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Abstra
t 3D a
quisition devi
es a
quire obje
t surfa
es with growing a

ura
y by

obtaining 3D point samples of the surfa
e. This sampling depends on the geometry

of the devi
e and of the s
anned obje
t and is therefore very irregular. Many

numeri
al s
hemes have been proposed for applying PDEs to regularly meshed 3D

data. Nevertheless, for high pre
ision appli
ations it remains ne
essary to 
ompute

di�erential operators on raw point 
louds prior to any meshing. Indeed di�erential

operators su
h as the mean 
urvature or the prin
ipal 
urvatures provide 
ru
ial

information for the orientation and meshing pro
ess itself.

This paper reviews a half dozen lo
al s
hemes whi
h have been proposed to


ompute dis
rete 
urvature-like shape indi
ators on raw point 
louds. All of them

will be analyzed mathemati
ally in a uni�ed framework by 
omputing their asymp-

toti
 form when the size of the neighborhood tends to zero. They are given in terms

of the prin
ipal 
urvatures or of higher order intrinsi
 di�erential operators whi
h,

in return, 
hara
terize the dis
rete operators. All 
onsidered lo
al s
hemes are of

two kinds: either they perform a polynomial lo
al regression, or they 
ompute di-

re
tly lo
al moments. But the polynomial regression of order 1 is demonstrated

to play a spe
ial role, be
ause its iterations yield a s
ale spa
e. This analysis is


ompleted with numeri
al experiments 
omparing the a

ura
ies of these s
hemes.

We demonstrate that this a

ura
y is enhan
ed for all operators by applying pre-

viously the s
ale spa
e.
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Introdu
tion

The output of laser s
anners or any surfa
e a
quisition system is a set of points

sampled with variable density on the surfa
e. The s
anners often deliver dire
tly a

mesh, i.e., a set of triangles linking point samples. But the basi
 raw information

is an unorganized point 
loud whi
h 
an be lo
ally sparse or over-
luttered. In this

paper we fo
us on the mathemati
al analysis and pro
essing of su
h raw irregularly

sampled surfa
es. Indeed, they 
ontain the most a

urate information, before it

is altered or smoothed by any re-sampling and meshing. We shall interpret in

terms of intrinsi
 di�erential operators (the 
urvatures) the most interesting and

simple lo
al surfa
e estimators. Iterative surfa
e regularization pro
esses will also

be analyzed and the s
ale spa
e method used to 
ompute reliably lo
al di�erential

features. In one word, the 
hallenge is: how to 
ompute intrinsi
 operators whi
h

ideally only depend on the underlying surfa
e, not on its sampling? Surprisingly

enough, we shall see that this is possible and that the reliability of su
h operators


an be enfor
ed and evaluated.

The �eld of numeri
al surfa
e analysis has been widely studied over the �fteen

past years, due to the development of 
omputer graphi
s. Yet, most studies take as

starting surfa
e representation a mesh. Meshes are mu
h easier to handle than raw

point 
louds, being already oriented, having usually a uniform or regularly varying

sampling, and having a de�nite surfa
e topology. On the 
ontrary, raw data point

sets are 
ompletely unstru
tured heaps of points, known only by their Eu
lidean


oordinates. Nevertheless the 
onstru
tion of a mesh and the 
onstitution of its

topology involve, impli
itly or expli
itly, the 
omputation of di�erential operators

on the raw data.

The most popular mesh re
onstru
tion methods from a raw point 
loud de�ne a

signed fun
tion over R
3
representing the distan
e to the obje
t, and then extra
t

the 0 level set whi
h approximates the obje
t surfa
e. See (e.g.) [15℄, [22℄, [9℄,

[27℄, [4℄, and the well established Poisson method [28℄, whi
h solves a Poisson

equation to build the indi
ator fun
tion of the solid obje
t. These methods vary

in the approa
h to 
ompute the distan
e fun
tion, but all extra
t its zero-level set

by using the mar
hing 
ubes algorithm [35℄, [29℄. In su
h meshing pro
esses, the

initial raw points are irremediably lost. This in
urs into a loss of resolution and

explains the relevan
e of pro
essing dire
tly an unstru
tured raw point 
loud.

The reminder of this paper is divided as follows: se
tion 1 reviews surfa
e

operators and surfa
e motions previously de�ned on meshes and on point 
louds,

se
tion 2 gives the ne
essary de�nitions and tools for raw surfa
es and their under-

lying smooth model. Se
tion 3 analyzes the �rst kind of lo
al �di�erential operator�


omputable on a raw 
loud: these are simply lo
al order 2 moments, whi
h will

be shown to asymptoti
ally 
ompute fun
tions of the surfa
e prin
ipal 
urvatures.

Se
tion 4 analyzes and 
ompares the surfa
e motions given by the proje
tion on

simple regression surfa
es: a plane and a degree 2 polynomial surfa
e. Finally, se
-

tion 5 shows 
omparative numeri
al experiments 
omparing the a

ura
ies of the

mesh free methods to 
ompute lo
al pseudo-di�erential operators, and also show

the improvement brought by applying a s
ale spa
e strategy based on the iteration

on the 
loud of a lo
al linear surfa
e regression.
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1 Computing 
urvatures on sampled surfa
e: state of the art

1.1 Curvatures 
omputed on meshes

Reviews for 
urvature estimation on meshed surfa
es 
an be found in [44℄ or [36℄.

Curvature tensor estimation methods were pioneered by Taubin [46℄ who presented

a simple approximation for 
omputing the dire
tional 
urvature in any tangent di-

re
tion. The 
urvature is 
omputed in all in
ident edge dire
tions and a 
ovarian
e

matrix of the edge dire
tions weighted by their dire
tional 
urvatures and the area

of the two in
ident triangles is built. Eigenve
tors and eigenvalues of this 
ovari-

an
e matrix yield a simple expression of the prin
ipal 
urvatures and 
urvature

dire
tions.

Other 
urvature tensor estimation methods in
lude [44℄ where the tensor is

estimated by building a linear system binding the tensor 
oe�
ients. This linear

system expresses the 
onstraints that multiplying the tensor by an edge dire
tion

should give the di�eren
e of the edge's endpoints normals. The same method is

applied to �nd the 
urvature derivatives. Normals are also used in [48℄ to give a

pie
ewise linear 
urvature estimation (see also [49℄).

To avoid the 
omputation of derivatives with irregular samples, a new kind of

integral 
urvature estimation method has been proposed in [52℄, [43℄ and [42℄. The

interse
tion of the surfa
e with either a sphere or a ball 
entered at a vertex is

analyzed: the 
ovarian
e matrix of this domain is 
omputed and eigenvalues are

expressed in terms of prin
ipal 
urvatures. By in
reasing the neighborhood radius,

the 
urvature estimate 
an be made multis
ale. A very interesting feature of these

methods is that they do not rely on high order derivatives and are therefore more

stable.

Surfa
e motions have also been studied as part of a mesh fairing pro
ess. A key

method was introdu
ed by Taubin in [47℄ who 
onsidered a dis
rete Lapla
ian for

a mesh V with verti
es vi,
∂V
∂t = λL(V ), L being a dis
retization of the Lapla
ian

L(vi) =
1

cardN(vi)

∑

j ∈ N(vi)(vj − vi) where N(vi) is the set of verti
es linked

by an edge to vi (1-ring neighborhood). This formulation is widely used. For

example, [16℄ uses a similar �umbrella� operator. [20℄ also 
omputes the dis
rete

Lapla
ian for all mesh verti
es its eigenve
tors and eigenvalues. By removing the

smallest eigenvalues, a fair mesh (i.e. a denoised mesh) is obtained.

A well known formulation of the Lapla
e Beltrami operator is the famous


otangent formula [38℄,

∆vi =
1

2

∑

j∈Nvi

(cotanαij + cotanβij)

where vi is a vertex of the mesh, N1(vi) its one ring neighborhood, αij and βij

are the angle opposite to edge vivj in the two triangles adja
ent to vivj . This

has been used to 
ompute the surfa
e intrinsi
 equation. Another de�nition of the


urvatures for triangulated surfa
es, based on the theory of normal 
y
les, 
an be

found in [14℄.
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1.2 Curvature estimation and surfa
e motions de�ned on point 
louds

We now examine the rare approa
hes dealing dire
tly with point 
louds. [50℄ intro-

du
ed a s
ale spa
e de
omposition method for point 
louds. The method builds an

adja
en
y graph from the input points (in order to 
ompute easily the geodesi
s

on the surfa
e). The geodesi
s are used to 
ompute a density normalization kernel

that regularizes the density. The s
ale spa
e operator is the operator that moves

ea
h point to the bary
enter of all points weighted by the regularization kernel

and the distan
e to the 
enter point. Then the s
ale spa
e method is used to sele
t

�s
ale-spa
e extrema�. At ea
h s
ale the point motion is 
onsidered. Introdu
ing

a s
alar fun
tion on the displa
ement norm, the authors 
laim a re
overy of the


hara
teristi
 s
ales of the surfa
e (the introdu
ed fun
tion is extremal at the


hara
teristi
 s
ales).

Estimating 
urvatures often ne
essitates the 
omputation of surfa
e deriva-

tives. Yet derivating a potentially noisy surfa
e 
an generate unstable estimates.

Instead, it was noti
ed that lo
al integral quantities 
ontain all the information of

the di�erential operators. This idea was used for example in [37℄, with a method

to 
ompute 
urvatures and normals based on de�ning Voronoi 
ovarian
e matri-


es. More pra
ti
ally, a serious e�ort was made for de�ning integral invariants for

surfa
es.

Our study will 
onsider the simplest lo
al integral invariants. The most famous

prin
ipal integral invariants were de�ned as follows: 
all D the interior of a surfa
e

M, then the area Ar of the interse
tion of D with a sphere of radius r is an

invariant. The se
ond invariant is the volume Vr of the interse
tion of a ball of

radius r with D. Both invariants were proved to be related to the mean 
urvature

([24℄, [11℄) so that:

Vr =
2π

3
r3 − πH

4
r4 +O(r5)

Ar = 2πr2 − πHr3.

