangent space. Second order
derivatives are computed by building the Weingarten map of the osculating jet
whose eigenvalues are the principal curvatures. Note that the described methods
can be used either with a mesh or with a point cloud. Jets are in fact very related
to MLS surfaces. Indeed, to estimate differential quantities a polynomial fitting
of degree n is done, which is exactly what MLS does. Therefore the analysis in
section 4 giving the equation governing MLS1 and MLS2 motions are valid for the
jets too.

Nevertheless, we shall prove that none of the above mentioned moment based
methods for computing the curvatures without a surface regression gives back
the signed curvatures. We shall also prove experimentally that in order to be
stable, those integral estimates as well as the surface regression estimates require
a large neighborhood, which leads to larger computation time. In terms of Signal-
to-Noise Ratio, it will turn out to be better to consider a scale-space approach:
applying the scale space iterations with a small neighborhood and then extracting
the differential operator analogue.

This section has reviewed the main methods aiming at estimating locally the
surface shape, thus implicitly computing local equivalents of the infinitesimal cur-
vature tensor. We have seen that two sorts of methods, logically, dominate: the
polynomial regressions on one side, and the local moments on the other. (It is ac-
tually difficult to imagine other kinds of local methods on a raw point set). These
kinds have very different techniques, but we shall be able to compare them in
two unifying frameworks. We shall first give their asymptotic equivalents, which
are functions of the surface principal curvatures. Then we shall compare their
reliability by a numerical set up in the experimental section.

In particular section 3 finds the form of the differential operators underlying
the four mentioned discrete schemes based on local cloud point statistics, and
proposing discrete analogues of the “second fundamental forms” or of the “principal
curvatures”. These discrete schemes have very simple and robust form, being based
on the computation of local moments and eigenvalues of the point cloud. The
next section 2 provides the tools to analyze numerically point cloud motions. The
analysis is in spirit close to the image filter analysis performed in [§].

2 Tools for numerical analysis of point cloud surface motions

We always assume the existence of a smooth surface M supporting the point set.
These surfaces are the boundaries of solid objects and can therefore be assumed
to be locally Lipschitz graphs. However, for a mathematical analysis of smoothing
algorithms and curvature estimations on the surface, we shall always assume that
the surface is a C°° embedded manifold, known from its samples denoted by M.
This is not a limitation, in the sense that any finite sample set can be anyway
interpolated by an arbitrarily smooth surface. Let p = p(«p, ¥p, 2p) be a point of
the surface M. At each non umbilical point p, consider the principal curvatures
k1 and k2 linked to the principal directions t1 and to, with k1 > k2 where t1 and
t2 are orthogonal vectors. (At umbilical points, any orthogonal pair (t1,t2) can be
taken.) Set n = t1 X t2 so that (ti,t2,n) is an orthonormal basis. The quadruplet
(p,t1,t2,n) is called the local intrinsic coordinate system. In this system we can
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Cylindrical Neighborhood

Regression Plane

Spherical Neighborhood

Fig. 1 Comparison between cylindrical and spherical neighborhoods

express locally the surface as a C? graph z = f(x,y). By Taylor expansion?,

2= J(o,y) = 5(k1e? + kay®) + ofa® + ). (1)

Notice that the sign of the pair (ki, k2) depends on the arbitrary surface orienta-
tion. Points where k1 and k2 have the same sign are called parabolic, and points
where they have opposite signs are hyperbolic.

Consider two kinds of neighborhoods in M for p defined in the local intrinsic
coordinate system (p,t1,t2,n):

— the spherical neighborhood B, = B,(p) N M is the set of all points m of M
with coordinates (z,y, z) satisfying (z — zp)? + (y — yp)? + (2 — 2p)? < 12
— the cylindrical neighborhood C, = Cy(p) N M 1is the set of all points m(z,y, 2)

on M such that (z — zp)? + (y — yp)? < r2.

The spherical neighborhood in the sampled surface Mo is the only neighborhood
to which there is a direct numerical access. It serves for defining all numerical
schemes considered here. Nevertheless, for the forthcoming asymptotic numerical
analysis, the cylindrical neighborhood will prove much handier than the spherical
one. The next technical lemma justifies its use in theoretical calculations.

Lemma 1 Integrating on M any function f(z,y) such that f(z,y) = O(r") on
a cylindrical neighborhood C, instead of a spherical neighborhood B, introduces an
o(r™ Y error. More precisely:

/ f(z,y)dm = / f(x,y)dady + O(+™). 2)
B, x

24 y2<p2

Proof The surface area element of a point m(zx,y, z(z,y)) on the surface M, ex-

pressed as a function of , y, dr and dy is dm(x,y) = /1 + 22 + zZdxdy. One has
2e = kiz + O(r?) and zy = koy + O(r?). Thus

dm(z,y) = \/(1 + k222 + k2y? + O(r3))dzdy

2 We could use z = f(z,y) = —%(klxz + k2y?) + o(x? + y?) at the cost of changing the
orientation and sign of kq,k2.
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which yields

dm(z,y) = (1+ O(TQ))dmdy. (3)

Using (3), the integrals we are interested in become

/ f(z,y)dm = (1+ 0(r2)) fa,y)dedy;  (4)
B, §2+y2+22<r? (z,y,2)EM

/C f(z,y)dm = (1+0(2)) f@y)dedy.  (5)

24y2<r2, (z,y,z)EM
The right hand forms are amenable to analytic computations. Consider polar coor-
dinates (p, 0) such that z = pcosf and y = psinf with —r < p <rand0<6 < 7.
Then for m(z,y, z) belonging to the surface M, we have z = %pQ(kl cos?0 +
ko sin? 0)+O(r®). Thus z = %p2k(0)—|—0(r3), where k() = ki cos® §+ka sin? 6. The
condition that (z,y, z) belongs to the neighborhood B, can therefore be rewritten
as p> + 22 < r? that is

1
P’ + Zk(9)2p4 <r?+0(rP).

Computing the boundaries +p(6) of this neighborhood yields p(6)*+1k(6)%p(6)* —
r? 4+ O(r5) = 0. Thus

_ L+ V14RO (2 + o(r*).