Su
h invariants were used in [19℄ for surfa
e registration, or for feature dete
tion

([13℄, [12℄). Nevertheless a serious numeri
al drawba
k of su
h integral invariants

expansions is that the dominant term never 
ontains the a
tual surfa
e informa-

tion. The dominant �rst term is a
tually 
ompletely independent of the surfa
e

lo
us. This makes the method impra
ti
al be
ause the term of interest (here the

mean 
urvature H) is obtained as the di�eren
e of two lower order terms. Yet,

sin
e Vr and Ar are not exa
t but approximate volumes and areas, H 
annot a
-

tually be obtained a

urately from su
h formulas. The methods we will analyze in

this paper a
tually solve the problem by designing the lo
al operator in su
h a way

that the di�erential operator of interest is the dominant term in the asymptoti


expansion.

In terms of mathemati
al analysis, the analysis whi
h goes 
losest to the present

one is due to Pottman et al. in [43℄ and [52℄. These authors analyzed the asymp-

toti
 behavior of several integral invariants, parti
ularly the moments of inertia

of various lo
al intrinsi
 neighborhoods. Yet, on
e again, the quantity to estimate

is not 
ontained in their dominant terms, thus making the obtained asymptoti


formulas numeri
ally impra
ti
al. For example Theorem 2 of [43℄ shows that the

prin
ipal moments of inertia of the neighborhood de�ned as the interse
tion of D
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with a ball of radius r have the Taylor expansion

M1
r =

2π

15
r5 − π

48
(3k1 + k2)r

6 + O(r7)

M2
r =

2π

15
r5 − π

48
(3k2 + k1)r

6 + O(r7)

M3
r =

19π

480
r5 − 9π

512
(k2 + k1)r

6 +O(r7)

where k1 and k2 are the prin
ipal 
urvatures of the surfa
e at the 
onsidered

position. The authors then bypass the di�
ulty of not having the estimates in the

dominant term by taking the di�eren
e M2
r − M1

r = π
24(k1 − k2)r

6 + O(r7). Yet
this only yields the square of the prin
ipal 
urvature di�eren
e.

A more pra
ti
al result was proved in [43℄ in theorem 6 : the bary
enter of the

surfa
e pat
h (interse
tion of a ball of radius r with the surfa
e M) is proved to

have 
oordinates (0, 0, k1+k2

8 r2) + O(r3). In this expression the signs are not lost

and the 
urvature is indeed the dominant term of the expansion. For the sake of


ompleteness the proof of this result will be re
alled in Lemma 2.

In [45℄, the proposed framework for 
urvature estimation at a parti
ular point

is based on a set of 
urves representing the lo
al neighborhood of the point under


onsideration.

For ea
h pair (pi,pj) of neighbors of p, the set of triplets (pi,p,pj) is built.
Ea
h of those triplets 
an be used to de�ne a parametri
 spa
e 
urve p(t) by

quadrati
 polynomial interpolation with p(0) = pi, p(1) = pj and p(t) = p where

t = |p−pi|
|p−pi|+|pj−p| . This allows for the approximation of maximum and minimum


urvature values as the minimum and maximum normal 
urvature values for all

possible point triplets. This method 
an be used either on meshes or point 
louds.

In [25℄, the authors proposed a statisti
al estimation of the 
urvature of point

sampled surfa
es based on M-estimators

1

. The position di�eren
e ve
tor ∆p and

normal di�eren
e ve
tor ∆n are used to de�ne a linear system yielding a �rst

estimate of the 
urvature tensor. Then residuals are 
omputed and used to weigh

the samples and the obje
tive fun
tion is minimized by iterative reweighing of

point samples. This yields the �nal 
urvature tensor estimate.

Finally in [6℄, an algorithm to 
ompute the Lapla
ian of a fun
tion de�ned on

point 
louds in R
d
was proposed along with 
onvergen
e proofs. Yet the model

is not tested on real surfa
es. Neighborhood 
ovarian
es being used already for

normal estimation, the idea to express fundamental forms as 
ovarian
es matri
es

was introdu
ed. The next se
tion reviews the 
ovarian
e te
hniques 
onsidered in

the literature.

1.3 Curvature estimation using 
ovarian
e te
hniques

There are few 
ovarian
e approa
hes and they have seldom been analyzed math-

emati
ally yet, (with the notable ex
eption of [43℄ and [52℄ whi
h will be detailed

in this se
tion). Nevertheless, 
ovarian
e methods 
an be an elegant alternative to

1

M-estimation: robust �tting of a model by minimization of an obje
tive fun
tion of the

residuals with an Iterative Reweighed Least Squares (IRLS) s
heme
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surfa
e regression. Three papers [7℄, [33℄ and [40℄ use 
ovarian
e matri
es for the


urvature estimation.

The �rst one [7℄ 
onsiders the neighbors (pi) of a point p. The se
ond funda-

mental form analog is then de�ned as the 
ovarian
e matrix of the ve
tors ppi

proje
ted onto the tangent plane of the surfa
e at p. An analog of the Gauss map is

also introdu
ed: it is the 
ovarian
e matrix of the neighbors unit normals proje
ted

onto the surfa
e tangent plane at point p. The eigenve
tors are said to give the

prin
ipal dire
tions. In fa
t these two 
ovarian
e matri
es are inspired from [33℄.

Indeed, [33℄ �rst proposed to 
ompute the 
ovarian
e matrix of the normals at the

neighbors of p, and to extra
t the prin
ipal eigenvalues whi
h 
orrespond to the

prin
ipal 
urvatures of the surfa
e at p. The last 
ovarian
e method, introdu
ed

in [40℄ is not 
laimed to be expli
itly linked to surfa
e 
urvatures or fundamental

forms, yet it is used to a

ount for the surfa
e geometri
 variations. Consider the


ovarian
e matrix of ve
tors pi where is the bary
enter of the neighborhood of

p. The surfa
e variation is de�ned as the ratio of the least eigenve
tor over the

sum of all eigenve
tors of this 
ovarian
e matrix. This quantity has the ni
e prop-

erty that it is bounded between 0 (�at 
ase) and 1/3 (isotropi
 
ase). All of these

methods will be detailed and analyzed in se
tion 3.

1.4 Moving Least Squares Surfa
es

MLS (Moving least square) surfa
es were introdu
ed in [30℄ as follows. Given a data

set of points {pi}i (possibly a
quired by a 3D s
anning devi
e) and belonging to

a smooth surfa
e M, the goal is to repla
e the points p de�ning M by a redu
ed

set R = {ri} de�ning a so 
alled MLS M′
surfa
e whi
h approximates M. The

surfa
e M is assumed to be a C∞
2-manifold. The authors �x a bounding error ε

su
h that d(M,M′) < ε, where d is the Hausdor� distan
e.

The proje
tion of a point on the MLS surfa
e is de�ned as follows: given a

point p, �nd a lo
al referen
e domain (plane) for p. The lo
al regression plane H
is obtained by minimizing a lo
al weighted sum of square distan
es of the points

pi to the plane. The weights atta
hed to pi are de�ned as fun
tions of the distan
e

of pi to the proje
tion of p on plane H, rather than their distan
e to p.

Assume Q is the proje
tion of p onto H, then H is found by lo
ally minimizing

with respe
t to n and D the quadrati
 
ost

N
∑

i=1

(< n,pi > −D)2θ(‖pi −Q‖)

where θ is a smooth, monotone de
reasing positive fun
tion. We 
an set Q = p+tn
for some t ∈ R, whi
h leads to the minimization of

N
∑

i=1

(< n,pi − p− tn >)2θ(‖pi − p− tn‖).

The lo
al referen
e domain is then given by an orthonormal 
oordinate system on

H with origin Q. The referen
e domain for p is used to 
ompute a lo
al bivariate

polynomial approximation to the surfa
e in a neighborhood of p. Let Qi be the

proje
tion of pi onto H, and fi =< n,pi −Qi >. In this lo
al 
oordinate system,
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let (xi, yi) be the 
oordinates of Qi on H. The 
oe�
ients of the polynomial are


omputed by minimizing the least square error

∑N
i=1(g(xi, yi)− fi)

2θ(‖pi −Q‖)
The proje
tion of p onto M is de�ned by the polynomial value at the origin, i.e.

Q+ g(0, 0)n = p+ (t+ g(0, 0))n. Thus, given a point p and its neighborhood, its

proje
tion onto the MLS surfa
e 
an be 
omputed. The approximation power of

MLS surfa
es was evaluated in [31℄ and the �rst appli
ations were introdu
ed in

[2℄, [5℄ and [32℄.

MLS surfa
es are not only theoreti
ally powerful; they also provide �ne imple-

mentations for rendering, up-sampling or down-sampling point sets [3℄,[40℄. Finer

variants of MLS were subsequently proposed for a better preservation of sharp

edges in surfa
es de�ned by point 
louds [39℄, [34℄, [18℄, [21℄ and [1℄.

The same framework was used to build a s
ale spa
e for point 
louds in [41℄.

The surfa
e is evolved through a di�usion pro
ess

∂p
∂t − λ · ∆p = 0, where p

is a point of the surfa
e, λ a di�usion parameter and ∆p = Hn is the Lapla
e

Beltrami Operator (H is the 
urvature and n the normal at point p, this is the

de
omposition pro
ess). By remembering the set of displa
ements Di(p) of ea
h
point p we have a re
onstru
tion operator. The 
hoi
e of the Lapla
ian dis
retiza-

tion is very important: a �rst possibility is to use the standard mesh Lapla
ian

te
hniques [47℄ adapted for point 
louds using the k-nearest neighbors instead of

the one ring neighborhood. Another possibility is to use the weighted least squares

proje
tion [23℄, [26℄: the surfa
e is iteratively proje
ted onto the plane de�ned by

the weighted bary
enter o and the normal estimated using the weighted neighbor-

hood 
ovarian
e matrix. The weights are a Gaussian fun
tion of the distan
e to

p, and the size of the Gaussian kernel is a parameter that 
ontrols the amount of

smoothing. This proje
tion pro
ess is in fa
t an order 1 proje
tion motion (MLS1)

that will be analyzed in the following se
tions.