P(9)2 %k(Q)Z

This yields p(f) = r — £k(6)*r® + O(r*). We shall use this estimate for the error
term E appearing in

/ f(w,y)dwdyZ/ / f(z,y)pdpdd
B, 0,21 J10,p(6)]

-/ f(x, y)pdpdo — E
[0,27] J[O,7]

— [ s ydsdy - .
c.

with F =: f[0)2ﬂ f[p(e))r] f(z,y)pdpdfd. Thus

|E| <2r  sup |f(x,y)| max(k?, k3)r! + O(r°).
x2+y2 <r?

In particular if f(z,y) = O(r™), then |E| < O(r*™™). Finally we have
[, 1wy = [ s )izay+ 06+, ()
r Cr

Combining (4), (5) and (6) yields (2).

This lemma will prove very useful for the rest of the paper and in particular
in the next section where analysis are given for various curvature estimates.
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A methodological objection to the asymptotic analysis Lemma 1, as well as all
theorems in the remainder of this paper will assume that the surface is a uni-
form Lebesgue measure. Thus the theoretical analysis will be performed as though
the surface were a very smooth object with dense uniform Lebesgue sampling.
This is very far from reality, and could cast doubts on the pertinency of such a
theoretical analysis. However, as will be explained later, the objection will prove
invalid, in that the chosen local integral operators will always be robust to ir-
regular sampling. For example the local area could definitely not be computed
by a local sample density. In the same way the local barycenter of the existing
sampled will be heavily biased by the irregular sampling and would have little
to do with the actual local barycenter of the underlying surface. Nevertheless,
the moments we shall consider are far more robust, in theory and in practice, to
irregular sampling. This is the case for example for the normal when estimated
as the normal to the local regression plane or, as we shall see, the mean curva-
ture vector estimated as the projection of the sample on its regression plane. On
the numerical side, however, it is recommended to compensate for the irregular
sampling by an adequate sample reweighing in the computed local moments. This
intrinsic density is simply approximated on discrete data by weighting each point
by a weight inversely proportional to its initial density. More precisely, let p be
a point and N,(p) = M; N Br(p). Each point ¢ should ideally have a weight
0 < w(q) <1 such that 3° () w(g) = 1. This amounts to solve a huge linear
system. For this reason, we shall be contented in the experimental section with
ensuring > . ) w(q) = 1 by taking w(p) = m, as proposed in [50].

3 Curvature estimates by covariance matrix methods

This section contains some of the main contributions of the present paper. It finds
the form of the differential operators underlying four different discrete schemes
based on local cloud point statistics, and proposing discrete analogues of the “sec-
ond fundamental form matrix” or of the “principal curvatures”. These discrete
schemes have a very simple and robust form, being based on the computation
of local moments and eigenvalues of the point cloud or of its normals. We shall
see that all of the methods asymptotically compute nonlinear differential opera-
tors linked to the principal curvatures. Their principle is to replace the matrix
of the second fundamental form by some symmetric matrix that can be deduced
from the local statistics of the point cloud. We shall consider four matrices (2 or
3-dimensional)that are the simplest of such covariance matrices:

— 2D covariance matrix of the projections of p;p on the tangent plane where p;
are the points of the neighborhood (section 3.1) ;

— 2D covariance matrix of the projections of the unit normals n(p;) on the tan-
gent plane (section 3.2) ;

— 3D covariance matrix of the unit normals n(p;) (section 3.3) ;

— 3D centered covariance matrix of the p;6 where is the barycenter of the
neighborhood (section 3.4).
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3.1 A discrete “second fundamental form” [7]

Let(pi)ic1...n be the set of neighbors of a point p with normal n. This paper
proposes to build the “second fundamental form matrix” as follows. (Although this
covariance matrix is not, as we shall see, consistent with the second fundamental
form, it is thus called in this paper, and actually has asymptotically, as we shall
see, the principal directions as eigenvectors.) Let s; = (p; — p)” - n, let t1, t2 be
two orthonormal vectors in the tangent plane of p, and

(pi — p) (pi —p) - t2

The a; are the projections of the vectors (p; — p) onto the tangent plane to p,
weighted by their distance to this plane. The “second fundamental form matrix”
is the covariance of these vectors, namely

N
Y= Z(ai — am) - (i — am) T (7)
i=1

where o, = % vazl a; and in Xy the d stands for “discrete”. To compute the
underlying differential operators, two assumptions will be made throughout this
paper. The first one is that the surface sampling is uniform with respect to the area
measure on the surface. The second one is that this sampling is dense enough, so
that the averages taken on neighborhoods can be interpreted as integrals. Under
this interpretation, we can reinterpret the sum in (7) as an integral on a cylindrical
neighborhood of p, assuming the data point set to be a locally smooth manifold.
In the local intrinsic surface coordinate system at point p, (p, t1,t2, n), the surface
can be written as a graph z = 3(k12” + k2y®) + o(r®). Thus the vectors a; are
replaced by a continuous vector a(z,y) defined by

1 2 2 )\ 1 kyz® —l—k‘gy2x 3
o) = gkt + k) () = 5+ (50 E) woid). ®)

Under the interpretation taken above the “second fundamental matrix” rewrites
2= [ (@le.9) ~ ) - (ale.9) - ) dma.) )

where
1
O = T /B o, )im(y). (10)

meas(B,

The proposition made in [7] is to extract the surface principal curvatures and
their corresponding directions at p from this covariance matrix, as its eigenvalues
and eigenvectors. The next theorem checks if this works asymptotically in the
continuous model.

Theorem 1 The eigenvectors of the “second fundamental form matriz” X give the
principal directions with error 0(7‘8). But the eigenvalues of X are not the principal
curvatures as they satisfy

_ 7T_rs( W_TS
T 256 256

where k1 and k2 are the principal curvatures at p

M 5k1 4 2kiks + k3) 4 o(r®) and A2 = — (kT + 2k1k2 + 5k3) + o(r®)
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Proof In the continuous model a., therefore is close to zero because the integrated
function is odd on a symmetric domain. More precisely, using Lemma 1 in (10)
and writing am = (Oma, Qmy),

1

(0% = —
mET o2

/ (k12> + koy’xi + o(r®))dady = o(r?)
x2y2<r?

and similarly
Uy = o(r?).

By Lemma 1 again, the covariance matrix (9) satisfies X = fm2+y2<r2 a(z,y) -

afz,y)Tdrdy + o(r®), and, using (8), we can calculate its four components as
follows.

1
Tu=g / (k12° + kay’x)dwdy + o(r®) =
2 4y?<r?

7'("1"8

o5 (5K3 + 2k1ka + k3) + o(r®)

4
By exchanging the roles of ki1, k2, and z, y respectively, we get

_
256

Y being a symmetric matrix, Y12 = Y21 and the integrated function being
odd,

Xao (k‘% + 2k1ks + 5]{%) + 0(’1“8).

1
Yio== / (k12?4 koy’x) (krz?y + koy®)dady + o(r®) = o(r®).
4 224 y2 <2
Thus, X' is equivalent to a diagonal matrix whose principal directions are t; and
t2, which validates the theoretical requirements, ¢t1 and ¢2 being the principal
directions at point p. However, the corresponding eigenvalues are

7T’I‘8

M=o (5T + 2k1k2 + k3) + o(r®)
mr® 2 2 8
Ao = ﬁ(kl + 2k1ko —|—5k‘2) —|—0(’F )

which are definitely different from A\; = k1 and A2 = k2. Only the absolute values
of k1 and k2 can actually be deduced from X.

3.2 Another discrete “second fundamental form”

Another method was also introduced in [7] which, in a nutshell, computes the
covariance matrix of the unit normal vectors projections onto the local tangent
plane. By applying again the continuous asymptotic analysis of section 3.1, we shall
see in Theorem 2 that this method actually computes discrete approximations of
the squares of the principal curvatures. The discrete algorithm is as follows. Let
M be a C? surface and p be a point of M. Let (pi); be the neighbors of p in a
ball neighborhood of radius r. Denote by n; the normal at p; and define v; as the
projection of n; onto the tangent plane at p, then the computed “curvatures” are
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defined as the eigenvalues of the covariance matrix of the vectors v;. The vector
v; being the projection of n; onto the tangent plane, we have

v — n; -t

YT \ng-te )
Set v, = % ZZI\; 1 vi- Then this new discrete covariance matrix writes Yy =
vazl(vi — vm) - (Vi — vm)T. In the continuous framework, the local points on
the surface have coordinates m(z,y) = (x,y, %(kla:2 + koy?) + o(r?)) and the

normal vector to this surface is %—';“(a:,y) A %—';(a:,y) = (—kiz,—koy,1) + o(r). It
follows that

1 —kla:)
v(z,y) = +o(r),
(#:9) = Zr (The) + ot

Um = %/v(xvy)dm(mvy)v

meas

and the continuous covariance matrix is
5= [ 09 = o) (vla) )"

Theorem 2 The eigenvalues of the covariance matriz X of the vectors v(x,y) in
the spherical neighorhood B, are
kirtn
4

k3rir

+ o(r*) and +o(r?).

Proof Let us compute the mean v, of v(x,y) on the spherical neighborhood. By
Lemma 1 the integral on a spherical neighborhood is asymptotically equivalent to
the integral on a cylindrical neighborhood and more precisely, (77%)vn, - t1 = o(r3)
and similarly

—k
(772 ) v - t2 = / 2Y
z24y2<r? 1+ k%lﬂ + k%yQ

Thus the coefficients of X satisfy, again by Lemma 1,

dzdy + o(r*) = o(r?).

k%$2 4 / 2 2 4
1 = —————dxdy +o(r") = kiz® + o(r
" /L2+y2<rz 14+ k%xQ + k§y2 Y ( ) 224y <r? ! ( )
k? 4
= 12 il + 0(1"4)

.. k%r‘lw 4 4
Similarly, Y22 = =2;— + o(r") and Y12 = Ya1 = o(r?).

Thus X' is asymptotically diagonal and its eigenvalues Y11 and Y92 are asymp-
totically obtained for the principal directions ¢; and t2. Yet, these eigenvalues
asymptotically give an approximation of each one of the squared principal curva-
tures, but not of their sign.
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3.3 A third discrete “fundamental form”

The methods analyzed in sections 3.1 and 3.2 are akin to the original method
introduced in [33]. Indeed, in [33] it was proposed to compute the covariance
matrix of the normal vectors of the neighborhood (without projecting them in the
local regression plane) and therefore get a 3 x 3 matrix instead of a 2 x 2 matrix.
This is actually the simplest imaginable method and we shall see that it gives a
result similar to section 3.2.

Theorem 3 Let M be a C? surface, let p be a point of M. Then the three eigen-
values of the covariance matrixz C of the unit normals in a neighborhood of radius
r around p are asymptotically respectively equal to 1 and to the squares of the
principal curvatures at p.

Proof A normal vector writes

1 —kla:
N = —koy | + o(r).