To make the proje
tion more e�
ient, [41℄ proposed to sub-sample the point


loud. This yields a s
ale spa
e de
omposition where at ea
h level the surfa
e is

smoothed and sub-sampled. The s
ale spa
e de
omposition is then applied to the

multi-s
ale freeform deformation and to the morphing problem, with satisfa
tory

results.

The moving least squares (MLS) were used to estimate 
urvatures. For exam-

ple, in [51℄, the authors use the MLS framework to build a 
losed form solution

for 
urvature estimation. Indeed, surfa
es implied by point 
louds 
an be seen as

the zero level set of an impli
it fun
tion f whose gradient and Hessian Matrix are

built. Finally, using formulas for the Gaussian and the mean 
urvature depending

on the Hessian and gradient of f , those 
urvatures 
an be 
omputed.

In [10℄, the problem of estimating di�erential quantities on point 
louds is re-


ast to that of �tting the lo
al representation of the manifold by a jet. A jet is

simply a trun
ated Taylor expansion. A n jet is a Taylor expansion trun
ated at

order n. A jet of order n 
ontains di�erential information up to the n-th order. In

parti
ular it is stated that a polynomial �tting of degree n estimates any kthorder
di�erential quantity to a

ura
y O(hn−k+1). This implies that the 
oe�
ient of

the �rst fundamental form and unit ve
tor normal are estimated with O(hn) pre-

ision and the 
oe�
ients of the se
ond fundamental form and shape operator

are approximated with a

ura
y O(hn−1), and so are the prin
ipal dire
tions. In

order to 
hara
terize 
urvature properties, the method resorts to the Weingarten

map A of the surfa
e, also 
alled the shape operator, that is the tangent map of
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the Gauss map. Re
all that the �rst and se
ond fundamental forms I, II and A
satisfy II(t, t) = I(A(t), t) for any ve
tor t of the tangent spa
e. Se
ond order

derivatives are 
omputed by building the Weingarten map of the os
ulating jet

whose eigenvalues are the prin
ipal 
urvatures. Note that the des
ribed methods


an be used either with a mesh or with a point 
loud. Jets are in fa
t very related

to MLS surfa
es. Indeed, to estimate di�erential quantities a polynomial �tting

of degree n is done, whi
h is exa
tly what MLS does. Therefore the analysis in

se
tion 4 giving the equation governing MLS1 and MLS2 motions are valid for the

jets too.

Nevertheless, we shall prove that none of the above mentioned moment based

methods for 
omputing the 
urvatures without a surfa
e regression gives ba
k

the signed 
urvatures. We shall also prove experimentally that in order to be

stable, those integral estimates as well as the surfa
e regression estimates require

a large neighborhood, whi
h leads to larger 
omputation time. In terms of Signal-

to-Noise Ratio, it will turn out to be better to 
onsider a s
ale-spa
e approa
h:

applying the s
ale spa
e iterations with a small neighborhood and then extra
ting

the di�erential operator analogue.

This se
tion has reviewed the main methods aiming at estimating lo
ally the

surfa
e shape, thus impli
itly 
omputing lo
al equivalents of the in�nitesimal 
ur-

vature tensor. We have seen that two sorts of methods, logi
ally, dominate: the

polynomial regressions on one side, and the lo
al moments on the other. (It is a
-

tually di�
ult to imagine other kinds of lo
al methods on a raw point set). These

kinds have very di�erent te
hniques, but we shall be able to 
ompare them in

two unifying frameworks. We shall �rst give their asymptoti
 equivalents, whi
h

are fun
tions of the surfa
e prin
ipal 
urvatures. Then we shall 
ompare their

reliability by a numeri
al set up in the experimental se
tion.

In parti
ular se
tion 3 �nds the form of the di�erential operators underlying

the four mentioned dis
rete s
hemes based on lo
al 
loud point statisti
s, and

proposing dis
rete analogues of the �se
ond fundamental forms� or of the �prin
ipal


urvatures�. These dis
rete s
hemes have very simple and robust form, being based

on the 
omputation of lo
al moments and eigenvalues of the point 
loud. The

next se
tion 2 provides the tools to analyze numeri
ally point 
loud motions. The

analysis is in spirit 
lose to the image �lter analysis performed in [8℄.

2 Tools for numeri
al analysis of point 
loud surfa
e motions

We always assume the existen
e of a smooth surfa
e M supporting the point set.

These surfa
es are the boundaries of solid obje
ts and 
an therefore be assumed

to be lo
ally Lips
hitz graphs. However, for a mathemati
al analysis of smoothing

algorithms and 
urvature estimations on the surfa
e, we shall always assume that

the surfa
e is a C∞
embedded manifold, known from its samples denoted by MS.

This is not a limitation, in the sense that any �nite sample set 
an be anyway

interpolated by an arbitrarily smooth surfa
e. Let p = p(xp, yp, zp) be a point of

the surfa
e M. At ea
h non umbili
al point p, 
onsider the prin
ipal 
urvatures

k1 and k2 linked to the prin
ipal dire
tions t1 and t2, with k1 > k2 where t1 and

t2 are orthogonal ve
tors. (At umbili
al points, any orthogonal pair (t1, t2) 
an be

taken.) Set n = t1 × t2 so that (t1, t2,n) is an orthonormal basis. The quadruplet

(p, t1, t2,n) is 
alled the lo
al intrinsi
 
oordinate system. In this system we 
an
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Spherical Neighborhood

Regression Plane

Cylindrical Neighborhood

P

M

Fig. 1 Comparison between 
ylindri
al and spheri
al neighborhoods

express lo
ally the surfa
e as a C2
graph z = f(x, y). By Taylor expansion

2

,

z = f(x, y) =
1

2
(k1x

2 + k2y
2) + o(x2 + y2). (1)

Noti
e that the sign of the pair (k1, k2) depends on the arbitrary surfa
e orienta-

tion. Points where k1 and k2 have the same sign are 
alled paraboli
, and points

where they have opposite signs are hyperboli
.

Consider two kinds of neighborhoods in M for p de�ned in the lo
al intrinsi



oordinate system (p, t1, t2,n):

� the spheri
al neighborhood Br = Br(p) ∩ M is the set of all points m of M
with 
oordinates (x, y, z) satisfying (x− xp)

2 + (y − yp)
2 + (z − zp)

2 < r2

� the 
ylindri
al neighborhood Cr = Cr(p) ∩M is the set of all points m(x, y, z)
on M su
h that (x− xp)

2 + (y − yp)
2 < r2.

The spheri
al neighborhood in the sampled surfa
e M2 is the only neighborhood

to whi
h there is a dire
t numeri
al a

ess. It serves for de�ning all numeri
al

s
hemes 
onsidered here. Nevertheless, for the forth
oming asymptoti
 numeri
al

analysis, the 
ylindri
al neighborhood will prove mu
h handier than the spheri
al

one. The next te
hni
al lemma justi�es its use in theoreti
al 
al
ulations.

Lemma 1 Integrating on M any fun
tion f(x, y) su
h that f(x, y) = O(rn) on

a 
ylindri
al neighborhood Cr instead of a spheri
al neighborhood Br introdu
es an

o(rn+4) error. More pre
isely:

∫

Br

f(x, y)dm =

∫

x2+y2<r2

f(x, y)dxdy +O(r4+n). (2)

Proof The surfa
e area element of a point m(x, y, z(x, y)) on the surfa
e M, ex-

pressed as a fun
tion of x, y, dx and dy is dm(x, y) =
√

1 + z2x + z2ydxdy. One has

zx = k1x+O(r2) and zy = k2y +O(r2). Thus

dm(x, y) =
√

(1 + k21x
2 + k22y

2 +O(r3))dxdy

2

We 
ould use z = f(x, y) = −

1
2
(k1x2 + k2y

2) + o(x2 + y2) at the 
ost of 
hanging the

orientation and sign of k1,k2.
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whi
h yields

dm(x, y) = (1 +O(r2))dxdy. (3)

Using (3), the integrals we are interested in be
ome

∫

Br

f(x, y)dm = (1 +O(r2))

∫

§2+y2+z2<r2,(x,y,z)∈M

f(x, y)dxdy; (4)

∫

Cr

f(x, y)dm = (1 +O(r2))

∫

x2+y2<r2, (x,y,z)∈M

f(x, y)dxdy. (5)

The right hand forms are amenable to analyti
 
omputations. Consider polar 
oor-

dinates (ρ, θ) su
h that x = ρ cos θ and y = ρ sin θ with −r ≤ ρ ≤ r and 0 ≤ θ ≤ π.
Then for m(x, y, z) belonging to the surfa
e M, we have z = 1

2ρ
2(k1 cos

2 θ +

k2 sin
2 θ)+O(r3). Thus z = 1

2ρ
2k(θ)+O(r3), where k(θ) = k1 cos

2 θ+k2 sin
2 θ. The


ondition that (x, y, z) belongs to the neighborhood Br 
an therefore be rewritten

as ρ2 + z2 < r2, that is

ρ2 +
1

4
k(θ)2ρ4 < r2 +O(r5).

Computing the boundaries ±ρ(θ) of this neighborhood yields ρ(θ)2+ 1
4k(θ)

2ρ(θ)4−
r2 +O(r5) = 0. Thus

ρ(θ)2 =
−1 +

√

1 + k(θ)2(r2 +O(r5))
1
2k(θ)

2
.

This yields ρ(θ) = r − 1
8k(θ)

2r3 + O(r4). We shall use this estimate for the error

term E appearing in

∫

Br

f(x, y)dxdy =

∫

[0,2π]

∫

[0,ρ(θ)]

f(x, y)ρdρdθ

=

∫

[0,2π]

∫

[0,r]

f(x, y)ρdρdθ − E

=

∫

Cr

f(x, y)dxdy − E,

with E =:
∫

[0,2π]

∫

[ρ(θ),r]
f(x, y)ρdρdθ. Thus

|E| ≤ 2π sup
x2+y2≤r2

|f(x, y)|max(k21, k
2
2)r

4 +O(r5).

In parti
ular if f(x, y) = O(rn), then |E| ≤ O(r4+n). Finally we have

∫

Br

f(x, y)dxdy =

∫

Cr

f(x, y)dxdy +O(r4+n). (6)

Combining (4), (5) and (6) yields (2).