V1+ k2z2 + k2y? 1

As in the previous sections, we easily obtain by Lemma 1, Nyz = o(7), Ny =
o(r), Nmz = 1+ o(r). Thus again by Lemma 1,

1 k%CEQ kikazy kiz(1l — Npmz)

C=|————5— kik k3y? koy(1 — Np2) | dxd 4

/1+k~%x2+k§y2 . ey 2y 2y z) | dwdy +o(r)
22492 <2 117(1 - Nmz) k2y(1 - Nmz) (1 - Nmz)
and, by calculations exactly analogous to Section 3.2, C1 = Ml +o(r*), Coz =

2 471'
_kzz +o(r?), C12 = C21 = kiks Sy Tydady = o(r'), Cis = Cs1 = Cag = C3p =
k?’IATF kgr47r

Cs3 = o(r*). Thus the eigenvalues are asymptotically equal to 7 and —2;—,
which also gives back the squares of the principal curvatures of the surface, but
again not their sign.

3.4 A fourth discrete fundamental form: the surface variation

We shall now analyze a last variant introduced in [40], the so called surface varia-
tion. It is again based on a local covariance analysis. Unlike the previous methods,
the surface variation was not claimed to be a curvature estimate, but to be a mea-
sure of the neighborhood shape. This subsection establishes again a link between
this discrete quantity and the principal curvatures of the surface.

Let p be a point with given neighborhood B,. Let o be the barycenter of the
neighborhood. In R3, the coordinates are written with superscripts e.g. the coordi-
nates of a point v are (u', u?,u%). Thus, fori = 1,2,3, 0" = m ZpkeBT p.. The
centered covariance matrix X = (my;)i,j=1,... 3 is defined as m;; = ZpkeBr(p}c —
o’) - (pfc —0%) for i,j = 1,2,3. Let Ao < A1 < A2 be the eigenvalues of ¥ with
corresponding eigenvectors vo, v1,v2. For k =0,---,2,

M= Y ((pi— o) ui)?. (11)

P:€B,
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Each eigenvalue gives the variance of the point set in the direction of the corre-
sponding eigenvector. Since v1 and vg are the vectors that capture most variations,
they define the PCA regression plane. The normal vg to this plane is the direction
v minimizing > - ((Pi — 0), v)2. [40] defines the surface variation by

0__7>\0
T o+ A A

This quantity measures the ratio of variance along the normal to the total variance.
If the neighborhood is highly curved, its surface variation will be high and if the
neighborhood is flat the surface variation will be small. This quantity has the
property to be bounded between 0 (flat case) and 1/3 (isotropic distribution case).

(12)

Lemma 2 [43] In the local intrinsic coordinate system, the barycenter of a neigh-

borhood B, of point p has coordinates o = o(1?), yo = o(r?) and zo = HZQ +o(r?),
where H = @ is the mean curvature at p.

Proof We give the proof for the sake of completeness. By Lemma 1 applied to the
numerator and denominator of the following fraction, we have

fBT zdm fx2+y2<r2 z(z,y)dxdy + O(r°)

o= fBr dm f12+y2<rz dxdy + O(r3)
oo B0 ) o Py
= r
fm2+y2<r2 dzdy

r 2m
:2737-2 / / p2(k1 COS2 0 + kQ Sin2 e)pdpde + 0(7.2)
p=0J6=0

2 2
H
:;—ﬂ_(klﬂ' + kam) 4 o(r?) = TT + o(r?).
A similar but simpler computation yields the estimates of o and yo.

Theorem 4 In the local coordinate system the surface variation o satisfies

ﬁ(k%w%

— 1 2
=15 5 Sklkg) +o(r?) (13)

Proof We need to explain what the covariance eigenvalues stand for. Each eigen-
vector v; and associated eigenvalue \; represent a principal direction and the
variation along this principal direction,

Ai = / (om, v;)*dm.
meB,

Since we have Ao < A1 < A2, we can see that Ao is associated to the direction
with the least variation namely the normal direction to the surface oz. Since the
eigenvectors form an orthonormal basis, we have

/\0+/\1+/\2:/

(om, v0)? + (om, v1)? + (om, v2)*dm = / lom|*dm
meC,

mecC,
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This yields Ao + A1 + A2 = [, 20 22 + 32 + (2 — 2o)2dzdy and

24y

4
Ao+ A1+ A2 = % + Ao + o(r®) (14)

We first compute Ao, applying again Lemma 1 to get back to the easy cylindrical
neighborhood.

Ao = / (z — 20) dady
22 +y2 <r?
= / z2d$dy + zg/ dxdy — 2z0/ zdxdy
x2+y2<r? x?+y2<r? x24y2<r?

H?*rt Hr?rt

2 2 6
= dxd —2——7H
/I2+y2gr2z xdy + 16 * T Y 7mH + o(r”)

= 1(k%/ z4dmdy+k§/ y4da:dy+2k1k2/ 22y dzdy
4 1172+y2§7‘2 1172+y2§7‘2 12+y2§7<2
2,6
— lg 7r—|—0(r6)
178 3rx 2 2 T H?rS 6
= T2 k) 4 ke D) —
176 (g (KA R2) + kikeg) = =a=m 4 o(r)

where H = % is the mean curvature. Thus

6 2 2
ki +k 1
Gy (g~ ghke) +o(r”) (15)

Ao =

Using (14) and (15) we get

2 2
fo(f — Shiks) +o(r?)

= 2112
14 2 (5% 1k k) + o(r2)

which finally yields:

2 /1.2 ) 12
T kl —|—k2 1 2
o= 16( 5 3k1k2> + o(r”)

The formula of the surface variation given by Theorem 4 indeed measures a sort
of curvature. To interpret it we can notice that

— the surface variation is symmetric in k1,k2;

— in the case of a point lying on a sphere, k1 = ko = k io Osphere = g—ik2;

— in the case of a saddle point k1 = k = —k2, 0saddie = I—2k2 SO Osphere < Tsaddle;
— in the case of a cylinder k1 = k, k2 =0, 0cylinder = g—;k2.