This lemma will prove very useful for the rest of the paper and in parti
ular

in the next se
tion where analysis are given for various 
urvature estimates.



Numeri
al analysis of di�erential operators on raw point 
louds 11

A methodologi
al obje
tion to the asymptoti
 analysis Lemma 1, as well as all

theorems in the remainder of this paper will assume that the surfa
e is a uni-

form Lebesgue measure. Thus the theoreti
al analysis will be performed as though

the surfa
e were a very smooth obje
t with dense uniform Lebesgue sampling.

This is very far from reality, and 
ould 
ast doubts on the pertinen
y of su
h a

theoreti
al analysis. However, as will be explained later, the obje
tion will prove

invalid, in that the 
hosen lo
al integral operators will always be robust to ir-

regular sampling. For example the lo
al area 
ould de�nitely not be 
omputed

by a lo
al sample density. In the same way the lo
al bary
enter of the existing

sampled will be heavily biased by the irregular sampling and would have little

to do with the a
tual lo
al bary
enter of the underlying surfa
e. Nevertheless,

the moments we shall 
onsider are far more robust, in theory and in pra
ti
e, to

irregular sampling. This is the 
ase for example for the normal when estimated

as the normal to the lo
al regression plane or, as we shall see, the mean 
urva-

ture ve
tor estimated as the proje
tion of the sample on its regression plane. On

the numeri
al side, however, it is re
ommended to 
ompensate for the irregular

sampling by an adequate sample reweighing in the 
omputed lo
al moments. This

intrinsi
 density is simply approximated on dis
rete data by weighting ea
h point

by a weight inversely proportional to its initial density. More pre
isely, let p be

a point and Nr(p) = Ms ∩ Br(p). Ea
h point q should ideally have a weight

0 ≤ w(q) ≤ 1 su
h that

∑

q∈Nr(p)
w(q) = 1. This amounts to solve a huge linear

system. For this reason, we shall be 
ontented in the experimental se
tion with

ensuring

∑

q∈Nr(p)
w(q) ≃ 1 by taking w(p) = 1

♯(Bp(r))
, as proposed in [50℄.

3 Curvature estimates by 
ovarian
e matrix methods

This se
tion 
ontains some of the main 
ontributions of the present paper. It �nds

the form of the di�erential operators underlying four di�erent dis
rete s
hemes

based on lo
al 
loud point statisti
s, and proposing dis
rete analogues of the �se
-

ond fundamental form matrix� or of the �prin
ipal 
urvatures�. These dis
rete

s
hemes have a very simple and robust form, being based on the 
omputation

of lo
al moments and eigenvalues of the point 
loud or of its normals. We shall

see that all of the methods asymptoti
ally 
ompute nonlinear di�erential opera-

tors linked to the prin
ipal 
urvatures. Their prin
iple is to repla
e the matrix

of the se
ond fundamental form by some symmetri
 matrix that 
an be dedu
ed

from the lo
al statisti
s of the point 
loud. We shall 
onsider four matri
es (2 or

3-dimensional)that are the simplest of su
h 
ovarian
e matri
es:

� 2D 
ovarian
e matrix of the proje
tions of

−−→
pip on the tangent plane where pi

are the points of the neighborhood (se
tion 3.1) ;

� 2D 
ovarian
e matrix of the proje
tions of the unit normals n(pi) on the tan-

gent plane (se
tion 3.2) ;

� 3D 
ovarian
e matrix of the unit normals n(pi) (se
tion 3.3) ;

� 3D 
entered 
ovarian
e matrix of the

−−→
pio where is the bary
enter of the

neighborhood (se
tion 3.4).
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3.1 A dis
rete �se
ond fundamental form� [7℄

Let(pi)i∈1···N be the set of neighbors of a point p with normal n. This paper

proposes to build the �se
ond fundamental form matrix� as follows. (Although this


ovarian
e matrix is not, as we shall see, 
onsistent with the se
ond fundamental

form, it is thus 
alled in this paper, and a
tually has asymptoti
ally, as we shall

see, the prin
ipal dire
tions as eigenve
tors.) Let si = (pi − p)T · n, let t1, t2 be

two orthonormal ve
tors in the tangent plane of p, and

αi = si ·
(

(pi − p) · t1
(pi − p) · t2

)

= ((pi − p)T · n) ·
(

(pi − p) · t1
(pi − p) · t2

)

.

The αi are the proje
tions of the ve
tors (pi − p) onto the tangent plane to p,

weighted by their distan
e to this plane. The �se
ond fundamental form matrix�

is the 
ovarian
e of these ve
tors, namely

Σd =

N
∑

i=1

(αi − αm) · (αi − αm)T (7)

where αm = 1
N

∑N
i=1 αi and in Σd the d stands for �dis
rete�. To 
ompute the

underlying di�erential operators, two assumptions will be made throughout this

paper. The �rst one is that the surfa
e sampling is uniform with respe
t to the area

measure on the surfa
e. The se
ond one is that this sampling is dense enough, so

that the averages taken on neighborhoods 
an be interpreted as integrals. Under

this interpretation, we 
an reinterpret the sum in (7) as an integral on a 
ylindri
al

neighborhood of p, assuming the data point set to be a lo
ally smooth manifold.

In the lo
al intrinsi
 surfa
e 
oordinate system at point p, (p, t1, t2,n), the surfa
e

an be written as a graph z = 1

2 (k1x
2 + k2y

2) + o(r2). Thus the ve
tors αi are

repla
ed by a 
ontinuous ve
tor α(x, y) de�ned by

α(x, y) =
1

2
(k1x

2 + k2y
2) ·

(

x
y

)

=
1

2
·
(

k1x
3 + k2y

2x
k1x

2y + k2y
3

)

+ o(r3). (8)

Under the interpretation taken above the �se
ond fundamental matrix� rewrites

Σ =

∫

Br

(α(x, y)− αm) · (α(x, y)− αm)T dm(x, y) (9)

where

αm =
1

meas(Br)

∫

Br

α(x, y)dm(x, y). (10)

The proposition made in [7℄ is to extra
t the surfa
e prin
ipal 
urvatures and

their 
orresponding dire
tions at p from this 
ovarian
e matrix, as its eigenvalues

and eigenve
tors. The next theorem 
he
ks if this works asymptoti
ally in the


ontinuous model.

Theorem 1 The eigenve
tors of the �se
ond fundamental form matrix� Σ give the

prin
ipal dire
tions with error o(r8). But the eigenvalues of Σ are not the prin
ipal


urvatures as they satisfy

λ1 =
πr8

256
(5k21 + 2k1k2 + k22) + o(r8) and λ2 =

πr8

256
(k21 + 2k1k2 + 5k22) + o(r8)

where k1 and k2 are the prin
ipal 
urvatures at p
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Proof In the 
ontinuous model αm therefore is 
lose to zero be
ause the integrated

fun
tion is odd on a symmetri
 domain. More pre
isely, using Lemma 1 in (10)

and writing αm = (αmx, αmy),

αmx =
1

2πr2

∫

x2+y2<r2

(k1x
3 + k2y

2xi + o(r5))dxdy = o(r3)

and similarly

αmy = o(r3).

By Lemma 1 again, the 
ovarian
e matrix (9) satis�es Σ =
∫

x2+y2<r2 α(x, y) ·
α(x, y)Tdxdy + o(r8), and, using (8), we 
an 
al
ulate its four 
omponents as

follows.

Σ11 =
1

4

∫

x2+y2<r2

(k1x
3 + k2y

2x)2dxdy + o(r8) =
πr8

256
(5k21 + 2k1k2 + k22) + o(r8)

By ex
hanging the roles of k1, k2, and x, y respe
tively, we get

Σ22 =
πr8

256
(k21 + 2k1k2 + 5k22) + o(r8).

Σ being a symmetri
 matrix, Σ12 = Σ21 and the integrated fun
tion being

odd,

Σ12 =
1

4

∫

x2+y2<r2

(k1x
3 + k2y

2x)(k1x
2y + k2y

3)dxdy + o(r8) = o(r8).

Thus, Σ is equivalent to a diagonal matrix whose prin
ipal dire
tions are t1 and

t2, whi
h validates the theoreti
al requirements, t1 and t2 being the prin
ipal

dire
tions at point p. However, the 
orresponding eigenvalues are

λ1 =
πr8

256
(5k21 + 2k1k2 + k22) + o(r8)

λ2 =
πr8

256
(k21 + 2k1k2 + 5k22) + o(r8)

whi
h are de�nitely di�erent from λ1 = k1 and λ2 = k2. Only the absolute values

of k1 and k2 
an a
tually be dedu
ed from Σ.

3.2 Another dis
rete �se
ond fundamental form�

Another method was also introdu
ed in [7℄ whi
h, in a nutshell, 
omputes the


ovarian
e matrix of the unit normal ve
tors proje
tions onto the lo
al tangent

plane. By applying again the 
ontinuous asymptoti
 analysis of se
tion 3.1, we shall

see in Theorem 2 that this method a
tually 
omputes dis
rete approximations of

the squares of the prin
ipal 
urvatures. The dis
rete algorithm is as follows. Let

M be a C2
surfa
e and p be a point of M. Let (pi)i be the neighbors of p in a

ball neighborhood of radius r. Denote by ni the normal at pi and de�ne vi as the
proje
tion of ni onto the tangent plane at p, then the 
omputed �
urvatures� are
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de�ned as the eigenvalues of the 
ovarian
e matrix of the ve
tors vi. The ve
tor

vi being the proje
tion of ni onto the tangent plane, we have

vi =

(

ni · t1
ni · t2

)

.

Set vm = 1
N

∑N
i=1 vi. Then this new dis
rete 
ovarian
e matrix writes Σd =

∑N
i=1(vi − vm) · (vi − vm)T . In the 
ontinuous framework, the lo
al points on

the surfa
e have 
oordinates m(x, y) = (x, y, 1
2 (k1x

2 + k2y
2) + o(r2)) and the

normal ve
tor to this surfa
e is

∂m
∂x (x, y) ∧ ∂m

∂y (x, y) = (−k1x,−k2y, 1) + o(r). It
follows that

v(x, y) =
1

√

1 + k21x
2 + k22y

2

(

−k1x
−k2y

)

+ o(r),

vm =
1

meas(Br)

∫

v(x, y)dm(x, y),

and the 
ontinuous 
ovarian
e matrix is

Σ :=

∫

Br

(v(x, y)− vm) · (v(x, y)− vm)T .

Theorem 2 The eigenvalues of the 
ovarian
e matrix Σ of the ve
tors v(x, y) in
the spheri
al neighorhood Br are

k21r
4π

4
+ o(r4) and

k22r
4π

4
+ o(r4).

Proof Let us 
ompute the mean vm of v(x, y) on the spheri
al neighborhood. By

Lemma 1 the integral on a spheri
al neighborhood is asymptoti
ally equivalent to

the integral on a 
ylindri
al neighborhood and more pre
isely, (πr2)vm · t1 = o(r3)
and similarly

(πr2)vm · t2 =

∫

x2+y2<r2

−k2y
√

1 + k21x
2 + k22y

2
dxdy + o(r4) = o(r3).

Thus the 
oe�
ients of Σ satisfy, again by Lemma 1,

Σ11 =

∫

x2+y2<r2

k21x
2

1 + k21x
2 + k22y

2
dxdy + o(r4) =

∫

x2+y2<r2

k21x
2 + o(r4)

=
k21r

4π

4
+ o(r4)

Similarly, Σ22 =
k2

2
r4π
4 + o(r4) and Σ12 = Σ21 = o(r4).

Thus Σ is asymptoti
ally diagonal and its eigenvalues Σ11 and Σ22 are asymp-

toti
ally obtained for the prin
ipal dire
tions t1 and t2. Yet, these eigenvalues

asymptoti
ally give an approximation of ea
h one of the squared prin
ipal 
urva-

tures, but not of their sign.



Numeri
al analysis of di�erential operators on raw point 
louds 15

3.3 A third dis
rete �fundamental form�

The methods analyzed in se
tions 3.1 and 3.2 are akin to the original method

introdu
ed in [33℄. Indeed, in [33℄ it was proposed to 
ompute the 
ovarian
e

matrix of the normal ve
tors of the neighborhood (without proje
ting them in the

lo
al regression plane) and therefore get a 3× 3 matrix instead of a 2× 2 matrix.

This is a
tually the simplest imaginable method and we shall see that it gives a

result similar to se
tion 3.2.

Theorem 3 Let M be a C2
surfa
e, let p be a point of M. Then the three eigen-

values of the 
ovarian
e matrix C of the unit normals in a neighborhood of radius

r around p are asymptoti
ally respe
tively equal to 1 and to the squares of the

prin
ipal 
urvatures at p.

Proof A normal ve
tor writes

N =
1

√

1 + k21x
2 + k22y

2





−k1x
−k2y
1



+ o(r).

As in the previous se
tions, we easily obtain by Lemma 1, Nmx = o(r),Nmy =
o(r),Nmz = 1 + o(r). Thus again by Lemma 1,

C=

∫

x2+y2≤r2

1

1 + k21x
2 + k22y

2





k21x
2 k1k2xy k1x(1−Nmz)

k1k2xy k22y
2 k2y(1−Nmz)

k1x(1−Nmz) k2y(1−Nmz) (1−Nmz)
2



dxdy + o(r4)

and, by 
al
ulations exa
tly analogous to Se
tion 3.2, C11 =
k2

1
r4π
4 + o(r4), C22 =

k2

2
r4π

4 + o(r4), C12 = C21 = k1k2
∫

x,y
xydxdy = o(r4), C13 = C31 = C23 = C32 =

C33 = o(r4). Thus the eigenvalues are asymptoti
ally equal to

k2

1
r4π

4 and

k2

2
r4π

4 ,

whi
h also gives ba
k the squares of the prin
ipal 
urvatures of the surfa
e, but

again not their sign.

3.4 A fourth dis
rete fundamental form: the surfa
e variation

We shall now analyze a last variant introdu
ed in [40℄, the so 
alled surfa
e varia-

tion. It is again based on a lo
al 
ovarian
e analysis. Unlike the previous methods,

the surfa
e variation was not 
laimed to be a 
urvature estimate, but to be a mea-

sure of the neighborhood shape. This subse
tion establishes again a link between

this dis
rete quantity and the prin
ipal 
urvatures of the surfa
e.

Let p be a point with given neighborhood Br. Let o be the bary
enter of the

neighborhood. In R
3
, the 
oordinates are written with supers
ripts e.g. the 
oordi-

nates of a point u are (u1, u2, u3). Thus, for i = 1, 2, 3, oi = 1
cardBr

∑

pk∈Br
p
i
k. The


entered 
ovarian
e matrix Σ = (mij)i,j=1,··· ,3 is de�ned as mij =
∑

pk∈Br
(pi

k −
o
i) · (pj

k − o
j) for i, j = 1, 2, 3. Let λ0 ≤ λ1 ≤ λ2 be the eigenvalues of Σ with


orresponding eigenve
tors v0, v1, v2. For k = 0, · · · , 2,

λk =
∑

pi∈Br

〈(pi − o), vk〉2. (11)
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Ea
h eigenvalue gives the varian
e of the point set in the dire
tion of the 
orre-

sponding eigenve
tor. Sin
e v1 and v2 are the ve
tors that 
apture most variations,

they de�ne the PCA regression plane. The normal v0 to this plane is the dire
tion

v minimizing

∑

pi∈Br
〈(pi − o), v〉2. [40℄ de�nes the surfa
e variation by

σ =
λ0

λ0 + λ1 + λ2
. (12)

This quantity measures the ratio of varian
e along the normal to the total varian
e.

If the neighborhood is highly 
urved, its surfa
e variation will be high and if the

neighborhood is �at the surfa
e variation will be small. This quantity has the

property to be bounded between 0 (�at 
ase) and 1/3 (isotropi
 distribution 
ase).

Lemma 2 [43℄ In the lo
al intrinsi
 
oordinate system, the bary
enter of a neigh-

borhood Br of point p has 
oordinates xo = o(r2), yo = o(r2) and zo = Hr2

4 +o(r2),

where H = k1+k2

2 is the mean 
urvature at p.

Proof We give the proof for the sake of 
ompleteness. By Lemma 1 applied to the

numerator and denominator of the following fra
tion, we have

zo =

∫

Br
zdm

∫

Br
dm

=

∫

x2+y2<r2 z(x, y)dxdy +O(r5)
∫

x2+y2<r2 dxdy +O(r3)

=

∫

x2+y2<r2

[

1
2(k1x

2 + k2y
2) + o(x2 + y2)

]

dxdy
∫

x2+y2<r2 dxdy
+O(r3)

=
1

2πr2

∫ r

ρ=0

∫ 2π

θ=0

ρ2(k1 cos
2 θ + k2 sin

2 θ)ρdρdθ + o(r2)

=
r2

8π
(k1π + k2π) + o(r2) =

Hr2

4
+ o(r2).

A similar but simpler 
omputation yields the estimates of xo and yo.

Theorem 4 In the lo
al 
oordinate system the surfa
e variation σ satis�es

σ =
r2

16

(

k21 + k22
2

− 1

3
k1k2

)

+ o(r2) (13)

Proof We need to explain what the 
ovarian
e eigenvalues stand for. Ea
h eigen-

ve
tor vi and asso
iated eigenvalue λi represent a prin
ipal dire
tion and the

variation along this prin
ipal dire
tion,

λi =

∫

m∈Br

〈om, vi〉2dm.

Sin
e we have λ0 ≤ λ1 ≤ λ2, we 
an see that λ0 is asso
iated to the dire
tion

with the least variation namely the normal dire
tion to the surfa
e oz. Sin
e the
eigenve
tors form an orthonormal basis, we have

λ0 + λ1 + λ2 =

∫

m∈Cr

〈om, v0〉2 + 〈om, v1〉2 + 〈om, v2〉2dm =

∫

m∈Cr

‖om‖2dm
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This yields λ0 + λ1 + λ2 =
∫

x2+y2<r2 x
2 + y2 + (z − zo)

2dxdy and

λ0 + λ1 + λ2 =
πr4

2
+ λ0 + o(r6) (14)

We �rst 
ompute λ0, applying again Lemma 1 to get ba
k to the easy 
ylindri
al

neighborhood.

λ0 =

∫

x2+y2≤r2

(z − zo)
2dxdy

=

∫

x2+y2≤r2

z2dxdy + z2o

∫

x2+y2≤r2

dxdy − 2zo

∫

x2+y2≤r2

zdxdy

=

∫

x2+y2≤r2

z2dxdy +
H2r4

16
∗ πr2 − 2

Hr2

4

r4

4
πH + o(r6)

=
1

4
(k21

∫

x2+y2≤r2

x4dxdy + k22

∫

x2+y2≤r2

y4dxdy + 2k1k2

∫

x2+y2≤r2

x2y2dxdy

− H2r6

16
π + o(r6)

=
1

4

r6

6
(
3π

4
(k21 + k22) + k1k2

π

2
)− H2r6

16
π + o(r6)

where H = k1+k2

2 is the mean 
urvature. Thus

λ0 =
πr6

32
(
k21 + k22

2
− 1

3
k1k2) + o(r6) (15)

Using (14) and (15) we get

σ =
r2

16(
k2

1
+k2

2

2 − 1
3k1k2) + o(r2)

1 + r2

16(
k2

1
+k2

2

2 − 1
3k1k2) + o(r2)

whi
h �nally yields:

σ =
r2

16

(

k21 + k22
2

− 1

3
k1k2

)

+ o(r2)

The formula of the surfa
e variation given by Theorem 4 indeed measures a sort

of 
urvature. To interpret it we 
an noti
e that

� the surfa
e variation is symmetri
 in k1,k2;

� in the 
ase of a point lying on a sphere, k1 = k2 = k so σsphere = r6

24k
2
;

� in the 
ase of a saddle point k1 = k = −k2, σsaddle = r6

12k
2
so σsphere < σsaddle;

� in the 
ase of a 
ylinder k1 = k, k2 = 0, σcylinder = r6

32k
2
.