It follows from that the surface variation is not a discriminating enough informa-

tion about the surface curvature. It is unable to discriminate very different local
shapes.
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4 Asymptotic behavior of MLS1 and MLS2

The simplest statistics that can be computed in a spherical neighborhood are the
barycenter and the regression plane. Lemma 2 stated that sending each point onto
the barycenter of its neighborhood approximates the mean curvature motion. The
next simplest statistic is the regression plane, and the second next is the local
degree 2 regression surface. The main tool of the scale space proposed in [17] is
the projection of each surface point p on the local regression plane. This PCA
regression plane is defined as the plane orthogonal to the least eigenvector of the
centered local covariance matrix, and passing through the centroid of the neighbor-
hood. The projection of p on this plane will be called p’ = M LS1(p) where MLSn
stands for mowving least square of degree n. Indeed, this projection method is the
simplest instance of the moving least square method by which each point of a sur-
face is projected to a local degree n polynomial regression. (The local barycenter
can actually be considered as an MLS of order 0, MLS0.) There is some particular
interest in MLS1, because a recent meshing method uses it as the simplest re-
versible smoothing tool for point clouds [17]. On the other hand many cloud point
processing methods involve some variant of the MLS2 method to smooth, interpo-
late, or sub-sample a point cloud. MLS1 and MLS2 are smoothing operators and
therefore could be used as scale spaces, that is, as iterative smoothing operators.
But, following [17] MLS1 indeed is a scale space. MLS2 is not, as illustrated in the
experiments of Section 5. The theorems of this section clarify what happens with
these local polynomial regressions by first recalling briefly why MLS1 implements
a mean curvature motion, and second by showing that MLS2 is insensitive to first,
second, and third order intrinsic derivatives, and has an order 4 difference to the
original surface. The study reveals the fourth order intrinsic differential operator
associated with MLS2.

4.1 The asymptotic behavior of MLS1

The next lemma compares the normal to the PCA regression plane with the normal
to the surface, n at p.

Lemma 3 The normal v to the PCA regression plane in a spherical neighborhood
B, at p € M is equal to the surface normal at point p, up to a negligible factor:
v=n+O(r).

Proof The local PCA regression plane of point p is characterized as the plane
passing through the barycenter of the neighborhood B, and with normal v mini-
mizing:

I(v) = / (v, pp')2dp’ s.t. [[v]] = 1

s

Denoting by (v, vy, v:) the coordinates of v,

1
I(v) = / (vem +vyy + Uzi(kll“2 + k2y2) + 0(7“2))2d$dy.

Ia

Considering the particular value v = (0,0, 1) shows that the minimal value Inin
of I(v) satisfies Lnin < O(r®). In consequence the minimum (vz,vy,v,) satisfies
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vy < O(r) and vy < O(r). Thus, since ||v|| = 1, v; > 1 — O(r) and therefore
v=n+O0(r).

Theorem 5 Let T; be the operator defined on the surface M transforming each
point p into its projection p’ = T-(p) on the local regression plane. Then

n+ o(r?). (16)

Hr
Li(p)—p=—;

Proof By Lemma 2 the barycenter o of B, has local coordinates pé = (o(r?), o(r?), HZ2 +

—
0(r2)). On the other hand pp’ is proportional to the normal to the regression plane,

—
v. Thus by Lemma 3, pp’ = AM(O(r),0(r),1 — O(r)). To compute \, we use the
fact that p’ is the projection on the regression plane of p, and that o belongs to

this plane by definition. This implies that pp’ L op’ and therefore
2
NO@?) + AL = O(r)(H +o(r) + M1 - O(r)) = 0,

which yields A = HTTZ) + o(r?) and therefore

Hr?

Tt o(r?).

pp =(0(*),00°), 1= + or*)) =

4.2 The asymptotic behavior of MLS2

Among the many versions of MLS2 proposed in the literature, we shall pick one
which is a common denominator, and prone to a simple asymptotic analysis. In
MLS2 a first intrinsic reference frame is first calculated, and the mean square
approximation by order 2 polynomials is made in this reference frame. The most
natural frame is found by applying MLS1, and the coordinates (z,y) are therefore
the coordinates in the regression plane in a spherical neighborhood B5,.. The second
step is to find the closest order 2 polynomial in the spherical neighborhood for the
quadratic distance. Because of Lemma 1 we can specify, without loss of generality
or precision, that this minimization is made in the cylindrical neighborhood C,. In
that way, all integrals computed in the approximation process are integrals on the
disk 2 4+ y? < r?, which is numerically and formally convenient. Thus the MLS2
algorithm which we shall analyze works in the two steps:

1. compute the regression plane of the manifold in the spherical neighborhood
B, = Br(p) N M;

2. call (x,y) the reference coordinates in the regression plane. Consider the re-
striction of the smooth manifold to the disk D, := z? +9? < 72, z = f(z,y).
Then find the order 2 polynomial g(x,y) that best approximates f for the
L?*(D,) distance;

3. set (in the reference frame) M LS2(p) := (0,0, g(0,0)).

The next theorem shows that unlike MLS1, which reveals the mean curvature, the
difference between a point smoothed by MLS2 and its original position is very small
(of order 4) and actually reveals a fourth order intrinsic operator of bi-Laplacian
type. Thus the evolution by an iterated MLS2 is a fourth order equation that is
intuitively well-posed, at least for short times.
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Theorem 6 Consider a smooth manifold and its intrinsic coordinates (Z,7, Z)
around a point p(0,0), so that the Taylor expansion in a neighborhood of p satisfies

I S 1, . 1. 5 o . 5o .
= f(mvy) = §k1$2 + §k2y2 + f3($ay) + f4($ay) + f5($ay) + O(TG)
where f; are homogeneous polynomials in Z,7 of global degree i. The second order
approzimation M LS2(p) of p in a cylindrical neighborhood of p with radius r
satisfies

4

< MLS2(p) — p,n >= _2_8(3&04 + a2z + 3as0)) + O(r°)

where T and § are the coordinates associated with the principal curvatures, G40 =
4 4

%6_5@{’ aops = %g_g{’ Qo2 = %%52@ are the fourth derivatives of the intrinsic
equation at p in the directions of T, § and T,y respectively, and n is the normal
to the surface at p, oriented towards the concavity.

Lemma 4 One can choose the coordinates x and y in the regression plane at p
so that, z being the coordinate in the direction of the normal plane, the equation of
the manifold around p has the form z = f(x,y) = Z?,j:o aijx'y’ + o(|z? + v3?),
and in addition a;; = a;; +O(r) where Z = f(Z,§) = Z?,j:O ai; 290 4+ o(|#2 +52%)
is the equation of the manifold in the intrinsic coordinates (Z,q, Z) defined by the
normal at p and the directions of the principal curvatures.

Proof Consider (Z,7, Z) the coordinates in the intrinsic frame such that & and §
are the coordinates associated with the principal curvatures at p, and the plane
Zpy is the tangent plane. Consider now coordinates (x,y, z) associated with the
regression plane in a spherical neighborhood. Because the normal at the regression
plane tends to the real normal when the spherical neighborhood shrinks, we can
choose the coordinate axes (z,y) in the regression plane so that the rotation R
which sends one frame to the other is close to the identity, namely

(i'vg,g) = R(:Evyvz) (17)

with R — Id when r — 0. More precisely, by Lemma 3, the normal v(r) to the
PCA regression plane in a spherical neighborhood B, at p € M is equal to the
surface normal at point p, up to a negligible factor: v(r) = n+ O(r). Thus we can
pick R(r) satisfying

R=R(r)=1+O(r). (18)

Consider now the order 4 asymptotic expansion of Z as a function of Z, ¢, where §
is a degree 4 polynomial. (We assume the manifold to be at least C°):

5
2

Z—§(#,9) — O((* +§%)2) =0.

By substituting in it the relation (17) the above equation becomes an implicit
equation in z,x,y, R,

ot

Q(z,y,2,R) — O((z® +y*> + 2%)2) = 0. (19)
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However, by the chain rule we have %(0,0,0,Id) = 1. Thus by the implicit
function theorem, there is a function h of class C° such that in a neighborhood of

(0,0,0,1d), (19) is equivalent to
z = h(z,y, R).
Since h is C® we can make a Taylor expansion of h and therefore get
2= g(a,y, B) + O(IR — Id|]° + (o + 4*)%).

In particular for R = Id we have (z,y, 2) = (%, 7, Z) and we obtain by identification
of the terms with degree lower or equal to 4 that g(z,y,Id) = f(z,y). Thus, all
monomials a;j(R)z'y’ in the expansion of f with respect to z,y satisfy a; j(R) =
ai,j(fd) + O(I — R), which by (18) yields ai,j(r) = &i,j + O(’F)

Proof of Theorem 6. Let us write f(z,y) = fi(z,y)+ fo(z,y)+ f3(x,y)+ fa(z,y)+
f5(x,y) + o(|z® + y?[/?) where
fi(z,y) = a0z + any, f2(x,y) = azox® 4+ an1zy + ao2y’
f3(z,y) = azox® + az12’y + ar2xy® + aosy®,
fa(x,y) = asox® + az12’y + as2x®y® + arszy® + aoay?,
fs(z,y) = asox” + a419:4y + a329:3y2 + a239:2y3 + a14:vy4 + aosy5.

We look for the order 2 polynomial g that best fits this surface in the least squares
sense,
g9(z,y) = az® + By” + yoy + bz + ey + 0.

We therefore must find the parameters © = (o 8 6 € #)) which minimize

/ (9 ) — f(,y)) dedy = / (XOT — f(xy)) dudy
:1:2+y2 <T2

x24y2<r?

where X = (m2 v:ayzy 1). This is a quadratic minimization and differentiating
this integral with respect to © yields

/ xT(xe" - f(z,y))dzdy = 0.
z2+y2<r?

Writing M = [, X" X, the minimizer © satisfies

2422
-1
or = ( / <XTX>) [ &Ts)
:1:2+y2 <T2 12+y2 <T2

o =M | XT(filz,y)+falz, )+ fa(z, )+ fa(z, )+ f5 (2, y) +O((2* +5°)°);

z24y2<r2
24 $2y2 $3y 3 $2y z2
a:23y2 y43 gyz; mg2 y32 y2
where XTX = xsy myQ mQy mQy ey
x® xy® xy x° wy =«
2 3

y> oy’ wy vy
22 Y2 zy oz oy 1
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When integrating on the disk, most terms vanish and we get

r?

3

6

M= | o
4 10

0

1

Therefore

o7 =M~ / X7 fi(e ) + M) / X7 fo(e,y)
12+y2<7<2 $2+y2<r2
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M—l/ XT(IEQ"—yZ)S: (25)
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and combining equations (20), (21), (22), (23), (24) and (25) we finally obtain the
parameter @

azo + %2((122 + 6a40) + O(r*)
ao2 + L;(a22 + 6a0s) + O(r?)
a1 + 3%2((113 +az1) 4+ O(r?)
aio + T—Gz(au + 3aso0) + {—4(5050 + aze + a14) + O(r°)
ao1 + 5 (3aos + a21) + fg(aa1 + a23 + 5aos) + O(r)
—2—48(3(104 + a2z + 3a0) + O(r°)

of =

so that the MLS2 projection satisfies g(0,0) = —2—4(3a04 + a22 + 3ao) + O(r°).

8
Finally Lemma 4 permits to replace g(0,0) = — %z (3a04 + a2 + 3a40) + O(r°). by
4

1"4

48

—(==(3a04 + @22 + 3as0) + O(TG))(l +0(r))

O

—2—8(37104 + a2z + 3aa0) + O(r°).
We shall now analyze experimentally those results.