It follows from that the surfa
e variation is not a dis
riminating enough informa-

tion about the surfa
e 
urvature. It is unable to dis
riminate very di�erent lo
al

shapes.
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4 Asymptoti
 behavior of MLS1 and MLS2

The simplest statisti
s that 
an be 
omputed in a spheri
al neighborhood are the

bary
enter and the regression plane. Lemma 2 stated that sending ea
h point onto

the bary
enter of its neighborhood approximates the mean 
urvature motion. The

next simplest statisti
 is the regression plane, and the se
ond next is the lo
al

degree 2 regression surfa
e. The main tool of the s
ale spa
e proposed in [17℄ is

the proje
tion of ea
h surfa
e point p on the lo
al regression plane. This PCA

regression plane is de�ned as the plane orthogonal to the least eigenve
tor of the


entered lo
al 
ovarian
e matrix, and passing through the 
entroid of the neighbor-

hood. The proje
tion of p on this plane will be 
alled p
′ = MLS1(p) where MLSn

stands for moving least square of degree n. Indeed, this proje
tion method is the

simplest instan
e of the moving least square method by whi
h ea
h point of a sur-

fa
e is proje
ted to a lo
al degree n polynomial regression. (The lo
al bary
enter


an a
tually be 
onsidered as an MLS of order 0, MLS0.) There is some parti
ular

interest in MLS1, be
ause a re
ent meshing method uses it as the simplest re-

versible smoothing tool for point 
louds [17℄. On the other hand many 
loud point

pro
essing methods involve some variant of the MLS2 method to smooth, interpo-

late, or sub-sample a point 
loud. MLS1 and MLS2 are smoothing operators and

therefore 
ould be used as s
ale spa
es, that is, as iterative smoothing operators.

But, following [17℄ MLS1 indeed is a s
ale spa
e. MLS2 is not, as illustrated in the

experiments of Se
tion 5. The theorems of this se
tion 
larify what happens with

these lo
al polynomial regressions by �rst re
alling brie�y why MLS1 implements

a mean 
urvature motion, and se
ond by showing that MLS2 is insensitive to �rst,

se
ond, and third order intrinsi
 derivatives, and has an order 4 di�eren
e to the

original surfa
e. The study reveals the fourth order intrinsi
 di�erential operator

asso
iated with MLS2.

4.1 The asymptoti
 behavior of MLS1

The next lemma 
ompares the normal to the PCA regression plane with the normal

to the surfa
e, n at p.

Lemma 3 The normal v to the PCA regression plane in a spheri
al neighborhood

Br at p ∈ M is equal to the surfa
e normal at point p, up to a negligible fa
tor:

v = n+ O(r).

Proof The lo
al PCA regression plane of point p is 
hara
terized as the plane

passing through the bary
enter of the neighborhood Br and with normal v mini-

mizing:

I(v) =

∫

Br

|〈v,pp′〉|2dp′
s.t. ‖v‖ = 1

Denoting by (vx, vy, vz) the 
oordinates of v,

I(v) =

∫

Br

(vxx+ vyy + vz
1

2
(k1x

2 + k2y
2) + o(r2))2dxdy.

Considering the parti
ular value v = (0, 0, 1) shows that the minimal value Imin

of I(v) satis�es Imin ≤ O(r6). In 
onsequen
e the minimum (vx, vy , vz) satis�es
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vx ≤ O(r) and vy ≤ O(r). Thus, sin
e ||v|| = 1, vz ≥ 1 − O(r) and therefore

v = n+ O(r).

Theorem 5 Let Tr be the operator de�ned on the surfa
e M transforming ea
h

point p into its proje
tion p
′ = Tr(p) on the lo
al regression plane. Then

Tr(p)− p =
Hr2

4
n+ o(r2). (16)

Proof By Lemma 2 the bary
enter o of Br has lo
al 
oordinates
−→
po = (o(r2), o(r2), Hr2

4 +

o(r2)). On the other hand
−−→
pp

′
is proportional to the normal to the regression plane,

v. Thus by Lemma 3,

−−→
pp

′ = λ(O(r),O(r), 1 − O(r)). To 
ompute λ, we use the

fa
t that p
′
is the proje
tion on the regression plane of p, and that o belongs to

this plane by de�nition. This implies that

−−→
pp

′ ⊥
−→
op

′
and therefore

λ2O(r2) + λ(1−O(r))(H
r2

4
+ o(r2) + λ(1−O(r))) = 0,

whi
h yields λ = Hr2

4 + o(r2) and therefore

−−→
pp

′=(O(r3),O(r3),
Hr2

4
+ o(r2))=

Hr2

4
n+ o(r2).

4.2 The asymptoti
 behavior of MLS2

Among the many versions of MLS2 proposed in the literature, we shall pi
k one

whi
h is a 
ommon denominator, and prone to a simple asymptoti
 analysis. In

MLS2 a �rst intrinsi
 referen
e frame is �rst 
al
ulated, and the mean square

approximation by order 2 polynomials is made in this referen
e frame. The most

natural frame is found by applying MLS1, and the 
oordinates (x, y) are therefore
the 
oordinates in the regression plane in a spheri
al neighborhood Br. The se
ond

step is to �nd the 
losest order 2 polynomial in the spheri
al neighborhood for the

quadrati
 distan
e. Be
ause of Lemma 1 we 
an spe
ify, without loss of generality

or pre
ision, that this minimization is made in the 
ylindri
al neighborhood Cr. In
that way, all integrals 
omputed in the approximation pro
ess are integrals on the

disk x2 + y2 ≤ r2, whi
h is numeri
ally and formally 
onvenient. Thus the MLS2

algorithm whi
h we shall analyze works in the two steps:

1. 
ompute the regression plane of the manifold in the spheri
al neighborhood

Br = Br(p) ∩M;

2. 
all (x, y) the referen
e 
oordinates in the regression plane. Consider the re-

stri
tion of the smooth manifold to the disk Dr := x2 + y2 ≤ r2, z = f(x, y).
Then �nd the order 2 polynomial g(x, y) that best approximates f for the

L2(Dr) distan
e;
3. set (in the referen
e frame) MLS2(p) := (0, 0, g(0,0)).

The next theorem shows that unlike MLS1, whi
h reveals the mean 
urvature, the

di�eren
e between a point smoothed by MLS2 and its original position is very small

(of order 4) and a
tually reveals a fourth order intrinsi
 operator of bi-Lapla
ian

type. Thus the evolution by an iterated MLS2 is a fourth order equation that is

intuitively well-posed, at least for short times.
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Theorem 6 Consider a smooth manifold and its intrinsi
 
oordinates (x̃, ỹ, z̃)
around a point p(0, 0), so that the Taylor expansion in a neighborhood of p satis�es

z̃ = f̃(x̃, ỹ) =
1

2
k1x̃

2 +
1

2
k2ỹ

2 + f̃3(x, y) + f̃4(x̃, ỹ) + f̃5(x̃, ỹ) +O(r6)

where f̃i are homogeneous polynomials in x̃, ỹ of global degree i. The se
ond order

approximation MLS2(p) of p in a 
ylindri
al neighborhood of p with radius r
satis�es

< MLS2(p)− p,n >= − r4

48
(3ã04 + ã22 + 3ã40)) +O(r5)

where x̃ and ỹ are the 
oordinates asso
iated with the prin
ipal 
urvatures, ã40 =
1
4!

∂4f
∂x̃4 , ã04 = 1

4!
∂4f
∂ỹ4 , ã22 = 1

4!
∂4f

∂x̃2∂2ỹ are the fourth derivatives of the intrinsi


equation at p in the dire
tions of x̃, ỹ and x̃, ỹ respe
tively, and n is the normal

to the surfa
e at p, oriented towards the 
on
avity.

Lemma 4 One 
an 
hoose the 
oordinates x and y in the regression plane at p

so that, z being the 
oordinate in the dire
tion of the normal plane, the equation of

the manifold around p has the form z = f(x, y) =
∑5

i,j=0 aijx
iyj + o(|x2 + y2|3),

and in addition aij = ãij+O(r) where z̃ = f̃(x̃, ỹ) =
∑5

i,j=0 ãijx̃
iỹj+o(|x̃2+ ỹ2|3)

is the equation of the manifold in the intrinsi
 
oordinates (x̃, ỹ, z̃) de�ned by the

normal at p and the dire
tions of the prin
ipal 
urvatures.

Proof Consider (x̃, ỹ, z̃) the 
oordinates in the intrinsi
 frame su
h that x̃ and ỹ
are the 
oordinates asso
iated with the prin
ipal 
urvatures at p, and the plane

x̃pỹ is the tangent plane. Consider now 
oordinates (x, y, z) asso
iated with the

regression plane in a spheri
al neighborhood. Be
ause the normal at the regression

plane tends to the real normal when the spheri
al neighborhood shrinks, we 
an


hoose the 
oordinate axes (x, y) in the regression plane so that the rotation R
whi
h sends one frame to the other is 
lose to the identity, namely

(x̃, ỹ, z̃) = R(x, y, z) (17)

with R → Id when r → 0. More pre
isely, by Lemma 3, the normal v(r) to the

PCA regression plane in a spheri
al neighborhood Br at p ∈ M is equal to the

surfa
e normal at point p, up to a negligible fa
tor: v(r) = n+O(r). Thus we 
an
pi
k R(r) satisfying

R = R(r) = I + O(r). (18)

Consider now the order 4 asymptoti
 expansion of z̃ as a fun
tion of x̃, ỹ, where g̃
is a degree 4 polynomial. (We assume the manifold to be at least C5

):

z̃ − g̃(x̃, ỹ)−O((x̃2 + ỹ2)
5

2 ) = 0.

By substituting in it the relation (17) the above equation be
omes an impli
it

equation in z, x, y,R,

Q(x, y, z, R)−O((x2 + y2 + z2)
5

2 ) = 0. (19)
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However, by the 
hain rule we have

∂Q
∂z (0, 0, 0, Id) = 1. Thus by the impli
it

fun
tion theorem, there is a fun
tion h of 
lass C5
su
h that in a neighborhood of

(0, 0, 0, Id), (19) is equivalent to

z = h(x, y,R).