5 Numerical experiments

This section performs numerical comparative experiments with the most signifi-
cant algorithms described in the previous sections. A simulated randomly sampled
sphere will play the role of numerical pattern. In particular we evaluate the mean
curvatures given on the sphere by MLS1 projection and MLS2 projection followed
by polynomial regression. We also compute the curvature estimated by the method
described in [7] and by the surface variation of [40]. The results are compared by
giving the mean estimated curvature and its standard variation. The input data is
a randomly sampled sphere with radius 2 corrupted with added centered Gaussian
noise of variance 0.1.

Iteration MLSL —_— MLS2 —_—
mean standard variation mean standard variation
0 0.5828 2.8609 0.052 1.2879
1 0.5158 1.2434 0.4920 1.0053
2 0.5079 0.3196 0.5083 0.1259
3 0.5102 0.0253 0.5073 0.1001
4 0.5136 0.0189 0.5068 0.0855
5 0.5171 0.0165 0.5065 0.0749
10 0.5356 0.0156 0.5058 0.0489

Fig. 2 Comparison of the curvature estimation by iteration of the MLS1 projection and
iterations of the MLS2 projection, with the same radius.
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By comparing the values in the table of fig 2, two conclusions can be drawn:
first, MLS1 is significantly more stable than the MLS2 projection, which can be
observed by the standard variation on the estimate. The SNR gain is close to 4 by
using MLS1 instead of MLS2 with the same iteration number. In conformity with
Theorem 5, MLS1 projection yields an increase of the mean curvature (i.e., the
sphere radius decreases, which is expected from a mean curvature motion). These
results can be compared to the other two main curvature estimators.

Figs 3, 4 and 5) show various curvature distribution and surface variation dis-
tributions illustrating the interest of computing such operators to classify surface
points.
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(a) Iteration 1 (b) Iteration 2 (c) Iteration 3 (d) Iteration 4

Fig. 3 Curvature evolution by iterative projection on MLS1

Another experiment permits to better judge of the MLS1 smoothing effect.
First, a consistently oriented point set was built (see [17] for an efficient way
of doing so0). This normal orientation yields the sign of the mean curvature, by
computing the scalar product of the oriented normal and the displacement vector.
Each point was then plotted in a different color according to its sign, blue for
positive and red for negative (see Fig 6). This experiment shows that, at the
beginning, the curvature sign captures essentially noise and small texture. After
several iterations, the shape is smoothed and the sign captures the geometry of
the shape (large scale variations), which is the main advantage of the scale space
strategy.

To compare the techniques analyzed theoretically in the previous sections, we
finally used randomly sampled shapes with added Gaussian noise. We compared
between computing the covariance of the points projected onto the local tangent
plane, as described in section 3.1 (called 2dcovl in the remainder of this section);
computing the covariance of the unit normals projected on the regression plane, as
described in section 3.2 (called 2dcov2 in the remainder of this section); computing
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(a) Iteration 1 (b) Iteration 2 (c) Iteration 3 (d) Iteration 4

Fig. 4 Curvature evolution by iterative projection on MLS2 .

=
P T e i ¥,

(a) Surface variation (b) Curvature by nor-
mal covariance analy-
sis

Fig. 5 Other curvature estimates .

the covariance of the unit normals, as described in section 3.3 (called 3dcov in the
remainder of this section); and finally MLS2. The 2dcovl method was immediately
discarded, because it does not yield a separate estimate of the principal curvatures.
We therefore only compared the other three methods.

To do so the estimators were compared on three kinds of noisy surfaces: a
sphere, a cylinder and a torus with added gaussian noise in the normal direction.
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Fig. 6 Evolution of the motion direction with projection iterations.

The goal was not to compute the actual curvatures of the noiseless surface, but to
contrast the robustness of these local surface geometric indicators which replace
the infinitesimal curvatures. The asymptotic theorems 2, 3, 1 and 2 show that the
considered intrinsic local integral estimators retain the same structure properties
as the real differential operators. Thus, our goal is to select among them the ones
that have the best SNR.. On the other hand the SNR depends of course of the radius
on which these operators are computed. The smaller the radius, the more faithful
these operators will be to local curvature operators. Thus, all things being equal, it
is better to compute them with small radii. But of course the SNR, decreases with
the radius. Thus, to compare the power of these local integral operators, the best
way is to compare the SNR’s with fixed radius or, equivalently, to compare their
radii for fixed SNR. Yet there are two parameters for MLS1: the radius r and the
number of iterations IN. But both parameters can be an equivalent radius. Indeed,
applying N iterations of MLS1 with radius r is roughly equivalent to applying
one iteration of the scale space with radius r, = /N7 (this equivalence is drawn
by analogy with iterated linear filters). The numerical tables give the equivalent
radius value for MLS1.

A sphere and a cylinder were used because they have constant curvatures on the
whole surface. We also considered a torus, because one can compute the operators
on invariant circles of the torus, where curvatures should be constant in absence
of noise. As just explained, the radii were set so that each method gives the same
standard variation for the estimate of the same curvature.

One should first notice that 3dcov and 2dcov2 give very similar results. This is
not surprising since both methods rely on the normal covariance matrix (actually,
even their asymptotic behavior is the same, see theorems 2 and 3).

Tables 7, 8, 9 show the results after this calibration of the experiment by
the standard deviation. Two conclusions can be drawn from these experiments.
First, the radii needed for getting a small standard variation are slightly larger
for 2dcov2, 3dcov and significantly larger for MLS2, than for MLS1. This has
the direct consequence that computation times are significantly higher for those
methods than for MLSI: it is indeed faster to iterate a method working on a
small neighborhood than to do a single iteration of a method requiring a large
neighborhood. Nevertheless, MLS1 only provides us with an estimated equivalent



Julie Digne, Jean-Michel Morel

28
parameters stdev | SNR
MLS1 | N=5,r=0.14, req = 0.31 | 0.026 | 20.0
2dcov?2 r=20.3 0.027 | 17.6
3dcov r=20.3 0.027 | 17.6
MLS2 r=0.6 0.029 | 15.6

Fig. 7 Comparison of the mean curvature estimates on a noisy sphere with radius 2 and noise
variance 0.05. Calibration is done by setting the parameters so that the standard deviation is
similar. The parameters are the neighborhood radius r and the number of iterations N in the
case of MLS1. The best SNR is obtained with MLS1, which is also the fastest method. But
2dcov2 and 3dcov have similar performance, while MLS2 is clearly worse (its radius doubles
for a lower SNR..)

parameters stdev | SNR
MLS1 N =5,7r=0.16, req = 0.36 | 0.040 16.2
2dcov2 r=0.37 0.032 | 16.9
3dcov r=0.3 0.031 | 16.9
MLS2 r=0.6 0.036 | 13.2

Fig. 8 Comparison of the mean curvature estimates on a noisy cylinder with radius 1 and
noise variance 0.05. The radius r or equivalent radius req are set so that the standard deviation
becomes similar. The conclusions are the same as in fig 7.

parameters stdev | SNR
MLSL | N=4,r=0.07, 7¢q = 0.14 | 0.032 | 34.2
2dcov2 r=0.15 0.031 | 31.8
3dcov r=0.15 0.031 | 31.8
MLS2 r=0.32 0.030 1.2

Fig. 9 Comparison of the mean curvature estimates for an invariant circle of a noisy torus
with radii 2 and 0.5 and noise variance 0.02. Here again, the filtering radii were chosen so that
the standard deviation becomes similar, and the SNR’s and radii can therefore be compared.
Here again MLS1 wins by a small margin on 2dcov2 and 3dcov, and by a large margin over
MLS2.

to the mean curvature but does not give an estimated equivalent of the principal
curvatures nor of the principal directions. As a matter of fact only MLS2 provides
this information: 2dcov2 and 3dcov only provide the principal directions and the
squared principal curvatures. Yet we saw that in order for MLS2 to be resilient to
noise a large neighborhood must be used which leads to huge computation times.

Since we proved that MLSI1 is consistent with an intrinsic heat equation, it
plays the special role among the considered operators of simulating a scale space
semigroup. Using the scale space paradigm, it can be used previously to the com-
putation of other differential operators. We did again the same computations using
the MLS1 iterations (scale space) before applying the more complex methods. We
used the same number of iterations for MSLS1 as found in tables 7, 8, 9 and per-
formed the next analysis using the same radius. The new tables (Tabs 10, 11 and
12) show how the scale space makes it possible to compute reliably the same mo-
ments with a smaller processing radius. Computation times being the bottleneck
of all numerical methods, we compare on Tab. 13 the computation times obtained
on the cylinder when applying all the methods (with the same parameters as in
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MLS2 | 2dcov2 | 3dcov
without scale space 276s 196s 188s
with scale space 90s 85s 87s

Fig. 13 Computation time for the cylinder experiments.

figs 8 and 11: it is straightforward that applying the MLSI1 iterations is a much
better strategy to get manageable numerical experiments.

H k1 ko
SNR std SNR std SNR std
2dcov2 | 19.19 | 0.016 | 0.349 | 0.048 | 0.048 | 0.037
3dcov 19.19 | 0.016 | 0.349 | 0.048 | 0.048 | 0.034
MLS2 | 0.645 | 0.053 | 1.283 | 0.0871 | 0.036 | 0.037

Fig. 10 Sphere example: applying scale space iterations before further analysis. The param-
eters of MLS1 iterations are the ones found in the calibration process: » = 0.14 and N = 5.

H k1 ko
SNR std SNR std SNR std
2dcov2 | 55.55 | 0.026 | 56.55 | 0.030 | 4.03 | 0.029
3dcov | 55.67 | 0.026 | 55.70 | 0.030 | 3.92 | 0.029
MLS2 | 46.58 | 0.026 | 59.91 | 0.029 | 1.30 | 0.029

Fig. 11 Cylinder example: applying scale space iterations before further analysis. Parameters
of MLSI1 iterations are the ones found in the calibration process: r = 0.16 and N = 5. The
SNR for ks is of course not meaningful, the asymptotic theoretical mean of ko being 0.

H k1 ko
SNR std SNR std SNR std
2dcov2 | 39.56 0.041 34.73 | 0.0741 | 12.90 | 0.035
3dcov | 39.54 | 0.041 34.73 | 0.0740 | 12.90 | 0.036
MLS2 | 35.00 | 0.0563 | 11.09 | 0.0713 | 37.67 | 0.067

Fig. 12 Torus example: applying scale space iterations before further analysis. Parameters of
MLST1 iterations are the ones found in the calibration process: r = 0.07 and N = 4.

These numerical experiments confirm that the only way to recover a robust
signed integro-differential operator, equivalent to the mean curvature, is to apply
the scale space (iterations of MLS1) and then MLS2. If the sign is not needed,
any of the 2dcov2 or 3dcov can be used. Since 3dcov is simpler to compute, this
would, in this case, be our best choice.
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Conclusion

In this paper, we analyzed the local intrinsic moments of smooth surfaces proposed
in the literature, and linked them by an asymptotic analysis to the surface principal
curvatures. The interest of such local moments is that they can be computed
directly on raw point clouds and therefore allow for a direct numerical analysis of
such raw data. We showed that these clever methods only recover the equivalent
of squared principal curvatures, and loose their signs.

The alternative method to compute curvatures on the surface is the order 2
regression MLS2. An asymptotic analysis of MLS2 confirms that is is accurate with
order 4 and also uncovers a new intrinsic fourth order partial differential operator
arising naturally from this order 2 regression.

Finally the analysis of the MLS1 projection (recalled from [17]) yields a mean
curvature motion. Once iterated this scale space operator, proven very robust to
irreqular sampling, gives an alternative way to compute curvatures by combining
scale space and MLS2. Numerical experiments herewith have shown this to be the
most reliable method, in agreement with the scale space methodology already estab-
lished in itmage analysis.
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