Sin
e h is C5
we 
an make a Taylor expansion of h and therefore get

z = g(x, y,R) +O(||R− Id||5 + (x2 + y2)
5

2 ).

In parti
ular for R = Id we have (x, y, z) = (x̃, ỹ, z̃) and we obtain by identi�
ation

of the terms with degree lower or equal to 4 that g(x, y, Id) = f̃(x, y). Thus, all
monomials aij(R)xiyj in the expansion of f with respe
t to x, y satisfy ai,j(R) =
ãi,j(Id) +O(I −R), whi
h by (18) yields ai,j(r) = ãi,j +O(r).

Proof of Theorem 6. Let us write f(x, y) = f1(x, y)+f2(x, y)+f3(x, y)+f4(x, y)+
f5(x, y) + o(|x2 + y2|5/2) where

f1(x, y) = a10x+ a01y, f2(x, y) = a20x
2 + a11xy + a02y

2

f3(x, y) = a30x
3 + a21x

2y + a12xy
2 + a03y

3,

f4(x, y) = a40x
4 + a31x

3y + a22x
2y2 + a13xy

3 + a04y
4,

f5(x, y) = a50x
5 + a41x

4y + a32x
3y2 + a23x

2y3 + a14xy
4 + a05y

5.

We look for the order 2 polynomial g that best �ts this surfa
e in the least squares

sense,

g(x, y) = αx2 + βy2 + γxy + δx+ ǫy + θ.

We therefore must �nd the parameters Θ =
(

α β γ δ ǫ θ)
)

whi
h minimize

∫

x2+y2<r2

(g(x, y)− f(x, y))2dxdy =

∫

x2+y2<r2

(XΘT − f(x, y))2dxdy

where X =
(

x2 y2 xy x y 1
)

. This is a quadrati
 minimization and di�erentiating

this integral with respe
t to Θ yields

∫

x2+y2<r2

XT (XΘT − f(x, y))dxdy = 0.

Writing M =
∫

x2+y2<r2 X
TX, the minimizer Θ satis�es

ΘT =

(
∫

x2+y2<r2

(XTX)

)−1 ∫

x2+y2<r2

(XT f(x, y));

ΘT = M−1
∫

x2+y2<r2

XT (f1(x, y)+f2(x, y)+f3(x, y)+f4(x, y)+f5(x, y)+O((x2+y2)3);

where XTX =

















x4 x2y2 x3y x3 x2y x2

x2y2 y4 xy3 xy2 y3 y2

x3y xy3 x2y2 x2y xy2 xy
x3 xy2 x2y x2 xy x
x2y y3 xy2 xy y2 y
x2 y2 xy x y 1

















.
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When integrating on the disk, most terms vanish and we get

M =
πr4

4



















r2

2
r2

6 0 0 0 1
r2

6
r2

2 0 0 0 1

0 0 r2

6 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
1 1 0 0 0 4

r2



















; M−1 =
4

πr4

















9
2r2

3
2r2 0 0 0 −3

2
3

2r2

9
2r2 0 0 0 −3

2

0 0 6
r2 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
−3

2 −3
2 0 0 0 r2

















.

Therefore

ΘT =M−1
∫

x2+y2<r2

XT f1(x, y) +M−1
∫

x2+y2<r2

XT f2(x, y)

+M−1
∫

x2+y2<r2

XT f3(x, y) +M−1
∫

x2+y2<r2

XT f4(x, y)

+M−1

∫

x2+y2<r2

XT f5(x, y) +M−1

∫

x2+y2<r2

XTO((x2 + y2)4),

with

∫

x2+y2<r2

XT f1(x, y) =
πr4

4













0
0
0
a10
a01













;

∫

x2+y2<r2

XT f2(x, y) =
πr4

4



















r2

6 (3a20 + a02)
r2

6 (a20 + 3a02)
r2

6 a11
0
0

a20 + a02



















;

∫

x2+y2<r2

XT f3(x, y) =
πr4

4

















0
0
0

r2

6 (3a30 + a12)
r2

6 (a21 + 3a03)
0

















;

∫

x2+y2<r2

XT f4(x, y) =
πr4

4



















r4

16(5a40 + a22 + a04)
r4

16(a40 + a22 + 5a04)
r4

16(a31 + a13)
0
0

r2

6 (3a40 + a22 + 3a04)



















;
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∫

x2+y2<r2

XT (f5(x, y)) =
πr4

4

















0
0
0

r4

16 (5a50 + a32 + a14)
r4

16 (a41 + a23 + 5a05)
0

















;

∫

x2+y2<r2

XT (x2 + y2)3 =
πr4

4



















2r6

5
2r6

5
0
0
0
r4

2



















.

Multiplying all of these results by the matrix M−1
, we get

M−1
∫

x2+y2<r2

XT f1(x, y) =

















0
0
0
a10
a01
0

















; (20)

M−1
∫

x2+y2<r2

XT f2(x, y) =

















a20
a02
a11
0
0
0

















; (21)

M−1
∫

x2+y2<r2

XT (f3(x, y)) =

















0
0
0

r2

6 (3a30 + a12)
r2

6 (a21 + 3a03)
0

















; (22)

M−1
∫

x2+y2<r2

XT (f4(x, y)) =



















r2

8 (6a40 + a22)
r2

8 (a22 + 6a04)
3r2

8 (a31 + a13)
0
0

− r4

48(3a40 + a22 + 3a04)



















; (23)

M−1
∫

x2+y2<r2

XT (f5(x, y)) =

















0
0
0

r4

16 (5a50 + a32 + a14)
r4

16 (a41 + a23 + 5a05)
0

















; (24)
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M−1
∫

x2+y2<r2

XT (x2 + y2)3 =



















33r4

20
33r4

20
0
0
0

−7r6

10



















, (25)

and 
ombining equations (20), (21), (22), (23), (24) and (25) we �nally obtain the

parameter Θ

ΘT =





















a20 +
r2

8 (a22 + 6a40) +O(r4)

a02 +
r2

8 (a22 + 6a04) +O(r4)

a11 +
3r2

8 (a13 + a31) + O(r4)

a10 +
r2

6 (a12 + 3a30) +
r4

16(5a50 + a32 + a14) +O(r5)

a01 +
r2

6 (3a03 + a21) +
r4

16(a41 + a23 + 5a05) +O(r5)

− r4

48(3a04 + a22 + 3a40) +O(r6)





















so that the MLS2 proje
tion satis�es g(0, 0) = − r4

48 (3a04 + a22 + 3a40) + O(r6).

Finally Lemma 4 permits to repla
e g(0, 0) = − r4

48(3a04 + a22 +3a40) +O(r6). by

−(
r4

48
(3ã04 + ã22 + 3ã40) +O(r6))(1 + O(r)) = − r4

48
(3ã04 + ã22 + 3ã40) +O(r5).

�

We shall now analyze experimentally those results.

5 Numeri
al experiments

This se
tion performs numeri
al 
omparative experiments with the most signi�-


ant algorithms des
ribed in the previous se
tions. A simulated randomly sampled

sphere will play the role of numeri
al pattern. In parti
ular we evaluate the mean


urvatures given on the sphere by MLS1 proje
tion and MLS2 proje
tion followed

by polynomial regression. We also 
ompute the 
urvature estimated by the method

des
ribed in [7℄ and by the surfa
e variation of [40℄. The results are 
ompared by

giving the mean estimated 
urvature and its standard variation. The input data is

a randomly sampled sphere with radius 2 
orrupted with added 
entered Gaussian

noise of varian
e 0.1.

Iteration

MLS1 MLS2

mean standard variation mean standard variation

0 0.5828 2.8609 0.052 1.2879
1 0.5158 1.2434 0.4920 1.0053
2 0.5079 0.3196 0.5083 0.1259
3 0.5102 0.0253 0.5073 0.1001
4 0.5136 0.0189 0.5068 0.0855
5 0.5171 0.0165 0.5065 0.0749
10 0.5356 0.0156 0.5058 0.0489

Fig. 2 Comparison of the 
urvature estimation by iteration of the MLS1 proje
tion and

iterations of the MLS2 proje
tion, with the same radius.
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By 
omparing the values in the table of �g 2, two 
on
lusions 
an be drawn:

�rst, MLS1 is signi�
antly more stable than the MLS2 proje
tion, whi
h 
an be

observed by the standard variation on the estimate. The SNR gain is 
lose to 4 by

using MLS1 instead of MLS2 with the same iteration number. In 
onformity with

Theorem 5, MLS1 proje
tion yields an in
rease of the mean 
urvature (i.e., the

sphere radius de
reases, whi
h is expe
ted from a mean 
urvature motion). These

results 
an be 
ompared to the other two main 
urvature estimators.

Figs 3, 4 and 5) show various 
urvature distribution and surfa
e variation dis-

tributions illustrating the interest of 
omputing su
h operators to 
lassify surfa
e

points.

(a) Iteration 1 (b) Iteration 2 (
) Iteration 3 (d) Iteration 4

Fig. 3 Curvature evolution by iterative proje
tion on MLS1

Another experiment permits to better judge of the MLS1 smoothing e�e
t.

First, a 
onsistently oriented point set was built (see [17℄ for an e�
ient way

of doing so). This normal orientation yields the sign of the mean 
urvature, by


omputing the s
alar produ
t of the oriented normal and the displa
ement ve
tor.

Ea
h point was then plotted in a di�erent 
olor a

ording to its sign, blue for

positive and red for negative (see Fig 6). This experiment shows that, at the

beginning, the 
urvature sign 
aptures essentially noise and small texture. After

several iterations, the shape is smoothed and the sign 
aptures the geometry of

the shape (large s
ale variations), whi
h is the main advantage of the s
ale spa
e

strategy.

To 
ompare the te
hniques analyzed theoreti
ally in the previous se
tions, we

�nally used randomly sampled shapes with added Gaussian noise. We 
ompared

between 
omputing the 
ovarian
e of the points proje
ted onto the lo
al tangent

plane, as des
ribed in se
tion 3.1 (
alled 2d
ov1 in the remainder of this se
tion);


omputing the 
ovarian
e of the unit normals proje
ted on the regression plane, as

des
ribed in se
tion 3.2 (
alled 2d
ov2 in the remainder of this se
tion); 
omputing
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(a) Iteration 1 (b) Iteration 2 (
) Iteration 3 (d) Iteration 4

Fig. 4 Curvature evolution by iterative proje
tion on MLS2 .

(a) Surfa
e variation (b) Curvature by nor-

mal 
ovarian
e analy-

sis

Fig. 5 Other 
urvature estimates .

the 
ovarian
e of the unit normals, as des
ribed in se
tion 3.3 (
alled 3d
ov in the

remainder of this se
tion); and �nally MLS2. The 2d
ov1 method was immediately

dis
arded, be
ause it does not yield a separate estimate of the prin
ipal 
urvatures.

We therefore only 
ompared the other three methods.

To do so the estimators were 
ompared on three kinds of noisy surfa
es: a

sphere, a 
ylinder and a torus with added gaussian noise in the normal dire
tion.
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Fig. 6 Evolution of the motion dire
tion with proje
tion iterations.

The goal was not to 
ompute the a
tual 
urvatures of the noiseless surfa
e, but to


ontrast the robustness of these lo
al surfa
e geometri
 indi
ators whi
h repla
e

the in�nitesimal 
urvatures. The asymptoti
 theorems 2, 3, 1 and 2 show that the


onsidered intrinsi
 lo
al integral estimators retain the same stru
ture properties

as the real di�erential operators. Thus, our goal is to sele
t among them the ones

that have the best SNR. On the other hand the SNR depends of 
ourse of the radius

on whi
h these operators are 
omputed. The smaller the radius, the more faithful

these operators will be to lo
al 
urvature operators. Thus, all things being equal, it

is better to 
ompute them with small radii. But of 
ourse the SNR de
reases with

the radius. Thus, to 
ompare the power of these lo
al integral operators, the best

way is to 
ompare the SNR's with �xed radius or, equivalently, to 
ompare their

radii for �xed SNR. Yet there are two parameters for MLS1: the radius r and the

number of iterations N . But both parameters 
an be an equivalent radius. Indeed,

applying N iterations of MLS1 with radius r is roughly equivalent to applying

one iteration of the s
ale spa
e with radius rq =
√
Nr (this equivalen
e is drawn

by analogy with iterated linear �lters). The numeri
al tables give the equivalent

radius value for MLS1.

A sphere and a 
ylinder were used be
ause they have 
onstant 
urvatures on the

whole surfa
e. We also 
onsidered a torus, be
ause one 
an 
ompute the operators

on invariant 
ir
les of the torus, where 
urvatures should be 
onstant in absen
e

of noise. As just explained, the radii were set so that ea
h method gives the same

standard variation for the estimate of the same 
urvature.

One should �rst noti
e that 3d
ov and 2d
ov2 give very similar results. This is

not surprising sin
e both methods rely on the normal 
ovarian
e matrix (a
tually,

even their asymptoti
 behavior is the same, see theorems 2 and 3).

Tables 7, 8, 9 show the results after this 
alibration of the experiment by

the standard deviation. Two 
on
lusions 
an be drawn from these experiments.

First, the radii needed for getting a small standard variation are slightly larger

for 2d
ov2, 3d
ov and signi�
antly larger for MLS2, than for MLS1. This has

the dire
t 
onsequen
e that 
omputation times are signi�
antly higher for those

methods than for MLS1: it is indeed faster to iterate a method working on a

small neighborhood than to do a single iteration of a method requiring a large

neighborhood. Nevertheless, MLS1 only provides us with an estimated equivalent
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parameters stdev SNR

MLS1 N = 5, r = 0.14, req = 0.31 0.026 20.0
2d
ov2 r = 0.3 0.027 17.6
3d
ov r = 0.3 0.027 17.6
MLS2 r = 0.6 0.029 15.6

Fig. 7 Comparison of the mean 
urvature estimates on a noisy sphere with radius 2 and noise

varian
e 0.05. Calibration is done by setting the parameters so that the standard deviation is

similar. The parameters are the neighborhood radius r and the number of iterations N in the


ase of MLS1. The best SNR is obtained with MLS1, whi
h is also the fastest method. But

2d
ov2 and 3d
ov have similar performan
e, while MLS2 is 
learly worse (its radius doubles

for a lower SNR.)

parameters stdev SNR

MLS1 N = 5, r = 0.16, req = 0.36 0.040 16.2
2d
ov2 r = 0.37 0.032 16.9
3d
ov r = 0.3 0.031 16.9
MLS2 r = 0.6 0.036 13.2

Fig. 8 Comparison of the mean 
urvature estimates on a noisy 
ylinder with radius 1 and

noise varian
e 0.05. The radius r or equivalent radius req are set so that the standard deviation

be
omes similar. The 
on
lusions are the same as in �g 7.

parameters stdev SNR

MLS1 N = 4, r = 0.07, req = 0.14 0.032 34.2
2d
ov2 r = 0.15 0.031 31.8
3d
ov r = 0.15 0.031 31.8
MLS2 r = 0.32 0.030 1.2

Fig. 9 Comparison of the mean 
urvature estimates for an invariant 
ir
le of a noisy torus

with radii 2 and 0.5 and noise varian
e 0.02. Here again, the �ltering radii were 
hosen so that

the standard deviation be
omes similar, and the SNR's and radii 
an therefore be 
ompared.

Here again MLS1 wins by a small margin on 2d
ov2 and 3d
ov, and by a large margin over

MLS2.

to the mean 
urvature but does not give an estimated equivalent of the prin
ipal


urvatures nor of the prin
ipal dire
tions. As a matter of fa
t only MLS2 provides

this information: 2d
ov2 and 3d
ov only provide the prin
ipal dire
tions and the

squared prin
ipal 
urvatures. Yet we saw that in order for MLS2 to be resilient to

noise a large neighborhood must be used whi
h leads to huge 
omputation times.

Sin
e we proved that MLS1 is 
onsistent with an intrinsi
 heat equation, it

plays the spe
ial role among the 
onsidered operators of simulating a s
ale spa
e

semigroup. Using the s
ale spa
e paradigm, it 
an be used previously to the 
om-

putation of other di�erential operators. We did again the same 
omputations using

the MLS1 iterations (s
ale spa
e) before applying the more 
omplex methods. We

used the same number of iterations for MSLS1 as found in tables 7, 8, 9 and per-

formed the next analysis using the same radius. The new tables (Tabs 10, 11 and

12) show how the s
ale spa
e makes it possible to 
ompute reliably the same mo-

ments with a smaller pro
essing radius. Computation times being the bottlene
k

of all numeri
al methods, we 
ompare on Tab. 13 the 
omputation times obtained

on the 
ylinder when applying all the methods (with the same parameters as in
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MLS2 2d
ov2 3d
ov

without s
ale spa
e 276s 196s 188s
with s
ale spa
e 90s 85s 87s

Fig. 13 Computation time for the 
ylinder experiments.

�gs 8 and 11: it is straightforward that applying the MLS1 iterations is a mu
h

better strategy to get manageable numeri
al experiments.

H k1 k2
SNR std SNR std SNR std

2d
ov2 19.19 0.016 0.349 0.048 0.048 0.037
3d
ov 19.19 0.016 0.349 0.048 0.048 0.034
MLS2 0.645 0.053 1.283 0.0871 0.036 0.037

Fig. 10 Sphere example: applying s
ale spa
e iterations before further analysis. The param-

eters of MLS1 iterations are the ones found in the 
alibration pro
ess: r = 0.14 and N = 5.

H k1 k2
SNR std SNR std SNR std

2d
ov2 55.55 0.026 56.55 0.030 4.03 0.029
3d
ov 55.67 0.026 55.70 0.030 3.92 0.029
MLS2 46.58 0.026 59.91 0.029 1.30 0.029

Fig. 11 Cylinder example: applying s
ale spa
e iterations before further analysis. Parameters

of MLS1 iterations are the ones found in the 
alibration pro
ess: r = 0.16 and N = 5. The
SNR for k2 is of 
ourse not meaningful, the asymptoti
 theoreti
al mean of k2 being 0.

H k1 k2
SNR std SNR std SNR std

2d
ov2 39.56 0.041 34.73 0.0741 12.90 0.035
3d
ov 39.54 0.041 34.73 0.0740 12.90 0.036
MLS2 35.00 0.0563 11.09 0.0713 37.67 0.067

Fig. 12 Torus example: applying s
ale spa
e iterations before further analysis. Parameters of

MLS1 iterations are the ones found in the 
alibration pro
ess: r = 0.07 and N = 4.

These numeri
al experiments 
on�rm that the only way to re
over a robust

signed integro-di�erential operator, equivalent to the mean 
urvature, is to apply

the s
ale spa
e (iterations of MLS1) and then MLS2. If the sign is not needed,

any of the 2d
ov2 or 3d
ov 
an be used. Sin
e 3d
ov is simpler to 
ompute, this

would, in this 
ase, be our best 
hoi
e.
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Con
lusion

In this paper, we analyzed the lo
al intrinsi
 moments of smooth surfa
es proposed

in the literature, and linked them by an asymptoti
 analysis to the surfa
e prin
ipal


urvatures. The interest of su
h lo
al moments is that they 
an be 
omputed

dire
tly on raw point 
louds and therefore allow for a dire
t numeri
al analysis of

su
h raw data. We showed that these 
lever methods only re
over the equivalent

of squared prin
ipal 
urvatures, and loose their signs.

The alternative method to 
ompute 
urvatures on the surfa
e is the order 2

regression MLS2. An asymptoti
 analysis of MLS2 
on�rms that is is a

urate with

order 4 and also un
overs a new intrinsi
 fourth order partial di�erential operator

arising naturally from this order 2 regression.

Finally the analysis of the MLS1 proje
tion (re
alled from [17℄) yields a mean


urvature motion. On
e iterated this s
ale spa
e operator, proven very robust to

irregular sampling, gives an alternative way to 
ompute 
urvatures by 
ombining

s
ale spa
e and MLS2. Numeri
al experiments herewith have shown this to be the

most reliable method, in agreement with the s
ale spa
e methodology already estab-

lished in image analysis.
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